
Coulomb Mechanics

(Project 2018-3 proposed by Malyshev V.A.)

0.1 Axioms

Besides Axiom-Newton we assume

Coulomb force (Axiom-Coulomb) Only forces defined by

Ujk(|xk − xj |) =
qkqj

|xk − xj |

can be used, where qi ∈ R is the electric charge of particle i.

0.2 Main goals

The situation seems to be similar to that of the great science called Celestial
Mechanics. However, I was greatly surprised when I could not find any mathe-
matical paper on Coulomb mechanics concerning bounded trajectories. Possibly
new types of such trajectories exist, then I will be grateful if someone will indicate
the references.

The first goal is to study bound states for small N ≥ 3. We call bound
state the set of trajectories xi(t), i = 1, . . . , N, of N particles such that for some
constants 0 < C1 < C2 and all i, j, t

C1 < |xi(t)− xj(t)| < C2

Example of bound state is a fixed state, that is the set {x1, . . . , xN} of N points
so that xi(t) ≡ xi for all t and i = 1, . . . , N .

The central intuitive idea of Celestial Mechanics is that bound states exist
due to equilibrium of Newton gravitation force and centrifugal force. Coulomb
mechanics does not still exist but it is very likely that the bound states have
much richer structure.

0.3 Easy cases

0.3.1 Complete repulsion

Problem (to prove ) If the charges of all N particles i = 1, 2, . . . , N have
the same sign, then as t→∞ for any i 6= j and any initial conditions

|xi(t)− xj(t)| → ∞

as t→∞.

0.3.2 Two particles

If N = 2 and the particle charges have different signs, then there is complete
coincidence with Celestial mechanics.
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Existence of atoms in Coulomb Mechanics According to physics, we call
atom in Coulomb mechanics the system consisting of one particle with positive
charge (“nucleus”) and k ≥ 1 negative charge particles (“electrons”) rotating
around the “nucleus”. We have mentioned above that existence for k = 1 is
the first result of Celestial mechanics (Kepler orbit). The existence of atoms in
Coulomb mechanics for k > 1 formally does not follow from Celestial Mechan-
ics, because of mutual repulsion of electrons, but one could guess that it can
be deduced similarly to Celestial mechanics, for example in some cases using
perturbation theory.

0.3.3 Three particles in dimension 1

It is known that in dimension 3 there are no (due to harmonicity of the potential
1
r ) stable fixed configurations. However, stability problem in dimensions 1 and
2 can give some insight on other and more complicated problems in dimension
3. It is clear that for two particles there are no fixed configurations. But for 3
particles they exist already in dimension 1.

Two particles have infinite masses This means that two particles (1 and 2)
have fixed trajectories and particle 3 moves in their Coulomb field. In particular,
here we assume that particles 1 and 2 stand still. Already here new phenomena
(compared to celestial mechanics) appear.

Thus, assume that on the real line R there are particles 1,2,3 with charges
q1, q2, q3 = q and coordinates x1(t) ≡ 0, x2(t) ≡ a, x3(0) = x(0) correspondingly.

Case 0 < a < x(0) We consider the following problem: for which parameters
and initial conditions x3(0) = x(0), v3(0) = v(0) we have C1 < x(t) < C2 for
some C1 > a and C2 <∞, that is bound states exist.

Proposition 1. There is exactly one fixed state if either 0 < |q2| < q1, q2 < 0,
(unstable fixed state) or 0 < q2 < |q1|, q1 < 0, (stable fixed state). Otherwise
there are no fixed states.

Moreover, initial conditions define bound states only when 0 < q2 < |q1|, q1 <
0, and

H(0) =
mv2(0)

2
+ U(0) < 0

Proof. Particle 3 moves in the Coulomb fields of particles 1 and 2, that is in the
potential field

U(x) = q
( q1
|x|

+
q2

|x− x2|

)
= q
(q1
x

+
q2

x− x2

)
= q

(q1 + q2)x− x2q1
x(x− x2)

, (1)

or in the force field

F (x) = −∂U
∂x

= q
( q1
x2

+
q2

(x− x2)2
)

