Линейные отображения

Определение 1. Пусть V, W — два векторных пространства над одним полем \mathbb{K} . Отображение $f: V \to W$ называется линейным, если $\forall x, y \in V, \lambda \in \mathbb{K}$ выполняются равенства f(x+y) = f(x) + f(y) и $f(\lambda x) = \lambda f(x)$.

Пример: множество V' — это множество линейных отображений при $W = \mathbb{K}$.

Пусть e_1, \ldots, e_n — базис в V, а e'_1, \ldots, e'_m — базис в W. Если $x = x^i e_i \in V$, то $f(x) = f(x^i e_i) = x^i f(e_i)$, т.е., для вычисления значения функции в любой точке, достаточно знать ее значения на базисных векторах, т.е. $f(e_i) = a_i^k e'_k$ (a_i^k — коэффициенты разложения вектора $f(e_i)$ по базису e'_1 , тогда $f(x) = x^i a_i^k e'_k = y^k e'_k$ — разложение значения по базису e'_1, \ldots, e'_k . Координаты x^i вектора x в базисе пространства V и координаты y^k значения отображения f(x) в базисе пространства W связаны следующим соотношением:

$$\begin{pmatrix} y^{1} \\ \vdots \\ y^{m} \end{pmatrix} = \begin{pmatrix} a_{1}^{1} & \dots & a_{n}^{1} \\ \vdots & \ddots & \vdots \\ a_{1}^{m} & \dots & a_{n}^{m} \end{pmatrix} \begin{pmatrix} x^{1} \\ \vdots \\ x^{n} \end{pmatrix}, \qquad \mathbf{y}^{\mathbf{z}} = \mathbf{x}^{\mathbf{z}} \mathbf{a}$$

или, в матричной форме, Y = AX, где Y и X — столбцы координат векторов f(x) и x соответственно, а матрица $A_f = A = (a_i^k)$ является матрицей, определяемой линейным отображением f (и определяющей его).

Мы видим, что задание базисов в V и W позволяет сопоставить каждому линейному отображению f его матрицу A_f , причем это сопоставление взаимо однозначно. Поэтому существует биективное отображение между множеством линейных отображений L(V,W) из V в W и множеством матриц $M_{m,n}(\mathbb{K})$ с коэффициентами из поля \mathbb{K} размера $m \times n$.

Лемма 2.
$$L(V, W) \cong M_{m,n}(\mathbb{K})$$
.

Доказательство. Достаточно проверить, что построенное выше биективное отображение $L(V,W) \to M_{m,n}(\mathbb{K})$ будет линейным. Но это следует из того, что все отображения из L(V,W) линейны.

1(c)=0

Примеры:

- 1) Рассмотрим отображение $f(x) \equiv 0$, ему будет соответствовать нулевая матрица $A_f = 0$:
- 2) Если W = V, а отображение тождественно, f = id: $V \to V$, т.е. $f(x) = x \ \forall x \in V$, то ему соответствует единичная матрица $A_f = E$;
 - 3) Отображению $f(x) = \lambda x$ соответствует матрица $A_f = \lambda E$.

Еще раз отметим, что соответствие $f\mapsto A_f$ зависит от выбора базисов в пространствак V и W.

Изменим базисы в V (матрица перехода C_1) и в W (матрица перехода C_2), тогда, естественно, изменится и матрица данного линейного отображения. Если в первоначальных базисах координаты были связаны матричным соотношением $Y = A_f X$, то в новых базисах $(X = C_1 \widetilde{X}, Y = C_2 \widetilde{Y})$ имеем $C_2 \widetilde{Y} = A_f C_1 \widetilde{X}$, т.е. $\widetilde{Y} = C_2^{-1} A_f C_1 \widetilde{X} = \widetilde{A}_f \widetilde{X}$. Окончательно получаем формулу для матрицы оператора в новых базисах $\widetilde{A}_f = C_2^{-1} A_f C_1$.

Определение 3. Ядром Ker f линейного отображения $f: V \to W$ называется множество всех векторов, переходящих в ноль, $\text{Ker } f = \{x \in V : f(x) = 0\}.$

Образом Im f линейного оператора $f:V\to W$ называется множество векторов $y\in W$, для которых существует прообраз, Im $f=\{y\in W:\exists x\in V, f(x)=y\}$.

Лемма 4. Ядро любого линейного оператора является линейным подпространством в V; образ любого линейного оператора является линейным подпространством в W.

KerfcV ImfcW.

Доказательство. Доказательство очевидно, надо просто проверить, что эти множества замкнуты относительно операций сложения и умножения на скаляры. Например, в случае ядра, если $x,y \in \operatorname{Ker} f$, $\lambda \in \mathbb{K}$, то f(x) = f(y) = 0, поэтому f(x+y) = 0, $f(\lambda x) = 0$ и $x + y, \lambda x \in \text{Ker } f$. Проверка для образа оператора аналогична.

