

И. С. Григорьев, М. П. Заплетин

МГУ им. М. В. Ломоносова

О задаче

глобальной оптимизации инспектирования астероидов космическим аппаратом в окрестности орбиты Земли

Постановка задачи

Дифференциальные уравнения управляемого движения центра масс KA в декартовой эклиптической системе координат:

$$\begin{split} \dot{x} &= v_x, \quad \dot{y} = v_y, \quad \dot{z} = v_z, \quad \dot{m} = -T/c, \\ \dot{v}_x &= -\frac{\mu x}{r^3} + \frac{T_x}{m} = F_x, \quad \dot{v}_y = -\frac{\mu y}{r^3} + \frac{T_y}{m} = F_y, \quad \dot{v}_z = -\frac{\mu z}{r^3} + \frac{T_z}{m} = F_z, \\ T &\equiv \sqrt{T_x^2 + T_y^2 + T_z^2} \leqslant T_{\text{max}} = 0.135 \text{ H.} \\ c &= P_{\text{yA}} \cdot g_E, \quad P_{\text{yA}} = 3000 \text{ c}, \quad g_E = 9.80665 \text{ M/c.} \end{split}$$

Старт с Земли:

$$\begin{split} m(t_s) &= 1500 \text{ кг}, \quad x(t_s) - x^E(t_s) = 0, \quad y(t_s) - y^E(t_s) = 0, \quad z(t_s) - z^E(t_s) = 0, \\ (v_x(t_s) - v_x^E(t_s))^2 + (v_y(t_s) - v_y^E(t_s))^2 + (v_z(t_s) - v_z^E(t_s))^2 \leq (4 \text{ км/c})^2, \\ 57023.0 \text{ } MJD < t_s < 61041.0 \text{ } MJD; \end{split}$$

Пролет астероида $k = \overline{1, K - 1}$:

$$t_{k-} - t_{k+} = 0, \quad m(t_{k-}) - m(t_{k+}) = 0,$$

$$\begin{aligned} x(t_{k-}) - x^{Ai}(t_{k-}) &= 0, \quad y(t_{k-}) - y^{Ai}(t_{k-}) &= 0, \quad z(t_{k-}) - z^{Ai}(t_{k-}) &= 0, \\ x(t_{k+}) - x^{Ai}(t_{k+}) &= 0, \quad y(t_{k+}) - y^{Ai}(t_{k+}) &= 0, \quad z(t_{k+}) - z^{Ai}(t_{k+}) &= 0, \\ v_x(t_{k-}) - v_x(t_{k+}) &= 0, \quad v_y(t_{k-}) - v_y(t_{k+}) &= 0, \quad v_z(t_{k-}) - v_z(t_{k+}) &= 0. \end{aligned}$$

Окончание перелета прилет на последний астероид:

$$x(t_f) - x^{AK}(t_f) = 0, \quad y(t_f) - y^{AK}(t_f) = 0, \quad z(t_f) - z^{AK}(t_f) = 0,$$

$$v_x(t_f) - v_x^{AK}(t_f) = 0, \quad v_y(t_f) - v_y^{AK}(t_f) = 0, \quad v_z(t_f) - v_z^{AK}(t_f) = 0,$$

Общая продолжительность перелета ограничена: $t_f - t_s < t_{\text{max}} = 3652.5 \ ED$. Конечная масса ограничена: $m(t_f) \ge 500$ кг.

Первый функционал $K \to \max$.

Второй функционал $m(t_f) \rightarrow \max$.

Куст перелета.

Под кустом перелета понимается совокупность возможных траекторий, характеризуемых моментом старта с Земли, последовательностью астероидов и временами пролета этих астероидов:

 $\{ 3 \text{емля}, t_s \} \rightarrow \{ 1 \text{-ый астероид}, t_1 \} \rightarrow$

 \rightarrow {2-ой астероида, t_2 } $\rightarrow \ldots \rightarrow$

 \rightarrow {k-ый астероид, t_k } $\rightarrow \ldots \rightarrow$

 \rightarrow {К-ый астероид, t_K }.

