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Introduction

The paper deals with the study of the exact controllability of the Navier–Stokes
and Boussinesq equations, which describe the flow of a viscous incompressible fluid
without and with heat processes taken into account, respectively. To give various
statements of the exact controllability problem, let us consider the Cauchy problem
for the abstract evolution equation

∂v(t)

∂t
+ A(v(t)) = Bu(t) + f(t), (0.1)

v(t, · )
∣∣
t=0

= v0, (0.2)

where v(t) is a phase function defined for t ∈ [0, T ] and taking values in a phase
space X, u(t) is a control taking values in a space U , A is a non-linear operator,
B : U → X is a linear operator, and f(t) is a given right-hand side. Suppose that
we are given a solution v̂(t) of the equation

∂v̂(t)

∂t
+A(v̂(t)) = f(t) (0.3)

with the same operator A and right-hand side f as in (0.1), but without the con-
trol u. Furthermore, we assume that v̂(0) 6= v0. The exact controllability problem
is as follows: construct a control u(t) such that the solution of the Cauchy prob-
lem (0.1), (0.2) with this control coincides at t = T with the given solution v̂(t):

v(t)
∣∣
t=T

= v̂(t)
∣∣
t=T

. (0.4)

If it is known in addition that v0 is sufficiently close to v̂(0, · ) in the norm of X,

‖v̂(0, · )− v0‖X 6 ε, (0.5)

where ε ≡ ε(v̂) is sufficiently small, then the problem of constructing a control u
such that the solution v of the Cauchy problem (0.1), (0.2) satisfies (0.4) is called
the local exact controllability problem for equation (0.1).

We note that if on the right-hand side of (0.4) one substitutes an arbitrary ele-
ment v1 instead of the value v̂

∣∣
t=T

of the solution of (0.3), then for the case in which
(0.1) is not reversible in time the exact controllability problem (0.1), (0.2), (0.4)
will not be soluble in general. The Navier–Stokes and Boussinesq systems are irre-
versible in time. (For the case of reversible equations (0.1), say, for hyperbolic
systems, one can substitute an arbitrary sufficiently smooth function v1 on the
right-hand side of (0.4).)

For irreversible evolution equations, the approximate controllability problem is
often considered, stated as follows: for the controlled system (0.1), (0.2), an arbi-
trary given element v1 ∈ X, and an arbitrarily small ε > 0, construct a control
uε ∈ U such that the solution of problem (0.1), (0.2) at time t = T satisfies the
condition

‖v(T, · )− v1‖X 6 ε. (0.6)
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Controllability theory for evolution partial differential equations began develop-
ing in the 1960s. The foundations of this theory were laid by Egorov [18], Rus-
sell [113]–[114], and Fattorini [24] (see also Seidman [116] and Littman [102]). In
particular, in these papers the moment method was developed, which reduces the
solution of the exact controllability problem to problems in the theory of exponen-
tial series (for the modern state of this method, see [1], [3]), and the duality principle
was introduced, which reduces the controllability problem for an evolution equation
to the observability problem for the adjoint equation. A general review of the state
of the theory up to 1978 can be found in Russell’s paper [113].

Starting from the mid-1980s, interest in controllability theory increased sub-
stantially. At that time, the case of hyperbolic equations was mainly studied.
In 1986, Ho [51] found sufficient observability conditions for a second-order hyper-
bolic equation by the method of multipliers. Simultaneously, J.-L. Lions introduced
the Hilbert uniqueness method, which enables one to derive the solubility of the
controllability problem for the original equation from the uniqueness theorem for
the adjoint equation. These methods have been intensively developed in numerous
papers. The most comprehensive review of the literature can be found in the mono-
graphs by J.-L. Lions [98], Lagnese [81], Lagnese and Lions [82], and Komornik [74],
as well as in the survey by Lions [97] (see also [75], [83]–[85]).

An important step in the development of boundary controllability theory was
made by Bardos, Lebeau, and Rauch [4], who used theorems on propagation of
singularities for the solution of boundary controllability problems for hyperbolic
equations; this approach enabled one to obtain sufficient solubility conditions (close
to necessary conditions) in terms of the non-trapping condition (see [5], [58], [90]).

Interesting results on controllability for hyperbolic and close-to-hyperbolic equa-
tions were obtained in [83]–[89], [47]–[52], [128], [130].

We have already noted that it is possible to derive results on controllability of
the original equation from uniqueness for a certain Cauchy problem for the adjoint
equation. Carleman estimates provide one of the most powerful methods for proving
uniqueness for the Cauchy problem. Hence we hope that the brief survey below of
the development of the theory of Carleman estimates will be useful.

Since Hörmander’s fundamental results [53], [54] at the beginning of the 1960s
and Isakov’s subsequent papers [65]–[68], the theory of Carleman estimates has been
developing in several directions. We mention the theory of Carleman estimates in
the spaces Lp with p 6= 2 (see [69], [70], [72], [73], [118], [119], [123]) and the theory
of Carleman estimates with singular weight functions [69]. Carleman estimates for
elliptic and parabolic equations with non-smooth right-hand sides were obtained
in [19], [21], [64]. The case of a hyperbolic equation was considered by Ruiz [112].
The most general results were obtained by Tataru [120]–[123].

Since the beginning of the 1990s, Carleman estimates have been widely used
in exact boundary controllability problems. Using these estimates, Kazemi and
Klibanov [71] solved the observability problem for the wave equation, and Lasiecka
and Triggiani [86] studied the controllability of a system of hyperbolic equations.
The controllability of hyperbolic equations in domains with non-smooth boundary
was considered by Grisvard [46] and Heibig and Moussaoui [50].

A vast majority of the above papers deals with controllability problems for linear
evolution equations. Much less is known for non-linear equations. For example,
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the exact boundary controllability problem for the elementary one-dimensional
hyperbolic equation ytt − yxx + y3 = 0 remains open. Some results are known
on local controllability (see [113]) and on null-controllability in a time depending
on the energy of the initial data. For a one-dimensional hyperbolic equation with
a non-linearity growing at infinity no faster than |y| ln+ |y|, the solubility of the
controllability problem is proved in [128]; for non-linearities of the form ey or −y3

the corresponding result is given in [57].
In [93], [94] Lions conjectured the global boundary or locally distributed con-

trollability of the Navier–Stokes equations. After these papers, from the start of
the 1990s controllability has been intensively studied for parabolic equations with
elementary non-linearities and for equations describing fluid flows.

The approximate controllability of the Stokes equations was studied in [93], [94],
[96], [32]–[35], [19]–[21]. The problem of approximate controllability by a local
external force of constant direction (stated by Lions in [94]) was studied by Diaz
and Fursikov [17] and by Lions and Zuazua [100].

The approximate controllability for a semilinear parabolic equation with a non-
linearity of at most linear growth at infinity was established by Fabre, Puel, and
Zuazua [22], [23]; in [27], [129] it was proved for the case in which the non-linear
term contains the gradient.

Fora non-linearparabolic equationwith a quadratic or higher-order non-linearity,
the situation is completely different. A priori estimates that readily imply the
non-existence of solutions of the approximate controllability problem for a par-
abolic equation for some initial data were obtained in [15], [59] for a semilinear
equation with a non-linearity of type y3 and in [33]–[35] for the Burgers equation.
(A detailed analysis for the case of a one-dimensional semilinear parabolic equation
can be found in [41].)

So far, the most powerful known method for proving exact controllability of
non-linear parabolic equations is the method in which the solution is constructed
with the help of an extremal problem and then Carleman estimates are applied.
The foundations of this method were laid by Fursikov and Imanuvilov [35], [36],
who studied the local exact controllability of the Burgers equation and the two-
dimensional Helmholtz equation. The Carleman estimate was first obtained in [60].
The exact controllability for semilinear parabolic equations with a non-linearity
growing at most linearly at infinity was established in [61], [10], [64]. In [25], [26]
this result was generalized to the case of a semilinear parabolic equation with a
non-linear term growing at infinity no faster than |y| ln+ |y|. We also mention the
paper [127], where the controllability of a one-dimensional parabolic equation with
an analytic non-linearity was established with the help of the Cauchy–Kowalewski
theorem.

A new approach to the proof of solubility of the controllability problem for
linear parabolic equations with coefficients independent of time was suggested by
Lebeau and Robbiano [91]. Interesting results for the one-dimensional heat equation
with rapidly oscillating coefficients were obtained in a recent paper by Lopez and
Zuazua [105]. Controllability issues for the Burgers equation were also considered
in [56], [6], [7].

The exact null-controllability of the Navier–Stokes equations was established in
[36], [28].
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The local exact controllability of the Navier–Stokes equations and the Boussinesq
system was proved by Fursikov and Imanuvilov [37]–[42] for the case in which the
control is distributed over the boundary or a part of the boundary, and also for the
case of a locally distributed control.

The local exact controllability of the Navier–Stokes equations and the Boussinesq
system with a locally distributed control and with slip boundary conditions was
studied in [62]. The case of a locally distributed control for the Navier–Stokes
equations with zero boundary conditions was considered by Imanuvilov [57] under
additional restrictions on the prescribed velocity.

The approximate controllability of the two-dimensional Euler equation and the
two-dimensional Navier–Stokes system with slip boundary conditions and with
boundary control was established by Coron [11]–[13]. Later this result was extended
in [43] to the three-dimensional Euler equation.

The global exact controllability of the Navier–Stokes equations with a local dis-
tributed control on a closed two-dimensional manifold is proved in [14].

The main object of study in the present paper is the controllability problem
for the Boussinesq system on the cylinder Q = (0, T ) × Π, where (0, T ) is a time
interval and Π = R

n/LZn is the n-dimensional torus, that is, the direct product
of n circles of length L. The dimension n of the torus Π is assumed to be 2 or 3.
Furthermore, we assume that the control u is distributed with support contained
in the cylinder Qω = (0, T ) × ω, where ω is an arbitrary given subdomain of Π.
Results for the Navier–Stokes equations are obtained as simple corollaries of the
corresponding results for the Boussinesq system. However, for simplicity we discuss
in the introduction the results for the example of the Navier–Stokes equations on
the cylinder Q:

∂tv(t, x)−∆v(t, x) + (v,∇)v +∇p(t, x) = f(t, x) + u(t, x), div v = 0, (0.7)

v(t, x)
∣∣
t=0

= v0(x), (0.8)

where supp u ⊂ Qω.
We prove the exact controllability of system (0.7), (0.8) for Qω = (0, T )×ω with

arbitrarily small T and with any open subset ω ⊂ Π containing the support of the
control u.

The exact controllability problem on the interval [0, T ] for problem (0.7), (0.8)
obviously reduces to the solution of the approximate controllability problem on
[0, T1] (T1 < T ) followed by the solution of the local exact controllability problem on
[T1, T ]. We note that X = V 1(Π) = {v ∈ (H1(Π))n : div v = 0} for problem (0.7),
(0.8), where H1(Π) is the Sobolev space of vector fields on the torus Π. Thus,
inequalities (0.5), (0.6), as well as the notions of local exact controllability and
approximate controllability, are well defined.

We prove the approximate controllability of problem (0.7), (0.8) on the interval
[0, T1], where T1 ≡ T1(ε) and ε is the number from inequality (0.6). Furthermore,
T1(ε)→ 0 as ε→ 0.

It follows from our proof of the theorem on the local exact controllability on an
interval [T1, T ] that the interval [T1, T ] can be chosen arbitrarily small provided that
the ε in inequality (0.5) is sufficiently small. As a result, we obtain a theorem on
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the (non-local) exact controllability with control u supported on Qω = (0, T )× ω,
where T can be arbitrarily small and ω is an arbitrary open subset of Π.

The exact controllability theorem implies that it is possible to stabilize steady-
state unstable solutions. Also, it implies that there are arbitrarily complicated
(chaotic) solutions of the Navier–Stokes and Boussinesq equations and that these
systems have a certain reversibility property (see § 1.5).

Finally, we note that, as is shown in § 1, the exact controllability theorem for
system (0.1), (0.2) on the torus readily implies the controllability theorem for the
Navier–Stokes equations in an arbitrary bounded domain Ω with control distributed
over the entire boundary ∂Ω.

§ 1. Statement of the problem. Main results

1.1. Exact boundary controllability of the Navier–Stokes equations. Let
Ω ⊂ Rn, n = 2, 3, be a bounded domain with C∞ boundary ∂Ω, T > 0, C =
(0, T )×Ω, and Σ = (0, T )× ∂Ω the lateral surface of C. We consider the following
mixed boundary-value problem for the Navier–Stokes equations:

∂tv(t, x) −∆v + (v,∇)v +∇p = f(t, x), (t, x) ∈ C, (1.1)

div v(t, x) ≡
n∑
i=1

∂ivi(t, x) = 0, (t, x) ∈ C, (1.2)

v
∣∣
Σ

= α(t, x), (1.3)

v(t, x)
∣∣
t=0

= v0(x), (1.4)

where ∂t =
∂

∂t
, ∂i =

∂

∂xi
, x = (x1, . . . , xn) ∈ Ω, v(t, x) = (v1(t, x), . . . , vn(t, x)) is

the velocity vector field of the fluid, ∇p(t, x) is the pressure gradient in the fluid,
∆ is the Laplace operator, (v,∇)v =

∑n
i=1 vi∂iv, f(t, x) = (f1(t, x), . . . , fn(t, x)) is

a given density of external forces, v0 is a given initial vector field, and the vector
field α defined on the boundary Σ is not prescribed in advance, but rather can be
used as a control.

The exact controllability problem for the Navier–Stokes equations with con-
trol defined on the boundary Σ, that is, the exact boundary controllability prob-
lem, is as follows. Suppose that we are given a solution (v̂(t, x),∇p̂(t, x)) of sys-
tem (1.1), (1.2):

∂tv̂(t, x)−∆v̂ + (v̂,∇)v̂ +∇p̂ = f(t, x), div v̂ = 0. (1.5)

It is required to find a control α(t, x) defined on Σ such that the solution v(t, x)
of problem (1.1)–(1.4) at t = T coincides with v̂(T, x):

v(t, x)
∣∣
t=T
≡ v̂(T, x). (1.6)

To state the problem precisely and present the main result, we need some func-
tion spaces. By Hk(Ω), where k is a positive integer, we denote the Sobolev space



Exact controllability of the Navier–Stokes and Boussinesq equations 571

of scalar functions square integrable on Ω together with all derivatives of order 6 k;
by (Hk(Ω))n we denote the corresponding Sobolev space of vector fields. We set

V k(Ω) =
{
v(x) = (v1, . . . , vn) ∈ (Hk(Ω))n : div v = 0

}
, (1.7)

H1,2(C) =
{
v(t, x) ∈ L2(0, T ;H2(Ω)) : ∂tv ∈ L2(0, T ;H0(Ω))

}
, (1.8)

V 1,2(C) =
{
v ∈ (H1,2(C))n : div v = 0

}
. (1.9)

More generally, for 1 6 p 6∞, k > 0, we set

V kp (Ω) =
{
v(x) ∈ (W k

p (Ω))n : div v = 0
}
, (1.10)

where W k
p (Ω) is the Sobolev space of functions pth-power integrable together with

the derivatives of order 6 k. The definition of the Sobolev spaces Hk(Ω) and
W k
p (Ω) with fractional k can be found in [99], [117]. Moreover, we shall use the

function spaces Ck,α(Ω), where k is a non-negative integer and α ∈ (0, 1), of k
times continuously differentiable functions on Ω all of whose kth derivatives satisfy
the Hölder condition with exponent α.

One of the main results of the present paper is given by the following theorem.

Theorem 1.1. Let f ∈ L2(0, T ; V 2(Ω)) and v0 ∈ V 4(Ω), and let

(v̂, p̂) ∈ C1(0, T ; V 4(Ω)) × L2(0, T ;H1(Ω))

be a solution of system (1.5). Suppose that the relations∫
Γi

(
v̂(t, x), ν(x)

)
dσ = 0 a.e., t ∈ [0, T ],

∫
Γi

(
v0(x), ν(x)

)
dσ = 0, (1.11)

where ν(x) is the outward normal vector �eld on ∂Ω, are satis�ed on each connected

component Γi of the boundary ∂Ω. Then there is a solution (v,∇p, α) ∈ V 1,2(C) ×
(L2(C))n × L2(0, T ; (H3/2(∂Ω))n) of problem (1.1)–(1.4), (1.6).

The proof of this theorem can be reduced to the proof of the statement given in
the next subsection.

1.2. Local exact distributed controllability of the Navier–Stokes equa-
tions. Let L > 0 be some number, Π =Rn/LZn the n-dimensional torus (n = 2, 3)
that is the product of circles of length L, and ω ⊂ Π an open subset. We set
Q = (0, T )× Π and Qω = (0, T )× ω. On the cylinder Q, we consider the Navier–
Stokes equations

∂tv(t, x)−∆v + (v,∇)v +∇p = f(t, x) + u(t, x), (t, x) ∈ Q, (1.12)

div v = 0, (1.13)

with the initial condition

v(t, x)
∣∣
t=0

= v0(x), x ∈ Π. (1.14)
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Here f and v0 are given vector fields an u(t, x) is a control concentrated
on the cylinder Qω. We note that relations (1.12)–(1.14) on Π mean precisely that
these relations hold for every x ∈ Rn and that all vector fields occurring in
(1.12)–(1.14), that is, v(t, x), ∇p(t, x), f(t, x), u(t, x), v0(x), where x=(x1, . . . , xn),
are L-periodic in each of the variables xi. For example,

v(t, x1, . . . , xj + L, . . . , xn) = v(t, x1, . . . , xj, . . . , xn) ∀ j = 1, . . . , n.

