BURES DISTANCE FOR COMPLETELY POSITIVE MAPS

B. V. Rajarama Bhat, Indian Statistical Institute, Bangalore.

December 5, 2020

International Workshop HILBERT C*-MODULES ONLINE WEEKEND In memory of William L. Paschke

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Acknowledgements

Thanks to the organisers for giving this opportunity to me.

Acknowledgements

Thanks to the organisers for giving this opportunity to me.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Thanks to JC Bose Fellowship

Based on Bures distance for completely positive maps (with K. Sumesh)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Based on Bures distance for completely positive maps (with K. Sumesh)
- Published in: Infin. Dimens. Anal. Quantum Probab. Relat. Top. 16 (2013), no. 4, 1350031, 22 pp. DOI: 10.1142/S0219025713500318.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Based on Bures distance for completely positive maps (with K. Sumesh)
- Published in: Infin. Dimens. Anal. Quantum Probab. Relat. Top. 16 (2013), no. 4, 1350031, 22 pp. DOI: 10.1142/S0219025713500318.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 and *Two states*, (with Mithun Mukherjee), arXiv:1710.00180v1,

- Based on Bures distance for completely positive maps (with K. Sumesh)
- Published in: Infin. Dimens. Anal. Quantum Probab. Relat. Top. 16 (2013), no. 4, 1350031, 22 pp. DOI: 10.1142/S0219025713500318.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- and *Two states*, (with Mithun Mukherjee), arXiv:1710.00180v1,
- ▶ to appear in the Houston Journal of Mathematics.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Let \mathcal{A} be a unital C^* -algebra.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Let \mathcal{A} be a unital C^* -algebra.
- Let $\phi : \mathcal{A} \to \mathcal{I}$ be a state.

- Let \mathcal{A} be a unital C^* -algebra.
- Let $\phi : \mathcal{A} \to \mathcal{I}$ be a state.
- Then there exists a triple (\mathcal{H}, π, z) , where

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- ► Let *A* be a unital *C**-algebra.
- Let $\phi : \mathcal{A} \to \mathcal{I}$ be a state.
- Then there exists a triple (\mathcal{H}, π, z) , where

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 \blacktriangleright \mathcal{H} is a Hilbert space,

- Let \mathcal{A} be a unital C^* -algebra.
- Let $\phi : \mathcal{A} \to \mathcal{I}$ be a state.
- Then there exists a triple (\mathcal{H}, π, z) , where

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- \blacktriangleright \mathcal{H} is a Hilbert space,
- $\pi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ is a representation,

- Let \mathcal{A} be a unital C^* -algebra.
- Let $\phi : \mathcal{A} \to \mathcal{I}$ be a state.
- Then there exists a triple (\mathcal{H}, π, z) , where
- *H* is a Hilbert space,
- $\pi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ is a representation,
- $z \in \mathcal{H}$ is a unit vector such that

 $\phi(a) = \langle z, \pi(a)z \rangle$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

for all $a \in \mathcal{A}$.

- Let \mathcal{A} be a unital C^* -algebra.
- Let $\phi : \mathcal{A} \to \mathcal{I}$ be a state.
- Then there exists a triple (\mathcal{H}, π, z) , where
- *H* is a Hilbert space,
- $\pi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ is a representation,
- $z \in \mathcal{H}$ is a unit vector such that

 $\phi(a) = \langle z, \pi(a)z \rangle$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

for all $a \in \mathcal{A}$.

• Minimality: $\mathcal{H} = \overline{\text{span}} \{ \pi(a)z : a \in \mathcal{A} \}.$

Suppose ϕ_1, ϕ_2 are two states on a unital C^* -algebra \mathcal{A} .

Suppose ϕ_1, ϕ_2 are two states on a unital C^* -algebra \mathcal{A} .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Question: If ϕ_1, ϕ_2 are close can we make GNS representations close?

- Suppose ϕ_1, ϕ_2 are two states on a unital C^* -algebra \mathcal{A} .
- Question: If ϕ_1, ϕ_2 are close can we make GNS representations close?
- ▶ Idea: Look at common representations: $(\mathcal{H}, \pi, z_1, z_2)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Suppose ϕ_1, ϕ_2 are two states on a unital C^* -algebra \mathcal{A} .
- Question: If ϕ_1, ϕ_2 are close can we make GNS representations close?
- ▶ Idea: Look at common representations: $(\mathcal{H}, \pi, z_1, z_2)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Existence of common representation?

- Suppose ϕ_1, ϕ_2 are two states on a unital C^* -algebra \mathcal{A} .
- Question: If \(\phi_1, \(\phi_2\) are close can we make GNS representations close?\)
- ▶ Idea: Look at common representations: $(\mathcal{H}, \pi, z_1, z_2)$.
- Existence of common representation?
- Example: Consider GNS triples $(\mathcal{H}_1, \pi_1, x_1), (\mathcal{H}_2, \pi_2, x_2)$ where

 $\phi_i(a) = \langle x_i, \pi_i(a) x_i \rangle.$

- Suppose ϕ_1, ϕ_2 are two states on a unital C^* -algebra \mathcal{A} .
- Question: If \(\phi_1, \(\phi_2\) are close can we make GNS representations close?\)
- ▶ Idea: Look at common representations: $(\mathcal{H}, \pi, z_1, z_2)$.
- Existence of common representation?
- Example: Consider GNS triples $(\mathcal{H}_1, \pi_1, x_1), (\mathcal{H}_2, \pi_2, x_2)$ where

$$\phi_i(a) = \langle x_i, \pi_i(a) x_i \rangle.$$

• Take $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, $\pi = \pi_1 \oplus \pi_2$, and $z_1 = x_1 \oplus 0$, $z_2 = 0 \oplus x_2$.

