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Background

The Global Trajectory Optimisation Competition was initiated in 2005 by the Advanced

Concepts Team of the European Space Agency. The Outer Planets Mission Analysis Group

of the Jet Propulsion Laboratory, winner of GTOC1, organised the GTOC2 in 2006.

The Aerospace Propulsion Group of the Dipartimento di Energetica of the Politecnico

di Torino, winner of the GTOC2, organised the GTOC3 in 2008. The Interplanetary

Mission Analysis team of the Centre National d’Etudes Spatieles de Toulouse, winner of

the GTOC3, organised the GTOC4 in 2009. Finally, the team of Faculty of Mechanics

and Mathematics of Lomonosov Moscow State Univercity, winner of the GTOC4, is very

pleased to organise the GTOC5 this year.

The aim of this document is to reveal the problem to be solved for GTOC5.

Introduction

Traditionally the GTOC problems are kinds of global optimisation problems, that is to

say complex optimisation problems characterised by a large number of local optima. Such

problems can be solved either by means of local or global optimisation methods.

GTOC5 problem is a global optimisation problem and aims at fulfilling the following

criteria:

• the design space is large and leads to an important number of local optima,

• the problem is complex but in any case it can be solved within the 4-weeks period

allowed for the competition,

• its formulation is simple enough so that it can be solved by researchers not experienced

in astrodynamics,

• even if some registered teams have already developed their own optimisation tools for

interplanetary missions, the problem specificities make it new to all the teams,

• problem solutions can be easily verified.
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Problem Description

Generalities

The mission proposed this year may be entitled: “ How to visit the greatest number of

asteroids with revisiting ”.

Problem essence. The spacecraft starts from the Earth. The start moment should

be chosen from the preliminarily set period of time. Spacecraft should visit asteroids from

the presented list. For the first time spacecraft should rendezvous with an asteroid. For

the second time the velocity of flyby should not be less than the set minimum value. The

first rendezvous with an asteroid corresponds to delivery of the scientific equipment. The

weight of scientific equipment makes 40 kg for each asteroid. The second asteroid flyby

corresponds to delivery of 1 kg penetrator. Each mission is estimated by corresponding

number of points: 0.2 for delivery of the equipment and then 0.8 for the penetrator. The

spacecraft is equipped with a jet engine with low thrust. Duration of mission and final

weight of the spacecraft is limited.

In honour of V. Beletskij 80th anniversary mission to Beletskij asteroid adds bonus

points.

Dynamical model

The Earth and asteroids are assumed to follow Keplerian orbits around the Sun. The

only forces acting on the spacecraft are the Sun’s gravity and the thrust produced by

the engine (when this last one is on). The asteroid’s Keplerian orbital parameters in the

J2000 heliocentric ecliptic frame are provided in the ASCII—file ast-ephem-gtoc5.txt

that gives:

1. t0 — epoch in modified Julian date (MJD),

2. a — semi major axis in AU,

3. e — eccentricity,

4. i — inclination, in degrees,

5. ω — argument of periapsis, in degrees,

6. Ω — longitude of the ascending node, in degrees,

7. M0 — mean anomaly at epoch, in degrees.

8. j — asteroid number,

9. asteroid name.

Earth‘s and asteroids‘ orbital elements are given in the J2000 heliocentric ecliptic

frame. Other required constants are given in Table 2.
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Table 1: The Earth Keplerian orbital parameters.

t0, MJD 54000

a, AU 0.999988049532578

e 1.671681163160 · 10−2

i, o 0.8854353079654 · 10−3

ω, o 287.61577546182

Ω, o 175.40647696473

M0,
o 257.60683707535

µ, km3/s2 398601.19

Other required constants are given in Table 2.

Table 2: Constants and conversion.

Sun’s gravitational parameter µS, km
3/s2 1.32712440018 · 1011

Astronomical Unit AU, km 1.49597870691 · 108

Standard acceleration due to gravity, gE, m/s2 9.80665

Day, s 86400

Year, days 365.25

00:00 01 January 2015, MJD 57023

24:00 31 December 2025, MJD 61041

Spacecraft and Trajectory Constraints

The spacecraft is launched from the Earth, with hyperbolic excess velocity vector v∞,

|v∞| 6 5 km/s and of unconstrained direction. The year of launch must lie in the range

from 2015 to 2025, inclusive: 57023 MJD ≤ ts ≤ 61041 MJD.