By analogy with (1.7)–(1.10), we introduce the spaces V k(Π) and V kp (Π) on the

torus Π and the spaces H1,2(Q) and V 1,2(Q) on the cylinder Q = (0, T )× Π.
We define the control space by

U(ω) =
{
u(t, x) ∈ (L2(Q))n : suppu ⊂ Qω

}
. (1.15)

The following theorem holds on local exact distributed controllability of the
Navier–Stokes equations (1.12), (1.13).

Theorem 1.2. Let f ∈ L2(0, T ; V 0(Π)) and v0 ∈ V 1(Π). Suppose that (v̂,∇p̂) ∈
C1(0, T ; V 0(Π)∩ (C2,α(Π))n)× (L2(Q))n is a solution of system (1.5) on Q. Then
there is a solution

(v,∇p, u) ∈ V 1,2(Q)× (L2(Q))n × U(ω)

of problem (1.12)–(1.14), (1.6).

We derive Theorem 1.1 from Theorem 1.2.

Proof of Theorem 1.1. Let us translate Ω by an appropriate vector x0 ∈Rn. Then
we can assume that Ω is a subset of the cube

K =
{
x = (x1, . . . , xn) ∈ Rn : 0 6 xj 6 L, j = 1, . . . , n

}
,

where L > 0 is some number depending on Ω. By identifying the opposite facets of
K, that is, the sets{

x = (x1, . . . , xn) ∈ Rn : xj = 0
}

and
{
x = (x1, . . . , xn) ∈ Rn : xj = L

}
for each j ∈ {1, . . . , n}, we obtain the torus Π. Thus, we have constructed an
embedding Ω ⊂ Π. With regard to (1.11), it follows from Proposition 2.3 in [40]
that the vector field v̂ ∈ C1(0, T ; V 4(Ω)) can be extended to a vector field Rv̂ ∈
C1(0, T ; V 4(K)) ⊂ C1(0, T ; V 0(K) ∩ C2,α(K)), and the vector field v0 ∈ V 4(Ω)
can be extended to a vector field Rv0 ∈ V 4(K) ⊂ V 0(K) ∩ C2,α(K) with some
α ∈ (0, 1). Moreover, the method used in the proof of Proposition 2.3 in [40] enables
one to choose Rv̂ and Rv0 such that Rv̂ = 0 in a neighbourhood of (0, T ) × ∂K
and Rv0 = 0 in a neighbourhood of ∂K. This property enables one to extend Rv̂
and Rv0 periodically from K to Rn, that is, assume that Rv̂ and Rv0 are defined
on Q and Π, respectively, and moreover, Rv̂ ∈ C1(0, T ; V 0(Π) ∩ C2,α(Π)) and
Rv0 ∈ V 0(Π) ∩ C2,α(Π). By substituting Rv̂ into (1.5), we find that

∂tRv̂(t, x)−∆Rv̂ + (Rv̂,∇)Rv̂ = h(t, x), (1.16)
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where h(t, x) is a vector field satisfying the condition

h
∣∣
(0,T )×Ω

= f −∇p̂. (1.17)

Since Rv̂ ∈ C1(0, T ; V 0(Π) ∩ C2,α(Π)), it follows from (1.16) that h(t, x) ∈
(C(Q))n ⊂ (L2(Q))n. By applying the Weyl decomposition to h(t, x) for almost all
t ∈ (0, T ), we obtain

h(t, x) = hσ(t, x) +∇q̂(t, x), (1.18)

where hσ(t, x) ∈ L2(0, T ; V 0(Π)),∇q̂(t, x) ∈ (L2(Q))n. It follows from (1.16)
and (1.18) that

∂t(Rv̂) −∆(Rv̂) + ((Rv̂),∇)(Rv̂) +∇q̂ = hσ(t, x), divRv̂ = 0. (1.19)

Let us replace f by hσ and v0 by Rv0 in problem (1.12)–(1.14). Then the assump-
tions of Theorem 1.2 are satisfied with ω = Π\Ω and with the pair (v̂, p̂) replaced by
the pair (Rv̂, q̂), which satisfies (1.19). Hence, by Theorem 1.2, there is a solution
(v,∇p, u) of problem (1.12)–(1.14) with f = hσ and v0 = Rv0 such that

v(T, x) ≡ Rv̂(T, x), x ∈ Π. (1.20)

The restriction of (1.20) to C coincides with (1.6), and the restriction of (1.12) with
f = hσ to C can be represented by virtue of (1.18), (1.17) in the form

∂tv −∆v + (v,∇)v +∇p+∇p̂+∇q̂ = f.

We set ∇p+∇p̂+∇q̂ = ∇p1 and write v
∣∣
(0,T )×∂Ω

= α. Then the triple (v,∇p1, α)

satisfies the assertion of Theorem 1.1.

1.3. Exact controllability of the Boussinesq system. We consider the Boussi-
nesq system

∂tv(t, x)−∆v + (v,∇)v + θ(t, x)~e+∇p(t, x) = f(t, x), div v = 0, (1.21)

∂tθ(t, x)−∆θ + (v,∇)θ = g(t, x), (1.22)

v(t, x)
∣∣
Σ

= α(t, x), θ(t, x)
∣∣
Σ

= β(t, x), (1.23)

v(t, x)
∣∣
t=0

= v0(x), θ(t, x)
∣∣
t=0

= θ0(x), (1.24)

in the cylinder C = (0, T )× Ω, where Ω ⊂ Rn, n = 2, 3, is a bounded domain with
boundary ∂Ω ⊂ C∞, Σ = (0, T ) × ∂Ω, v(t, x) = (v1(t, x), . . . , vn(t, x)) is the fluid
velocity vector field, p is the pressure, θ(t, x) is the fluid temperature, ~e is the
gravitational force direction, f(t, x) = (f1(t, x), . . . , fn(t, x)) is the external force
density, g(t, x) is the heat source density, v0, θ0 are the initial data, and α, β are
the boundary data.

The statement of the exact boundary controllability problem for the Boussinesq
system is similar to the corresponding statement for the Navier–Stokes equations.

Let (v̂(t, x),∇p̂(t, x), θ̂(t, x)) ∈ C1(0, T ; V 4(Ω))×(L2(C))n×C1(0, T ;H4(Ω)) satisfy
equations (1.21), (1.22); it is required to find a control

(α, β) ∈ L2

(
0, T ; (H3/2(∂Ω))n

)
× L2

(
0, T ;H3/2(∂Ω)

)
such that the solution (v, p, θ) of problem (1.21)–(1.24) satisfies the condition

v(T, x) = v̂(T, x), θ(T, x) = θ̂(T, x). (1.25)

The following theorem holds.
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Theorem 1.3. Let n = 2, 3. Let f ∈ L2(0, T ; V 0(Ω)) and g ∈ L2(0, T ;L2(Ω))

and suppose that a triple of functions (v̂, p̂, θ̂) ∈ C1(0, T ; V 4(Ω)) × (L2(C))n ×
C1(0, T ;H4(Ω)) satisfying equations (1.21) and (1.22) and condition (1.11) is given.
Then for an arbitrary initial condition (v0, θ0) ∈ V 4(Ω) × H4(Ω) satisfying (1.11)
there is a boundary control (α, β) ∈ L2(0, T ; (H3/2(∂Ω))n) × L2(0, T ;H3/2(∂Ω))
such that problem (1.21)–(1.24) has a solution (v,∇p, θ) in the space V 1,2(C) ×
(L2(C))n ×H1,2(C), and this solution satis�es conditions (1.25).

Let us now state a result on the local exact distributed controllability of the
Boussinesq system. Let Π = R

n/LZbe a torus and ω ⊂ Π an open subset. We
write Q = (0, T )× Π and Qω = (0, T )× ω.

On the cylinder Q we consider the Boussinesq system with a locally distributed
control:

N(v, θ) ≡ ∂tv(t, x) −∆v + (v,∇)v + θ(t, x)~e =

∇p+ f(t, x) + u′(t, x), div v = 0, (1.26)

R(v, θ) ≡ ∂tθ(t, x) −∆θ + (v,∇θ) = g(t, x) + un+1(t, x), (1.27)

and with the initial conditions (1.24) on the torus Π. Here the function

u(t, x) ≡ (u′(t, x), un+1(t, x)) ≡ (u1, . . . , un, un+1)

is the control. By analogy with (1.15), we introduce the control space by the formula

U(ω) = U(ω; 0, T ) =
{
u(t, x) = (u′, un+1) ∈ (L2(Q))n+1 : supp u ⊂ Qω

}
(1.28)

(0, T indicate the time interval (0, T ) on which the control u ∈ U(ω; 0, T ) is con-
centrated).

Let a triple

(v̂,∇p̂, θ̂) ∈ C1(0, T ; V 0(Π) ∩ (C2,α(Π))n)× (L2(Q))n ×C1(0, T ;C2,α(Π)) (1.29)

with some α ∈ (0, 1) satisfy (1.21) and (1.22) on Q. We must find a control
u = (u′, un+1) ∈ U(ω; 0, T ) such that the solution (v,∇p, θ) of problem (1.26),
(1.27), (1.24) on Π satisfies (1.25).

Theorem 1.4. Suppose that n=2 or 3 and the right-hand sides f ∈ L2(0, T ; V 0(Π))
and g ∈ L2(0, T ;L2(Π)), as well as the solution (1.29) of equations (1.21), (1.22)
on the cylinder Q with these right-hand sides, are given. Then for arbitrary initial

conditions v0 ∈ V 0(Π) ∩ (C2,α(Π))n, θ0 ∈ C2,α(Π) there is a solution

(v,∇p, θ, u) ∈ V 1,2(Q) × (L2(Q))n ×H1,2(Q)× U(ω; 0, T )

of problem (1.26), (1.27), (1.24) such that relations (1.25) are satis�ed on the torus

Π at time T .

Let us show that Theorem 1.4 readily implies Theorem 1.3.
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Proof of Theorem 1.3. Let Π be the torus constructed with the help of Ω in the
same way as in the proof of Theorem 1.1. Next, let Rv̂ be the extension of v̂ from
C to Q and Rv0 the extension of v0 from Ω to Π constructed in the proof of the

same theorem. Let Rθ̂ ∈ C(0, T ;W 1
∞(Π)) be a continuation of θ from C to Q. By

substituting Rv̂, Rθ̂ into (1.21), (1.22), we obtain, as in (1.16),

∂t(Rv̂)−∆Rv̂ + (Rv̂,∇)Rv̂ + Rθ̂~e = h(t, x), (1.30)

∂tRθ̂ −∆Rθ̂+ (Rv̂,∇Rθ̂) = Rg,

where Rg is some extension of g from C to Q and h satisfies (1.17).
Let us substitute the Weyl decomposition (1.18) for the vector field h into (1.30)

and let ω = Π\Ω. Then we see that system (1.26), (1.27) with f = hσ and with Rg
instead of g satisfies the assumptions of Theorem 1.4. By applying this theorem,
we complete the proof of Theorem 1.3.

Thus, our goal is to prove Theorems 1.2 and 1.4. The proofs are similar apart
from the fact that, for obvious reasons, the proof of Theorem 1.4 is somewhat more
complicated. Hence we prove Theorem 1.4 in detail; the simplifications needed to
obtain the proof of Theorem 1.2 are obvious.

In the following subsection, we reduce the proof of Theorem 1.4 to that of local
exact controllability and of approximate controllability of the Boussinesq system.

1.4. Exact local controllability and approximate controllability of the
Boussinesq system. We weaken the notion of exact controllability in two ways
by introducing the notions of local exact and approximate controllability.

i) Let the triple (1.29) satisfy the Boussinesq equation (1.21), (1.22) on Q. The
Boussinesq system (1.26), (1.27) is said to be locally exactly controllable with respect
to the control space (1.28) if there is an ε0 > 0 such that for every ε in the interval
0 < ε < ε0 and every initial condition (v0, θ0) ∈ V 4(Π) × H4(Π) satisfying the
inequality

‖v̂(0, · )− v0‖V 1(Π) + ‖θ̂(0, · )− θ0‖H1(Π) 6 ε (1.31)

there is a control u ∈ U(ω; 0, T ) such that problem (1.26), (1.27), (1.24) with the
above initial conditions and control has a solution (v,∇p, θ) in the space V 1,2(Q)×
L2(0, T ;H1(Π)) ×H1,2(Q), and moreover, this solution satisfies condition (1.25).

Theorem 1.5. The Boussinesq system is locally exactly controllable with respect to

the control space (1.28). Moreover, the parameter ε0 is a continuous monotonically

decreasing function of

1

T
+ ‖v̂‖C1(0,T ;V 2

∞(Π)) + ‖θ̂‖C1(0,T ;W2
∞(Π)).

ii) Suppose that the initial conditions (1.24) and a pair

(v1, θ1) ∈
(
V 0(Π) ∩ (C2,α(Π))n

)
× C2,α(Π)

are given. Sometimes it will be useful to consider the set of pairs such that

1∑
i=0

(
‖vi‖2(V 0(Π)∩(C2,α(Π))n) + ‖θi‖2C2,α(Π)

)
6 K. (1.32)



576 A. V. Fursikov and O. Yu. Imanuvilov

The Boussinesq system (1.26), (1.27), (1.24) is said to be approximately con-

trollable with respect to the control space (1.28) if for every ε > 0 and every pair
(v1, θ1) in the set (1.32) there exist a time T = Tε,K and a solution

(v, p, θ, u) ∈ V 1,2(QTε,K)× L2(0, Tε,K;H1(Π)) ×H1,2(QTε,K) × U(ω; 0, Tε,K)

of problem (1.26), (1.27), (1.24) such that

‖v(Tε,K , · )− v1‖V 1(Π) + ‖θ(Tε,K , · )− θ1‖H1(Π) 6 ε. (1.33)

Here QTε,K = (0, Tε,K)× Π.

Theorem 1.6. The Boussinesq system (1.26), (1.27), (1.24) is approximately con-

trollable with respect to the control space (1.28). Moreover, for every ε > 0 and for

any given K > 0, the time T = Tε,K can be chosen so that

Tε,K → 0 as ε→ 0.

Theorems 1.5 and 1.6 will be proved in the remaining part of the paper, and now
we derive Theorem 1.4 from them.

Proof of Theorem 1.4. To construct the desired control, we divide the interval [0, T ]
into two intervals, [0, S] and [S, T ], where S < T/2. Let

ε0 = ε0

(
1

T
+ ‖v̂‖C1(0,T ;V 2

∞(Π)) + ‖θ̂‖C1(0,T ;W2
∞(Π))

)
be the continuous monotonically decreasing function in Theorem 1.5. We take an
ε > 0 such that

ε < ε0

(
2

T
+ ‖v̂‖C1(0,T ;V 2

∞(Π)) + ‖θ̂‖C1(0,T ;W2
∞(Π))

)
6 ε0

(
1

T − S + ‖v̂‖C1(S,T ;V 2
∞(Π)) + ‖θ̂‖C1(S,T ;W2

∞(Π))

)
, (1.34)

where the second inequality holds since ε0(λ) is a monotone function. At the initial
time S < T/2, we prescribe the initial condition

v(t, x)
∣∣
t=S

= vS , θ(t, x)
∣∣
t=S

= θS (1.35)

with (vS , θS) ∈ V 4(Π)×H4(Π) satisfying the inequality

‖v̂(S, · )− vS‖V 1(Π) + ‖θ̂(S, · )− θS‖H1(Π) 6 ε,

where ε is the number in (1.31). Then by Theorem 1.5 there is a control u ∈
U(ω;S, T ) such that the solution (v,∇p, θ) of problem (1.26), (1.27), (1.35) satis-
fies (1.25). Thus Theorem 1.6 will be proved once we take an S < T/2 and choose
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a control on (0, S) such that the solution (v,∇p, θ) of problem (1.26), (1.27), (1.24)
satisfies the inequality

‖v̂(S, · )− v(S, · )‖V 1(Π) + ‖θ̂(S, · )− θ(S, · )‖H1(Π) 6 ε, (1.36)

where ε is the number in (1.34).
Then it remains to apply Theorem 1.5 with the initial condition (vS , θS) =

(v(S, · ), θ(S, · )) at t = S.
Since

(v̂, θ̂) ∈ C1(0, T ; V 2
∞(Π))× C1(0, T ;W 2

∞(Π)) ⊂ C(0, T ; V 1(Π))× C(0, T ;H1(Π)),

it follows that there is a δ > 0 such that

‖v̂(τ, · )− v̂(0, · )‖V 1(Π) + ‖θ̂(τ, · )− θ̂(0, · )‖H1(Π) 6 ε/2 ∀ 0 < τ < δ, (1.37)

where ε is the number occurring in (1.34). By Theorem 1.6, there is an ε1 < ε/2
such that Tε1 < δ and on the interval (0, Tε1) there is a control u ∈ U(ω; 0, Tε1) such
that the solution (v,∇p, θ) of problem (1.26), (1.27), (1.24) satisfies the inequality

‖v(Tε1 , · )− v̂(0, · )‖V 1(Π) + ‖θ(Tε1 , · )− θ̂(0, · )‖H1(Π) 6 ε1 < ε/2. (1.38)

It follows from (1.37), (1.38) that (1.36) holds with S = Tε1 .

