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Background

The Global Trajectory Optimisation Competition was inaugurated in 2005 by Dario Izzo
of the Advanced Concepts Team, European Space Agency. The Outer Planets Mission
Analysis Group of the Jet Propulsion Laboratory, winner of GTOC1, organised the second
competition, GTOC2, in 2006. The third competition, GTOC3, is organised this year by
the Aerospace Propulsion group of the Dipartimento di Energetica of the Politecnico di
Torino. This document reveals the problem that is to be solved for GTOC3.

Introduction

Global optimisation consists in finding the global optimum of a given performance index in
a large domain, typically characterised by the presence of a large number of local optima.
The existing methods to solve such problems in trajectory optimisation, as shown by the
results of GTOC1 and GTOC2, can be divided in two classes

• use of local optimisation methods on selected subsets of the whole domain

• use of global optimisation methods that scan the whole domain

The latter are obviously preferable when the whole domain can actually be explored
completely, efficiently and with sufficient accuracy, otherwise methods to prune the less
promising solution must be adopted. On the other hand, when the domain is large,
methods to define the subsets to be explored by local optimiser must be sought by using
sorts of “global” exploration procedures. Under this point of view, the juxtaposition
between global and local methods seem to become more subtle and even vanish.

The problem proposed for this year competition aims at fulfilling these criteria

• the design space is large and a large number of local optima exist;

• the problem is complex but not overwhelming, and should be solved within the
prescribed 4-week time frame;

• its mathematical formulation is sufficiently simple so that it should also be solved
by researchers not experienced in astrodynamics;

• even though registered teams may have developed tools for the analysis of the pro-
posed kind of mission, the problem peculiarities should make it new to all the teams.
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Problem Description

Generalities

The proposed mission is a multiple near-Earth asteroid (NEA) rendezvous with return
to the Earth. The spacecraft employs electric propulsion. Gravity assist(s) from the
Earth may be exploited. The spacecraft launches from Earth, must rendezvous with
three asteroids from a specified group of NEAs and finally rendezvous with the Earth,
within ten years from departure. The performance index to be maximized is a function
of the final mass and the stay-time on the asteroids.

Spacecraft and Trajectory Constraints

The spacecraft is to launch from the Earth, with hyperbolic excess velocity v∞ of up to
0.5 km/s and of unconstrained direction. The year of launch must lie in the range 2016
to 2025, inclusive. After launch, the spacecraft must first rendezvous with three different
asteroids, taken from the list in the ASCII file ASTEROIDS.TXT, and then rendezvous
with the Earth. The choice of the asteroids is part of the optimisation process. The stay-
times at each of the three asteroids (τ1, τ2, τ3), must be longer than 60 days. The flight
time, τ , measured from launch up to the point of rendezvous with the Earth, must not
exceed 10 years. Only gravity assists from the Earth are permitted. The spacecraft has a
fixed initial mass mi of 2000 kg (it does not change with launch v∞). The propulsion is by
means of a thruster which can be turned on or off at will, has a constant specific impulse
Isp of 3000 s, and has a maximum thrust level T of 0.15 N. There is no constraint on the
thrust direction. The spacecraft mass only varies because of the propellant consumption
during thrusting and is otherwise constant (no mass dumping or collecting is allowed).
Rendezvous prescribes that spacecraft position and velocity are the same as those of the
target body; the thruster is off during the stay at the asteroids. The required model for
the Earth flybys is given in the Appendix.

Performance index

Objective of the optimisation is to maximise the nondimensional quantity

J =
mf

mi

+ K
min
j=1,3

(τj)

τmax

where mi and mf are the spacecraft initial and final mass, respectively; τj, with j = 1, 3,
represents the stay-time at the j-th asteroid in the rendezvous sequence and

min
j=1,3

(τj)

is the shortest asteroid stay-time; τmax = 10 years is the available trip time, and K = 0.2.
The performance index is chosen in order to favour low propellant consumption (i.e., large
payload) and long stay-times on the asteroids, thus increasing mission scientific return.
Only the shortest stay-time is considered, to avoid solutions with a long stay-time on a
single asteroid and favour a uniform distribution of the observations.
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Dynamical Models

The Earth and asteroids are assumed to follow Keplerian (conic) orbits around the Sun.
The only forces acting on the spacecraft are the Sun’s gravity and, when on, the thrust
from the propulsion system. The Earth’s Keplerian orbital parameters are provided in
Table 1. The asteroids’ Keplerian orbital parameters are provided in the ASCII file AS-
TEROID.TXT, which provides 1) Asteroid GTOC3 identification number, 2) asteroid
name, 3) epoch, in modified Julian date (MJD), 4) semimajor axis in AU, 5) eccentric-
ity, 6) inclination in degrees, 7) argument of periapsis in degrees, 8) longitude of the
ascending node in degrees, 9) mean anomaly at epoch in degrees. Earth’s and asteroids’
orbital elements are expressed in the J2000 heliocentric ecliptic frame. (The elements
are taken from the public, small-body database maintained by JPL and accessible at
http://ssd.jpl.nasa.gov. Since orbital elements are periodically checked and modified, the
official asteroid elements for this problem are those provided in the file ASTEROID.TXT).
Other required constants are shown in Table 2.

