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States and Gelfand Naimark Segal representation

I Let A be a unital C ∗-algebra.

I Let φ : A → CI be a state.

I Then there exists a triple (H, π, z), where

I H is a Hilbert space,

I π : A → B(H) is a representation,

I z ∈ H is a unit vector such that

φ(a) = 〈z , π(a)z〉

for all a ∈ A.
I Minimality: H = span{π(a)z : a ∈ A}.
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Two states

I Suppose φ1, φ2 are two states on a unital C ∗-algebra A.

I Question: If φ1, φ2 are close can we make GNS
representations close?

I Idea: Look at common representations: (H, π, z1, z2).

I Existence of common representation?

I Example: Consider GNS triples (H1, π1, x1), (H2, π2, x2)
where

φi (a) = 〈xi , πi (a)xi 〉.

I Take H = H1⊕H2, π = π1⊕π2, and z1 = x1⊕ 0, z2 = 0⊕ x2.

I Then (H, π, z1, z2) is a common representation for φ1, φ2.
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Bures distance

I Suppose φ1, φ2 are states on A:

I Take
β(φ1, φ2) = inf{‖z1 − z2‖ : (H, π, z1, z2)}

The infimum is over common representations of φ1, φ2:

φi (a) = 〈zi , π(a)zi 〉, i = 1, 2.

I Theorem (Bures): β is a metric on states and

β(φ1, φ2) ≤
√
‖φ1 − φ2‖.

I The infimum is attained in every common representation.

I The result has found many applications.
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Completely positive (CP) maps

I A linear map φ : A → B is said to be completely positive
(CP) if, ∑

i ,j

b∗i φ(a∗i aj)bj ≥ 0

for ai ∈ A, bi ∈ B.

I ∗-homomorphisms, positive linear functionals are (CP).

I Compositions, sums, convex combinations of CP maps are CP.

I CP maps are very important for understanding C ∗-algebras
and from applications point of view.
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Stinespring’s Theorem

I Theorem: Let φ : A → B(G) be a completely positive map for
some Hilbert space G, then there exists a triple (H, π,V ),
where

I H is a Hilbert space,

I π : A → B(H) is a representation.

I V : G → H is a bounded linear map such that

φ(a) = V ∗π(a)V

for all a ∈ A.

I Minimality: H = span{π(a)Vg : a ∈ A, g ∈ G}.
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Bures distance for CP maps

I A continuity theorem for Stinespring dilation by D.
Kretschmann, D. Schlingemann, R. F. Werner, JFA (2008).

I Theorem: Suppose φ1, φ2 are CP maps from A to B(G).

I Take

β(φ1, φ2) = inf{‖V1 − V2‖ : (H, π,V1,V2)}

The infimum is over common representations of φ1, φ2:

φi (a) = V ∗i π(a)Vi , i = 1, 2.

I Then β is a metric.

I The infimum is attained in some representation and one has
lower and upper bounds for β:

‖φ1 − φ2‖cb√
‖φ1‖cb +

√
‖φ2‖cb

≤ β(φ1, φ2) ≤
√
‖φ1 − φ2‖cb
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Stinespring’s theorem in Hilbert C ∗- module language

I Theorem (Paschke): Let φ : A → B be a completely positive
map.

I There exists a triple (E , π, z), where

I E is a Hilbert C ∗, A− B module (left action π from A and
inner products take value in B),

I z ∈ E is a vector such that

φ(a) = 〈z , π(a)z〉

for all a ∈ A.
I Minimality: E = span{π(a)zb : a ∈ A, b ∈ B}.
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I Let φ1, φ2 be CP maps from A to B.

I Define Bures distance by

β(φ1, φ2) = inf ‖z1 − z2‖

I The infimum is over common representations (E , π, z1, z2) of
φ1, φ2.

I φi (a) = 〈zi , π(a)zi 〉.
I In good situations, such as when B is a von Neumann algebra,

or an injective C ∗-algebra, β is a metric and has similar
bounds.