1.5. Some applications. Let us give some applications of the above controlla-
bility theorems.

1. Stabilizability of unstable steady-state flows. Let (v̂(x),∇p̂(x)) ∈ V 2(Ω) ×
(L2(Ω))n be a steady-state solution of the Navier–Stokes equations in a bounded
domain Ω ⊂ Rn:

−∆v̂(x) + (v̂,∇)v̂ +∇p̂(x) = f(x), div v̂ = 0,

v̂
∣∣
∂Ω

= 0.

Suppose that this solution is not stable. Thus, for each ε > 0 there is an initial
condition v0(x) ∈ {v : ‖v − v̂‖V 1(Ω) < ε} such that the solution (v(t, x),∇p(t, x))
of the Navier–Stokes equations (1.1)–(1.4) with f(t, x) ≡ f(x) and α(t, x) ≡ 0 does
not tend to v̂ as t→∞:

‖v(t, · )− v̂‖V 1(Ω) 6→ 0 as t→∞.

One can stabilize the unstable steady-state solution (v̂,∇p̂) by replacing the no-
slip boundary conditions by the boundary control (1.3). Indeed, by Theorem 1.1, for
any initial condition v0(x) ∈ V 1(Ω) there is a boundary control α(t, x), (t, x) ∈ Σ,
such that the solution (v(t, x),∇p(t, x)) of problem (1.1)–(1.4) satisfies the condition

v(T, x) ≡ v̂(x).

The Boussinesq system also has a similar property of stabilization of steady-state
flows by a boundary control.
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2. The existence of chaotic flows. Let us consider the Boussinesq system (1.26),
(1.27), (1.24) on the cylinder Q = (0, T )×Π, where Π is the torus and the control
u(t, x) is supported in Qω = (0, T )×ω for sufficiently ‘small’ ω ⊂ Π (for example, ω
can be a ball of sufficiently small radius). Suppose that f(t, x) ≡ 0 and g(t, x) ≡ 0
in (1.26), (1.27). Let us show that this problem has an arbitrarily complicated
(chaotic) solution. Namely, let us consider a partition 0 = t0 < t1 < · · · < tN = T
of the time interval (0, T ). We assign an arbitrary pair (vj , θj) ∈ V 1(Π)×H1(Π) to
each tj and specify a number ε > 0. It follows from Theorem 1.6 on the approximate
controllability of the Boussinesq system that there is a control u ∈ U(ω; 0, T ) such
that the solution (v(t, x),∇p(t, x), θ(t, x)) of problem (1.26), (1.27), (1.24) satisfies
the condition

‖v(tj , · )− vj‖2V 1(Π) + ‖θ(tj , · )− θj‖2H1(Π) < ε ∀ j = 1, . . . , N. (1.39)

We note that the right-hand side of system (1.26), (1.27) is zero for (t, x) ∈
Q \ Qω, while the solution of this system can be arbitrarily complicated on the
entire Q in the sense that relations (1.39) are valid.

Needless to say, the Navier–Stokes equations have a similar property.

3. Reversibility. Let (vi(t, x),∇pi(t, x)), (t, x) ∈ Q, i = 1, 2, be two solutions
of the Navier–Stokes equations (1.5) (with the same right-hand side f(t, x), say,
f(t, x) ≡ 0). Then for any ω ∈ Π and (t1, t2) ⊂ (0, T ) there is a control u(t, x)
supported in (t1, t2) × ω and taking the solution (v1,∇p1) to (v2,∇p2). Namely,
under this control u the solution (v,∇p) of system (1.12) has the following property:

(v(t, x), p(t, x)) ≡ (v1(t, x), p1(t, x)) for t ∈ (0, t1),

(v(t, x), p(t, x)) ≡ (v2(t, x), p2(t, x)) for t ∈ (t2, T ).

This property is referred to as reversibility. By virtue of Theorem 1.2, the Navier–
Stokes equations possess this property.

In a similar way, one can state the reversibility of the Boussinesq system; this
follows from Theorem 1.4.

The reversibility of the Navier–Stokes equations and the Boussinesq system are
of interest in connection with certain issues in climate theory. (See Lions [93], [94],
[96] and Coron–Fursikov [14] for more details.)

§ 2. Carleman estimates

The proof of solubility of the exact controllability problem for a linear evolution
system can often be reduced to studying the corresponding observability problem
for the adjoint system. This method is implemented in §§ 2–4 of the present paper.

In this section we prove some Carleman type estimates for solutions of the system
adjoint to the linearized Boussinesq equations.

2.1. Preliminaries. Just as before, Π is the n-dimensional torus and ω ⊂ Π is
a subdomain with boundary ∂ω ∈ C∞. We assume that ω′ b ω and that ω′ is
star-shaped with respect to some point x0 ∈ ω′.
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Lemma 2.1. There is a function ψ(x) ∈ C2(Π) such that

|∇ψ(x)| > 0 ∀x ∈ Π \ ω′, (2.1)

where ω′ b ω ⊂ Π. Moreover,

ψ(x) > 1. (2.2)

Proof. Without loss of generality, we can assume that x0 = 0 and the torus Π is
obtained from the cube K = {x = (x1, . . . , xn), −L/2 6 xj 6 L/2, j = 1, . . . , n}
by identifying opposite facets. We set

ψ(x) = c+
n∑
j=1

β(xj),

where c > 0 is a constant, β(x) is a periodic function such that

β(x) ∈ C∞(−L/2, L/2), β(x) =

{
x, x ∈ [ε, L/2],

x+ L, x ∈ [−L/2,−ε],
and ε is sufficiently small. Obviously, the function ψ thus constructed satisfies
condition (2.1) with

ω′ =
{
x = (x1, . . . , xn), |xj| 6 ε, j = 1, . . . , n

}
.

We can readily ensure condition (2.2) by choosing a sufficiently large constant c > 0.

Let γ(t) ∈ C∞(0, T ) be a function satisfying the conditions

0 < γ(t) 6 T − t, γ(t) =

{
t, t ∈ [0, T/4],

T − t, t ∈ [3T/4, T ].
(2.3)

Furthermore, we assume that γ(t) is monotonically increasing for t ∈ (0, T/2) and
monotonically decreasing for t ∈ (T/2, T ). We introduce the functions

ϕ = ϕλ(t, x) =
eλψ(x)

γ(t)
, α ≡ αλ(t, x) =

eλ
2‖ψ‖C(Π) − eλψ(x)

γ(t)
, (2.4)

where λ > 1 is a parameter and ψ(x) and γ(t) are the above-introduced functions.
On the cylinder Q we consider the backward heat equation

∂tz(t, x) + ∆z(t, x) = f(t, x). (2.5)

Lemma 2.2. Suppose that f ∈ L2(Q) and z ∈ L2(Q) satisfy (2.5). Then there is

a λ̂ > 1 such that for every λ > λ̂ there is an s0(λ) with the following property. For

every s > s0(λ), the Carleman estimate∫
Q

(
(sϕ)−1|∂tz|2 + (sϕ)−1

n∑
i,j=1

|∂2
xixjz|

2 + sϕ|∇z|2 + (sϕ)3z2

)
e−sαλ dx dt

6 c

(∫
Q

|f(t, x)|2e−sαλ dx dt+

∫
Qω′

s3ϕ3z2e−sαλ dx dt

)
(2.6)

holds, where c > 0 is a constant independent of f, z, and s.

Let us consider the Poisson equation on Π:

∆z = f. (2.7)
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Lemma 2.3. Suppose that z ∈ H2(Π) and f ∈ L2(Π) satisfy (2.7). Then there is

a λ̂ > 1 such that for each λ > λ̂ there is an s0(λ) with the following property : for
every s > s0(λ), the estimate

∫
Π

(
(sϕ)−1

n∑
i,j=1

|∂2
xixjz|

2 + sϕ|∇z|2 + s3ϕ3|z|2
)
e−sαλ dx

6 c

(∫
Π

|f |2e−sαλ dx+

∫
ω′
s3ϕ3|z|2e−sαλ dx

)
(2.8)

holds, where c > 0 is a constant independent of f, z, and s.

Lemmas 2.2 and 2.3 were proved in [10], [30], [38], [40], [41], [61] for the case of
a bounded domain. For the torus Π the proof is similar.

We replace the constants λ̂ and s0(λ) in Lemmas 2.2 and 2.3 by the maximum
of these constants and assume from now on that they are the same in both lemmas.

We consider the following system of equations on the cylinder Q:1

N∗(y, τ) = −∂ty −∆y − (v̂,∇)y+ ((y,∇)v̂)∗ + τ∇θ̂+∇p = f, div y = 0, (2.9)

R∗(y, τ) = −∂tτ −∆τ − (∇τ, v̂) + (~e, y) = g, (2.10)

y(t, x)
∣∣
t=T

= yT (x), τ(t, x)
∣∣
t=T

= τT (x), (2.11)

where v̂, θ̂, f , g, yT , and τT are given, (y, τ) are the unknown functions, and

((y,∇)v̂)∗ = ((∂x1 v̂, y), . . . , (∂xn v̂, y)).

The following lemma implies that problem (2.9)–(2.11) is well posed.

Lemma 2.4. Let v̂ ∈ L∞(0, T ; V 1
∞(Π)) and θ̂ ∈ L∞(0, T ;W 1

∞(Π)). Then for any

initial data y0 ∈ V 1(Π), τ0 ∈ H1(Π), f ∈ (L2(Q))n, and g ∈ L2(Q) there is a

unique solution (y,∇p, τ) ∈ V 1,2(Q)× (L2(Q))n×H1,2(Q) of problem (2.9)–(2.11).
This solution satis�es the estimate

‖y‖2V 1,2(Q) + ‖∇p‖2(L2(Q))n + ‖τ‖2H1,2(Q)

6 c
(
‖yT ‖2V 1(Π) + ‖τT ‖2H1(Π) + ‖f‖2(L2(Q))n + ‖g‖2L2(Q)

)
, (2.12)

where the constant c > 0 is independent of yT , τT , f, and g.

Scheme of the proof. Methods by which assertions of this type can be proved are
well known (e.g., see [77], [124]). To make the exposition self-contained, we recall
the main stages of the proof. First we obtain an energy inequality for the solution of
problem (2.9)–(2.11). We take the inner product of (2.9) by y in (L2(Π))n and the

1This system is the formal adjoint of the linearized Boussinesq system, which will be introduced
in § 3 (see (3.1), (3.2)).
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inner product of (2.10) by τ in L2(Π). By summing the resulting inequalities, inte-
grating by parts, and performing simple manipulations (in particular, integrating
over time from t to T ), we obtain

‖y(t, · )‖2V 0(Π) + ‖τ(t, · )‖2L2(Π) + 2

∫ T

t

(
‖∇y(s, · )‖2V 0(Π) + ‖∇τ(s, · )‖2L2(Π)

)
ds

6 c2

∫ T

t

(
‖y(s, · )‖2V 0(Π) + ‖τ(s, · )‖2L2(Π) + ‖f(s, · )‖2V 0(Π) + ‖g(s, · )‖2L2(Π)

)
ds

+ ‖yT ‖2V 0(Π) + ‖τT ‖2L2(Π).

An application of the Gronwall lemma to this inequality yields the energy esti-
mate

‖y(t, · )‖2V 0(Π) + ‖τ(t, · )‖2L2(Π) + 2

∫ T

t

(
‖∇y(s, · )‖2V 0(Π) + ‖∇τ(s, · )‖2L2(Π)

)
ds

6 c

(
‖yT ‖2V 0(Π) + ‖τT ‖2L2(Π) +

∫ T

t

(
‖f(s, · )‖2V 0(Π) + ‖g(s, · )‖2L2(Π)

)
ds

)
.

(2.13)

Taking the projection of equation (2.9) on the subspace of solenoidal vector
fields and using Galerkin methods, we derive from inequality (2.13) the existence
and uniqueness of a solution

(y, τ) ∈
(
L∞(0, T ; V 0(Π))∩L2(0, T ; V 1(Π))

)
×
(
L∞(0, T ;L2(Π))∩L2(0, T ;H1(Π))

)
.

Let P : (L2(Π))n → V 0(Π) be the orthogonal projection. Using the explicit
formula for P for the case of the torus (see [126]), we readily see that
P∆ = ∆P and that the restriction of P to (Hk(Π))n acts into V k(Π), P

∣∣
(Hk(Π))n

:

(Hk(Π))n → V k(Π). Hence the projection of (2.9) on V 0(Π) has the form

−∂ty −∆y = P
[
f + (v̂,∇)y+ ((y,∇)v̂)∗ + τ∇θ̂

]
≡ q, (2.14)

and moreover, we obviously have q ∈ L2(0, T ; V 0(Π)). By applying the theorem on
the smoothness of solutions of the Stokes problem to problem (2.14), (2.11) with
right-hand side q, we find that y ∈ V 1,2(Q) and

‖y‖2V 1,2(Q) 6 c
(
‖yT ‖2V 1(Π) + ‖q‖2L2(0,T ;V 0(Π))

)
6 c1

(
‖yT ‖2V 1(Π) + ‖y‖2L2(0,T ;V 1(Π))

+ ‖τ‖2L2(0,T ;H1(Π)) + ‖y‖2(L2(Q))n

)
. (2.15)

Inequalities (2.15) and (2.13) imply the desired estimate for ‖y‖2V 1,2(Q). The esti-

mate for ‖τ‖2H1,2(Q) can be obtained in a similar way. By expressing ∇p from (2.9),

we obtain the estimate for ‖∇p‖2(L2(Q))n .
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2.2. Carleman estimates for solutions of system (2.9), (2.10). First, let
us obtain additional information on the smoothness of the pressure p from (2.9).

To this end, we subject v̂, θ̂, and f to stronger smoothness assumptions than in
Lemma 2.4. Suppose that div f ∈ L2(Q) and

v̂ ∈ L∞(0, T ; V 2
∞(Π)), θ̂ ∈ L∞(0, T ;W 2

∞(Π)). (2.16)

We apply the operator div on both sides of (2.9). Since the function y is divergence-
free, we obtain

∆p = div
(
(v̂,∇)y− ((y,∇)v̂)∗ − τ∇θ̂+ f

)
. (2.17)

By (2.16) and the inclusions y ∈ L2(0, T ; V 2(Π)) and τ ∈ L2(0, T ;H2(Π)), which
follow from Lemma 2.4, we have

div
(
(v̂,∇)y− ((y,∇)v̂)∗ − τ∇θ̂

)
∈ L2(Q).

Hence it follows from (2.17) and Sobolev’s embedding theorem that

p ∈ L2(0, T ;H2(Π)) ⊂ L2(0, T ;C(Π)),

and hence the value of p at x0, that is, p(t, x0), is well defined as an element of
L2(0, T ). To specify the function p in (2.9) uniquely, we set

p(t, x0) = 0, (2.18)

where x0 ∈ ω′ and ω′ is the subdomain, star-shaped with respect to x0, introduced
in Lemma 2.1.

Theorem 2.1. Let v̂ and θ̂ satisfy (2.16), and let

f ∈ (L2(Q))n, div f ∈ L2(Q), g ∈ L2(Q). (2.19)

Then there is a λ̂ > 1 such that for each λ > λ̂ there is an s0(λ) with the

following property : for each s > s0(λ), the solution of problem (2.9)–(2.11) satis�es
the estimate

I(y, τ, s) ≡
∫
Q

(
(ϕs)−1(|∂ty|2 + |∂tτ |2) + (sϕ)−1

n∑
i,j=1

(|∂2
xixjy|

2 + |∂2
xixj τ |

2)

+ sϕ(|∇y|2 + |∇τ |2) + s3ϕ3(|y|2 + |τ |2)

)
e−sαλ dx dt

6 c

(∫
Q

(|f(t, x)|2 + | divf |2 + |g(t, x)|2)e−sαλ dx dt

+

∫
Qω′

s3ϕ3(|y|2 + |τ |2 + |p|2)e−sαλ dx dt

)
, (2.20)

where c > 0 is independent of f, g, and s.
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Proof. We set

f̃(t, x) = f(t, x) + (v̂,∇)y− ((y,∇)v̂)∗ − τ∇θ̂, (2.21)

g̃(t, x) = g(t, x)− (~e, y) + (∇τ, v̂), (2.22)

q(t, x) = f̃ −∇p. (2.23)

It follows from (2.9) and (2.23) that div q = 0. Using the notation (2.21)–(2.23),
we can rewrite (2.9) and (2.10) in the form

−∂y
∂y
−∆y = q, div y = 0; −∂τ

∂y
−∆τ = g̃. (2.24)

Let us apply Lemma 2.2 to each equation in (2.24) and sum the resulting esti-
mates. Then we obtain the inequality

I(y, τ, s) 6 c

(∫
Q

(|q|2+|g̃|2)e−sαλ dx dt+

∫
Qω′

s3ϕ3(|y|2+|τ |2)e−sαλ dx dt

)
, (2.25)

where I(y, τ, s) is the left-hand side of (2.20) and c is independent of q, g̃, and
s > s0(λ).