Solution Format

Each team should return its best solution by email to lorenzo.casalino@polito.it on or
before 10 December 2007 23:00 UT (24:00 CET). Two files must be returned. The first
file should contain:

• a brief description of the methods used,

• a summary of the best trajectory found, at least: GTOC3 numbers and names of
the asteroids visited, launch date, launch v∞, arrival and departure dates at the
asteroids, spacecraft mass at the asteroids, date, spacecraft mass, v∞ and perigee
radius at each Earth flybys (if any), thrust duration, total flight time, and value of
the performance index.

• a visual representation of the trajectory, such as a projection of the trajectory onto
the ecliptic plane.

The file should preferably be in Portable Document Format (PDF) or PostScript (PS)
format; Microsoft Word format should also be acceptable.

Table 1: Earth’s orbital elements in the J2000 heliocentric ecliptic reference frame.

semimajor axis a, AU 0.999988049532578
eccentricity e 1.671681163160 · 10−2

inclination i, deg. 0.8854353079654 · 10−3

longitude of ascending node Ω, deg. 175.40647696473
Argument of periapsis ω, deg. 287.61577546182

Mean anomaly at epoch M , deg. 257.60683707535
Epoch t, MJD 54000
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Table 2: Constants and conversion.

Sun’s gravitational parameter µS, km/s 1.32712440018 · 1011

Earth’s gravitational parameter µE, km/s 3.98006 · 104

Minimum perigee radius during Earth flyby(s) Rmin, km 6871
Astronomical Unit AU, km 1.49597870691 · 108

Standard acceleration due to gravity, g0, m/s 9.80665
Day, s 86400

Year, days 365.25
00:00 01 January 2016, MJD 57388
24:00 31 December 2025 MJD 61041

The second file, which will be used to verify the solution returned, must follow the
format and units provided in the ASCII template file SOLUTION.TXT As shown in the
file, trajectory data are to be provided at one-day increments for each inter-body phase of
the trajectory. The first time point for each phase should correspond with body departure;
the second time point should be one day thence, and so on. If arrival at an asteroid does
not fall on a one-day increment, then the last time point for the phase should be reported
using a partial-day increment from the previous time point. The coordinate frame should
be the J2000 heliocentric ecliptic frame.

Appendix

This appendix provides a set of equations describing the dynamics of this problem along
with other background information.

Nomenclature

Orbital elements and related quantities

a = semiaxis
e = eccentricity
i = inclination
Ω = longitude of ascending node
ω = argument of periapsis
M = mean anomaly at epoch
θ = true anomaly
E = eccentric anomaly
r = distance from the Sun
γ = flight path angle
µS = Sun’s gravitational parameter

Position and velocity

r = position vector
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v = velocity vector
x, y, z = position components in J2000 heliocentric ecliptic frame
vx, vy, vz = velocity components in J2000 heliocentric ecliptic frame

Departure and Earth flyby

v∞ = hyperbolic excess velocity vector
v∞ = hyperbolic excess velocity magnitude
δ = rotation of hyperbolic excess velocity vector
µE = Earth’s gravitational constant
Rp = perigee radius of hyperbola
Rmin = minimum allowable perigee radius of hyperbola

Other quantities

t = time
τ = overall mission length
τ1, τ2, τ3 = stay-times at first, second and third asteroid
m = mass
Isp = specific impulse
T = thrust
g0 = standard acceleration due to gravity at Earth’s surface
J = performance index
K = constant to compute performance index

Subscripts and superscripts

()0 = at epoch
()i = initial value
()1−, ()2−, ()3− = arrival at first, second and third asteroid
()1+, ()2+, ()3+ = departure from first, second and third asteroid
()f = final value
()g− = values before Earth gravity assist(s)
()g+ = values after Earth gravity assist(s)
()E = Earth
()S = Sun
()A1, ()A2, ()A3 = first, second and third asteroid
()max = maximum value
()min = minimum value

(̇) = time derivative

Problem dynamics and conversion between elements

The motion of the Earth and asteroids around Sun is governed by these equations:

ẍ = −µS

x

r3
ÿ = −µS

y

r3
z̈ = −µS

z

r3
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where

r =
√

x2 + y2 + z2 =
a(1 − e2)

