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Mathematics can, possibly even obliged to:

Give qualitative (not quantitative) explana-
tion to many phenomena of physical world, But
this explanation should be absolutely rigorous
and structured

[ did not read Hilbert’s works but I think that
RIGOROUS axiomatics in global domains
(global means for example that it should in-
clude electrodynamics) of mathematical physics
never existed. But in many (not all) small
domains it existed always in the minds of re-
searchers often without exact formulation.



What is Structure -

1. partially ordered set corresponding to one
defined in algebra.

2. It is a graph, like a tree but NOT a
tree, because vertices can have several incom-
ing edges

3. Each vertex is a container. Highest vertex
contains a set of axioms. their number should
be as minimal as possible. Other vertices con-
tain sets of rigorously proved “theorems”, that
is mathematical analogs of some “physical
laws”. The more physical “laws” can be derived
from axioms - the better. Edges show which
higher containers were used for the proof.



4. Looks like pyramids in Egypt. [ think
now there are thousands of such “Structures-
pyramids” in mathematical physics. Moreover,
even if the author-mathematician does not say
it explicitely, it exists in his mind.

5. Famous example: explosive growth of Equi-
librium statistical physics - mainly due to only
one axiom - GIBBS field.

[t is now necessary - try to join these small
pyramids together, and to analyse “physical pyra-
mids” which do not still exist as CONSISTENT
mathematical theories. Main problem - to un-
derstand whether Newton motion laws and Maxwell Lorer
electrodynamics are consistent or not.



Why only classical physics ?

1. Just to start with something.

2. Only in classical (deterministic) physics
there is normal common sense, related to our
feelings, not just formal algebra.

3. In applications my main interest is in the
scales of biophysics, not in super-macro scales
of the Universe.

4. Stochasticity will be always present but it
should be as minimal as possible.

About quantum and stochastic physics few
words later.



AXIOMS

Time R, space R’ point particles with
masses m > 0, charges ¢, partially smooth
trajectories z(t), momenta p = mv = m%.
Why only point particles - for example, to de-
duce, as corollaries, the laws of Continuum Me-
chanics, on any micro, nano and macro scales.

And finally - a class of FORCES F'(zx,v,t)

in the Newton law

Main question - what kind of forces should be
in axioms. Forces can be - interaction forces
and external forces.



About external forces we do not know much.
They could be impossible to measure (in partic-
ular quite mystical - like soul in human body).

We consider two classes of interaction forces:
1) linear forces, 2) inverse square force.

We shall show that even linear forces, though
cannot be ultimate axiom, givee sufficiently in-
teresting pyramid of consequences for phys-
ical world. We will show later that linear forces
in some cases give good approximation for the-
ories with Coulomb forces.



1 LINEAR MODELS

Interaction forces Intuitive picture - each
particle moves close to the minimum of a small
potential well, which also moves somehow. Such
well is normally approximated by quadratic func-
tion, and nonlinear perturbations will not change
qualitative behaviour of the whole system.



We consider general linear system of /Ny point
particles jn R? with N = dN, coordinates qj €
R, 7=1,...,N. Let
dx;

dt

_ r .. T o
q = (Q17 e qu) y D = (p17 "'7pN) 7¢(t) — (Q17 oy ANy P1y -
Potential and kinetic energies are

Vj = ,pj:mjvj,jzl,..,N,

N
Z Viigia = q, V), Z%

1<j I<N Jj=1

Thus the following system of equations:

Zvl9l+f jn:]_l N

In the Haniltonian form:

Qj = Dy,
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or



where
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External Forces We do not know much about
them. Normally there are two classes:

1. driving forces. Examples - periodic force
like sin wt, random stationary process £(t);

2. dissipative forces. Example - a(t)v(t)
where 1) a(t) = const < 0, 2) random point
process describing collisions with external par-
ticles.
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1.1 MAIN RESULTS

NEW approach to famous Boltzman hy-
pothesis We consider the WORST non-ergodic
(linear system with invariant tori) and show
that an external perturbation of ONE only par-
ticle provides ergodicity and gives convergence

1) to Gibbs distribution

white noise with dissipation (a > 0)

f =odw; — av(t)

Lykov A.A., Malyshev V.A. Convergence to
Gibbs equilibrium - unveiling the mystery. Markov
Processes and Related Fields, 2013, v.9, Ne 4.