Using definition (2.21)–(2.23) of the functions q and g̃, we estimate the first
integral on the right-hand side in (2.25) as follows:∫

Q

(|q|2 + |g̃|2)e−sαλ dx dt

6 c1

∫
Q

(
|f |2 + |g|2 + |∇p|2 + |∇y|2 + |∇τ |2 + |y|2 + |τ |2

)
e−sαλ dx dt. (2.26)

Now from (2.25) and (2.26), taking a larger swhere necessary, we obtain the inequal-
ity

I(y, τ, s) 6 c2

(∫
Q

(|f |2 + |g|2 + |∇p|2)e−sαλ dx dt

+

∫
Qω′

s3ϕ3(|y|2 + |τ |2)e−sαλ dx dt

)
. (2.27)

An application of Lemma 2.3 to (2.17) yields the estimate∫
Q

(
(sϕ)−1

n∑
i,j=1

|∂2
xixjp|

2 + sϕ|∇p|2 + s3ϕ3|p|2
)
e−sαλ dx dt

6 c

(∫
Q

| div((v̂,∇)y − ((y,∇)v̂)∗ − τ∇θ̂+ f)|2e−sαλ dx dt

+

∫
Qω′

s3ϕ3|p|2e−sαλ dx dt
)

6 c1

(∫
Q

(|∇y|2 + |∇τ |2 + |y|2 + |τ |2 + | div f |2)e−sαλ dx dt

+

∫
Qω′

s3ϕ3|p|2e−sαλ dx dt
)
. (2.28)

We estimate ∇p in (2.27) with the help of (2.28) and increase s where necessary,
thus obtaining the estimate (2.20).
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Corollary 2.1. For (v̂, θ̂) in (2.16) let (y, τ) ∈ L2(0, T ; V 1(Π)) × L2(0, T ;H1(Π))
be a solution of problem (2.9)–(2.11) with f ≡ 0 and g ≡ 0 such that (y, τ)

∣∣
Qω
≡ 0.

Then

(y, τ) ≡ 0 on Q.

Proof. Indeed, ∇p
∣∣
Qω
≡ 0 by (2.9). Consequently,

p(t, x) = p(t) ∀ (t, x) ∈ Qω,

and p
∣∣
Qω
≡ 0 by (2.18). Thus, our assertion follows from (2.20).

Now we want to get rid of the term |p|2 on the right-hand side of the esti-
mate (2.20). To this end, we use the following property of the function αλ, which
is valid for λ > λ0, where λ0 is sufficiently large, by virtue of the second relation
in (2.4) and (2.2):

α̂λ(t) <
10

9
α̃(t) for α̂λ(t) = max

x∈Ω
αλ(t, x), α̃(t) = min

x∈Ω
αλ(t, x). (2.29)

Theorem 2.2. Let v̂, θ̂, f, and g satisfy (2.16) and (2.19). Suppose that ω′ b
ω b Π, where ∂ω ∈ C∞ and ω′ is a set star-shaped with respect to the point x0

in (2.18). Then there is a λ̂ > 1 such that for each λ > λ̂ there is an s0(λ) with the

following property : for all s > s0(λ) the solution of problem (2.9)–(2.11) satis�es

the estimate

I(y, τ, s) 6 c

(∫
Q

(|f |2 + | divf |2 + |g|2)e−sαλ dx dt

+

∫ T

0

e−9sbαλ/10
(
‖f(t, · )‖2(H−2(ω))n + ‖ divf(t, · )‖2H−1(ω)

)
dt

+

∫
Qω

(|y|2 + |τ |2 + |∂ty|2)e−9sbαλ/10 dx dt

)
, (2.30)

where c > 0 is independent of f and g, and I(y, τ, s) is de�ned in (2.20).

Proof. Let us express ∇p using (2.9):

∇p = f + ∂ty + ∆y + (v̂,∇)y− ((y,∇)v̂)∗ − τ∇θ̂ ≡ f1. (2.31)

By applying the operator div to both sides of this relation, we obtain

∆p =
n∑

i,k=1

∂v̂i

∂xk

∂yk

∂xi
−

n∑
i=1

(
∂2v̂

∂x2
i

, y

)

−
n∑

i,k=1

∂v̂k

∂xi

∂yk

∂xi
− τ∆θ̂− (∇τ,∇θ̂) + div f ≡ f2, (2.32)
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where the last equality is just the definition of the function f2. Let us represent p
as the sum

p(t, x) = p1(t, x) + p2(t, x), t ∈ (0, T ), x ∈ ω, (2.33)

where

∆p1(t, x) = f2(t, x), x ∈ ω, p1

∣∣
∂ω

= 0, (2.34)

∆p2(t, x) = 0, x ∈ ω, p2

∣∣
∂ω

= p
∣∣
∂ω
. (2.35)

As shown above (see (2.18)), p
∣∣
∂ω

is well defined for almost all t ∈ (0, T ). By
applying the estimate for solutions of elliptic boundary-value problems to (2.34)
and using definition (2.32) of the right-hand side f2 and (2.16), we obtain

‖∇p1(t, · )‖2(L2(ω))n 6 c‖f2(t, · )‖2H−1(ω) 6 c1
(
‖y(t, · )‖2(L2(ω))n

+ ‖τ(t, · )‖2L2(ω) + ‖ div f(t, · )‖2(H−1(ω))n

)
. (2.36)

By (2.31) and (2.33),

∇p2 = ∇p−∇p1 = f1 −∇p1,

and hence, with regard to (2.36) and (2.16), we have

‖∇p2(t, · )‖2H−2(ω) 6 c2
(
‖y(t, · )‖2(L2(ω))n + ‖τ(t, · )‖2L2(ω)

+ ‖∂ty(t, · )‖2(L2(ω))n + ‖f(t, · )‖2(H−2(ω))n + ‖div f(t, · )‖2H−1(ω)

)
. (2.37)

The differentiation of (2.35) yields

∆∇p2(t, x) = 0, x ∈ ω.

Now ∇p2 satisfies the assumptions of the following lemma, which can readily be
derived, say, with the help of the cut-off function technique, from results due to
Lions and Magenes [99].

Lemma 2.5. Let w(x) ∈ H−2(ω) be a harmonic function, that is, ∆w(x) = 0,
x ∈ ω, and let ω′ b ω. Then

‖w‖L2(ω′) 6 c‖w‖H−2(ω), (2.38)

where c is independent of w.

By applying the estimates (2.38) and (2.37) to ∇p2, we obtain

‖∇p2(t, · )‖2(L2(ω′))n 6 c
(
‖y(t, · )‖2(L2(ω))n + ‖τ(t, · )‖2L2(ω)

+ ‖∂ty(t, · )‖2(L2(ω))n + ‖f(t, · )‖2(H−2(ω))n + ‖div f(t, · )‖2H−1(ω)

)
. (2.39)

Since, by assumption, the set ω′ is star-shaped with respect to the point x0 in (2.18),
it follows from (2.18), (2.33), (2.36), and (2.39) that

‖p(t, · )‖2L2(ω′) 6 c‖∇p‖2(L2(ω′))n 6 c1
(
‖y(t, · )‖2(L2(ω))n + ‖τ(t, · )‖2L2(ω)

+ ‖∂ty(t, · )‖2(L2(ω))n + ‖f(t, · )‖2(L2(ω))n
)
.
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By applying this estimate to the right-hand side of (2.20) and by taking account
of (2.29), we have

I(y, τ, s) 6 c

(∫ T

0

e−9sbαλ/10

(∫
ω

(|y|2 + |τ |2 + |p|2) dx+ ‖f(t, · )‖2(H−2(ω))n

+ ‖divf(t, · )‖2H−1(ω)

)
dt+

∫
Q

(|f |2 + | div f |2 + |g|2)e−sαλ dx dt

)
6 c

(∫
Qω

(|y|2 + |τ |2 + |∂ty|2 + |f |2)e−9sbαλ/10 dx dt

+

∫ T

0

e−9sbαλ/10
(
‖f(t, · )‖2(H−2(ω))n + ‖div f(t, · )‖2H−1(ω)

)
dt

+

∫
Q

(
|f |2 + | divf |2 + |g|2

)
e−sαλ dx dt

)
.

This proves (2.30).

2.3. Definitive estimates. Let us now eliminate the term ∂ty on the right-hand
side of inequality (2.30).

Theorem 2.3. Suppose that f, g, v̂, and θ̂ satisfy (2.19) and (2.16), and moreover,

∂tv̂ ∈ L∞(0, T ; V 2
∞(Π)), ∂tθ̂ ∈ L∞(0, T ;W 2

∞(Π)). (2.40)

Next, let the sets ω′ and ω satisfy the assumptions of Theorem 2.2. Then there is

a λ̂ > 1 such that for each λ > λ̂ there is an s0(λ) with the following property : for
all s > s0(λ), the solution of problem (2.9)–(2.11) satis�es the estimate∫

Q

1

sϕ

(
|y(t, x)|2 + |τ(t, x)|2

)
e−sαλ(t,x) dx dt

6 c

(∫
Q

(
|f(t, x)|2 + | divf |2 + |g(t, x)|2

)
e−sαλ(t,x) dx dt

+

∫
Qω

(
|f(t, x)|2 + |y(t, x)|2 + |τ(t, x)|2

)
e−9sbαλ(t)/10 dx dt

+ ‖y(T/2, · )‖2V 0(Π) + ‖τ(T/2, · )‖2H0(Π)

)
, (2.41)

where c > 0 is independent of f, g, y, τ , and s.

Proof. We introduce the functions

ỹ(t, x) =

∫ t

T/2

y(s, x) ds, τ̃(t, x) =

∫ t

T/2

τ(s, x) ds,

p̃(t, x) =

∫ t

T/2

p(s, x) ds, f̃(t, x) =

∫ t

T/2

f(s, x) ds,

g̃(t, x) =

∫ t

T/2

g(s, x) ds.

(2.42)
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Let us integrate (2.9) and (2.10) with respect to time from T/2 to t. Then we find
that the functions (2.42) satisfy the relations

−∂tỹ −∆ỹ +∇p̃ = f̃ − y(T/2, x) +

∫ t

T/2

(
(v̂(s, x),∇)y(s, x)

− ((y,∇), v̂)∗(s, x)− τ(s, x)∇θ̂(s, x)
)
ds = 0, (2.43)

−∂tτ̃ −∆τ̃ + (~e, ỹ) = g̃ +

∫ t

T/2

(
∇τ(s, x), v̂(s, x)

)
ds− τ(T/2, x). (2.44)

Let us transform the integrals in (2.43) and (2.44). We integrate by parts and
obtain∫ t

T/2

(
∇τ(s, x), v̂(s, x)

)
ds =

(
∇τ̃(t, x), v̂(t, x)

)
−
∫ t

T/2

(∇τ̃(s, x), ∂sv̂(s, x)) ds;

in the same way, one can prove that∫ t

T/2

(v̂,∇)y ds =
(
v̂(t, x),∇

)
ỹ(t, x)−

∫ t

T/2

(
∂tv̂(s, x),∇

)
ỹ ds,∫ t

T/2

(
(y,∇)v̂

)∗
ds =

(
(ỹ(t, x),∇)v̂(t, x)

)∗ − ∫ t

T/2

(
(ỹ,∇)∂sv̂

)∗
ds,∫ t

T/2

τ∇θ̂ ds =τ̃(t, x)∇θ̂(t, x)−
∫ t

T/2

τ̃ ∂s∇θ̂ ds.

By substituting this into (2.43) and (2.44), we find that ỹ, τ̃ , and p̃ satisfy (2.9)
and (2.10), where the right-hand sides f and g are replaced, respectively, by

F = f̃ − y(T/2, x)−
∫ t

T/2

(
(∂sv̂,∇)ỹ− ((ỹ,∇)∂tv̂)

∗ − τ̃∇∂sθ̂
)
ds, (2.45)

G = g̃ −
∫ t

T/2

(∇τ̃ , ∂sv̂) ds− τ(T/2, x). (2.46)

An application of Theorem 2.2 to these equations gives the following analogue
of the estimate (2.30):

I(ỹ, τ̃ , s) 6 c

(∫
Q

(
|F (t, x)|2 + | divF (t, x)|2 + |G(t, x)|2

)
e−sαλ(t,x) dx dt

+

∫ T

0

e−9sbαλ/10
(
‖F (t, · )‖2(H−2(ω))n + ‖divF (t, · )‖2H−1(ω)

)
dt

+

∫
Qω

(
|ỹ|2 + |τ̃ |2 + |ỹt|2

)
e−9sbαλ/10 dx dt

)
. (2.47)

Let h(t, x) be a function. We write

h̃(t, x) =

∫ t

T/2

h(ξ, x) dξ.
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Let us prove the inequality∫
Q

|h̃(t, x)|2e−sαλ(t,x) dx dt 6 c

∫
Q

|h(t, x)|2e−sαλ(t,x) dx dt, (2.48)

where c is independent of h and s. By applying the Cauchy–Schwarz–Bunyakovskii
inequality and then Fubini’s theorem, we obtain∫

Q

|h̃(t, x)|2e−sαλ(t,x) dx dt 6 c

(∫ T/2

0

∫
Π

∫ T/2

t

|h(ξ, x)|2 dξ e−sαλ(t,x) dx dt

+

∫ T

T/2

∫
Π

∫ t

T/2

|h(ξ, x)|2dξ e−sαλ(t,x) dx dt

)
= c

(∫ T/2

0

∫
Π

|h(ξ, x)|2
∫ ξ

0

e−sαλ(t,x) dt dx dξ

+

∫ T

T/2

∫
Π

|h(ξ, x)|2
(∫ T

ξ

e−sαλ(t,x) dt

)
dx dξ

)
6 c1

∫
Q

|h(t, x)|2e−sαλ(t,x) dx ds,

where the last inequality follows from definition (2.4) of the function αλ and the fact
that the function γ(t) is monotonically increasing for t ∈ (0, T/2) and monotonically
decreasing for t ∈ (T/2, T ). Thus, we have proved (2.48).

By (2.48),∫
Q

(|F |2 + | divF |2)e−sαλ dx dt 6 c

(∫
Q

|f |2e−sαλ dx dt

+

∫
Π

|y(T/2, x)|2e−sαλ(T/2,x) dx+

∫
Q

(|∇ỹ|2 + |ỹ|2 + τ̃2)e−sαλ dx dt

)
, (2.49)∫

Q

|G|2e−sαλ dx dt 6 c

(∫
Q

|g|2e−sαλ dx dt

+

∫
Π

|τ(T/2, x)|2e−sαλ(T/2,x) dx+

∫
Q

|∇τ̃ |2e−sαλ dx dt
)
, (2.50)

where the constant c is independent of s.
Since the vector field ∂tv̂ is divergence-free, we see that∫ t

T/2

(∂sv̂,∇)ỹ ds =
n∑
j=1

∫ t

T/2

∂j(∂sv̂j, ỹ) ds.

Hence it follows from (2.45) that

‖F (t, · )‖2(H−2(ω))n + ‖divF (t, · )‖2H−1(ω) 6 c

(
‖f̃(t, · )‖2(L2(ω))n

+

∫ t

T/2

(
‖ỹ(s, · )‖2(L2(ω))n + ‖τ̃(s, · )‖2L2(ω)

)
ds+ ‖y(T/2, · )‖2V 0(Π)

)
. (2.51)
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Let us estimate the right-hand side of inequality (2.47) with the help of (2.49)–
(2.51). Then we have

I(ỹ, τ̃ , s) 6 c

(∫
Q

(
|f(t, x)|2 + | divf(t, x)|2 + |g(t, x)|2 + |∇ỹ(t, x)|2 + |ỹ(t, x)|2

+ |∇τ̃(t, x)|2 + |τ̃(t, x)|2
)
e−sαλ(t,x) dx dt

+ ‖y(T/2, · )‖2V 0(Π) + ‖τ(T/2, · )‖2H0(Π)

+

∫
Qω

(
|ỹ|2 + |τ̃ |2 + |∂tỹ|2

)
e−9sbαλ(t)/10 dx dt

)
, (2.52)

where c is independent of s. Using definition (2.20) of the functional I(ỹ, τ̃ , s)
and transposing the terms containing |∇ỹ(t, x)|, |ỹ(t, x)|, |∇τ̃(t, x)|, and |τ̃(t, x)|
from the integral over Q on the right-hand side to the left-hand side, we obtain
(increasing s0(λ) where necessary)

I(ỹ, τ̃ , s) 6 C1

(∫
Q

(
|f(t, x)|2 + | div f(t, x)|+ |g(t, x)|2

)
e−sαλ(t,x) dx dt

+ ‖y(T/2, · )‖2V 0(Π) + ‖τ(T/2, · )‖2H0(Π)

+

∫
Qω

(
|ỹ|2 + |τ̃ |2 + |∂tỹ|2

)
e−9sbαλ(t)/10 dx dt

)
.

Next, in the integral over Qω we replace the vector field ∂tỹ by y and estimate the
terms containing |ỹ| and |τ̃ | with the help of an obvious analogue of inequality (2.48).
As a result, we arrive at (2.44).

Let us now eliminate the terms containing y(T/2, · ) and τ(T/2, · ) on the right-
hand side in (2.41).