The spacecraft has a constant specific impulse Isp = 3000 s and its thrust level T is

bounded. The thrust level can be modulate at will, that means that T can take any value

between 0 and Tmax: 0 ≤ T ≤ Tmax = 0.3 N. This maximum value Tmax is constant and so

does not depend on the distance between the spacecraft and the Sun. In addition, there

is no constraint on the thrust direction. The spacecraft mass only varies during thrusting

periods and is constant when the engine is off (coast periods).

The spacecraft has a fixed initial mass, i.e. wet mass, mi = 4000 kg (that is not

affected by the launch v∞). We assume here that the spacecraft dry mass md ≥ 500 kg,

the propellant mass mp and scientific mass ms, i.e. mi = md+mp+ms. Scientific mass ms

consists of scientific equipment mass and penetrators mass. For example, if the mission

trajectory contains k rendezvous and m penetrations, ms = k · (40 kg) +m · (1 kg).

After launch, the spacecraft must provide a maximum number of asteroid missions.

Asteroid mission means an asteroid rendezvous at first and then the same flyby asteroid
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with a velocity not less than ∆V A
min = 0.4 km/s. Especially we notice that penetration

before delivery of the scientific equipment is not considered and is not taken into account

in performance index. The required models for rendezvous and flybys are given in the

Appendix. A rendezvous requires the spacecraft position and velocity to be the same as

those of the target asteroid. A flyby requires concurrence of position of spacecraft and a

target asteroid. Velocity of spacecraft relating an asteroid should exceed the set minimum

value ∆V A
min.

List of asteroids is provided in ASCII—file ast-ephem-gtoc5.txt. The choice of as-

teroids is part of the optimization process. In addition, each asteroid’s mission must be

realized only once during the trajectories.

The flight time, measured from start to the end must not exceed 15 years:

T = tf − ts ≤ 5478.75 days.

Performance index

Index J equal to the number of spacecraft mission is maximized. An asteroid rendezvous

and delivery of the scientific block is estimated by 0.2, and subsequent penetration by 0.8.

For Beletskij asteroid the estimation raises 1.5 times: 0.3 for an unloading of the scientific

block and 1.2 for the subsequent penetration.

As said before, when two solution yield the same value of J , we consider that the best

one is solution that minimizes the following secondary performance index:

T = tf − ts → min,

where T denotes the flight time that has to satisfy the following important constraint:

T ≤ 5478.75 Day.

The formalized representation of index J and T is given in Appendix.

Solution format

Each team should return its best solution by email to gtoc5.msu@gmail.com on or before

November 01, 2010. Two files must be returned. The first one should contain:

• a short description of the method used,

• a summary of the best solution found, at least: GTOC5 names of the visited asteroids,

launch date, launch v∞ , date and spacecraft mass at each flyby, date of the final ren-

dezvous, thrust durations, total flight time T, value of the performance index J, value of

the final mass mf,

• a visual representation of the trajectory, such as a projection of the trajectory onto the

ecliptic plane.

This file should preferably be in PDF or PS format but Microsoft Word format should

also be acceptable. The second file will be used to verify the solution returned. It must
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follow the format and units provided in the ASCII template file solution.txt. As can be

seen in the file, trajectory data have to be provided at one-day increments for each inter-

body phase of the trajectory. In addition, trajectory data have also to be provided at

each time corresponding either to a flyby. So, when a flyby does not fall exactly on a one-

day increment, the last time point for the phase should be reported using a partial-day

increment from the previous time point. Moreover, the coordinate frame should be the

J2000 heliocentric ecliptic frame.

Appendix

This appendix provides the equations describing the dynamics of the problem along with

other background information.

Position and velocity in Keplerian orbits

The motion of the Earth and asteroids around the Sun is governed by the following

equations:

ẋj = vjx, ẏj = vjy, żj = vjz,

v̇jx = −µSx
j

(rj)3
, v̇jy = −µSy

j

(rj)3
, v̇jz = −µSz

j

(rj)3
,

where j — number of the asteroid or symbol E for the Earth, xj, yj, zj — position

components, rj =
√

(xj)2 + (yj)2 + (zj)2 — distance from the Sun, vjx, v
j
y, v

j
z — velocity

components.