I Remark: The infimum is not attained in all common
representations and in general it is not a metric (triangle
inequality fails).
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Joint representations

I Let φ1, φ2 be UCP maps from A to B.

I Consider joint representations (E , π1, π2, z).

I φi (a) = 〈z , πi (a)z〉, i = 1, 2.

I It can be proved that such joint representations (E , π1, π2, z)
always exist.
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Representation metric basics

I A joint representation (E , π1, π2, x) is said to be minimal if
the module generated by x and left actions π1, π2 is E .

I It suffices to consider minimal joint representations.

I Theorem 1: If the range algebra B is a von Neumann algebra
or injective C ∗-algebra then γ is a metric.

I Theorem 2: γ is invariant under ampliations:

γ(φ
(n)
1 , φ

(n)
2 ) = γ(φ1, φ2)

for all n ≥ 1.
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Free product of C ∗-algebras

I Suppose C,D are two unital C ∗-algebras.

I Denote by C ◦ D the unital ∗-algebra of all finite linear
combinations of all possible finite words consists of elements
of C and D.

I Define a norm on this algebra by

‖c‖ = sup {‖π(c)‖ : π is a ∗ -representation of C ◦ D }.

This is a C ∗ norm. Completion of C ◦ D under this norm is
called the full free product of C and D and is denoted by
C ∗ D.

I There are canonical injections ρC : C → C ∗ D,
ρD : D → C ∗ D. This way, C,D are considered as
sub-algebras of C ∗ D.

I There is a 1-1 correspondence between the ∗-representations
of C ∗ D and pairs of ∗-representations of C and D on a
common Hilbert space H.
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Joint representation module and free product

I There is 1-1 correspondence between (E , σ1, σ2) and
A ∗ A− B bi-modules (E , σ).

I Then every joint representation module (E , σ1, σ2, x)
corresponds uniquely to an A ∗ A− B bi-module (E , x).

I The joint representation module is minimal if and only if
A ∗ AxB = E .
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Representation metric through free products

I Theorem 3: Let A ∗ A be the free product of A with itself.

I Let ρ1, ρ2 be the canonical injections of A as first copy and
second copy in A ∗ A.

I Take

K (φ1, φ2) = {φ : A∗A → B, φ is a CP map, φ◦ρ1 = φ1, φ◦ρ2 = φ2}.

I Then

γ(φ1, φ2) = inf
φ∈K(φ1,φ2)

{‖σ1 − σ2‖Ecb : (E , σ, x)φ}

I where σi = σ ◦ ρi i = 1, 2.

I (E , σ, x)φ is the minimal Stinespring dilation of φ.

I Remark: A CP map in K (φ1, φ2) is like a bivariate distribution
with given marginals. This shows that the metric γ is
somewhat like the Wasserstein metric for probability measures.
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Consequences

I Theorem 4: Let A,B and C be C ∗-algebras. Let φ1, φ2 be
UCP maps from A to B and ψ is a UCP map from B to C.
Then

γ(ψ ◦ φ1, ψ ◦ φ2) ≤ γ(φ1, φ2).

I Theorem 5 (Attainability of the metric): There is a
φ ∈ K (φ1, φ2) for which the infimum is attained for γ(φ1, φ2),
that is,

γ(φ1, φ2) = ‖σ1 − σ2‖φcb.
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Main result for states: Relationship with Bures metric

I Theorem 6. For states φ1, φ2,

β2(φ1, φ2) = 2−
√

4− γ2(φ1, φ2)

I Remark: Actually we get:

γ(φ1, φ2) = β(φ1, φ2)
√

4− β2(φ1, φ2),

I So β2(φ1, φ2) = 2±
√

4− γ2(φ1, φ2)

I Only the negative sign is permissible, as
0 ≤ β2(φ1, φ2), γ(φ1, φ2) ≤ 2 is trivially true for unital CP
maps.
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Idea of the proof

I Suppose (K, π1, π2, x) is a joint representation of a pair of
states φ1, φ2.

I We may consider instead (K ⊕K, π1 ⊕ π2, π2 ⊕ π1, x ⊕ 0).