Theorem 2.4. Let the hypotheses of Theorem 2.3 be valid, and let λ̂ and s0(λ)
be de�ned in Theorem 2.3. Then the solution of problem (2.9)–(2.11) satis�es the

estimate∫
Q

1

sϕ

(
|y(t, x)|2 + |τ(t, x)|2

)
e−sαλ(t,x) dx dt

+ ‖y(T/2, · )‖2V 0(Π) + ‖τ(T/2, · )‖2H0(Π)

6 c

(∫
Q

(|f(t, x)|2 + | divf(t, x)|2 + |g(t, x)|2)e−sαλ(t,x) dx dt

+

∫
Qω

(
|τ(t, x)|2 + |f(t, x)|2 + |y(t, x)|2

)
e−9sbαλ(t)/10 dx dt

)
∀ s > s0(λ), (2.53)

where c is independent of f and g.

Proof. Let ρ(t) ∈ C∞(T/2, 3T/4), ρ(T/2) = 1, ρ(3T/4) = 0, and let (y, p, τ) be a
solution of system (2.9), (2.10). Then, obviously, for (t, x) ∈ (T/2, 3T/4) × Π the
triple (ρy, ρp, ρτ) satisfies system (2.9), (2.10) with right-hand sides f, g replaced
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by ρf + y∂tρ and ρg + τ∂tρ, respectively. Moreover, for t = 3T/4 the functions ρy
and ρτ satisfy zero initial conditions. Hence, by Lemma 2.4 and the trace theorem,

‖y(T/2, · )‖2V 1(Π) + ‖τ(T/2, · )‖2H1(Π)

6 c
(
‖f‖2

(L2((T2 ,
3T
4 )×Π))n

+ ‖g‖2
L2((T2 ,

3T
4 )×Π)

+ ‖y‖2
(L2((T2 ,

3T
4 )×Π))n

+ ‖τ‖2
L2((T2 ,

3T
4 )×Π)

)
6 cs

(∫ 3T/4

T/2

∫
Π

[
(|f |2 + |g|2) +

1

sϕ
(|y|2 + |τ |2)

]
e−sαλ(t,x) dx dt

)
, (2.54)

where the last inequality is valid since for t ∈ (T/2, 3T/4) the functions sϕ and
e−sαλ(t,x) are bounded above and below by positive constants that depend on s
and λ but are independent of t and x. Let us multiply both sides of (2.54) by
(2cs)

−1 and add the result to (2.41). By transposing the term

1

2

∫ 3T/4

T/2

∫
Π

1

sϕ
(|y|2 + |τ |2)e−αλ(t,x) dx dt

in the resulting inequality from the right- to the left-hand side, we obtain the
estimate∫

Q

1

ϕ
(|y|2 + |τ |2)e−sαλ(t,x) dx dt+ ‖y(T/2, · )‖2V 1(Π) + ‖τ(T/2, · )‖2H1(Π)

6 c1

(∫
Q

(|f |2 + | divf |2 + |g|2)e−sαλ(t,x) dx dt

+

∫
Qω

(|f |2 + |y|2 + |τ |2)e−9sbαλ(t)/10 dx dt

+ ‖y(T/2, · )‖2V 0(Π) + ‖τ(T/2, · )‖2H0(Π)

)
. (2.55)

Let us show that (2.55) implies inequality (2.53). Suppose the contrary. Then
there is a sequence of quintuples (yk,∇pk, τk, fk, gk) with the following properties.
For each k they satisfy system (2.9), (2.10) and, by virtue of the preceding, the
estimate (2.55). Moreover, substitution of (yk, τk, fk, gk) in (2.53) gives 1 on the
left-hand side of the inequality, while the right-hand side tends to zero as k→∞.

Proceeding to a subsequence if necessary, we can assume that

(yk, τk)→ (ŷ, τ̂) weakly in the space2
(
L2(Q, e−sαλ/(sϕ))

)n+1
, (2.56)

2 Here L2(e−sαλ/(sϕ),Q) is a weighted L2 space, that is, the space with the norm

‖z‖2
L2(e−sαλ/(sϕ),Q)

=

Z
Q

z2e−sαλ/(sϕ)dx dt.
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and

(fk, gk)→ (f̂ , ĝ) ≡ (0, 0) in
(
L2(Q, e−sαλ)

)n+1
, (2.57)∫

Qω
(|yk|2 + |τk|2 + |f̂k|2)e−9sbαλ(t)/10 dx dt

→ 0 ≡
∫
Qω

(|ŷ|2 + |τ̂ |2 + |f |2)e−9sbαλ(t)/10 dx dt, (2.58)(
yk(T/2, · ), τk(T/2, · )

)
→
(
ŷ(T/2, · ), τ̂(T/2, · )

)
weakly in V 1(Π) ×H1(Π),

(2.59)

and consequently, since the embedding V 1(Π) ×H1(Π) b V 0(Π) ×H0(Π) is com-
pact,(

yk(T/2, · ), τk(T/2, · )
)
→
(
ŷ(T/2, · ), τ̂(T/2, · )

)
in V 0(Π) ×H0(Π). (2.60)

Since the left-hand sides of inequalities (2.53) and (2.55) coincide, we substitute
(yk, τk, fk, gk) into (2.55) and pass to the limit as k → ∞, thus obtaining the
inequality

1 6 c1
(
‖ŷ(T/2, · )‖2V 0(Π) + ‖τ̂(T/2, · )‖2H0(Π)

)
. (2.61)

Obviously, there is a p̂ such that the triple (ŷ,∇p̂, τ̂) is a weak solution of sys-
tem (2.9), (2.10) with f = 0 and g = 0. By the theorem on smoothness of weak
solutions of system (2.9), (2.10) (which can be proved by methods close to those
used in the proof of Lemma 2.4),

ŷ ∈ V 1,2((0, T − ε) ×Π), τ̂ ∈ H1,2((0, T − ε) ×Π) (2.62)

for every ε > 0.
On the other hand, (ŷ, τ̂) ≡ 0 in Qω by (2.58), and hence it follows from Corol-

lary 2.1 that (ŷ, τ̂)
∣∣
Q
≡ 0, which contradicts (2.61).

Now we introduce the following functions instead of αλ and α̂λ:

η ≡ η(t, x) ≡ s0(λ̂)
e
bλ2‖ψ‖C(Π) − ebλψ(x)

T − t , η̂(t) = 9
10
s0(λ̂)

α̂(t)γ(t)

T − t , (2.63)

where ψ is the function in Lemma 2.1, α̂(t) is defined in (2.29), and s0(λ̂) and λ̂
are the numbers in Theorem 2.4. Let us prove an analogue of the estimate (2.53)
in which the function αbλ is replaced by η.

Theorem 2.5. Let the hypotheses of Theorem 2.3 be satis�ed, and let the functions

η and η̂ be de�ned in (2.63). Then the solution of problem (2.9)–(2.11) satis�es the
estimate

J(y, τ) ≡
∫
Q

(T − t)(|y(t, x)|2 + |τ(t, x)|2)e−η(t,x) dx dt

+ ‖y(0, · )‖2V 0(Π) + ‖τ(0, · )‖2H0(Π)

6 c

(∫
Q

(|f(t, x)|2 + | div f(t, x)|2 + |g(t, x)|2)e−η(t,x) dx dt

+

∫
Qω

(|f(t, x)|2 + |τ(t, x)|2 + |y(t, x)|2)e−9bη(t)/10 dx dt

)
, (2.64)

where c is independent of f and g.
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Proof. By definitions (2.3), (2.4), and (2.63) of the functions γ(t), αλ(t, x), and
η(t, x), we have

s0(λ̂)αbλ(t, x) ≡ η(t, x) for t ∈ (3T/4, T ).

This equation, together with the boundedness above and below of the functions
η(t, x) and αλ(t, x) for t ∈ (T/2, T − T0), implies the estimate∫ T

T/2

∫
Π

(T − t)(|y|2 + |τ |2)e−η(t,x) dx dt

6 c

∫ T

T/2

∫
Π

(T − t)(|y|2 + |τ |2)e−s0(bλ)αbλ(t,x) dx dt. (2.65)

Since the functions (T − t) and η(t, x) are bounded above and below on the set
(0, T/2)× Π, we can apply the energy inequality (2.13) and obtain

∫ T/2

0

∫
Π

(|y|2 + |τ |2)e−η(t,x) dx dt+ ‖y(0, · )‖2V 0(Π) + ‖τ(0, · )‖2H0(Π)

6 c sup
06t6T/2

(
‖y(t, · )‖2V 0(Π) + ‖τ(t, · )‖2H0(Π)

)
6 c
(
‖y(T/2, · )‖2V 0(Π) + ‖τ(T/2, · )‖2H0(Π)

+ ‖f‖2L2(0,T/2;V 0(Π)) + ‖g‖2L2(0,T/2;H0(Π))

)
6 c1

(
‖y(T/2, · )‖2V 0(Π) + ‖τ(T/2, · )‖2H0(Π)

+

∫ T/2

0

∫
Π

(|f |2 + |g|2)e−η(t,x) dx dt

)
. (2.66)

By summing inequalities (2.65) and (2.66) and by applying the estimate (2.53) to
the right-hand side of the resulting inequality, we obtain the following inequalities
in view of the fact that the functions (T − t) and η(t, x) are bounded above and
below for (t, x) ∈ (0, T/2)× Π:∫

Q

(|y|2 + |τ |2)e−η(t,x) dx dt+ ‖y(0, · )‖2V 0(Π) + ‖τ(0, · )‖2H0(Π)

6 c

(∫
Q

1

s0ϕ
(|y|2 + |τ |2)e−s0(bλ)αbλ dx dt

+
(
‖y(T/2, · )‖2V 0(Π) + ‖τ(T/2, · )‖2H0(Π)

)
+

∫
Q

(|f |2 + |g|2)e−η dx dt

)
6 c

(∫
Q

(|f |2 + | div f |2 + |g|2)e−η dx dt+

∫
Qω

(|f |2 + |g|2 + |y|2)e−bη dx dt
)
.

The proof of the theorem is complete.
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§ 3. Solubility of the exact controllability
problem for the linearized Boussinesq system

3.1. Statement of the problem. We linearize the Boussinesq system (1.26),

(1.27) at a point v̂, p̂, θ̂:

N ′(v̂, θ̂)(y, τ) ≡ ∂ty −∆y + (v̂,∇)y+ (y,∇)v̂ + τ~e

= −∇p+ f + u′, div y = 0, (3.1)

R′(v̂, θ̂)(y, τ) ≡ ∂tτ −∆τ + (v̂,∇τ) + (y,∇θ̂) = g + un+1. (3.2)

System (3.1), (3.2), like (1.26), (1.27), is considered under periodic boundary
conditions; that is, y = y(t, x) and τ = τ(t, x), where (t, x) ∈ Q ≡ (0, T )× Π, and
Π is the n-dimensional torus (n = 2, 3). We supplement (3.1), (3.2) with the initial
conditions

y(t, x)
∣∣
t=0

= y0(x), τ(t, x)
∣∣
t=0

= τ0(x). (3.3)

Lemma 3.1. Let (v̂, θ̂) ∈ L∞(0, T ; V 1
∞(Π))×L∞(0, T ;W 1

∞(Π)). Then for any y0 ∈
V 1(Π), τ0 ∈ H1(Π), f ∈ (L2(Q))n, and g ∈ L2(Q) and any function u ∈ U(ω) ⊂
(L2(Q))n+1 there is a unique solution (y, τ,∇p) ∈ V 1,2(Q) × H1,2(Q) × (L2(Q))n

of problem (3.1)–(3.3), and this solution satis�es the estimate

‖y‖2V 1,2(Q) + ‖τ‖2H1,2(Q) + ‖∇p‖2(L2(Q))n

6 c
(
‖y0‖2V 1(Π) + ‖τ0‖2H1(Π) + ‖f‖2(L2(Q))n + ‖g‖2L2(Q) + ‖u‖2(L2(Q))(n+1)

)
. (3.4)

This lemma can be proved in the same way as Lemma 2.4.
We pose a controllability problem for system (3.1), (3.2) by supplementing (3.3)

with the following conditions at time T :

y(T, x) ≡ 0, τ(T, x) ≡ 0. (3.5)

Here the unknown functions include not only (y, τ,∇p), but also the control
u = (u′, un+1).

To state the controllability problem precisely, we introduce appropriate function
spaces for the initial data and solutions of problem (3.1)–(3.3), (3.5).

Just as before, let ω ⊂ Π be a subdomain of the torus Π, and let

χω(x) =

{
1, x ∈ ω,
0, x ∈ ω,

be the characteristic function of ω. We introduce the weight functions

ρ1(t, x) = ebη(t)χω(x) +
eη(t,x)

T − t
(
1− χω(x)

)
, (3.6)

ρ(t) = ebη(t), (3.7)

where η(t, x) and η̂(t) are the functions defined in (2.63).
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We set

L2(ρ,Q) =

{
y(t, x) ∈ L2(Q) : ‖y‖2L2(ρ,Q) =

∫
Q

ρy2 dx dt <∞
}
. (3.8)

The space L2(ρ1, Q) is defined in a similar way.
Let us introduce the space of right-hand sides for equation (3.1):

F (Q) =
{
f ∈ L2(0, T ; (L2(Π))n) : ∃ f1 ∈ (L2(ρ1, Q))n

and ∃ f2 ∈ L2(0, T ;H1(Π)) such that f = f1 +∇f2;

‖f‖F(Q) = inf
f=f1+∇f2

(
‖f1‖2(L2(ρ1,Q))n + ‖f2‖2L2(0,T ;H1(Π))

)1/2}
. (3.9)

We define the space of solutions of system (3.1), (3.2) as follows:

Θ =
{

(y, τ) ∈ V 1,2(Q)×H1,2(Q) : L(y, τ) ∈ F (Q)× L2(ρ1, Q),

ye9bη/21 ∈ V 1,2(Q), τe9bη/21 ∈ H1,2(Q)
}
, (3.10)

where L(y, τ) = (N ′(v̂, θ̂)(y, τ), R′(v̂, θ̂)(y, τ)), and N ′ and R′ are the operators
defined in (3.1), (3.2). We define a norm on the space Θ by setting

‖(y, τ)‖2Θ = ‖L(y, τ)‖2F(Q)×L2(ρ1,Q) + ‖ye 9
21 bη‖2V 1,2(Q) + ‖τe 9

21 bη‖2H1,2(Q). (3.11)

The control space is defined to be

U(ρ, ω) =
{
u = (u′, un+1) ∈ (L2(ρ,Q))n+1, supp u ⊂ Qω = (0, T )× ω

}
. (3.12)

The following theorem is the main assertion in this section.

Theorem 3.1. Let (v̂, θ̂) ∈ W 1
∞(0, T ; V 2

∞(Π)) ×W 1
∞(0, T ;W 2

∞(Π)). Then for any

y0 ∈ V 1(Π), τ0 ∈ H1(Π), f ∈ F (Q), and g ∈ L2(ρ1, Q) there is a solution

(y, p, τ, u) ∈ V 1,2(Q)×L2(0, T ;H1(Π))×H1,2(Q)×U(ρ, ω) of problem (3.1)–(3.3),
(3.5).

The rest of the section deals with the proof of this theorem.

3.2. An auxiliary extremal problem. To prove theorem 3.1, we apply a version
of the penalty method. Let us consider the extremal problem

Jk(y, τ, u) =
1

2

∫
Q

ρ(t)(|y|2 + τ2) dx dt+
1

2

∫
Q

mk(t, x)|u|2dx dt→ inf, (3.13)

L(y, τ) = (−∇p+ f + u′, g+ un+1), div y = 0, (3.14)

y(t, x)
∣∣
t=0

= y0(x), τ(t, x)
∣∣
t=0

= τ0(x), (3.15)

where L(y, τ) = (N ′(v̂, θ̂)(y, τ), R′(v̂, θ̂)(y, τ)), and the operators N ′ and R′ are
defined in (3.1) and (3.2), respectively. Furthermore, the function ρ(t) is defined
in (3.7), and mk(t, x) is given by the formula

mk(t, x) = χω(x)e
T−t

T−t+1/k
bη +

(
1− χω(x)

)
k, (3.16)

where χω(x) is the characteristic function of ω, η̂(t) is the function in (2.63), and
k is a positive integer.
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Lemma 3.2. f ∈ (L2(ρ1, Q))n, g ∈ L2(ρ1, Q), y0 ∈ V 1(Π), and τ0 ∈ H1(Π).
For each positive integer k there is a unique solution (y, τ,∇p, u) ∈ V 1,2(Q) ×
H1,2(Q) × L2(0, T ; (L2(Π))n) × (L2(Q))n+1 of problem (3.13)–(3.15). Moreover,

(y, τ) ∈ (L2(ρ,Q))n × L2(ρ,Q).

