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Space-Time R3 × R (or other smooth manifold) for a long time seemed to
be inevitable basic frame for classical physics. However, one should accept that
it is very rigid and stiff construction. It is evident that space could be only
approximation for something more democratic. What can this be ?

1) One of the popular ideas was to use lattices (or discrete graphs) instead
of space at very small scales. It is also sufficiently something rigid given apriori.

2) Non-commutative space makes the situation more complicated but does
not essentially change it.

3) Another idea could be to refuse completely from space (but not from
time, which is assumed to be common for all objects). Assume then that there
are N objects 1, 2, . . . , N which we could call particles. Moreover, for any pair
(i, j), i 6= j, at any time moment t the positive distances dij(t) = dji(t) between
these elements are defined. These distances evolve in unique time t. but they
are not assumed to define metric space, that is the standard inequality does not
hold.

4) Even more revolutionary idea is that even there is no common time, but
for any pair of particles i, j there is their proper time tij which is proportional
(with coefficient c > 0) to dij . The intervals between communication events
depend on this time (or distance). There many problems for such systems. The
first one is the following.

Let N = 2. The ambitious goal is to find some equations for d(t) = d12(t)
and to deduce main two particle interaction laws of classical physics from these
equations. There are in fact only two main laws: when velocities are much less
than c. the velocity of light, the only interactions are gravity and electrostatics.
Both these laws (Newton and Coulomb) have surprisingly the same inverse power
form, with different constants defined correspondingly by masses and charges of
the two interacting particles. Thus it was very appealing that some derivation of
inverse power law, from natural and simple axioms of school level, should exist.
The idea is as follows: at times

0 < t1 < t2 < . . . < tn < . . .

where

τn = tn+1 − tn =
2d(tn) + α

c

the distance d0 is fixed and there is a recurrent relation

d(tk+1) = d(tk) + α

for some real α. This can be interpreted as there is a virtual particle which
moves in-between the two objects with constant speed c (analog of velocity of
light) ad when it reaches say the particle 1 (the times tn are exactly these times)
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the distance changes. Moreover α = ±2γc−2, where γ > 0 is some constant
(depending on masses or charges of two particles, and the sign depends on the
attraction or repulsion inverse square force we want to get. Such virtual particle
picture in classical case reminds virtual particles in quantum physics. Moreover,
the energy-time relation

E∆t =
γ

c

follows. It follows from this that d(t) changes as if the Newton law holds with
the force equal to γ

d2
. Locally in time, inverse power law follows just from this.

One wants to prove that d(t) behaves on infinite time interval as if between two
particles there is inverse power law interaction. It was done in the scaling limit
c→∞ in [1, 2]. Note that only repulsive case was considered.

Further problems

1. Even for N = 2 something has to be done. Firstly, to understand what
will be in attractive case (α < 0). Secondly, if both particles can move.

2. Put both particles to R2. Let one of the particles stand still at 0. Second
particle has initial velocities not parallel to its radius vector. How should
we get Kepler orbits in this case ?

3. For N = 3 the main question is how these particles could acquire common
time and how standard space can emerge.
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