Strong Birkhoff-James orthogonality in Hilbert C^{*}-modules

Ljiljana Arambašić, University of Zagreb
We say that two elements of a Hilbert C^{*}-module are orthogonal if their C^{*}-valued inner product is 0 . In a Hilbert C^{*}-module, besides this type of orthogonality, we can study all other orthogonalities defined in a general normed space. One which is most frequently used is Birkhoff-James orthogonality - if x, y are elements of a normed linear space X, then x is orthogonal to y in the BJ sense if $\|x+\lambda y\| \geq\|x\|$ for all scalars λ. As we usually do in Hilbert C^{*}-modules, we study analogous relations obtained by replacing scalars with elements of the underlying C^{*}-algebra, or the norm with the C^{*}-valued "norm". It often happens that these relations are very strong and coincide with (the first mentioned) orthogonality in a Hilbert C^{*}-module, but not always. This leads to the notion of the strong (also called modular) BJ orthogonality which is the main topic of this talk. This is a joint work with A. Guterman, B. Kuzma, R. Rajić and S. Zhilina.

