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and Gelfand Naimark Segal representation

Let A be a unital C*-algebra.

Let ¢ : A — ( be a state.

Then there exists a triple (#, 7, z), where
‘H is a Hilbert space,

m: A — B(H) is a representation,

z € H is a unit vector such that

¢(a) = (z,7(a)z)

for all 2 € A.
Minimality: H = span{m(a)z : a € A}.
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Suppose ¢1, ¢» are two states on a unital C*-algebra A.

Question: If ¢1, ¢ are close can we make GNS
representations close?

Idea: Look at common representations: (H,m, z1, z2).
Existence of common representation?

Example: Consider GNS triples (H1, 71, x1), (Ha, 72, x2)
where

pi(a) = (xi, mi(a)x;).

Take H =H1 P Ho,m =71 D7, and z1 = x1 P 0,20 = 0B x».

Then (H, 7, z1,2) is a common representation for ¢1, ¢».
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» Suppose ¢1, ¢ are states on A:
> Take
B(p1, d2) = inf{||lz1 — 2| : (H, 7, 21, 22)}

The infimum is over common representations of ¢1, ¢»:

pi(a) = (z;,m(a)z), i=1,2.

» Theorem (Bures): [ is a metric on states and

B(d1,92) < V/||o1 — 2.

» The infimum is attained in every common representation.

» The result has found many applications.
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Completely positive (CP) maps

» A linear map ¢ : A — B is said to be completely positive
(CP) if,
S bro(ata)b; > 0
ij
for a; € A, b; € B.
» x-homomorphisms, positive linear functionals are (CP).
» Compositions, sums, convex combinations of CP maps are CP.

> CP maps are very important for understanding C*-algebras
and from applications point of view.
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Bures distance for CP maps

» A continuity theorem for Stinespring dilation by D.
Kretschmann, D. Schlingemann, R. F. Werner, JFA (2008).

» Theorem: Suppose ¢1, ¢ are CP maps from A to B(G).
> Take

6(¢17 ¢2) - |nf{H Vl - V2H : (H77T7 V17 V2)}
The infimum is over common representations of ¢1, ¢o:

¢i(a) = Vim(a)Vi, i=12

» Then 3 is a metric.

» The infimum is attained in some representation and one has
lower and upper bounds for 3:

|1 — d2l|ch )
< B(¢1,2) < T
Voilles + V2l o (¢1,92) < V91 — ¢2lles
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map.

» There exists a triple (E,m, z), where

» E is a Hilbert C*, A — I3 module (left action 7 from A and
inner products take value in B),

» z ¢ E is a vector such that

for all 2 € A.
» Minimality: E =span{m(a)zb:aec A, b e B}.
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> Let ¢1, P> be CP maps from A to 5.
» Define Bures distance by

B(¢1, ¢2) = inf||z1 — 22|

» The infimum is over common representations (&, 7, z1, z2) of

¢17 ¢2~
> gf),-(a) = <z,-,7r(a)z,->.
» In good situations, such as when 5 is a von Neumann algebra,

or an injective C*-algebra, ( is a metric and has similar
bounds.

» Remark: The infimum is not attained in all common
representations and in general it is not a metric (triangle
inequality fails).
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Joint representations

Let ¢1, 9o be UCP maps from A to B.

Consider joint representations (&, 71,72, 2).

oi(a) = (z,mi(a)z), i =1,2.

It can be proved that such joint representations (&, 11, m2, 2)
always exist.
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» Definition: Let ¢1, ¢» be UCP maps from A to B.

» Define representation metric by

Y(P1, ¢p2) = inf |71 — 72| cp

» The infimum is over joint representations (&, 71,72, z) of

b1, P2
» ¢i(a) = (z,mi(a)z), i=1,2.
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Representation metric basics

» A joint representation (&, 71, 72, x) is said to be minimal if
the module generated by x and left actions 71, 1 is £.

> It suffices to consider minimal joint representations.

» Theorem 1: If the range algebra B is a von Neumann algebra
or injective C*-algebra then ~ is a metric.

» Theorem 2: + is invariant under ampliations:

”/(@gn): ¢gn)) = (o1, ¢2)

for all n > 1.
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Free product of C*-algebras

>
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Suppose C, D are two unital C*-algebras.

Denote by C o D the unital x-algebra of all finite linear
combinations of all possible finite words consists of elements
of C and D.

Define a norm on this algebra by
|||l = sup {||7(c)|| : w is a * -representation of Co D }.