Построение куста осуществляется в несколько этапов. Отдельно выделим: первый этап,

промежуточные этапы,

заключительный этап.

Первый этап построения графа.

На первом этапе решались задачи Ламберта перелета от Земли к астероидам. Момент старта от Земли выбирался с шагом 10 дней из допустимого диапазона

57023.0 $MJD < t_s < 61041.0 MJD$.

Продожительность перелета выбиралась от 20 до 60 дней с шагом 5 дней. Отбирались траектории минимальной продолжительности, на которых начальный импульс у Земли не превышал 4.1 км/с.

На первом этапе отобрано около тысячи траекторий.

Промежуточные этапы.

Предположение: астероиды расположены равномерно и среднее время перелета от астероида к астероиду составляет примерно 90 дней (40 перелетов за 10 лет).

Поэтому: траектория подлета к *k*-му астероиду продолжалась далее заданное время (примерно 120 дней).

На этом интервале осуществлялся поиск "близких" астероидов (расстояние между КА и астероидом меньше 0.1 AU) и моментов сближения.

Решались задачи Ламберта перелета от k—ого астероида к очередному астероиду. Учитывалась величина импульса у k—ого астероида. Среднее увеличение общего числа ветвей в 5 раз.

Для каждой ветви (заданного упорядоченного набора астероидов) проводилась оптимизация времен:

 $(\Delta V_E + \Delta V_1 + \ldots + \Delta V_k) \to \min_{t_E, t_1, \ldots, t_k, t_{k+1}},$ где $\Delta V_0 = \max(0, |\vec{v}(t_0) - \vec{v}_E(t_0)| - 4 \ km/s), \quad \Delta V_k = |\vec{v}(t_{k+1}) - \vec{v}(t_{k-1})|.$

Проводился выбор перспективных ветвей (оставалось 1000 – 1200 различных).

Ограничение продолжительности перелета для каждого слоя выбиралось превышающим наименьшую продолжительность перелета на слое примерно на 300–350 дней, ограничение массы определялось соотношением:

$$m_k = -\frac{920 \text{ Kr}}{10 \text{ лет}} T_k.$$

Заключительный этап отличался от промежуточных этапов учетом импульса прилета на последний астероид при оптимизации:

$$(\Delta V_E + \Delta V_1 + \ldots + \Delta V_k + \ldots + \Delta V_K) \to \min_{t_E, t_1, \ldots, t_k, \ldots, t_K},$$

где $\Delta V_K = |\vec{v}(t_K) - \vec{v}_A^K(t_K)|.$

Итак:

на основе анализа задач Ламберта получены "перспективные" импульсные траектории — отобрано семь траекторий.

Задача в импульсной постановке.

Дифференциальные уравнения пассивного движения центра масс КА в декартовой эклиптической системе координат:

$$\dot{x} = v_x, \quad \dot{y} = v_y, \quad \dot{z} = v_z, \quad \dot{m} = 0,$$

 $\dot{v}_x = -\frac{\mu x}{r^3}, \quad \dot{v}_y = -\frac{\mu y}{r^3}, \quad \dot{v}_z = -\frac{\mu z}{r^3},$

Для построения траекторий перелета КА с ограниченной тягой был отобран десяток траекторий. Оказалось, что на отобранных траекториях ограничение

$$(v_x(t_s) - v_x^E(t_s))^2 + (v_y(t_s) - v_y^E(t_s))^2 + (v_z(t_s) - v_z^E(t_s))^2 \le (4 \text{ km/c})^2$$

выполнялось как строгое неравенство. Условия отлета КА от Земли приняли вид:

$$\begin{split} m(t_s) &= 1500 \text{ кг}, \quad x(t_s) - x^E(t_s) = 0, \quad y(t_s) - y^E(t_s) = 0, \quad z(t_s) - z^E(t_s) = 0, \\ (v_x(t_s) - v_x^E(t_s))^2 + (v_y(t_s) - v_y^E(t_s))^2 + (v_z(t_s) - v_z^E(t_s))^2 < (4 \text{ км/c})^2, \\ 57023.0 \text{ MJD} < t_s < 61041.0 \text{ MJD}; \end{split}$$