Lykov A., Malyshev V. A new approach to
Boltzmann’s ergodicity hypothesis. Doklady
RAN. Mathematics), 2015, 92, Ne 2, p. 624-
626.
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Convergence to Liouville distribution
For fixed n and random time moments ¢;. de-
terministic velocity flips occur

vn(tk) = —’Un<tk — O)

Lykov A.A., Malyshev V.A. Harmonic chain
with weak dissipation Markov Processes and
Related Fields, 2012, v. 8, Ne 4 p. 721-729.

Lykov A A., Malyshev V.A. Liouville Ergod-
icity of Linear Multi-Particle Hamiltonian Sys-
tem with One Marked Particle Velocity Flips.
Markov Processes and Related Fields, 2015, v.
21, Ne 2, pp. 381-412.
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Here at random time moments different types
of collisions occur.

Lykov A.A., Malyshev V.A. Convergence to
equilibrium due to collisions with external par-

ticles. Markov Processes and Related Fields,
2018, 24, Ne 2. 197-227.
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Development of chaos DBounded but not
sufficiently smooth initial conditions give un-
bounded chaos as t — 0.

12020-02] - Lykov A., Malyshev V. Uniformly
Bounded Initial Chaos in Large System Often
Intensifies Infinitely. Markov Processes and Re-
lated Fields, v 26, Ne 2, 213-231.

12020 03] - Lykov A., Malyshev V. How Smooth
the System Should be Initially to Escape Un-
bounded Chaos. Markov Processes and Re-
lated Fields, 2020. v 26, Ne 2, 233-286.

2020-05] - Lykov A., Malyshev V. When bounded
chaos becomes unbounded Proceedings of the
XI international conference stochastic and an-
alytic methods in mathematical physics, cepus
Lectures in pure and applied mathematics (6),
Mmecto u3nanng Universitatsverlag Potsdam Pots-

dam, Te3ucer, 2020, 97-106.
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Chaplygin Gas Interesting history. For fi-
nite harmonic chain we considered scalings such
that particles would not collide. Only this al-
lowed to receive Euler equations Published, and
only after this we found that these were Euler
equations for Chaplygin gas, which now is very
popular in hundreds of physical papers and
appeared to be related to ball lightning, string
theory, dark matter etc.

Lykov A., Malyshev V. From The N-Body
Problem to Euler Equations. Russian Journal
of Mathematical Physics, 2017, 24, Ne 1, 79-95.
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Resonance phenomena For which w in ex-
ternal force sin wt

max_|zy(t)] — oo
0<t<T

as 1" — o0.
Will be published soon.

Local virial theorems Here one can study
distribution of kinetic and potential energies in
different parts of the big system. For example,
one part of the system conserves (potential) en-
ergy, another part has big kinetic energy.
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2 COULOMB FORCE

Main interaction forces Forcesin micro clas-
sical physics - only gravitation and electrody-
namics.

Gravitation between two point particles is
given by inverse square law. defined by po-
tential energy

U= ¢ C = Cgmlmg

21 — x|

There exists great science Celestial Mechan-
ics where there is only attraction. But this
force is negligible between two microparticles
and, as external force, is almost constant around
human body. And we forget about it.
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Electrodynamics consists of Maxwell equa-
tions (in Gaussian units)

VE =47p (3)
VH =0 (4)

10H

E=_-""
V X "y ()

10F
) 2

V X J v (6)

and Lorentz force

F:¢E+%xH) (7)
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CONSISTENCY problem