Proof. We recall that an admissible element of problem (3.13)–(3.15) is a quadru-
ple (y, τ,∇p, u) ∈ V 1,2(Q) ×H1,2(Q) × (L2(Q))n × (L2(Q))n+1 that satisfies rela-
tions (3.14) and (3.15) and on which the functional in (3.13) is finite. The set of
admissible elements will be denoted by A. Let (y, τ,∇p) ∈ V 1,2(Q) × H1,2(Q) ×
(L2(Q))n be a solution of problem (3.1)–(3.3) with u ≡ 0, and let µ(t) ∈ C∞[0, T ]
be a function equal to 1 in a neighbourhood of zero and zero in a neighbour-

hood of T . Let u(t, x) =

(
dµ

dt
y − f + µf,

dµ

dt
τ − g + µg

)
. Then the quadruple

(µ(t)y, µ(t)τ, µ(t)p, u) belongs to A.
Since A 6=?, it follows that there is a minimizing sequence (ym, τm,∇pm, um)∈A

for the functional Jk:

Jk(ym, τm,∇pm, um)→ inf
(y,τ,∇p,u)∈A

Jk(y, τ,∇p, u). (3.17)

It follows from (3.17) and the estimate (3.4) that

‖ym‖(V 1,2(Q)∩(L2(ρ,Q))n)+‖τm‖H1,2(Q)∩L2(ρ,Q)+‖∇pm‖(L2(Q))n+‖um‖(L2(Q))n+16 c,

where c is independent ofm. Hence the minimizing sequence contains a subsequence
weakly convergent in (V 1,2(Q)∩ (L2(ρ,Q))n)× (H1,2(Q)∩L2(ρ,Q))× (L2(Q))n×
(L2(Q))n+1 to some quadruple (ŷ, τ̂ ,∇p̂, û) of functions. We can readily see that
this quadruple is a solution of problem (3.13)–(3.15). The uniqueness of the solution
follows by a standard argument from the strict convexity of the functional (3.13).

Let us derive an optimality system for problem (3.13)–(3.15).

Lemma 3.3. Let the hypotheses of Lemma 3.2 be satis�ed, and let

(yk, τk,∇pk, uk) ∈ (V 1,2(Q) ∩ (L2(ρ,Q))n)× (H1,2(Q) ∩ L2(ρ,Q))

× (L2(Q))n × (L2(Q))n+1

be a solution of problem (3.13)–(3.15). Then there is a triple

(zk, rk,∇qk) ∈ L2(0, T ; V 0(Π)) × L2(Q)× (L2(Q))n

such that

L(yk, τk) = (−∇pk + f + u′k, g + uk,n+1), yk(0, x) = y0(x), τk(0, x) = τ0(x), (3.18)

L∗(zk, rk) = (∇qk − ρyk,−ρτk) in Q, (3.19)

(zk, rk) −mkuk = 0 in Q, (3.20)

where

L∗(zk, rk) =
(
N∗(zk, rk), R

∗(zk, rk)
)
,
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and the operators N∗ and R∗ are de�ned in (2.9) and (2.10). Furthermore, the pair

(zk, rk) satis�es the estimate∫
Q

(T − t)(|zk|2 + |rk|2)e−η dx dt+ ‖zk(0, · )‖2V 0(Π) + ‖rk(0, · )‖2L2(Π)

6 C2

∫
Q

ρ2(|yk|2 + |τk|2)e−η dx dt+

∫
Qω

(m2
k|uk|2 + ρ2|yk|2)e−bη dx dt, (3.21)

where C2 is independent of (yk, τk, uk).

Proof. Relations (3.18) hold by virtue of (3.14) and (3.15).
To derive (3.19) and (3.20), we use Lagrange’s principle for an abstract smooth

problem of the form
J(x)→ inf, Fx = 0, (3.22)

where J : X → R
1 is a continuously differentiable functional and F : X → Z

is a continuous linear operator between the Hilbert spaces X and Z. Alekseev,
Tikhomirov, and Fomin [2] and Fursikov [30] showed that if x̂ is a local extremum
of problem (3.22) and the operator F is a map onto Z, then there is a z ∈ Z∗ = Z
such that the Lagrange functional L(x, z) = J(x) + (Fx, z)Z satisfies the relation

L
′
x(x̂, z)[h] = 0 ∀h ∈ X. (3.23)

In problem (3.13)–(3.15) we have x = (y, τ,∇p, u) and

X = (V 1,2(Q) ∩ (L2(ρ,Q))n)× (H1,2(Q) ∩ L2(ρ,Q))

× L2(0, T ;∇H1(Π)) × (L2(Q))n+1,

where ∇H1(Π)={∇p(x), p ∈ H1(Π)}, J(x)=Jk(y, τ, u) is the functional in (3.13),
Z = (L2(Q))n+1 × V 1(Π) ×H1(Π), and

F (x) = (L(y, τ) − (∇p, 0)− u, y|t=0, τ |t=0),

where L(y, τ) is the operator (3.14). To prove that the operator F : X → Z is onto,
we establish the solubility of the operator

L(y, τ)− (∇p, 0)− u = (f, g), y
∣∣
t=0

= ỹ0, τ
∣∣
t=0

= τ̃0 (3.24)

for any (f, g, ỹ0, τ̃0) ∈ (L2(ρ1, Q))n+1×V 1(Π)×H1(Π). Indeed, by substituting an
arbitrary pair (y, τ) ∈ (V 1,2(Q) ∩ (L2(ρ,Q))n) × (H1,2(Q) ∩ L2(ρ,Q)), satisfying
(3.242) and (3.243) into (3.241), we can find u from the resulting equation by setting
p = 0. Obviously, u = (u′, un+1) ∈ (L2(Q))n+1. Thus, the Lagrange principle
applies to problem (3.13)–(3.15). The Lagrange function in this case has the form

L(y, τ,∇p, u, z, r, φ1, φ2) = Jk(y, τ, u)

+

∫
Q

[
N ′(v̂, θ̂)(y, τ) · z +R′(v̂, θ̂)(y, τ)r −∇p · z − u′ · z − un+1r

]
dx dt

+
(
y(0, · )− ỹ0, φ1

)
V 0(Π)

+
(
τ(0, · )− τ̃0, φ2

)
H0(Π)

, (3.25)



Exact controllability of the Navier–Stokes and Boussinesq equations 597

where (z, r, φ1, φ2) ∈ (L2(Q))n+1 × V −1(Π)×H−1(Π) is an element of the Hilbert
space Z∗ and (N ′, R′) = L are the operators (3.1) and (3.2). By applying (3.23)
with differentiation with respect to the variable x = (y, τ, 0, 0, 0) to the Lagrange
function (3.25), we obtain (3.19); the application of (3.23) with differentiation with
respect to the variable x = (0, 0, 0, u′, un+1) yields (3.20). By differentiating the
Lagrange function with respect to ∇p, we obtain div zk = 0. Let us apply inequal-
ity (2.64) with y = zk, τ = rk, ∇p = ∇qk, f = −ρyk , and g = −ρτk to rela-
tion (3.19) and then use (3.20) in the integral over Qω on the right-hand side. This
gives us inequality (3.21).

3.3. Proof of the main result. In what follows we prove Theorem 3.1 by passing
to the limit as k → ∞ in problem (3.13)–(3.15). To this end, we first estimate
Jk(yk, τk, uk).

Lemma 3.4. Let f ∈ (L2(ρ1, Q))n, f
∣∣
Qω
≡ 0, g ∈ L2(ρ1, Q), g

∣∣
Qω
≡ 0,y0 ∈ V 1(Π),

and τ0 ∈ H1(Π), and let (yk, τk,∇pk, uk) be the solution of problem (3.13)–(3.15)
constructed in Lemma 3.2. Then there is a constant c > 0 independent of k such

that

Jk(yk, τk, uk) 6 c
(
‖f‖2(L2(ρ1,Q))n + ‖g‖2L2(ρ1,Q) + ‖y0‖2V 0(Π) + ‖τ0‖2H0(Π)

)
. (3.26)

Proof. Let (zk, rk) be the functions constructed in Lemma 3.3 and satisfying the
estimate (3.21). Using the definitions (3.16) and (3.7) of the functions mk(t, x) and
ρ(t), we obtain

|χω(x)mk(t, x)e−bη| 6 c, ρ2(t)e−bη(t) = ρ(t), ρ2(t)e−η(t,x) 6 cρ(t),

where c is a constant independent of k.

By applying these relations to the right-hand side of inequality (3.21) and by
taking account of definition (3.13) of the functional Jk, we can readily derive the
following estimate from (3.21):

∫
Q

(T − t)(|zk|2 + |rk|2)e−η dx dt

+ ‖zk(0, · )‖2V 0(Π) + ‖rk(0, · )‖2L2(Π) 6 c1Jk(yk, τk, uk), (3.27)

where the constant c1 is independent of k. Let us take the inner product of (3.19)
by (yk, τk) in (L2(Q))n × L2(Q), integrate by parts with respect to x and t, and
use (3.18). Then we obtain

−
∫
Q

ρ(|yk|2 + |τk|2) dx dt = (zk(0, · ), y0)V 0(Π) + (rk(0, · ), τ0)L2(Π)

+

∫
Q

((f + u′k, zk) + (g + un+1,k)rk) dx dt.
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This equation, by virtue of (3.20) and definition (3.13) of the functional Jk, implies
that

2Jk(yk, τk, uk)

= −(zk(0, · ), y0)V 0(Π) − (rk(0, · ), τ0)L2(Π) −
∫
Q

((f, zk) + grk) dx dt

6

(
‖zk(0, · )‖2V 0(Π) + ‖rk(0, · )‖2L2(Π) +

∫
Q

(T − t)(|zk|2 + |rk|2)e−η dx dt

)1/2

×
(
‖y0‖2V 0(Π) + ‖τ0‖2L2(Π) + ‖f‖2(L2(ρ1,Q))n + ‖g‖2L2(ρ1,Q)

)1/2
,

where ρ1 is the weight from (3.6) (here we have used our assumption that f
∣∣
Qω

= 0

and g
∣∣
Qω

= 0). By applying the estimate (3.27) to the right-hand side of the last

inequality, we obtain

2Jk(yk, τk, uk) 6 c1
(
‖f‖2(L2(ρ1,Q))n + ‖g‖2L2(ρ1,Q)

+ ‖y0‖2V 0(Π) + ‖τ0‖2L2(Π)

)1/2
J

1/2
k (yk, τk, uk),

whence (3.26) follows.

Proof of Theorem 3.1. First, we assume that f
∣∣
Qω
≡ 0 and g

∣∣
Qω
≡ 0. Let us

consider a sequence (yk, τk,∇pk, uk) of solutions of problem (3.13)–(3.15) as the
parameter k goes to infinity. It follows from (3.26), (3.13), and (3.16) that

‖yk‖2(L2(ρ,Q))n + ‖τk‖2L2(ρ,Q) + k

∫
Q\Qω

|uk|2 dx dt+

∫
Qω

ebη|uk|2 dx dt 6 c, (3.28)

where c is independent of k. By virtue of (3.28) and the estimate (3.4), we have

‖yk‖2V 1,2(Π) + ‖τk‖2H1,2(Π) + ‖∇pk‖2L2(Q) 6 c1, (3.29)

where c1 is also independent of k. By virtue of (3.28) and (3.29), the sequence of
solutions contains a subsequence (which will also be denoted by {(yk, τk,∇pk, uk)})
such that

yk → ŷ weakly in V 1,2(Q) ∩ (L2(ρ,Q))n, τk → τ̂ weakly in H1,2(Q) ∩ L2(ρ,Q),

∇pk →∇p̂ weakly in (L2(Q))n, uk → û weakly in (L2(Q))n+1.

(3.30)

Moreover, by (3.28), (
1− χω(x)

)
uk → 0 in (L2(Q))n, (3.31)

lim
k→∞

∫
Q

mk|uk(t, x)|2 dx dt 6 c,

where c > 0 is the same constant as in (3.28), and hence∫ T−ε

0

∫
ω

ebη|û(t, x)|2 dx dt 6 c ∀ ε > 0,
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which readily implies that ∫
Qω
|û(t, x)|2ebη dx dt 6 c. (3.32)

It follows from (3.31) and (3.32) that û(t, x) ∈ U(ρ, ω) (see (3.12)). Using (3.30),
we pass to the limit as k → ∞ in (3.18). As a result, we find that the quadruple
(ŷ, τ̂ ,∇p̂, û) ∈ (V 1,2(Q)∩ (L2(ρ,Q))n)× (H1,2(Q)∩L2(ρ,Q))× (L2(Q))n×U(ρ, ω)
satisfies relations (3.18) and hence also (3.1)–(3.3). Let η̂(t) be the function in (3.7)
defined in (2.63). We make the substitution ỹ = e9bη/21ŷ, τ̃ = e9bη/21τ̂ , ũ = e9bη/21û,
p̃ = e9bη/21p̂ in (3.1)–(3.3) and find that the functions (ỹ, τ̃ ,∇p̃, ũ) satisfy the system
of equations

N ′(v̂, θ̂)(ỹ, τ̃) = ∇p̃+ e9bη/21f + ũ′ +
9

21

dη̂(t)

dt
ỹ, div ỹ = 0, (3.33)

R′(v̂, θ̂)(ỹ, τ̃) = e9bη/21g + ũn+1 +
9

21

dη̂(t)

dt
τ̃ . (3.34)

We have already proved that the right-hand side of system (3.33), (3.34) belongs
to the space L2(0, T ; V 0(Π)) × L2(0, T ;H0(Π)). Hence (ỹ, τ̃ ,∇p̃) ∈ V 1,2(Q) ×
H1,2(Q) × (L2(Q))n by Lemma 3.2. Thus, we have proved that, by virtue of the
properties of the function ρ in (3.6), (ŷ, τ̂ ,∇p̂, û) is a solution of the linear exact
controllability problem (3.1)–(3.3), (3.5) and belongs to the space Θ× (L2(Q))n ×
U(ρ, ω). Finally, let (f, g) be an arbitrary function from the space F (Q)×L2(ρ1, Q)
(see (3.11)). By the definition of the space F (Q), there are f1 ∈ (L2(ρ1, Q))n and
∇f2 ∈ (L2(Q))n such that f = f1 + ∇f2. We have already proved that for any
initial data ((1−χω)f1, (1−χω)g, y0, τ0) ∈ (L2(ρ1, Q))(n+1)×V 1(Π)×H1(Π) there
is a solution (y, τ,∇p, u) ∈ Θ × (L2(Q))n × U(ρ, ω) of problem (3.1)–(3.5). One
can readily see that the function (y, τ,∇p − ∇f2, u + (χωf, χωg)) is a solution of
problem (3.1)–(3.3), (3.5) with the initial data (f1, g, y0, τ0).

§ 4. Local exact controllability of the Boussinesq system

In this section we prove Theorem 1.5. We seek the solution of problem (1.26),
(1.27), (1.24), (1.25) in the form

v(t, x) = v̂(t, x) + y(t, x), θ(t, x) = θ̂(t, x) + τ(t, x), ∇p = ∇p̂+∇q, (4.1)

where (v̂, θ̂, p̂) is the solution of the Boussinesq system (1.26), (1.27) with u ≡ 0
given under the assumptions of Theorem 1.4. By substituting (4.1) in (1.26)
and (1.27) and subtracting (1.26) and (1.27) for (v̂,∇p̂, τ̂) from the resulting
equations, we arrive at the following system for the new independent functions
(y, τ,∇q, u):

N(y, τ, q, u) = ∂ty −∆y + (v̂,∇)y+ (y,∇)v̂ + τ~e+∇q + u′ = 0, div y = 0,
(4.2)

R(y, τ, u) = ∂tτ −∆τ + (v̂,∇τ) + (y,∇θ̂) + (y,∇τ) + un+1 = 0, (4.3)

y(0, · ) = v0 − v̂(0, · ), τ(0, · ) = θ0 − θ̂(0, · ), (4.4)

y(T, · ) = 0, τ(T, · ) = 0. (4.5)
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Let us introduce a map A(y, τ, q, u) by setting

A(y, τ, q, u) = (N(y, τ, q, u), R(y, τ, q, u), y(0, · ), τ(0, · )). (4.6)

To analyze problem (4.2)–(4.6), we use the following version of the implicit function
theorem (see [2]).

Theorem 4.1. Let X and Z be Banach spaces, and let A ∈ C1(X;Z) be a contin-

uously di�erentiable map from X to Z. Assume that

A(x0) = z0 (4.7)

for some x0 ∈ X and z0 ∈ Z and the derivative A′(x0) : X → Z of A at x0 is an

epimorphism. Then there is an ε > 0 such that for each z ∈ {z ∈ Z : ‖z − z0‖ < ε}
there is a solution x ∈ X of the equation A(x) = z.

Proof of Theorem 1.5. The change of variables (4.1) reduces problem (1.24)–(1.27)
to problem (4.2)–(4.5). We prove the solubility of the latter problem for small

(v0 − v̂(0, · ), θ0 − θ̂(0, · )) with the help of Theorem 4.1. To this end, we set

X = Θ× L2(0, T ;∇H1(Π)) × U(ρ, ω), (4.8)

Z = F (Q)× L2(ρ1, Q)× V 1(Π)×H1(Π), (4.9)

where L2(ρ,Q), F (Q), Θ, and U(ρ, ω) are the spaces (3.8), (3.9), (3.10), and (3.12),
respectively. We define the map A by formulae (4.6), (4.2), and (4.3) and the spaces
X and Z by (4.8) and (4.9). We note that relations (4.5) are then satisfied automat-
ically, since x = (y, τ, q, u) ∈ X, where X is the space (4.8). We set x0 = (0, 0, 0, 0)
and z0 = (0, 0, 0, 0); then condition (4.7) is obviously satisfied. By elementary esti-
mates we establish that the operator A(x) : X → Z is continuously differentiable.
The surjectivity of the map A′(0) : X → Z has already been proved in Theorem 3.1.
Thus, the operator (4.6), (4.2), (4.3), acting in the spaces (4.8) and (4.9), satisfies
all assumptions of Theorem 4.1, and hence the conclusion of this theorem is valid
for it. Therefore, we have established the solubility of problem (4.2)–(4.5) for small

(v0 − v̂(0, · ), θ0 − θ̂(0, · )), and the proof of Theorem 1.5 is complete.