This is a C* norm. Completion of C o D under this norm is
called the full free product of C and D and is denoted by
C«D.

There are canonical injections p¢ : C — C % D,

pp D — Cx*D. This way, C,D are considered as
sub-algebras of C x D.

There is a 1-1 correspondence between the *-representations
of C « D and pairs of «-representations of C and D on a
common Hilbert space H.
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Joint representation module and free product

» There is 1-1 correspondence between (£, 01,02) and
Ax A — B bi-modules (£, 0).

» Then every joint representation module (£, 01, 02, x)
corresponds uniquely to an A % A — 3 bi-module (&, x).

» The joint representation module is minimal if and only if

Ax AxB = €.
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Representation metric through free products

» Theorem 3: Let A * A be the free product of A with itself.

» Let p1, po be the canonical injections of A as first copy and
second copy in A x A.
> Take

K(¢1,92) = {¢: AxA — B, ¢is a CP map, ¢op1 = ¢1, ¢pop2 = ¢2}.

» Then

,¢2) = inf — 0241 (€, 0,
V(@1 92) = inf Al = o2llay < (€, 0, %)}

» where o, =cop; =12

» (&£,0,x)4 is the minimal Stinespring dilation of ¢.

» Remark: A CP map in K(¢1,¢2) is like a bivariate distribution
with given marginals. This shows that the metric v is
somewhat like the Wasserstein metric for probability measures.
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Consequences

» Theorem 4: Let A, B and C be C*-algebras. Let ¢1, o be
UCP maps from A to B and ¢ is a UCP map from B to C.
Then

Y( o 1,1 0 p2) < y(¢1, P2).

» Theorem 5 (Attainability of the metric): There is a
o € K(¢1,¢2) for which the infimum is attained for v(¢1, ¢2),
that is,
Y(¢1,92) = [lo1 — U2”fb-
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Main result for states: Relationship with Bures metric

» Theorem 6. For states ¢1, ¢»,

B%(p1,d2) =2 — \/ 4= 73(¢1,92)

> Remark: Actually we get:

Y(¢1, ¢2) = B(P1, P2)\/ 4 — B2(d1, P2),

> So 3%(¢1,92) =24 /4 —72(1, P2)

» Only the negative sign is permissible, as
0 < B%(p1,02), (1, d2) < 2 is trivially true for unital CP
maps.
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» Suppose (IC, 71,12, x) is a joint representation of a pair of

states ¢1, ¢o.

We may consider instead (KC @ /C, w1 & 7o, m0 & 11, x & 0).

» This does not change the norm difference:
|m1 = m2llep = [|(m1 & 7m2) — (72 & 71) | cp-

P In other words, we may restrict ourselves to unitarily
equivalent representations 71, 1> two compute the
representation metric .

» Suppose U is a unitary on /C so that m(-) = U*mi(-)U. Let
y = Ux.

v

» So we are led to consider all tuples (K, 7, U, x, y) such that
)

¢1() = (x,7(-)x) and ¢2(-) = ({y,7()y), Ux =y.
» |t follows that

. - inf — U U|| cp.
Y(o1, ¢2) {KJ"?}?W} |7 Ul b



Technical Lemma 1

P> Let x,y be unit vectors in a Hilbert space K. For a unitary U
in /C, denote by Ady the automorphism X — UXU*, on B(K).



Technical Lemma 1

P> Let x,y be unit vectors in a Hilbert space K. For a unitary U
in /C, denote by Ady the automorphism X — UXU*, on B(K).

» Theorem (Stampfli [St]): ||id — Ady|| = 2d(U,C).



Technical Lemma 1

P> Let x,y be unit vectors in a Hilbert space K. For a unitary U
in /C, denote by Ady the automorphism X — UXU*, on B(K).
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Technical Lemma 1

P> Let x,y be unit vectors in a Hilbert space K. For a unitary U
in /C, denote by Ady the automorphism X — UXU*, on B(K).

» Theorem (Stampfli [St]): ||id — Ady|| = 2d(U,C).

p i id=Adylley = inf lid—Ady| =2 inf d(U,C)

» Lemma 1:

inf  |lid — Adylle = 24/1 — |(x, y)|2.
St lid = Adylles = 2y/1 = [(x.)



Technical Lemma 2

» Lemma 2: Let x, y be some unit vectors in a Hilbert space K.
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Technical Lemma 2

» Lemma 2: Let x, y be some unit vectors in a Hilbert space K.
> Let W be a unitary on /C such that Wx = y.
> Let P be a positive operator on K.