Условия импульсного пролета астероида $n = \overline{1, N-1}$:

$$\begin{aligned} x(t_{k-}) - x^{Ak}(t_{k-}) &= 0, \quad y(t_{k-}) - y^{Ak}(t_{k-}) = 0, \quad z(t_{k-}) - z^{Ak}(t_{k-}) = 0, \\ x(t_{k+}) - x^{Ak}(t_{k+}) &= 0, \quad y(t_{k+}) - y^{Ak}(t_{k+}) = 0, \quad z(t_{k+}) - z^{Ak}(t_{k+}) = 0, \\ \Delta V_k &= \sqrt{(v_x(t_{k+}) - v_x(t_{k-}))^2 + (v_y(t_{k+}) - v_y(t_{k-}))^2 + (v_z(t_{k+}) - v_z(t_{k-}))^2} \\ &\qquad m(t_{k+}) - m(t_{k-}) \exp(-\Delta V_k/c) = 0, \quad t_{k+} - t_{k-} = 0; \end{aligned}$$

Импульсный прилет на последний астероид:

$$x(t_f) - x^{AK}(t_f) = 0, \quad y(t_f) - y^{AK}(t_f) = 0, \quad z(t_f) - z^{AK}(t_f) = 0,$$

$$\Delta V_f = \sqrt{(v_x^{AK}(t_f) - v_x(t_f))^2 + (v_y^{AK}(t_f) - v_y(t_f))^2 + (v_z^{AK}(t_f) - v_z(t_f))^2}$$

Общая продолжительность перелета ограничена: $t_f - t_s < t_{\max} = 3652.5 \ ED$. Максимизируется конечная масса $m(t_f) \exp(-\Delta V_f/c) \to \max$.

Условия оптимальности импульсного перелета.

Сопряженная система уравнений:

$$\dot{p}_{j} = -\partial H/\partial j, \quad j = x, y, z, v_{x}, v_{y}, v_{z}, m;$$

$$H \equiv p_{x}v_{x} + p_{y}v_{y} + p_{z}v_{z} - p_{vx}\frac{\mu x}{r^{3}} - p_{vy}\frac{\mu y}{r^{3}} - p_{vz}\frac{\mu z}{r^{3}}.$$

Следствия условий трансверсальности отлет KA от Земли:

$$p_j(t_s) = \lambda_j^s \quad j = x, y, z, m, \qquad p_j(t_s) = 0 \quad j = v_x, v_y, v_z;$$

пролет астероида $k = \overline{1, K - 1}$:

$$p_j(t_{k-}) = -\lambda_j^{k-}, \quad p_j(t_{k+}) = \lambda_j^{k+} \quad j = x, y, z,$$

 $p_m(t_{k+}) = p_m(t_{k-}) \exp(\Delta V_k/c), \quad p_j(t_{k-}) = p_j(t_{k+}) = \Delta j^k / \Delta V_k \quad j = v_x, v_y, v_z;$ прилет на последний астероид:

$$p_j(t_f) = -\lambda_j^f, \quad j = x, y, z, \quad p_m(t_f) = -\lambda_0 \exp(-\Delta V_f/c),$$
$$p_j(t_f) = \Delta j^f / \Delta V^f \quad j = v_x, v_y, v_z.$$

Следствия условий стационарности

(ограничения на момент старта и продолжительность перелета неактивны) отлет KA от Земли:

$$p_x(t_s)(v_x(t_s) - v_x^E(t_s)) + p_y(t_s)(v_y(t_s) - v_y^E(t_s)) + p_z(t_s)(v_z(t_s) - v_z^E(t_s)) = 0;$$

пролет астероида $n = \overline{1, N-1}$:

$$p_{x}(t_{k-})(v_{x}(t_{k-}) - v_{x}^{Ak}(t_{k-})) + p_{y}(t_{k-})(v_{y}(t_{k-}) - v_{y}^{Ak}(t_{k-})) + p_{z}(t_{k-})(v_{z}(t_{k-}) - v_{z}^{Ak}(t_{k-})) = p_{x}(t_{k+})(v_{x}(t_{k+}) - v_{x}^{Ak}(t_{k+})) + p_{y}(t_{k+})(v_{y}(t_{k+}) - v_{y}^{Ak}(t_{k+})) + p_{z}(t_{k+})(v_{z}(t_{k+}) - v_{z}^{Ak}(t_{k+}));$$