I This does not change the norm difference:
‖π1 − π2‖cb = ‖(π1 ⊕ π2)− (π2 ⊕ π1)‖cb.

I In other words, we may restrict ourselves to unitarily
equivalent representations π1, π2 two compute the
representation metric γ.

I Suppose U is a unitary on K so that π2(·) = U∗π1(·)U. Let
y = Ux .

I So we are led to consider all tuples (K, π,U, x , y) such that
φ1(·) = 〈x , π(·)x〉 and φ2(·) = 〈y , π(·)y〉, Ux = y .

I It follows that

γ(φ1, φ2) = inf
{K,π,U,x ,y}

‖π − U∗πU‖cb.
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Technical Lemma 1

I Let x , y be unit vectors in a Hilbert space K. For a unitary U
in K, denote by AdU the automorphism X 7→ UXU∗, on B(K).

I Theorem (Stampfli [St]): ‖id − AdU‖ = 2d(U,C).

I

inf
U:Ux=y

‖id−AdU‖cb = inf
U:Ux=y

‖id−AdU‖ = 2 inf
U:Ux=y

d(U,C)

I Lemma 1:

inf
U:Ux=y

‖id − AdU‖cb = 2
√

1− |〈x , y〉|2.
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Technical Lemma 2

I Lemma 2: Let x , y be some unit vectors in a Hilbert space K.

I Let W be a unitary on K such that Wx = y .

I Let P be a positive operator on K.
I Then

‖W − P‖ ≥
√

1− [Re〈x , y〉]2.

I Theorem (Johnson [Jh]): Suppose π is a faithful
representation of a C ∗-algebra A on K and U is a unitary on
K. Then

I
‖π − AdU ◦ π‖cb = 2d(U, π(A)′).
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Main Result for CP Maps

I Theorem 7: Let A be a unital C ∗-algebra.

I Let B ⊂ B(G) be an injective C ∗-algebra.

I Suppose φ1, φ2 ∈ UCP(A,B).

I Then

γ(φ1, φ2) = β(φ1, φ2)
√

4− β2(φ1, φ2).
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Constrained Dilation Theorem of Choi and Li

I Theorem [CL]: Let T be a contraction on a Hilbert space K
satisfying T + T ∗ ≥ rI for some r ∈ R.

I Then there exists a unitary dilation V of T on K ⊕K,
satisfying

I
V + V ∗ ≥ rI .

I Proposition: Let T be a strict contraction on a Hilbert space
K. Then any unitary dilation V of T on K ⊕K is up to
unitary equivalence of the form

V =

(
T −(I − TT ∗)

1
2W

(I − T ∗T )
1
2 T ∗W

)

for some unitary W on K.
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Example
I Example: Let H be a separable infinite dimensional Hilbert

space. Let K denote the set of all compact operators on H.
Set K+ = span {K,CIH}. Let

A =

(
K+ K
K K+

)
⊂ B(H ⊕ H), B = K+.

Let p be a projection on H such that range of p and 1− p
are both infinite dimensional subspaces of H.
Let 0 < θ < π

2 . Set

u := e iθp + e−iθ(1− p).

Then u is a unitary and u /∈ K+. Let

z1 =
1√
2

(
I
I

)
, z2 =

1√
2

(
u
I

)
.

Define unital CP maps φi : A → B, by
φi (a) = z∗i azi , a ∈ A, i = 1, 2.



Example -continued
I Let ι : B → B(H) be the inclusion map.

I Let φ̃i = ι ◦ φi , i = 1, 2.
I As B(H) is injective, we have

γ(φ̃1, φ̃2) = β(φ̃1, φ̃2)

√
4− β2(φ̃1, φ̃2).

I
γ(φ1, φ2) >

√
(3 + cos θ)(1− cos θ) = γ(φ̃1, φ̃2).

I

γ(φ1, φ2) 6= β(φ1, φ2)
√

4− β2(φ1, φ2).

I In other words, the formula we have proved may not hold
without some assumptions on the range algebra.

I Qpen Question: Does the formula for β in terms of γ hold
when the range algebra is a general von Neumann algebra?
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