Лемма 5. dim Ker $f + \dim \operatorname{Im} f = \dim V$.

L(ei) & Imf

Доказательство. Пусть e_1, \ldots, e_r — базис в $\ker f$, дополним его до базиса $e_1,\ldots,e_r,e_{r+1},\ldots,e_n$ всего пространства V. Докажем, что $\dim\operatorname{Im} f=n-r$. Для этого рассмотрим набор векторов $f(e_{r+1}), \ldots, f(e_n)$ и докажем, что он является базисом в Im f.

- 1) линейная независимость. Пусть $\lambda_{r+1}f(e_{r+1})+\ldots+\lambda_n f(e_n)=f(\lambda_{r+1}e_{r+1}+\ldots+\lambda_n e_n)=0$, следовательно $\lambda_{r+1}e_{r+1}+\ldots+\lambda_ne_n\in \mathrm{Ker}\, f$, но тогда $\lambda_{r+1}e_{r+1}+\ldots+\lambda_ne_n=\mu_1e_1+\ldots+\mu_re_r$ для некоторых μ_1,\ldots,μ_r . Т.к. векторы e_1,\ldots,e_n линейно независимы, то все $\lambda_i=0$ (и μ_i тоже), следовательно векторы $f(e_{r+1}), \ldots, f(e_n)$ линейно независимы.
- 2) максимальность. Возьмем произвольный $y \in \text{Im } f$, следовательно существует такой $x \in V$, что f(x) = y. Если $x = x^i e_i$ (суммирование по индексу i, пробегающему от 1 до n), то $y=f(x)=f(x^ie_i)=x^if(e_i)$, что является линейной комбинацией векторов $f(e_{r+1}),\ldots,f(e_n)$, т.к. при $i=1,\ldots,r$ $e_i\in \operatorname{Ker} f$ и $f(e_i)=0$. Следовательно $f(e_{r+1}),\ldots,f(e_n)$ — базис в $\operatorname{Im} f$, отсюда уже вытекает утверждение лем-

Если W = V, то мы получим отображение пространства в себя. Такие отображения называются *линейными операторами*. Матрица линейного оператора всегда квадратная, при этом в обоих экземплярах пространства V берется один и тот же базис. Тогда при переходе к другому базису матрица линейного оператора изменяется следующим образом: $\widetilde{A}_f = C^{-1} A_f C$, где C — матрица перехода, а A_f — матрица оператора в старом базисе.

Определение 6. Определим $\det f$ равенством $\det f = \det A_f$.

Чтобы определение было корректным, надо, чтобы эта величина не зависела от выбора базиса в пространстве, т.е. возьмем два разным базиса с матрицей перехода C, тогда

$$\det \widetilde{A}_f = \det(C^{-1}A_fC) = \det C^{-1}\det A_f \det C = \det A_f.$$

Определение 7. Определим след $\operatorname{tr} f$ линейного оператора равенством $\operatorname{tr} f = \operatorname{tr} A_f$ tr (AB) = tr (BA) (сумма диагональных элементов матрицы A_f).

Аналогично проверяем, что определение корректно:

$$\operatorname{tr} \widetilde{A}_f = \operatorname{tr}(C^{-1}A_fC) = \operatorname{tr}(A_fCC^{-1}) = \operatorname{tr} A_f.$$

Определение 8. Определим ранг $\operatorname{rk} f$ линейного оператора равенством $\operatorname{rk} f$

Он тоже, очевидно, не будет зависеть от выбора базиса.

Определение 9. Композицией двух линейных операторов $f,g:V\to V$ называются линейные операторы $f \circ g, g \circ f : V \to V$, где $(f \circ g)(x) = f(g(x))$ и $(g \circ f)(x) = g(f(x))$.

Можно легко показать, что в фиксированном базисе $A_{f \circ q} = A_f \cdot A_q$, также легко проверить, что для множества операторов выполнены все аксиомы кольца (если умножение композиция), т.е. множество линейных операторов имеет структуру кольца с единицей, роль которой играет тождественный оператор.

Инвариантное подпространство

Определение 10. Пусть дан линейный оператор $f:W\to W$ и $V\subset W$ — подпространство в W. Оно называется *инвариантным* подпространством относительно f, если его образ лежит в нем самом, т.е. $f(V)\subset V$.

Примеры:

- 1) $V = \operatorname{Ker} f$ будет инвариантным подпространством, т.к. $\forall x \in V \ f(x) = 0 \in V$,
- $V = \operatorname{Im} f$ будет инвариантным подпространством, т.к. по определению $\operatorname{Im} f$ образ любого элемента ему принадлежит.