прилет на последний астероид:

$$p_x(t_f)(v_x(t_f) - v_x^{AK}(t_f)) + p_y(t_f)(v_y(t_f) - v_y^{AK}(t_f)) + p_z(t_f)(v_z(t_f) - v_z^{AK}(t_f)) = 0.$$

Перекрытие двух активных участков, соответствующих импульсным воздействиям при пролете астероидов, и соответствующее решение при ограниченной величине тяги.

Перекрытие трех активных участков, соответствующих импульсным воздействиям при пролете астероидов, и соответствующее решение при ограниченной величине тяги.

Перекрытие двух активных участков, соответствующих импульсным воздействиям при пролете астероидов, не позволяющее построить решение при ограниченной величине тяги.

Задача минимизации квадратичного функционала.

Цель рассмотрения вспомогательной задачи является получение гладкого управления и относительно легко решаемой краевой задачи.

$$\int_{t_s}^{t_f} \frac{T_x^2 + T_y^2 + T_z^2}{m^2} \mathrm{d}t \to \min,$$

Представленная задача представляет собой другую формализацию хорошо известной задачи оптимизации интеграла квадрата ускорения.

Краевая задача

Система дифференциальных уравнений краевой задачи:

$$\begin{split} \dot{x} &= v_x, \quad \dot{y} = v_y, \quad \dot{z} = v_z, \quad \dot{m} = -T/c, \quad T = \sqrt{T_x^2 + T_y^2 + T_z^2}, \\ \dot{v}_x &= -\frac{\mu x}{r^3} + \frac{T_x}{m} = F_x, \quad \dot{v}_y = -\frac{\mu y}{r^3} + \frac{T_y}{m}F_y, \quad \dot{v}_z = -\frac{\mu z}{r^3} + \frac{T_z}{m}F_z, \\ \dot{p}_x &= +\mu \left(\frac{p_{vx}}{r^3} - 3x\frac{p_{vx}x + p_{vy}y + p_{vz}z}{r^5}\right), \\ \dot{p}_y &= +\mu \left(\frac{p_{vy}}{r^3} - 3y\frac{p_{vx}x + p_{vy}y + p_{vz}z}{r^5}\right), \\ \dot{p}_z &= +\mu \left(\frac{p_{vz}}{r^3} - 3z\frac{p_{vx}x + p_{vy}y + p_{vz}z}{r^5}\right), \\ \dot{p}_{vx} &= -p_x, \quad \dot{p}_{vy} = -p_y, \quad \dot{p}_{vz} = -p_z, \\ \dot{p}_m &= \frac{p_{vx}T_x + p_{vy}T_y + p_{vz}T_z}{m^2} - 2\lambda_0\frac{T_x^2 + T_y^2 + T_z^2}{m^3}; \end{split}$$

Отметим, что $p_m \equiv 0$.

Условия оптимальности:

$$T_x = m \frac{1}{2\lambda_0} p_{vx}, \quad T_y = m \frac{1}{2\lambda_0} p_{vy}, \quad T_z = m \frac{1}{2\lambda_0} p_{vz}.$$

При выборе условия нормировки $\frac{1}{2\lambda_0} = T_{\text{max}}/1500$ kg:

$$T_x = T_{\max} \frac{m}{m_0} p_{vx}, \quad T_y = T_{\max} \frac{m}{m_0} p_{vy}, \quad T_z = T_{\max} \frac{m}{m_0} p_{vz}.$$