Maxwell equations is a classical consistent
theory if charges and their velocities are given
and we want to find fields £, H. But noone
could prove that Maxwell equations and Lorentz
force together are consistent. There are many
physical papers both pessimistic and optimistic,
but all of them are non-rigorous. Main problem
- (self-interaction) particle in its own field. Now
[ will explain similar (but one-dimensional) model,
which we proved to be consistent.
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We consider a system on the real line, con-
sisting of the real scalar field ¢(x,t),x € R, t €
R, and point particle with trajectory y(t) €
R. The dynamics of this system is defined by
two equations: wave equation for the field, «ra-
diated» by the particle,

Fo(x,t)  PPla,t

D= TN | sy ®
with the initial conditions
¢(x,0) =0, ¢y(x,0) =0, (9)

and the Newton equation for the particle, driven
by its own field,

ddyt(;f) _ 5@% /_Z oz, ) f(z — y)dz (10)

with the initial conditions

y0) = 0.%0) =o(0) =y (1)

m
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[t is well known, see for example |?], that for
any locally integrable f, and given smooth y(t)
the unique solution ¢(x,t) of the linear inho-
mogeneous equation (8) with initial conditions
(9) is also locally integrable and can be written
as

o(x,t) =

//H”T —y(7))dz1dr  (12)

However the joint system of these equations is
nonlinear, and we do not know general rigorous
results concerning the structure of its solutions.

Lemma 1 If the function f is smooth and bounded,
then the solution of the system (8)-(11) exists
and is unique on all time interval |0, c0).
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The goal of this paper is to give exact sense
and get complete picture of the dynamics for
the ultra-local interaction, that is for the case
when f is the o-function.

Theorem 1 If f = 6 and |vg| < ¢, then there
exists a solution (¢(x,t),y(t)) of the equations
(8)-(11) in the domain x € R,t € [0.00), such
that v(t) = y'(t) is a smooth monotone func-
tion on [0, 00). For this solution

sup |v(t)] < ¢ (13)

0<t<oo

and v(t) — 0 exponentially fast as t — oo.
Moreover, this solution is unique wn the class
of smooth solutions, satisfying condition (13).
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Energy The equations (8) and (10) can be
written in the hamiltonian form

0*¢(x,1t) oU d?y(t) oU
= — m = ——
ot? do(x) dt? oy’
U:Uff—l—Ufp (14)
with the formal hamiltonian H = Ty + T}, +
Urr+ Upp, where

_ [ 192 LO%
Tf—/Q(at)d:c, T, = 5 (15)

are the kinetic energies of the field and of the
particle, and

B c? O¢ 5
Ury = /[5(%) dz,

U= —8 / o(z)f(x — y)ldz = —Bo(y)

where Uy is the self-interaction energy of the
field, Uy, is the particle-field interaction.
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Theorem 2 Let f = 0. Then for any fixed t.
the supports of the derivatives ?b %f are bounded
in x, and all enerqy constituents are finite and

have the following asymptotics as t — 00

2 2

T)(t) = 0, Ty(t) ~ f—c, Uys(t) ~ f—ct
2
Ufp(t) = _g_ct

Interesting conclusion is that there appear
fields with energy tending to 400 and some
energy tending to —oo (possibly like dark en-
ergy).
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COULOMB forces

If in Maxwell equations = is very small, we
neglect these terms and get only two equations

VE =4mp, F =qFE

and, as the corollary, Coulomb (electric) force.
Miraculously it is again

inverse square law with C' = C.qiq9, but
with attraction there is also repulsion. And
it seems that dynamics should be much richer
than in Celestil mechanics. I was greatly sur-
prised that Coulomb mechanics still does
not exist (except cases when particles rotate
around another, like atom). And first problem
is to move this science forward. For example
- existence of long molecules and of solid state
using only Coulomb force.
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Why inverse square law is so universal 7 There
is simple deduction of Coulomb law without
Newton axioms, and even without global space-
time. There are only objects (or particles)
with their proper times and interaction between
two such proper times (for example, in terms
of virtual particles, like in quantum physics).

Malyshev V.A. The Newton and Coulomb
Laws as Information Transfer by Virtual Par-
ticles. Problems of Information Transmission,

2016, 52, Ne 3, 308-318.