1 + e cos θ

The motion of the spacecraft around the Sun is governed by the same formulas but with
the addition of the x, y, z components of the thrust acceleration and an equation for the
mass:

ẍ = −µS

x

r3
+

Tx

m
ÿ = −µS

y

r3
+

Ty

m
z̈ = −µS

z

r3
+

Tz

m
ṁ = −

T

g0Isp

The thrust magnitude is constrained

0 ≤ T =
√

T 2
x + T 2

y + T 2
z ≤ 0.15 N

Conversion from orbit elements to Cartesian quantities is as follows

x = r[cos(θ + ω) cos Ω − sin(θ + ω) cos i sin Ω]

y = r[cos(θ + ω) sin Ω + sin(θ + ω) cos i cos Ω]

z = r[sin(θ + ω) sin i]

vx = v[− sin(θ + ω − γ) cos Ω − cos(θ + ω − γ) cos i sin Ω]

vy = v[− sin(θ + ω − γ) sin Ω + cos(θ + ω − γ) cos i cos Ω]

vz = v[cos(θ + ω − γ) sin i]

where the velocity magnitude v and the flight path angle γ are

v =

√

2µS

r
−

µS

a
tan γ =

e sin θ

1 + e cos θ

For an elliptic orbit the true anomaly is related to the eccentric anomaly by

tan
E

2
=

√

1 − e

1 + e
tan

θ

2

and the eccentric anomaly is related to the mean anomaly by Kepler’s equation,

M = E − e sin E,

while the mean anomaly is related to time and the mean anomaly M0 at epoch t0 by

M − M0 =

√

µS

a3
(t − t0)

Thus, based on the provided orbital parameters, the Cartesian positions and velocities
of the Earth and asteroids may be computed as a function of time with only the minor
nuisance of having to solve Kepler’s equation for E by some iterative procedure. (That is,
for the Earth, the asteroids, and a non-thrusting spacecraft, the equations of motion do
not need to be numerically integrated to find position and velocity at some given time.)
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Launch and rendezvous

Launch occurs at time ti with hyperbolic excess velocity v∞i. The spacecraft position
and velocity are

ri = rE(ti) vi = vE(ti) + v∞i

with initial mass mi = 2000 kg and the constraint

|v∞i| ≤ 0.5 km/s 57388 MJD ≤ ti ≤ 61041 MJD

Each asteroid rendezvous occurs at time tj− when the spacecraft matches the position
and velocity of the asteroid; the same occurs at departure from the asteroid at time tj+

rj± = rAj(tj±) vj± = vAj(tj±) j = 1, 2, 3

with the constraint
tj+ − tj− ≥ 60 days

Earth rendezvous occurs at time tf when the spacecraft matches the position and
velocity of the Earth

rf = rE(tf ) vf = vE(tf )

The overall mission time-length is constrained

τ = tf − ti ≤ 10 years

The constraints on position and velocity must be satisfied with accuracy of at least 1000
km and 1 m/s, respectively (these numbers are for the euclidean norm of the vector
differences).

Earth flyby

Earth’s flybys are modelled using the patched-conic approximation and neglecting the
time spent inside the Earth’s sphere of influence. The flyby occurs at time tg when the
spacecraft position equals the Earth position; the spacecraft velocity is discontinuous
according to the change of the velocity vector relative to the Earth, i.e., the hyperbolic
excess velocity v∞. Its magnitude v∞ must be the same before and after the flyby. The
rotation of the hyperbolic excess velocity vector δ depends on the perigee radius of the
hyperbolic geocentric trajectory Rp and v∞. One has

rg− = rE(tg−) rg+ = rE(tg+)

v∞g− = vg− − vE(tg−) v∞g+ = vg+ − vE(tg+)

|v∞g−| = |v∞g+| = v∞

v∞g− · v∞g+ = v2

∞
cos δ sin(δ/2) =

µE/Rp

v2
∞

+ µE/Rp

with the constraints

tg− = tg+ Rp ≥ Rmin = 6871 km

The constraints on position and velocity must be satisfied with accuracy of at least 1000
km and 1 m/s, respectively (these numbers are for the euclidean norm of the vector
differences).

7



Glossary

• Gravity assist: A hyperbolic flyby of a (massive) body for purposes of achieving a
desirable course change.

• Modified Julian Date (MJD): Is defined as the number of days past some defined
point in the past, namely 00:00 18 November 1858.

• Rendezvous: Meeting a body such as an asteroid by matching its position and
velocity. The body is treated as a moving point in space.

• Stay-time: A period of time during which the spacecraft remains in a state of
rendezvous with a body.
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