Условия отлета КА от Земли:

$$m(t_s) = 1500 \text{ kg}, \quad x(t_s) - x^E(t_s) = 0, \quad y(t_s) - y^E(t_s) = 0, \quad z(t_s) - z^E(t_s) = 0,$$

$$(v_x(t_s) - v_x^E(t_s))^2 + (v_y(t_s) - v_y^E(t_s))^2 + (v_z(t_s) - v_z^E(t_s))^2 \le (4 \text{ km/s})^2,$$

$$57023.0 \text{ } MJD \le t_s \le 61041.0 \text{ } MJD.$$

$$p_j(t_s) = \lambda_j^s \quad j = x, y, z, m, \qquad p_j(t_s) = 2\lambda_V^s \Delta j \quad j = v_x, v_y, v_z;$$

$$H(t_s) = -\partial l / \partial t_s.$$

Пролет астероида $k = \overline{1, K - 1}$:

$$t_{k-} - t_{k+} = 0, \quad m(t_{k-}) - m(t_{k+}) = 0,$$

$$x(t_{k-}) - x^{Ak}(t_{k-}) = 0, \quad y(t_{k-}) - y^{Ak}(t_{k-}) = 0, \quad z(t_{k-}) - z^{Ak}(t_{k-}) = 0,$$

$$x(t_{k+}) - x^{Ak}(t_{k+}) = 0, \quad y(t_{k+}) - y^{Ak}(t_{k+}) = 0, \quad z(t_{k+}) - z^{Ak}(t_{k+}) = 0,$$

$$v_x(t_{k-}) - v_x(t_{k+}) = 0, \quad v_y(t_{k-}) - v_y(t_{k+}) = 0, \quad v_z(t_{k-}) - v_z(t_{k+}) = 0.$$

$$p_j(t_{k-}) = -\lambda_j^{k-}, \quad p_j(t_{k+}) = \lambda_j^{k+} \quad j = x, y, z, \qquad p_j(t_{k-}) = p_j(t_{k+}) \quad j = m, v_x, v_y, v_z.$$

Следствия условий стационарности при пролете астероида $k = \overline{1, K-1}$:

$$p_{x}(t_{k-})(v_{x}(t_{k-})-v_{x}^{Ak}(t_{k-}))+p_{y}(t_{k-})(v_{y}(t_{k-})-v_{y}^{Ak}(t_{k-}))+p_{z}(t_{k-})(v_{z}(t_{k-})-v_{z}^{Ak}(t_{k-})) = p_{x}(t_{k+})(v_{x}(t_{k+})-v_{x}^{Ak}(t_{k+}))+p_{y}(t_{k+})(v_{y}(t_{k+})-v_{y}^{Ak}(t_{k+}))+p_{z}(t_{k+})(v_{z}(t_{k+})-v_{z}^{Ak}(t_{k+})).$$
Okomushika hapamata na hochanika settaponiki

Окончание перелета прилет на последний астероид:

$$\begin{aligned} x(t_f) - x^{AK}(t_f) &= 0, \quad y(t_f) - y^{AK}(t_f) = 0, \quad z(t_f) - z^{AK}(t_f) = 0, \\ v_x(t_f) - v_x^{AK}(t_f) &= 0, \quad v_y(t_f) - v_y^{AK}(t_f) = 0, \quad v_z(t_f) - v_z^{AK}(t_f) = 0, \\ p_j(t_f) &= -\lambda_j^f, \quad j = x, y, z, v_x, v_y, v_z; \qquad p_m(t_f) = 0; \end{aligned}$$

Условие стационарности $H(t_s) = \partial l / \partial t_f$. Ограничение $t_f - t_s \leq t_{\max} = 3652.5 \; ED$ выполняется как равенство.

Метод решения краевой задачи

Краевая задача решалась численно методом стрельбы с числом подбираемых неизвестных параметров пристрелки до 500. Система нелинейных уравнений — модифицированным методом Ньютона (модификация Исаева–Сонина с использованием в условии сходимости нормировки Федоренко). Задачи Коши на каждом из участков решались методом Дорамана–Принса 8(7).

Изменение закона выбора управления.