Maugpimes B.A. Mozgenn ¢ BupTyaabHBIMEI IEPEHOCTUKAM
B3aNMO/ICIICTBUS B KJIACCUIEeCKON (PU3MKe JacTHII.
Jloxna el Poceniickoit Akagemnn Hayk (MaTemaTndeckast
dbuzuka), 2016, Tom 469, Ne 3, ¢. 291-294.

But these are sufficiently difficult non-linear
problems, Thus we come back to the Structure
where Coulomb law is the highest vertex,
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3 COULOMB FORCES in dimension 1

[t is important to say that it is NOT the corol-
lary of one-dimensional Laplacian but real in-
verse square law, assumed in dimension one.
We will give simple explanation why electric
current flows. Up to now existed only Drude
model which one can find in any textbook. It
is as follows

3.1 Introduction on school level

Consider a circle S of length L. That is the in-
terval [0, L] with identified end points 0 and L.
Assume there are N point particles (call them
electrons) with mass m and negative charge
g < 0 at the points

D<zri <9< ... <N <L
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We assume newtonian dynamics with repul-
sive Coulomb interaction but for simplicity (tech-
nical assumption) we assume that only nearest
neighbors interact. That is the following equa-
tions hold

dQCCk
mnm ———- =
dt
2 2
q q
= — +F(xi(t), ve(t), t
(@) = 2r-1)® (T — Thp)? (#lt), wlE), 1)
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Let first ' = 0. Then, if initially for all &
and some fixed v

Ak(O) = $k+1(0) — l’k(O) = £ Uk(0> = U,

N7
(17)
the particles will stand still if v = 0, that is
xp(t) = xx(0). If however v > 0 then all parti-
cles will turn round the circle:

ZEk(t> = xk(O) + vt

[t seems that this could provide eternal energy:.
But everyone understands that it is a false im-
pression — there is always dissipation of energy.
Our devices can take energy and external media
can grab the energy. Normally such interaction
with external media is modeled on macro scale
by the dissipation (friction) force

—awy(t) (18)

with 0 < «.
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On the micro scale this macro force is a con-
sequence of “collisions” with other particles. But
in this case, under the same conditions with the
dissipation force (18) we will get vi(t) — 0 for
all k. The simplest possibility to avoid this
is to add constant force, say F' = qF > 0.
If we define £ = g it can be imagined as
electric field (tension). Or to add potential
U(z) = — J, Edx so that

d

E = —EU(CU)
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Thus, final equations will be
2 2

d*x
£ = 4 — 4 +qb—avy

m—
dt (CUk — Ik—1)2 (CUk — $k+1>2
(19)

with the same initial conditions (17). Then,
whatever be initial v, for any k as t — o0

gk
_CM

vp(t) — w
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This is similar to the famous model of electric
current proposed by Drude in 1900. This model
entered many text books. Note that in Drude’s
model the particles do not interact. Here they
do not interact due to the chosen initial condi-
tions.
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Now we can deduce the famous Ohm’s law.
This is a macroscopic law and we should define
the macro variables as the limit of the corre-
sponding discrete quantities as N — oo. We
imagine not discrete point charges but infinites-
imally small charges at all points x € 5. We
refer to the definition of continuum system of
point particles in Project 2. So, in each point
x € S there is a “particle” which has trajectory
y(t, x) satisfying the equation

d*y(t, x) dy(t, z)
LA R -, B
m dt? 1 “ dt '’
dy(0
g0, 2)=a, PO _ o g

dt
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Note that the array (m,q, ) is defined up
to a common multiplication factor. It is im-
portant that the trajectories of xy(t) converge

to trajectory y(t, x) as N — oo, w — .
Anyway the solution is the same as for finite

N E
y(t, x) %w:—q
«

Introduce the mass and charge densities (scal-

ing correspondingly m and q),
! Nm I Ngq
H N—ooo L 7 P N—oo

Moreover, o should be scaled correspondingly.
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As the force on any particle is F' = qF we
assume also that the force on any “particle” of
the continuum charged medium is F' = pFE and
define the potential as follows:

U(:c):—/ Edr = —Fx
0

[t is a multivalued (periodic) function on S but,
as it is defined only up to additive constant, its
derivative (the force) is uniquely defined.