Due to t0, a, e, i, ω, Ω, M0 position and velocity in Keplerian orbits in the specified

moment t can be determined by:

n =
√

µS/a3,

p = a(1− e2),

mean anomaly M

M = n(t− t0) +M0,

M → (−π, π], π ≈ 3.141592653589793238;

Kepler’s equation:

E − e sinE = M,

True anomaly θ:

θ

2
=

√(
1 + e

1− e

)
E

2
,

r =
p

1 + e cos θ
,

vr =

√
µ

p
e sin θ, vn =

√
µ

p
(1 + e cos θ).
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So:
x = r[cos(θ + ω) cosΩ− sin(θ + ω) cos i sinΩ],

y = r[cos(θ + ω) sinΩ + sin(θ + ω) cos i cosΩ],

z = r sin(θ + ω) sin i,

vx =
x

r
vr + (− sin(θ + ω) cosΩ− cos(θ + ω) cos i sinΩ)vn,

vy =
y

r
vr + (− sin(θ + ω) sinΩ + cos(θ + ω) cos i cosΩ)vn,

vz =
z

r
vr + cos(θ + ω) sin i · vn,

Optimization problem

The motion of the spacecraft around the Sun is governed by the following equations:

ẋ = vx, ẏ = vy, ż = vz, ṁ = −T/c,

v̇x = −µSx

r3
+

Tx

m
= Fx, v̇y = −µSy

r3
+

Ty

m
= Fy, v̇z = −µSz

r3
+

Tz

m
= Fz,

T ≡
√
T 2
x + T 2

y + T 2
z 6 Tmax = 0.3 N.

where x, y, z — spacecraft position components, vx, vy, vz — spacecraft velocity compo-

nents, T — thrust magnitude of the engine, gE = 9.80665 m/s2 — standard acceleration

due to gravity on the Earth surface, Isp = 3000 s — specific impulse of the engine,

c = Isp · gE — exhaust velocity, r =
√
x2 + y2 + z2 — distance from the Sun.

Start from the Earth:

m(ts) = mi, x(ts)− xE(ts) = 0, y(ts)− yE(ts) = 0, z(ts)− zE(ts) = 0,

(vx(ts)− vEx (ts))
2 + (vy(ts)− vEy (ts))

2 + (vz(ts)− vEz (ts))
2 ≤ v2∞,

57023.0 MJD ≤ ts ≤ 61041.0 MJD;

where mi = 4000 kg — initial mass of spacecraft, v∞ ≤ 5 km/s — hyperbolic excess

velocity.

Delivery of scientific block to the j-asteroid:

m(tj−)−m(tj+) = 40 kg,

x(tj)− xj(tj) = 0, y(tj)− yj(tj) = 0, z(tj)− zj(tj) = 0,

vx(t
j)− vjx(t

j) = 0, vy(t
j
f )− vjy(t

j) = 0, vz(t
j)− vjz(t

j) = 0,

where tj — rendezvous moment j-asteroid.

Penetration:

x(tjp)− xj(tjp) = 0, y(tjp)− yj(tjp) = 0, z(tjp)− zj(tjp) = 0,

m(tj−p )−m(tj+p ) = 1 kg,
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√
(vx(t

j
p)− vjx(t

j
p))2 + (vy(t

j
p)− vjy(t

j
p))2 + (vz(t

j
p)− vjz(t

j
p))2 ≥ ∆V A

min,

tjp > tj.

We should notify that the penetration takes place after the delivery of the scientific

block, but it can be done any time after. The distance between the spacecraft and the

asteroid at time tj and tjp should not exceed 1000 km. Relative velocity at time tj should

not exceed 1 m/c in case of a rendezvous transfer and should be not less than 0.4 km/s

in case of penetration.

The performance index:

J =
3

2
(α1 + β1) +

n∑
j=2

(αj + βj)

where n is the total number of asteroids in the list and where αj ∈ {0, 0.2}, βj ∈ {0, 0.8}:

αj =

{
0.2, — if rendezvous was fulfilled,

0, else.

βj =


0.8, αj > 0 and ∃tjp ∈ (tj, tf ]

tj— moments of j-asteroid rendezvous

tjp— moments of j-asteroid flyby

0, else.

The final moment of the mission is the moment of the last action: rendezvous or

penetration:

tf = max
∃tjp,∃tj

(tjp, t
j),

T = tf − ts ≤ 5478.75 ED, m(tf ) ≥ 500 kg.

The second performance index:

T = tf − ts → min .
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