Рассмотрим подробнее матрицы операторов. Пусть V — инвариантное относительно f подпространство в W. Пусть e_1, \ldots, e_r — базис в V, дополним его до базиса e_1, \ldots, e_n в W. Пусть A_f — матрица оператора в этом базисе, тогда она имеет следующий вид:

$$A_f = \begin{pmatrix} \star & \star \\ \hline 0 & \star \end{pmatrix}$$
, т.е. ее можно разбить по ширине и высоте на две части, отвечающие

векторам e_1, \ldots, e_r и e_{r+1}, \ldots, e_n , причем в нижнем левом углу будут стоять одни були. Действительно, т.к. V инвариантно, то $f(e_i) \in V$ при $1 \le i \le r$, следовательно, $f(e_i) = \alpha_i^1 e_1 + \ldots + \alpha_i^r e_r$. Коэффициенты в этом разложении по базису — это i-й столбец матрицы A_f , а здесь на $r+1,\ldots,n$ -ых местах стоят нули.

Если $W=V_1 \oplus V_2$, где V_1, V_2 — инвариантные подпространства, то и правый верхний угол

матрицы
$$A_f$$
 будет нулевой, и эта матрица будет иметь следующий вид: $A_f = \begin{pmatrix} \star & 0 \\ \hline 0 & \star \end{pmatrix}$.

Доказательство этого аналогично предыдущему.

Определение 11. Пусть V — инвариантное относительно f подпространство, тогда оператор $f_1: V \to V$, определенный равенством $f_1(v) = f(v), v \in V$, называется ограничением оператора f на подпространство V и часто обозначается $f|_V$.

Матрицей оператора $f|_V$ будет левый верхний угол матрицы оператора f, т.е. $A_f = \left(\begin{array}{c|c} A_{f_1} & \star \\ \hline 0 & \star \end{array}\right)$.

Невырожденные операторы. Собственные значения и собственные векторы

Определение 12. Линейный оператор $f:V\to V$ называется невырожденным, если выполнено одно из следующих условий:

- 1) $\det f \neq 0$;
- 2) Ker $f = \{0\};$
- 3) Im f = V;
- 4) $\operatorname{rk} f = \dim V$;
- $\exists g: V \to V$, такой что $g \circ f = f \circ g = id$, т.е. существует обратный оператор.

Лемма 13. Все эти пять свойств эквивалентны.

Доказательство. 2) \iff 3), т.к. $\dim V = \dim \operatorname{Ker} f + \dim \operatorname{Im} f$.

- 1) \iff 2): Пусть существует ненулевой вектор $x \in \operatorname{Ker} f$. Выберем такой базис в V, чтобы x был первым вектором базиса, тогда в матрице оператора A_f первый столбец будет нулевым, тогда $\det f = 0$. Обратно, если $\det f = 0$, то у системы уравнений $A_f X = 0$ существует ненулевое решение, т.е. под действием оператора f некоторый ненулевой вектор переходит в 0. Но тогда $\operatorname{Ker} f \neq \{0\}$.
 - $1) \Longleftrightarrow 4)$ это мы знаем из курса высшей алгебры.

1) \iff 5). Если $\det f \neq 0$ и A_f — матрица оператора f, то $\det A_f \neq 0$, следовательно существует обратная матрица A_f^{-1} , ей соответствует некоторый оператор g. Т.к. $A_f A_f^{-1} = A_f^{-1} A_f = E$, то $f \circ g = g \circ f = id$. Обратно, если существует обратный оператор, то его матрица будет обратной к матрице оператора f, следовательно $\det f = \det A_f \neq 0$.

Замечание. Обратный оператор (если он существует) единственен.

Оператор, для которого ни одно из этих свойств не выполняется называется выроже денным.

Собственные значения и собственные векторы

Определение 14. Пусть f — линейный оператор в линейном пространстве V. Если для некоторого числа $\lambda \in \mathbb{K}$ и для некоторого ненулевого вектора $v \in V$ выполняется равенство $f(v) = \lambda v$, то λ называется собственным значением оператора f, а v — собственным вектором оператора f, отвечающим собственному значению λ .

Лемма 15. λ является собственным значением оператора f тогда и только тогда, когда опера пор $f - \lambda$ id вырожден.

Даказательство.

 \Longrightarrow Если $f(v) = \lambda v$, то $(f - \lambda \mid id)(v) = 0$, значит, ядро оператора $(f - \lambda \cdot id)$ содержит ненулевой вектор v, откуда следует вырожденность этого оператора.

 \Leftarrow : Вырожденность $(f-\lambda\cdot id)$ означает натичие нетривиального ядра у этого оператора. Возьмем в качестве v любой ненулевой вектор из ядра $\mathrm{Ker}(f-\lambda\cdot id)$, тогда $f(v)=\lambda v$. \square

Рассмотрим пространство $V(\lambda) = \mathrm{Ker}(f - \lambda \cdot id)$ — подкространство, состоящее из всех собственных векторов, отвечающих одному и тому же собственному значению λ , и из нулевого вектора.