= q
(q1 + q2)x

2 − 2q1xx2 + q1
2

x2(x− x2)2
(2)
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As the motion is invariant with respect to simultaneous change signs of all
charges, we will always assume that q > 0. If q1 + q2 6= 0, then the equations for
critical points (where the force equals zero) are

x2 − 2xQx2 +Qx22 = (x−Qx2)2 −Q2x22 +Qx22 = 0, Q =
q1

q1 + q2

whence the roots are

x± = Qx2 ± x2
√
Q2 −Q

One can write also x2 in terms of x

x22 − 2xx2 +Q−1x2 = (x2 − x)2 − x2 +Q−1x2 = 0

x2.± = x± x
√

1− q1 + q2
q1

= x
(

1±
√
−q2
q1

)
Assuming that q1, q2 have different charges we have

Q2 −Q = Q(Q− 1) =
q1

q1 + q2

( q1
q1 + q2

− 1
)

= − q1q2
(q1 + q2)2

≥ 0

As the expression under root is positive, there always should be two real roots.
Putting z = − q2

q1
, we have

x± = Qx2

(
1±

√
−q2
q1

)
= x2

1

1− z
(1±

√
z) = x2

1

1∓
√
z

Note that the force cannot have more than 2 zeros on R. We consider all
possibilities the followng possibilities:

1. q1q2 > 0. If particles 1 and 2 have the same sign, then it is clear that
if q1, q2 > 0 then the particle will go to infinity. If q1, q2 < 0 then the particle
escapes to ∞ if v(0) > 0 and H(0) ≥ 0. Otherwise, it collides with particle 2.

2. 0 < q1 < |q2|.
3. −q2 < q1 < 0.

4. q1 + q2 = 0. In cases 2,3,4 the force also cannot be zero on (a,∞), and
has the the same sign.

5. 0 < |q2| < q1. Here the force has the only one root on (a,∞). Moreover,
U(x) > 0 and decreases for large x because U(x)→ 0 as x→∞. Also, U(x) < 0
for small x − a and U(x) → −∞ as x → a + 0. Thus, U(x) has one maximum
on (a,∞) and the system cannot be stable.

6. 0 < q2 < |q1|, q1 < 0. Here U(x) → +∞ as x → a + 0. Also U(x) < 0
for sufficiently large x and increases to 0 as x → ∞. Thus U(x) has exactly
one minimum. It is clear that, for any fixed initial conditions, there exists such
C1 > 0 that x(t) > a+C1. The escape to infinity is possible only if H(0) ≥ 0. In
fact, if at some moment t1 the velocity v(t1) < 0 then at some moment t2 > t1 the
particle will come back to the same point but with velocity v(t2) = −v(t1) > 0.
After this it will go straight to infinity iff H(t2) = H(0) ≥ 0. If H(t2) = H(0) < 0
the velocity of the particle will become zero at the point y where U(y) = H(0).
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Case 0 < x(0) < a This case is easy and less interesting. Remind that we
assumed that q3 = q > 0.

1) If particles 1,2 have different signs, then particle 3 is attracted by one
particle and is repelled by the other. Then it is evident that it will collide with
one to which it is attracted.

2) q,1, q2 < 0. Then there is one unstable fixed point (maximum of the
potential).

3) q,1, q2 > 0. Then there is one stable fixed point (minimum of the poten-
tial), and thus the set {(x(0), v(0)} of initial conditions contains an open subset
defining bound states.

Only one particle has infinite mass

Case x1(t) ≡ 0 < x2(0) < x3(0) Let the charges be q1 > 0, q2, q3.

Proposition 2. Fixed (equilibrium) states exist iff q2 < 0, q3 > 0 and

|q2| < q3, q1 =
q3

(
√
−q3/q2 − 1)2

(3)

All of them are unstable

Proof. Denote F2, F3 – forces on particles 2 and 3 c oorrespondingly. Then there
are 4 cases:

1) q2, q3 > 0. Here F3 is always positive. Moreover, particles cannot collide,
then for any initial velocities, v3 once becomes zero, and particle 3 goes to ∞;

2) q2, q3 < 0. Force F2 on particle 2 is always negative. Thus, if for some t0
v2(t0) ≤ 0 the particle 2 collides with particle 1. Otherwise, v2(t) always tends
to some v2(∞) > 0, and then x2(t) increases to x2(∞) =∞;

3) q2 > 0, q3 < 0. Note that the force F3 on particle 3 is always negative, and
the force F2 on particle 2 is always positive. It follows that v2(t) and v3(t) are
monotone increasing and decreasing correspondingly. Thus, either the particles
2 and 3 will collide or particle 3 goes to infinity;

4) q2 < 0, q3 > 0. In this case there can be fixed states. They should satisfy
two equations

F2 = q2

( q1
x22
− q3

(x3 − x2)2
)