» Then
|W — P|| > 1/1 — [Re(x, y)]2.



Technical Lemma 2

Lemma 2: Let x, y be some unit vectors in a Hilbert space K.
Let W be a unitary on /C such that Wx = y.

Let P be a positive operator on K.

Then
W — Pl = /1 - [Re(x,y)]*.

» Theorem (Johnson [Jh]): Suppose 7 is a faithful
representation of a C*-algebra A on K and U is a unitary on
IC. Then

vvyyy



Technical Lemma 2

Lemma 2: Let x, y be some unit vectors in a Hilbert space K.
Let W be a unitary on /C such that Wx = y.

Let P be a positive operator on K.

Then
W — Pl = /1 - [Re(x,y)]*.

» Theorem (Johnson [Jh]): Suppose 7 is a faithful
representation of a C*-algebra A on K and U is a unitary on
IC. Then

vvyyy

7 — Ady o 7lles = 2d(U, 7(AY).
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» Theorem 7: Let A be a unital C*-algebra.
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Main Result for CP Maps

» Theorem 7: Let A be a unital C*-algebra.
» Let B C B(G) be an injective C*-algebra.
» Suppose ¢1, 2 € UCP(A, B).

> Then

Y(¢1, 92) = B(o1, P2)1/4 — B2(d1, $2).
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satisfying T + T* > rl for some r € R.
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Constrained Dilation Theorem of Choi and Li

» Theorem [CL]: Let T be a contraction on a Hilbert space C
satisfying T + T* > rl for some r € R.
» Then there exists a unitary dilation V of T on K & IC,
satisfying
>
V+V* >l

» Proposition: Let T be a strict contraction on a Hilbert space
IC. Then any unitary dilation V of T on K & K is up to
unitary equivalence of the form

B T —(I - TT*):W

(I—T*T)z T*W

for some unitary W on K.



Example

» Example: Let H be a separable infinite dimensional Hilbert
space. Let K denote the set of all compact operators on H.
Set K, = span {K,Cly}. Let

_( K+ K _
A( . }C+)CB(H@H), B=K,.

Let p be a projection on H such that range of pand 1 — p
are both infinite dimensional subspaces of H.
Let 0 <6 < 7. Set

u=e’p4e(1—p).

Then v is a unitary and v ¢ K. Let

- 5(1): =4

Define unital CP maps ¢; : A — B, by
gb,-(a) = z,?“az,-, acAi=1,2.

1)



Example -continued
» Let . : B — B(H) be the inclusion map.
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» Let . : B — B(H) be the inclusion map.
> Let d =rog;,i=1,2.
» As B(H) is injective, we have

V(1 $2) = B(d1, d2)\/ 4 — B(¢1, $2).
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» Let . : B — B(H) be the inclusion map.
> Let d =rog;,i=1,2.
» As B(H) is injective, we have

(1, d2) = B(d1, d2)\/ 4 — B2(1, b2).

(61, 62) > /(3 + cosO)(1 — cosb) = (¢1, b2).



Example -continued

» Let . : B — B(H) be the inclusion map.
> Let d =rog;,i=1,2.
» As B(H) is injective, we have

(1, b2) = B(n, <Z~52)\/ 4 — B2(¢1, o).

(61, 62) > /(3 + cosO)(1 — cosb) = (¢1, b2).

7((1)17 <f>2) ;é ﬁ((bl? ¢2) \/ 4 — ﬁ2(¢1; ¢2)



Example -continued

» Let . : B — B(H) be the inclusion map.
» Let ;=0 i=1,2.
» As B(H) is injective, we have

(1, d2) = B(d1, d2)\/ 4 — B2(1, b2).

Y(¢1,62) > /(3 + cos 0)(1 — cos ) = (1, $2).

Y(¢1, p2) # B(o1, p2)1/4 — B2(d1, $2).

» In other words, the formula we have proved may not hold
without some assumptions on the range algebra.



Example -continued

» Let . : B — B(H) be the inclusion map.
> Let p; =10¢;,i=12.
» As B(H) is injective, we have

(1, d2) = B(¢1, </~52)\/ 4 — 32(41, d2).

Y(p1, 2) > /(3 + cos0)(1 — cos0) = (1, d2).

(1, 2) # B(P1, 92)\/ 4 — (1, d2).

» In other words, the formula we have proved may not hold
without some assumptions on the range algebra.

» Qpen Question: Does the formula for 5 in terms of ~ hold
when the range algebra is a general von Neumann algebra?
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