Лемма 16. Пространство $V(\lambda)$ инвершантно относитель но оператора f.

Доказательство. Если $x \in V(\lambda)$, т.е. $(f - \lambda \cdot d)(x) = 0$, тогда $f(x) = \lambda x \in V(\lambda)$. \square

Лемма 17. Пусть \mathbb{K} — алгебраически замкнутое поле (т.е. любой многочлен $f \in \mathbb{K}_n[x]$, $\deg f > 0$, имеет корень), например, поле комплексных чисел. Тогда у любого оператора $f : W \to W$, где $\dim W > 1$, существует нетривиальное инвириантное подпространство (утличног от нуля и от всего пространства).

Доказательство. Рассмотрим уравнение $\det(f + \lambda \cdot id) = 0$. В силу алгебранческой замкнутости поля, это уравнение имеет корень λ_0 , тогда λ_0 будет собственным значением f и тогда $\dim V(\lambda_0) > 0$ и $V(\lambda_0)$ инвариантно. Если $V(\lambda_0) \neq W$, то оно нетривиально. Если же случайно получилось, что $V(\lambda_0) = W$, то f имеет вид $f = \lambda_0 \cdot id$, т.е. является просто оператором умножения на число, и тогда любое подпространство будет инвариантным. \square

Проекторы

Если $W=V_1\oplus V_2$, то для любого вентора w имеет место единственное разложение вида $w=v_1+v_2$, где $v_1\in V_1$, $v_2\in V_2$. Рассмотрим личейный оператор $f:W\to W$, определенный формулой $J(w)=v_1$. Т.к. $v_1=v_1+0$, то $f(V_1)\subset V_1$, т.е. V_1 инвариантно относительно f, более того на подпространстве имеем $f|_{V_1}=id_{V_1}$. Т.к. исе вектора из V_2 переходят в 0, то $V_2\in \operatorname{Ker} f$. На самом деле $V_2=\operatorname{Ker} f$, т.к. если f(w)=0, то в разложении $w=v_1+v_2$ имеем $v_2=0$, т.е. $w\in V_2$.

Определение 18. Операторы указанного вида называются операторами проектирования или просто проектирими вдоли V_2 на V_1 .

uzomopopuzmen - unuentere orosp. Cgonomuit- Telsol. Suevernbuock Municipa nyreboe oto Sp. f: V ->W OEW f(x)=0 Yx6V. f(xx)=0=f(x)+f(y) f(xx)=0=x.f(x)

earn W=V, f-Townglate. stoop. f(x)=X

> f(x)-dx 2EK L=0 - nyreboe worth L=1 - Hornsperso.

notopos ua nuoca.

f (x) Aday

f-nolopot ha d.

li-Tayrec & V ei - Jazue 6 W -> Af Marpuya um. arosp. f. B I-V-W gennery Sazcecax 7 1-u cronsey Af. fler) EW - Macker, uso flez) m. Hen & agueg ei

L (V, W) - m. my-60 frifze ((v,w) $(f_1+f_2)(x) = f_1(x) + f_2(x)$ $(\lambda f)(x) = \lambda - f(x)$

f1, f2: V -> W f, (e1) +files - 1-in L-x crowdisol Afra Afra.

field flenten (000) = E. flen -en li 4 Ei - Serguen & Vy veripuya nep. C1. li u é! - Sazucer le W, marpuyarep. C2. DUNUK. g-un

Mun. otoSp.

G = C + G = C A = C + C + C A = C + C A = C + C

y1, y2 € Im f

3 ×1,72 EV 7. 250 f(x1)=y1 f(x2)=y2.

f(x1+x2)=y1+y2, T.e.] x,+x2: Korponin £ nepeleognir 6 y, +y2.

=> YityzEImf.

A wasp. Go f B war. - wasp. B.A fonep. tog ~ AB. $Y = A \times$ $7 = B \times$ $7 = B \times$ $1 = B \times$ $2 = (B \times A) \times$

idof = f. | bil vp-loo'u

foid = f \ \ \land \center \center \center \ \land \center \center \center \center \land \center \center \ \land \center \ce TO Mg. Stelparop id ett.
nobopot us niocusour les
they'ver fluid v year dto, TT. her whopping,

fiw nw W sentap. P(0)=P {0} unbar. f(V) CV. ecur v ne unbap. To f: V -> W - un. andr. une onepatop. f(V) = V - onepaisp fill-V.

ean b navour- $\sqrt{2}$ Sazuce navoure emparopa guarone, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_1 & 0 \\ 0 &$

Mansher. nobopot us d \$ 0,4. f(v)=>v cumellones oriscus, upanion f(s)=r. $\lambda=1$.