§ 5. Approximate controllability of the Boussinesq
system: reduction to a linear system of a special form

5.1. The idea of the proof. In this and the next sections, we prove the approx-
imate controllability of the Boussinesq system (1.26), (1.27), that is, the system

∂tv −∆v + (v,∇)v + θ~e−∇p = f + u′, div v = 0, (5.1)

∂tθ −∆θ+ (v,∇θ) = g + un+1, (5.2)

where (f, g) are given external forces and the control u = (u′, un+1) is supported
in Qω = (0, T )×ω. Just as before, system (5.1), (5.2) is considered in the cylinder
Q = (0, T )× Π, where Π is the n-dimensional torus, n = 2, 3. We assume that the
initial conditions

v
∣∣
t=0

= v0, θ
∣∣
t=0

= θ0 (5.3)
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are given for t = 0, where v0 ∈ V 0(Π) ∩ (C2,α(Π))n and θ0 ∈ C2,α(Π) are given
functions. We recall that the approximate controllability problem is stated as fol-
lows: for any v1 ∈ V 0(Π) ∩ (C2,α(Π))n, θ1 ∈ C2,α(Π) and any ε > 0, construct
a control u = (u′, un+1) ∈ U(ω; 0, T ),3 such that the restriction of the solution
(v,∇p, θ) of problem (5.1)–(5.3) to t = T satisfies the condition

‖v(T, · )− v1‖2V 1(Π) + ‖θ(T, · )− θ1‖2H1(Π) < ε2. (5.4)

Let m(t, x) = (m1, . . . , mn) ∈ C∞(Q) be a vector field on Q such that

divm(t, x) =
n∑
i=1

∂imi = 0, (t, x) ∈ Q, and m(t, x) = ∇γ(t, x), (t, x) ∈ Q\Qω,

(5.5)
where γ(t, x) is a function on Q\Qω , which by (5.5) is harmonic on Π\ω for every
t ∈ (0, T ).

We intend to reduce the approximate controllability problem (5.1)–(5.4) to the
proof of exact controllability of a system of linear first-order equations with coef-
ficients that we choose ourselves. These coefficients will be determined by some
vector field m of the form (5.5). We seek the solution (v, p, θ) in the form

v = z +m, θ = r; div z = 0, divm = 0 (5.6)

(the resulting pressure p will be written out later). By substituting (5.6) into (5.1),
(5.2), we obtain

∂tz + (m,∇)z + (z,∇)m+ (z,∇)z −∆z + ∂tm (5.7)

−∆m+ (m,∇)m−∇p+ r~e = f + u′, div z = 0,

∂tr + (m,∇)r + (z,∇)r−∆r = g + un+1. (5.8)

We note that the main difficulty is in the construction of the desired functions
(z, r) on the set Q \ Qω. Indeed, once we have constructed (z, r) on Q \ Qω, we
can extend (z, r) to Qω arbitrarily, preserving only the condition div z = 0 and
the prescribed values of (z, r) for t = T, x ∈ ω. We then find the control u by
substituting (z, r) in the left-hand side of (5.7), (5.8).

Let us show that, by the second equation in (5.5), the expression ∂tm−∆m+
(m,∇)m on Q \Qω is the gradient of some function q1:

∂tm−∆m+ (m,∇)m = ∇q1. (5.9)

Indeed, ∂tm−∆m = ∇(∂tγ −∆γ) by the second equation in (5.5). Next,

(m,∇)m =
n∑
j=1

mj∂jm =
n∑
j=1

∂jγ∂j∇γ =
1

2
∇|∇γ|2 in Q \Qω.

3 The control space U(ω; 0, T ) is defined in (1.28).
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In what follows we shrink the time coordinate t→ t/δ so that the terms (z,∇)z,
∆z, r~e, and f in (5.7) and (z,∇)r, ∆r, and g in (5.8) will be small. Retaining the
leading terms in (5.7), (5.8), we obtain the system

∂tz + (m,∇)z + (z,∇)m−∇q = u′, div z = 0, (5.10)

∂tr + (m,∇)r = un+1, (5.11)

where ∇q = ∇p − ∇q1, and ∇q1 is defined in (5.9). The initial condition for
equations (5.10), (5.11) is generated by conditions (5.3):

z
∣∣
t=0

= ṽ0, r
∣∣
t=0

= θ̃0. (5.12)

We replace the approximate controllability condition (5.4) by the exact controlla-
bility condition

z(T, · ) = ṽ1, r(T, · ) = θ̃1. (5.13)

Furthermore, ṽj ∈ V 0(Π) ∩ (C∞(Π))n and θ̃j ∈ C∞(Π), j ∈ {0, 1}, will be chosen
close to vj and θj , respectively, j ∈ {0, 1}.

The coefficients of system (5.10), (5.11) are determined by the vector field m
constructed in the following lemma.

Lemma 5.1. There exist a vector �eld m(t, x) = (m1, . . . , mn) ∈ (C∞(Q))n satis-

fying conditions (5.5) and a time T > 0 such that

m(0, x) ≡ m(T, x) ≡ 0,
∂km(t, x)

∂tk

∣∣∣∣
t=0

≡ ∂km(t, x)

∂tk

∣∣∣∣
t=T

≡ 0, k ∈ N (5.14)

(k is an arbitrary positive integer) and the relation{
(t, x(t, x0)), t ∈ (0, T )

}
∩Qω 6= ? (5.15)

is valid for every x0 ∈ Π, where x(t, x0) is the solution of the Cauchy problem

d

dt
x(t, x0) = m

(
t, x(t, x0)

)
, x(t, x0)

∣∣
t=0

= x0. (5.15′)

Moreover, x(T, x0) = x0 for each x0 ∈ Π. Furthermore, there exist a �nite cover

{Oi, i = 1, . . . , k} of the torus Π by open sets Oi and a number ∆ > 0 such that

for each i all the curves x(t, x0), x0 ∈ Oi, simultaneously lie in ω for some time

interval of length ∆.

Theorem 5.1. Let m(t, x) satisfy all the hypotheses of Lemma 5.1, and let ṽi ∈
(C∞(Π))

n ∩ V 1(Π) and θ̃i ∈ C∞(Π), i = 0, 1, be given. Then there is a solution

(z,∇q, r, u)∈
(
(C∞(Q))n ∩ V 1,2(Q)

)
× (C∞(Q))n × C∞(Q)×

(
U(ω; 0, T ) ∩ (C∞(Q))n+1

)
of problem (5.10)–(5.13) satisfying the inequality

‖z‖2C1(0,T ;(Ck,α(Π))n) + ‖r‖2C1(0,T ;Ck,α(Π))

+ ‖∇q‖2C(0,T ;(Ck,α(Π))n) + ‖u‖2C(0,T ;(Ck,α(Π))n+1)

6 ck

( 1∑
j=0

(
‖ṽj‖2(Ck,α(Π))n + ‖θ̃j‖2Ck,α(Π)

))
(5.16)
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for any k > 2 and α ∈ (0, 1), where the constant ck depends only on the norm of

the vector �eld m(t, x) in the space (Ck,α(Q))n.

The proofs of Lemma 5.1 and Theorem 5.1 will be given in the next section.
Now we derive the approximate controllability of the Boussinesq system from The-
orem 5.1.

5.2. Approximate controllability of the Boussinesq system.

Proof of Theorem 1.6. Suppose that

(v0, θ0) ∈
(
V 0(Π) ∩ (C2,α(Π))n

)
×C2,α(Π),

(v1, θ1) ∈
(
V 0(Π) ∩ (C2,α(Π))n

)
×C2,α(Π),

and ε > 0 are given. We must find a control u ∈ U(ω; 0, T ) such that inequality (5.4)
is valid for the solution (v,∇p, θ) of problem (5.1)–(5.3). By Theorem 5.1, there is
a control u ∈ U(ω; 0, T ) such that equations (5.13) hold for the solution (z,∇q, r)
of problem (5.10)–(5.12). Using the functions z, ∇q, r, m, and u, we construct the
functions

zδ(t, x) = z

(
t

δ
, x

)
, rδ(t, x) = r

(
t

δ
, x

)
, mδ(t, x) =

1

δ
m

(
t

δ
, x

)
,

∇qδ(t, x) =
1

δ
∇q
(
t

δ
, x

)
, uδ(t, x) =

1

δ
u

(
t

δ
, x

)
,

(5.17)

where δ > 0 is some parameter. Let us substitute the functions (5.17) into sys-
tem (5.10), (5.11) for the corresponding functions z, r, m, ∇q, and u. As a result,
we find that the functions (5.17) on the cylinder QδT ≡ (0, δT ) × Π satisfy the
system

∂tzδ + (mδ,∇)zδ + (zδ,∇)mδ −∇qδ = u′δ, div zδ = 0, (5.18)

∂trδ + (mδ ,∇rδ) = (un+1)δ. (5.19)

Moreover, relations (5.12) and (5.13) become

zδ
∣∣
t=0

= ṽ0, rδ
∣∣
t=0

= θ̃0, (5.20)

zδ(δT, · ) = ṽ1, rδ(δT, · ) = θ̃1. (5.21)

We recall that after representing the solution of system (5.1), (5.2) in the
form (5.6), we reduced this system to system (5.10), (5.11) by discarding some
terms, declared to be small. Since, obviously, zδ + mδ , ∇qδ, rδ, uδ cannot be an
exact solution of system (5.1), (5.2), we seek the exact solution in the form

v = zδ +mδ + y, θ = rδ + τ, u = uδ − χω∆mδ. (5.22)

Let us substitute (5.22) into (5.1), (5.2) and, using (5.18), (5.19), and (5.9), rewrite
the resulting relations as equations for the functions (y, τ) defined for (t, x) ∈ QδT :

∂ty −∆y + (y,∇)(y + zδ +mδ)

+ (zδ +mδ ,∇)y+ τ~e−∇q2 = f1, div y = 0, (5.23)

∂tτ −∆τ + (mδ + zδ + y,∇τ) + (y,∇rδ) = g1, (5.24)
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where

f1 = f + ∆zδ − (zδ ,∇)zδ − zδ~e, g1 = g + ∆rδ − (zδ,∇rδ), (5.25)

∇q2 = ∇p− 1

δ
∇q1

(
t

δ
, x

)
, and ∇q1 is defined in (5.9).

We choose the initial and terminal conditions (ṽj , θ̃j) ∈ (V 1(Π) ∩ (C∞(Π))n) ×
C∞(Π), j ∈ {0, 1}, in problem (5.10)–(5.12) such that the estimates

‖ṽ0 − v0‖2V 1(Π)∩C2,α(Π) + ‖θ̃0 − θ0‖2C2,α(Π) < δ2, (5.26)

‖ṽ1 − v1‖2V 1(Π)∩C2,α(Π) + ‖θ̃1 − θ1‖2C2,α(Π) < (ε/2)2 (5.27)

are satisfied, where (v0, θ0) and (v1, θ1) are the initial and terminal conditions,
respectively, of problem (5.1)–(5.4).4 It follows from (5.22), (5.3), (5.20), and (5.14)
that (y, τ) satisfy the initial conditions

y
∣∣
t=0

= v0 − ṽ0, τ
∣∣
t=0

= θ0 − θ̃0. (5.28)

In view of (5.22), (5.14), (5.21), and (5.27), to prove (5.4) it suffices to establish
the inequality

‖y(Tδ, · )‖2V 1(Π) + ‖τ(Tδ, · )‖2H1(Π) < (ε/2)2. (5.29)

Let us show that the L2-norms of the right-hand sides f1 and g1 in problem (5.23),
(5.24), (5.28) are small for small δ. Indeed, by virtue of (5.25), (5.17), and (5.16),
we obtain with the help of obvious estimates and changes of variables that

‖g1‖2L2(QTδ) 6

∫ Tδ

0

∫
Π

|g(t, x)|2 dx dt+ δ

∫ Tδ

0

∥∥∥∥r( tδ , ·
)∥∥∥∥2

H2(Π)

d
t

δ

+ cδ

∫ Tδ

0

∥∥∥∥z( tδ , ·
)∥∥∥∥2

V 1(Π)

∥∥∥∥r( tδ , ·
)∥∥∥∥2

H2(Π)

d
t

δ

6

∫ Tδ

0

‖g(t, · )‖2L2(Π) dt

+ cδ

1∑
j=0

(
‖ṽj‖2V 2(Π) + ‖θ̃j‖2H2(Π)

)
→ 0 as δ → 0. (5.30)

In just the same way, we can derive the inequality

‖f1‖2L2(QTδ)
6

∫ Tδ

0

‖f(t, · )‖2L2(Π) dt+ cδ

1∑
j=0

(
‖ṽj‖2V 2(Π) + ‖θ̃j‖2H2(Π)

)
→ 0

as δ→ 0. (5.31)

4 We note that the ṽ0 and τ̃0 defined in (5.26) depend on δ, of course. Consequently, the
functions z and r constructed in Theorem 5.1 also depend on δ. However, by virtue of (5.16),

the norms of z and r in the space C1(0, T ;C2,α(Π)) are bounded by a constant independent of δ.
This remark is used below in the estimates (5.30)–(5.38).
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Since the right-hand sides and initial conditions in problem (5.23), (5.24), (5.26)
are small, we see that to prove the existence and uniqueness of the solution it
suffices to estimate the solution of the linearized system

∂ty −∆y + (y,∇)(zδ +mδ)

+ (zδ +mδ ,∇)y+ τ~e−∇q2 = f1, div y = 0, (5.32)

∂tτ −∆τ + (mδ + zδ ,∇τ) + (y,∇rδ) = g1. (5.33)

Let us take the inner products of the first equation in (5.32) by y in V 0(Π) and
of (5.33) by τ in L2(Π). By summing the resulting inequalities and arguing as in
the derivation of (2.13), we obtain

1

2

d

dt

(
‖y(t, · )‖2V 0(Π) + ‖τ(t, · )‖2H0(Π)

)
+
(
‖∇y(t, · )‖2V 0(Π) + ‖∇τ(t, · )‖2H0(Π)

)
6
(
‖f1(t, · )‖2(L2(Π))n + ‖g1(t, · )‖2L2(Π)

)
+ c
(
‖y(t, · )‖2V 0(Π) + ‖τ(t, · )‖2H0(Π)

)
×
(
1 + ‖zδ(t, · )‖V 1

∞(Π) + ‖rδ(t, · )‖W1
∞(Π) + ‖mδ(t, · )‖(C1(Π))n

)
. (5.34)

We set

a(t) = 1 + ‖zδ(t, · )‖V 0(Π)∩(C2,α(Π))n + ‖rδ(t, · )‖C2,α(Π) + ‖mδ(t, · )‖(C2,α(Π))n,

where 0 < α < 1. Then we obtain the following estimate from (5.34) with the help
of Gronwall’s lemma:

‖y(t, · )‖2V 0(Π) + ‖τ(t, · )‖2H0(Π)

6 c

[
e
R t
0
a(s)ds

(
‖ṽ0 − v0‖2V 0(Π) + ‖θ̃0 − θ0‖2H0(Π)

)
+

∫ t

0

e
R s
0
a(s1)ds1

(
‖f1(s, · )‖2(L2(Π))n + ‖g1(s, · )‖2L2(Π)

)
ds

]
. (5.35)

We note that∫ Tδ

0

‖mδ(t, · )‖(C2,α(Π))n dt =

∫ Tδ

0

∥∥∥∥m( tδ , ·
)∥∥∥∥

(C2,α(Π))n
d
t

δ

=

∫ T

0

‖m(t, · )‖(C2,α(Π))n dt.

In a similar way we obtain the estimates∫ Tδ

0

(
‖rδ(t, · )‖C2,α(Π) + ‖zδ(t, · )‖(C2,α(Π))n

)
dt

6 δ

∫ T

0

(
‖r(t, · )‖C2,α(Π) + ‖z(t, · )‖(C2,α(Π))n

)
dt

6 cδ

1∑
j=0

(
‖ṽj‖(C2,α(Π))n + ‖θ̃j‖C2,α(Π)

)
.
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It follows from these estimates that∫ t

0

a(s) ds 6 c

(
1 + δ

1∑
j=0

(
‖ṽj‖(C2,α(Π))n + ‖θ̃j‖C2,α(Π)

))
(5.36)

for any t ∈ (0, T δ). Now inequalities (5.34)–(5.36) imply the energy inequality
(t ∈ (0, T δ))

‖y(t, · )‖2V 0(Π) + ‖τ(t, · )‖2H0(Π) +

∫ t

0

(
‖∇y(s, · )‖2V 0(Π) + ‖∇τ(s, · )‖2H0(Π)

)
ds

6 γK

(
‖ṽ0 − v0‖2V 0(Π) + ‖θ̃0 − θ0‖2H0(Π)

+

∫ t

0

(
‖f1(s, · )‖2L2(Π) + ‖g1(s, · )‖2L2(Π)

)
ds

)
, (5.37)

where γK is a monotone continuous function of K, K being the constant in (1.32).
We apply the operator ∇ to (5.32) and (5.33), take the L2 inner products of the
first of the resulting equations by ∇y and of the second by ∇τ , argue as in the
derivation of (5.34)–(5.37), and use (5.36) to obtain the following analogue of the
estimate (5.37):

‖y(t, · )‖2V 1(Π) + ‖τ(t, · )‖2H1(Π) +

∫ t

0

(
‖y(s, · )‖2V 2(Π) + ‖τ(s, · )‖2H2(Π)

)
ds

6 γK

(
‖ṽ0 − v0‖2V 1(Π) + ‖θ̃0 − θ0‖2H1(Π)

+

∫ t

0

(
‖f1(s, · )‖2L2(Π) + ‖g1(s, · )‖2L2(Π)

)
ds

)
. (5.38)

It follows from the estimate (5.38) by simple iteration that there is a solution (y, τ)
of the non-linear problem (5.23), (5.24), (5.28), and moreover, this solution satisfies
the estimate (5.38) in which the constant γK is replaced by 2γK . By (5.38), (5.26),
(5.30), and (5.31), there is a sufficiently small δ such that inequality (5.29) holds.
Furthermore, we set Tε,K = Tδ .