= 0, F3 = q3

( q1
x23

+
q2

(x3 − x2)2
)

= 0

or equivalently, putting z = x2
x3
< 1,

q1
q3

1

x22
= −q1

q2

1

x23
=

1

(x3 − x2)2
=⇒ q1

q3
= −q1

q2
z2 =

1

(z−1 − 1)2

Thus

z = +

√
−q2
q3
, q1 =

q3
(z−1 − 1)2

It follows that the conditions (3) are necessary and sufficient for the existence of
continuum of fixed states. They satisfy the equation

z =
x2
x3

= +

√
−q2
q3
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They are unstable because in the cone {(x2, x3) : 0 < x2 < x3} ⊂ R2 the function
U(x2, x3) on each direct line x3 = αx2, α = +

√
−q3/q2 > 1 has critical point,

which is the maximum of U .

Case x1(0) < x2(t) ≡ 0 < x3(0) Introduce variables y1 = x2−x1 > 0, y2 =
x3 − x2 > 0 in the quarter-plane R2

+ = {y = (y1, y2) : y1y2 > 0}. We have two
equations

F1 = −q1q2
y21
− q1q3

(y1 + y2)2
= 0, F3 =

q3q2
y22

+
q1q3

(y1 + y2)2
= 0

If we assume q1 > 0, it follows that

F2 + F3 = q2

(
− q1
y21

+
q3
y22

)
= 0 =⇒ q1

q3
=
y21
y22

=⇒ q1, q3 > 0, q2 < 0

Then
q2
y22

+
q1

(y1 + y2)2
= 0 =⇒ −q2

q1
=

1

(1 +
√
−q3/q1)2

This is the condition for existence of fixed state. Now let us prove that if the
critical point of the potential energy

U(y) =
q1q2
y1

+
q2q3
y2

+
q1q3

y1 + y2

exists, it is unique. It follows from the equations which uniquely define y1, y2.
As U → −∞ if either y1 → 0 or y3 → 0, the critical point is the maximum of U .

All particles have finite masses Let the charges and coordinates of these
particles be q1, q2, q3 and x1 < x2 < x3 correspondingly. The simplest example
is the following: q−1 = q, q0, q1 = q and x−1 = −x < x0 = 0 < x1 = x
correspondingly. Then such configuration is fixed iff

q2

4x2
+
qq0
x2

= 0⇐⇒ q = −4q0

In fact, this means that forces on the leftmost and rightmost particles are zero.
The force on the middle particle is zero by symmetry.

In general also, if forces on particles 1 and 3 are zero, then the force on
particle 2 is also zero. The equilibrium conditions are given by three equations
for the forces on particles −1, 1, 0 correspondingly:

qq−1

x2−1

+
q1q−1

(x−1 + x1)2
= 0,

qq1
x21

+
q1q−1

(x−1 + x1)2
= 0,

qq−1

x2−1

+
qq1
x21

= 0 (4)

One can see then when the solution of (4) exists.

Problem. For N ≥ 3 particles in Rd provide a classification of all fixed
configurations.
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0.4 Systems of Atoms and Biological systems

Simplest system of atoms could be the following example with 4 particles with
trajectories xi(t) ∈ R2, i = 1, 2, 3, 4. They form two atoms with particles i = 1, 2
and i = 3, 4 correspondingly. We say that these atoms are space independent
if there are two convex nonintersecting open simply connected domains (for
example, closed balls) Λ12 and Λ34 such that for any t: x1(t), x2(t) ∈ Λ12 and
x3(t), x4(t) ∈ Λ34. Such systems cannot exist in Celestial Mechanics and the
question is whether they exist in Coulomb mechanics.

The more intriguing question is whether it is possible for more complicated
systems of atoms (long molecules) in domainsOk, k = 1, . . . , N, with very largeN
looking like a chain or even more complicated graph. The far looking problem:
what phenomena in biological systems can be described in the framework of
(classical) Coulomb mechanics ?

Simplified problem Even simpler bounded trajectory could be as follows. In
R2 particle 1 stands still at the origin, that is x1(t) = 0. The trajectory x2(t)
of particle 2 stays always in some ellipse O2 with centrum at the origin (that is
the particle 2 rotates around particle 1). Particle 3 stays always in some circle
O3 with centrum at some point (x, 0) on the x-axis. Important condition is that
the radius of O3 is less than |x|, or even more: O2 and O3 do not intersect.
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