36



Current I(x,t) at point = at time ¢ is the
amount of charge crossing the point x for unit
time. It is also a bit puzzling and can be defined
only for large N. Namely, in our case for time
At the amount of charge crossing point x is

Qx, At) = wAtp

and we define the current (not depending on
x,t due to constant velocity and constant charge

density O(z. A)
:U,

]:
At
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There are two formulations of Ohm’s law.
The first one is the local formulation:

E
]:’wp:%p:JE, J:%

where o is called conductivity. For the sec-

ond one define also the potential difference on
the interval |a, b)]

Uypy=Ub)—Ula)=(b—a)F,

the resistivity 7 = o~ ! and resistance R, =
fab rdxz = (b — a)r of the interval |a, b].
Then we have Ohm’s law

Uyp = (b—a)E = (b—a)lo' = (b—a)r] = Ryl
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What is bad with this model 7 Let us see
first what famous people say:

“The force pushes the electrons along the wire.
But why does this move the galvanometer, which
is so far from the force 7 Because when the
electrons which feel the magnetic force try to
move, they push — by electric repulsion — the
electrons a little farther down the wire; they, in
turn, repel the electrons a little farther on, and
so on for a long distance. An amazing thing.
It was so amazing to Gauss and Weber — who
first built a galvanometer — that they tried to
see how far the forces in the wire would go.
They strung the wire all the way across the

city.” This is in Feynman lectures [9], Ch. 16-
L.
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So, one should consider the case when ex-
ternal force F' is not constant but is different
from zero only on some interval of the circle
with length possibly even much smaller than
L (possibly several meters length compared to
L = 100 kilometers). The simplest set of ax-
ioms is the following,.
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3.2

1.

Axioms

We assume 1-dim space and time. Time is
R and space is any interval of length L, or
the circle of length L, that is the same in-
terval but with identified boundary points.

- We assume Coulomb interaction with iden-

tical particles (equal masses and equal neg-
ative charge (like electrons)). One more
(technical) axiom — nearest-neighbor inter-
action. Thus between neighboring particles
there is repulsion force. It is likely that this
assumption does not influence the qualita-
tive picture we have here.

. External forces are again of two kinds —

dissipative forces —aw; and deterministic

force F(x),x € I, acting on all particles
k=1,...,N.
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3.3 Phase diagram for static configura-
tions

First of all, the problem of static configuration

was considered. Assume that on the interval

0, L] the particles are enumerated as

0<ri<zo<... <2y <L

Then if there is no external force, it is clear that
in equilibrium the distances between particles

will be
L
Lkl — T = m (21)
[f the external force F'(x) is applied, then the
most important fact is that the same equal-
ity holds but only asymptotically, as N —
oo. Even more important, the new super-micro

scale appears as
L 1
- —| = O(—) 22
nn—w- | =0(%5) ()
Moreover, a rich phase diagram appears if F'(x)

depends on NN, see |2, 1, 4, 6. The mentioned
results are in some sense for zero temperature.
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Quite similar phase diagram was also obtained

for Gibbs distribution, see [8], |7].
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3.4 Why the Current Flows

Assume now we are on the circle of length L
and that initially the particles are at equilib-
rium, that is the initial velocities are zero and

L

L4l — Tk = N

Then it was proved that:

1. almost immediately the particles attain the
same constant velocity,

2. they move with this velocity some time at
least of the order N

3. during this flow, the density and velocity
remain constant, that is Ohm’s law holds.
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3.5 Further problems
Coulomb networks

1. The circle is the simplest graph with one
cycle only. One should prove similar results
for more complicated graph. In particular
Ohm’s law and two Kirchhoff laws.

2. Together with direct current (DC) one could
consider micro models of alternative current

(AC).
5. Networks with capacities,
+. HodgkinHuxley equations etc.

Moreover, in any biological organism the main
force is the Coulomb force. Natural question
arises: possibly this force is sufficient to explain
many important biological phenomena, includ-
ing neural networks.
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