§6. Exact controllability of a linear system

In this section we prove Lemma 5.1 and Theorem 5.1.

6.1. Proof of Lemma 5.1. First, let us prove the following assertion.

Lemma 6.1. For each x0 ∈ Π there exist a time T = Tx0 and a vector �eld

m = mx0(t, x) ∈ (C∞((0, Tx0)×Π))n satisfying conditions (5.5), (5.14), and (5.15)
with x(t, x0) de�ned in (5.15′).

Proof. Suppose the contrary. Let M be the set of initial conditions x0 for which
there are no vector fields mx0 with the desired property. The set Π \M is open,
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since the solutions of ordinary differential equations depend continuously on the
initial data. Hence, M is closed. Let x0 ∈M and y0 ∈ ω be points such that

|x0 − y0| = min
x∈M, y∈ω

|x− y|. (6.1)

Let us show that for some ξ ∈ C∞(∂ω) with

∫
∂ω

ξ dσ = 0 the solution q(x) of the

Neumann problem

∆q(x) = 0, x ∈ Π \ ω, ∂q

∂n

∣∣∣∣
∂ω

= ξ (6.2)

satisfies the condition (
∇q(x0), y0 − x0

)
> 0, (6.3)

where ( · , · ) is the inner product inRn and x0, y0 are the points from (6.1). Suppose

the contrary: for each ξ ∈ C∞(∂ω) with

∫
∂ω

ξ ds = 0 the solution q of problem (6.2)

satisfies (
∇q(x0), y0 − x0

)
= 0. (6.4)

Let us consider the Neumann problem

∆z(x) = (∇δ(x− x0), y0 − x0) , x ∈ Π \ ω, ∂z(x)

∂n

∣∣∣∣
∂ω

= 0, (6.5)

where δ(x − x0) is the Dirac δ function at the point x0. A necessary condition for
the solubility of problem (6.5) is given by∫

Π\ω

(
∇δ(x− x0), y0 − x0

)
1(x) dx = 0, (6.6)

where 1(x) is the function identically equal to 1 and the integral is treated as
the pairing between distributions and test functions. Equation (6.6) obviously
holds. Hence (see [99], Theorem 6.6) there is a solution z(x) of problem (6.5)
which is infinitely differentiable at all points x ∈ Π \ ω except for x = x0. Let
us take the L2(Π \ ω) inner product of the first equation in (6.5) by the solution
q of problem (6.2) and integrate by parts with regard to (6.2) and the boundary
condition in (6.5). Then we obtain the relations

−
∫
∂ω

z(x)ξ(x) dσ =

∫
Π\ω

(
∇δ(x− x0), y0 − x0

)
q(x) dx (6.7)

= −
(
∇q(x0), y0 − x0

)
= 0,

where the last equality in (6.7) is valid by virtue of (6.4). Since ξ(x) in (6.7) is an
arbitrary smooth function with zero mean, we see that

z|∂ω ≡ const .
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Since the solution z of problem (6.5) is determined up to a constant, we can assume
that

z
∣∣
∂ω

= 0. (6.8)

It follows from Holmgren’s uniqueness theorem for the Cauchy problem for the
Laplace operator and from relations (6.5) and (6.8) that z(x) = 0 for all x ∈
(Π \ ω) \ x0, and hence z(x) is a distribution supported at x0. Consequently,

z(x) =
∑
|α|6N

CαD
αδ(x− x0).

By substituting this into (6.5), we obtain∑
|α|6N

CαD
α∆δ(x− x0) =

(
∇δ(x− x0), y0 − x0

)
.

But this equation cannot be valid for any N and Cα, since the right-hand side
contains a sum of first derivatives of the δ function, while the derivatives on the
left-hand side are of order > 2. Thus we have proved condition (6.3).

Let q(x) be a solution of problem (6.2) satisfying (6.3). We extend ∇q(x) from
Π \ ω to Π as a smooth divergence-free vector field, which will be denoted by r(x).
This extension is possible (see [40]), since∫

∂ω

(ν,∇q) dσ =

∫
∂ω

ξ dσ = 0

by virtue of (6.2). Clearly, the solution x(t) of the problem

d

dt
x(t) = r

(
x(t)

)
, x

∣∣
t=0

= x0

belongs to Π\M for all t ∈ (0, ε) provided that ε is sufficiently small: x(t) ∈ Π\M ,
t ∈ (0, ε). If we take

ϕ(t) ∈ C∞(0, ε), 0 6 ϕ(t) 6 1,

ϕ(0) = ϕ(ε) = ϕ(k)(0) = ϕ(k)(ε) = 0 ∀ k = 1, 2, . . .,

then the solution of the problem

d

dt
x(t) = ϕ(t)r

(
x(t)

)
, x

∣∣
t=0

= x0

also satisfies x(ε) ∈ Π \M . The definition of the set Π \M implies the existence of
Tx(ε) and of a vector field mx(ε)(t, x) ∈ C∞ satisfying conditions (5.5) and (5.14)
and relation (5.15) in which x0 is replaced by x(ε). Let us define a vector field
mx0(t, x) by the formula

mx0(t, x) =

{
ϕ(t)r(x) for t ∈ (0, ε),

mx(ε)(t+ ε, x) for t ∈ (ε, Tx(ε) + ε).
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Obviously, relation (5.15) holds, where x(t, x0) is the solution of the problem

d

dt
x(t, x0) = mx0

(
t, x(t, x0)

)
, x

∣∣
t=0

= x0.

But this contradicts the inclusion x0 ∈M . Consequently, M = ?.

Proof of Lemma 5.1. Let x0 ∈ Π, and let Tx0 be the time and m = mx0(t, x) the
vector field whose existence is stated in Lemma 6.1. Since solutions of differential
equations depend continuously on the initial data, it follows that each point x0 ∈ Π
has a neighbourhood O(x0) such that the solution x(t, z) of the problem

d

dt
x(t, z) = mx0

(
t, x(t, z)

)
, x(t, z)

∣∣
t=0

= z, z ∈ O(x0),

satisfies the relation {(t, x(t, z)), t ∈ (0, Tx0)}∩QωTx0
6= ?, whereQωTx0

= (0, Tx0)×ω.

Moreover, there is a finite time interval on which all the curves x(t, z), z ∈ O(x0),
simultaneously lie in ω. From the cover {O(x0), x0 ∈ Π} we extract a finite sub-
cover O1, . . . ,OK. By Ti and mi(t, x) we denote a time and a vector field satisfying
the assertion of Lemma 6.1 with x0 = z ∈ Oi. Using mi(t, x), we construct the
vector field

m̂i(t, x) =

{
mi(t, x) for t ∈ (0, Ti),

−mi(2Ti − t, x) for t ∈ (Ti, 2Ti).
(6.9)

This vector field obviously has the following properties: all solutions x(t, z),
z ∈ Oi, of the Cauchy problem

d

dt
x(t, z) = m̂i

(
t, x(t, z)

)
, x(t, z)

∣∣
t=0

= z (6.10)

simultaneously lie in ω for t ∈ ∆i. Moreover, the trajectory x(t, x0) issuing at t = 0
from an arbitrary point x0 ∈ Π returns at t = 2Ti to the same point x0. Hence, if
we define T and m(t, x) by the formulae

T = 2
K∑
i=1

Ti,

m(t, x) =

{
m̂i

(
t− 2

i−1∑
j=0

Tj , x

)
for t ∈

(
2
i−1∑
j=0

Tj , 2
i∑

j=0

Tj

)
, i = 1, . . . , K

}
,

where the m̂i are defined in (6.9) and T0 = 0, then this pair satisfies all assertions
of Lemma 5.1.

6.2. Proof of Theorem 5.1. Prior to studying the exact controllability prob-
lem (5.10)–(5.12), let us consider the problem

∂ty + (m,∇)y + (y,∇)m = u′, (6.11)

∂tr + (m,∇r) = un+1, (6.12)

y
∣∣
t=0

= ṽ0, r
∣∣
t=0

= θ̃0, (6.13)

y
∣∣
t=T

= ṽ1, r
∣∣
t=T

= θ̃1, (6.14)

obtained by omitting the unknown function ∇q and the divergence-free condition
div z = 0 in (5.10).
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Theorem 6.1. Let (0, T ) be a time interval and m(t, x) ∈ (C∞(Q))n the vector

�eld constructed in Lemma 5.1. Then for any ṽi ∈ (C∞(Π))n and θ̃i ∈ C∞(Π)
there exist a control u = (u′, un+1) ∈ U(ω; 0, T ) ∩ (C∞(Q))n+1 and a pair (y, r) ∈
(C∞(Q))n ×C∞(Q) satisfying relations (6.11)–(6.14). Moreover, for each positive

integer p there is a constant Cp depending only on the vector �eld m(t, x) and its

derivatives of order 6 p+ 1 such that

‖y‖2C1(0,T ;(Cp,α(Π))n) + ‖r‖2C1(0,T ;Cp,α(Π)) + ‖u‖2U(ω;0,T )∩C(0,T ;(Cp,α(Π))n+1)

6 cp

( 1∑
j=0

(
‖ṽj‖2(Cp,α(Π))n + ‖θ̃j‖2Cp,α(Π)

))
. (6.15)

Proof. Let {Oi, i = 1, . . . , k} be the finite cover of Π constructed in Lemma 5.1,
and let {ϕi} be a partition of unity subordinate to this cover.

First, we construct a solution of the exact controllability problem with condi-
tions (6.13) and (6.14) replaced by the conditions

y
∣∣
t=0

= ϕiṽ0, r
∣∣
t=0

= ϕiθ̃0, (6.16)

y
∣∣
t=T

= ϕiṽ1, r
∣∣
t=T

= ϕiθ̃1. (6.17)

We solve the system

∂tρ(t, x) + (m,∇)ρ+ (ρ,∇)m = 0, ∂tβ(t, x) + (m,∇β) = 0, (6.18)

equipped with the initial conditions (6.16) with y = ρ and r = β, by the method of
characteristics. The characteristics of system (6.18) are the solutions of the Cauchy
problem

d

dt
x(t, z) = m

(
t, x(t, z)

)
, (6.19)

x(t, z)
∣∣
t=0

= z, (6.20)

where z ranges over Π. By substituting x(t, z) for x in (6.18), we obtain the
Cauchy problem for a linear system of ordinary differential equations. By solving
this Cauchy problem, we obtain

ρ̃i
(
t, x(t, z)

)
= e

R t
0
M(τ) dτϕi(z)ṽ0(z), β̃i

(
t, x(t, z)

)
≡ ϕi(z)θ̃0(z), (6.21)

where the matrixM(t) is the adjoint of∇xm (t, x(t, z)), and the exponential in (6.21)
gives a formal notation of the solving operator for the problem ρ̇+Mρ = 0, ρ

∣∣
t=0

=

ϕi(z0)v0(z0). Obviously, these formulae uniquely determine ρ̃i(t, x), β̃i(t, x).
By Lemma 5.1, there is a time interval ∆i = (τi,0, τi,1) such that the inclusion

x(t, z) ∈ ω holds for any t ∈ ∆ and z ∈ Oi, where the x(t, z) are the characteristics
defined in (6.19), (6.20). Let

χ̃i(t) ∈ C∞(0, T ), χ̃i(t) =


1 for t ∈ (0, τi,0),

0 for t ∈
(
τi,0 + τi,1

2
, T

)
.

(6.22)
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We set
ỹi(t, x) = χ̃i(t)ρ̃(t, x), r̃i(t, x) = χ̃i(t)β̃(t, x). (6.23)

By virtue of (6.21)–(6.23), we have (ỹi, r̃i) ∈ (C∞(Q))n+1, and the supports of
these functions lie in the curvilinear tube formed by the characteristics (6.19),
(6.20) issuing from the set Oi. We find ŷi and r̂i in a similar way by solving
problem (6.18), (6.17). Here the characteristics are obviously specified by (6.19)
with the following initial condition at time T :

x(t, z)
∣∣
t=T

= z. (6.24)

It follows from the method in Lemma 5.1 for constructing the vector field m(t, x)
that the set of characteristics defined by (6.19) and (6.20) with z ∈ Oi coincides
with the set of characteristics defined by (6.19) and (6.24) with z ∈ Oi.

By solving the Cauchy problem (6.18), (6.17) with y = α and r = β with the
help of the characteristics (6.19), (6.24) by analogy with (6.21)–(6.23), we obtain

ρ̂i(t, x(t, z)) = e−
R T
t
M(τ) dτϕi(z)ṽ1(z), β̂i(t, x(t, z)) = ϕi(z)θ̃1(z), (6.25)

ŷi(t, x) = χ̂i(t)ρi(t, x), r̂i(t, x) = χ̂i(t)βi(t, x), (6.26)

where

χ̂i(t) ∈ C∞(0, T ), χ̂i(t) =


1 for t ∈ (τi,1, T ),

0 for t ∈
(

0,
τi,0 + τi,1

2

)
.

(6.27)

Finally, we set

y(t, x) =
K∑
i=1

(
ỹi(t, x) + ŷi(t, x)

)
, r(t, x) =

K∑
i=1

(
r̃i(t, x) + r̂i(t, x)

)
. (6.28)

Obviously, the pair (y(t, x), r(t, x)) ∈ (C∞(Q))n+1 satisfies the boundary-value
problem (6.11)–(6.14), and moreover,

u′(t, x) =
K∑
i=1

(
dχ̃i(t)

dt
ρ̃i(t, x) +

dχ̂i(t)

dt
α̂i(t, x)

)
, (6.29)

un+1(t, x) =
K∑
i=1

(
dχ̃i(t)

dt
β̃i(t, x) +

dχ̂i(t)

dt
β̂i(t, x)

)
. (6.30)

It follows from the construction of the functions (6.29) and (6.30) that

supp u′ ⊂ Qω, suppun+1 ⊂ Qω.

Moreover, using formulae (6.21)–(6.23) and (6.25)–(6.30), one can readily obtain
the estimate (6.15).



612 A. V. Fursikov and O. Yu. Imanuvilov

Proof of Theorem 5.1. Let (y, r, u) be the solution of problem (6.11)–(6.14) con-
structed in Theorem 6.1. For the vector field y, we write out the Weyl decomposi-
tion

y(t, x) = z(t, x) +∇p(t, x), (6.31)

where z(t, x) is a solenoidal vector field: div z = 0. We recall that the construction
of the decomposition (6.31) can be reduced by taking the divergence of both sides
to the solution of the equation

∆p(t, x) = div y(t, x). (6.32)

By substituting (6.31) into (6.11), we obtain

∂tz + (m,∇)z + (z,∇)m+∇∂tp+ (m,∇)∇p+ (∇p,∇)m= u′. (6.33)

Since m = ∇γ for x ∈ Π \ ω, we have

(m,∇)∇p+ (∇p,∇)m =
∑
i,k

(∂iγ ∂i∂kp+ ∂ip ∂i∂kγ) = ∇(∇γ,∇p).

Consequently,

∇∂tp+ (m,∇)∇p+ (∇p,∇)m= ∇
(
∂tp + (∇γ,∇p)

)
= ∇q (6.34)

for x ∈ Π \ ω, where q = ∂tp + (∇γ,∇p). Extending q from Π \ ω to a smooth
function q(t, x) defined on Π with the help of Whitney’s extension operator and
substituting q in (6.33), we obtain

∂tz + (m,∇)z + (z,∇)m+∇q = u′ + u′′(t, x),

where u′′(t, x) ∈ C∞(Q) and supp u′′ ⊂ Qω. Using inequality (6.15) and the
Schauder estimates for the solutions of the elliptic equation (6.32) (see [78]), one
can readily derive the estimate (5.16).
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[9] N. Burq and P. Gerard, “Condition necessaire et suffisante pour la contrôlabilité exacte des
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[98] J.-L. Lions, Contrôlabilit�e exacte et stabilization de syst�emes distribu�es, Vol. 1, Masson,

Paris 1988.

[99] J. L. Lions and E. Magenes, Problemes aux limites non homogenes et applications. I, II,

III, Dunod, Paris 1968, 1968, 1970; Russian transl., Mir, Moscow 1971.

[100] J.-L. Lions and E. Zuazua, “A generic uniqueness result for the Stokes system and its
control theoretical consequences”, Lecture Notes in Pure and Appl. Math. 177 (1996),

221–235.
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