Полученное решение оказалось недопустимым из-за нарушения ограничения на величину управления

$$T = \sqrt{T_x^2 + T_y^2 + T_z^2} = T_{\max} \frac{m}{m_0} \rho \leqslant T_{\max} = 0.135 \text{ N}$$

$$e_x = \frac{p_{vx}}{\rho}, \quad e_y = \frac{p_{vy}}{\rho}, \quad e_z = \frac{p_{vz}}{\rho}, \quad \chi = \rho \frac{m}{m_0}, \quad T = T_{\max} \cdot \chi,$$
$$T_x = Te_x, \quad T_y = Te_y, \quad T_z = Te_z$$

был изменен на закон: $T = T_{\max} \cdot \gamma \cdot \operatorname{arctg}(\chi/\gamma)$.

Переход осуществлялся с использованием метода продолжения решения по параметру γ с $\gamma = 2$ до $\gamma = 2/\pi$ (соответствующего гарантированному выполнению ограничения $T \leq T_{\text{max}}$). В процессе перехода был осуществлен отсев 4 наиболее напряженных маневра у астероидов.

Затем полученный закон управления был изменен на закон $T = T_{\text{max}} \cdot \gamma \cdot \operatorname{arctg}(\chi^s/\gamma)$ с использованием метода продолжения решения по параметру s с s = 1 до s = 2.5.

красный — закон управления $T = T_{\max} \cdot \chi$ (квадратичный функционал), желтый — закон управления $T = T_{\max} \cdot \gamma \cdot \operatorname{arctg}(\chi/\gamma)$ при $\gamma = 2$, синий — закон управления $T = T_{\max} \cdot \gamma \cdot \operatorname{arctg}(\chi/\gamma)$ при $\gamma = 2/\pi$, зеленый — закон управления $T = T_{\max} \cdot \gamma \cdot \operatorname{arctg}(\chi^{5/2}/\gamma)$ при $\gamma = 2/\pi$.

Post–competition results

Рассмотрим задачу оптимизации перелета

$$\int_{t_s}^{t_f} -\ln\left(\cos\left(\frac{Tm_0}{mT_{\max}\gamma}\right)\right) dt \to \min \quad \text{при} \quad 0 \leqslant \frac{T}{m} \leqslant \frac{T_{\max}}{m_0} \quad \text{и} \quad \gamma = \frac{2}{\pi}$$

 T_{\max}/m_0 — некоторое максимально допустимое значение ускорения. Тогда $H = H_0 + H_1(T_x, T_y, T_z)$,

$$H_1(T_x, T_y, T_z) = \frac{T_x p_{vx} + T_y p_{vy} + T_z p_{vz}}{m} - p_m \frac{T}{c} + \lambda_0 \ln\left(\cos\left(\frac{Tm_0}{mT_{\max}\gamma}\right)\right),$$

C учетом $p_m \equiv 0$,

$$\partial H/\partial T = \partial H_1/\partial T = 0$$
:

$$\frac{\rho}{m} - \frac{\lambda_0 m_0}{T_{\max} \gamma m} \operatorname{tg} \left(T \frac{m_0}{T_{\max} \gamma m} \right) = 0, \quad \text{или} \quad T = T_{\max} \gamma \frac{m}{m_0} \operatorname{arctg} \frac{\rho T_{\max} \gamma}{\lambda_0 m_0}.$$

Выбор множителя Лагранжа при функционале $\lambda_0 = T_{\max} \gamma^2/m_0$ приводит к

$$T = T_{\max} \gamma \frac{m}{m_0} \operatorname{arctg} \frac{\rho}{\gamma}$$

— то есть к гладкому ограничению ускорения КА в требуемом диапазоне.

Свойства функционала:

1) функция под интегралом строго монотонно возрастает,

2) при T = 0 она равна нулю,

3) при $T/m \to T_{\rm max}/m_0$ она неограниченно возрастает,

4) при $0 \leq T/m < T_{\text{max}}/m_0$ функция имеет гладкую производную, стремящуюся при $T/m \to T_{\text{max}}/m_0$ к бесконечности,

5) при малых значениях $(Tm_0)/(T_{\max}m)$ подынтегральная функция близка к квадратичной, то есть при больших значениях T_{\max} решение задачи минимизации квадратичного функционала может использоваться в качестве хорошего начального приближения.