- Suppose ϕ_1, ϕ_2 are two states on a unital C^* -algebra \mathcal{A} .
- Question: If \(\phi_1, \(\phi_2\) are close can we make GNS representations close?\)
- ▶ Idea: Look at common representations: $(\mathcal{H}, \pi, z_1, z_2)$.
- Existence of common representation?
- Example: Consider GNS triples $(\mathcal{H}_1, \pi_1, x_1), (\mathcal{H}_2, \pi_2, x_2)$ where

$$\phi_i(a) = \langle x_i, \pi_i(a) x_i \rangle.$$

- Take $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, $\pi = \pi_1 \oplus \pi_2$, and $z_1 = x_1 \oplus 0$, $z_2 = 0 \oplus x_2$.
- Then (H, π, z_1, z_2) is a common representation for ϕ_1, ϕ_2 .

Suppose ϕ_1, ϕ_2 are states on \mathcal{A} :

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Suppose ϕ_1, ϕ_2 are states on \mathcal{A} :

Take

$$\beta(\phi_1,\phi_2) = \inf\{\|z_1 - z_2\| : (\mathcal{H},\pi,z_1,z_2)\}$$

The infimum is over common representations of ϕ_1, ϕ_2 :

$$\phi_i(a) = \langle z_i, \pi(a) z_i \rangle, \quad i = 1, 2.$$

Suppose ϕ_1, ϕ_2 are states on \mathcal{A} :

Take

$$\beta(\phi_1,\phi_2) = \inf\{\|z_1 - z_2\| : (\mathcal{H},\pi,z_1,z_2)\}$$

The infimum is over common representations of ϕ_1, ϕ_2 :

$$\phi_i(a) = \langle z_i, \pi(a) z_i \rangle, \quad i = 1, 2.$$

• Theorem (Bures): β is a metric on states and

 $\beta(\phi_1, \phi_2) \leq \sqrt{\|\phi_1 - \phi_2\|}.$

Suppose ϕ_1, ϕ_2 are states on \mathcal{A} :

Take

$$\beta(\phi_1,\phi_2) = \inf\{\|z_1 - z_2\| : (\mathcal{H},\pi,z_1,z_2)\}$$

The infimum is over common representations of ϕ_1, ϕ_2 :

$$\phi_i(a) = \langle z_i, \pi(a) z_i \rangle, \quad i = 1, 2.$$

• Theorem (Bures): β is a metric on states and

 $\beta(\phi_1, \phi_2) \leq \sqrt{\|\phi_1 - \phi_2\|}.$

The infimum is attained in every common representation.

Suppose ϕ_1, ϕ_2 are states on \mathcal{A} :

Take

$$\beta(\phi_1,\phi_2) = \inf\{\|z_1 - z_2\| : (\mathcal{H},\pi,z_1,z_2)\}$$

The infimum is over common representations of ϕ_1, ϕ_2 :

$$\phi_i(a) = \langle z_i, \pi(a) z_i \rangle, \quad i = 1, 2.$$

• Theorem (Bures): β is a metric on states and

 $\beta(\phi_1, \phi_2) \leq \sqrt{\|\phi_1 - \phi_2\|}.$

- The infimum is attained in every common representation.
- The result has found many applications.

 A linear map φ : A → B is said to be completely positive (CP) if,

 $\sum_{i,j} b_i^* \phi(a_i^* a_j) b_j \ge 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

for $a_i \in \mathcal{A}, b_i \in \mathcal{B}$.

 A linear map φ : A → B is said to be completely positive (CP) if,

$$\sum_{i,j} b_i^* \phi(a_i^*a_j) b_j \geq 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

for $a_i \in \mathcal{A}, b_i \in \mathcal{B}$.

 A linear map φ : A → B is said to be completely positive (CP) if,

$$\sum_{i,j} b_i^* \phi(a_i^*a_j) b_j \geq 0$$

for $a_i \in \mathcal{A}, b_i \in \mathcal{B}$.

- *-homomorphisms, positive linear functionals are (CP).
- Compositions, sums, convex combinations of CP maps are CP.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 A linear map φ : A → B is said to be completely positive (CP) if,

$$\sum_{i,j} b_i^* \phi(a_i^*a_j) b_j \geq 0$$

for $a_i \in \mathcal{A}, b_i \in \mathcal{B}$.

- *-homomorphisms, positive linear functionals are (CP).
- Compositions, sums, convex combinations of CP maps are CP.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 CP maps are very important for understanding C*-algebras and from applications point of view.

Theorem: Let φ : A → B(G) be a completely positive map for some Hilbert space G, then there exists a triple (H, π, V), where

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem: Let φ : A → B(G) be a completely positive map for some Hilbert space G, then there exists a triple (H, π, V), where

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 \blacktriangleright \mathcal{H} is a Hilbert space,

Theorem: Let φ : A → B(G) be a completely positive map for some Hilbert space G, then there exists a triple (H, π, V), where

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- *H* is a Hilbert space,
- $\pi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ is a representation.

- Theorem: Let φ : A → B(G) be a completely positive map for some Hilbert space G, then there exists a triple (H, π, V), where
- *H* is a Hilbert space,
- $\pi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ is a representation.
- $V : \mathcal{G} \to \mathcal{H}$ is a bounded linear map such that

 $\phi(a) = V^* \pi(a) V$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

for all $a \in \mathcal{A}$.

- Theorem: Let φ : A → B(G) be a completely positive map for some Hilbert space G, then there exists a triple (H, π, V), where
- *H* is a Hilbert space,
- $\pi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ is a representation.
- $V : \mathcal{G} \to \mathcal{H}$ is a bounded linear map such that

 $\phi(a) = V^* \pi(a) V$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

for all $a \in \mathcal{A}$.

• Minimality: $\mathcal{H} = \overline{\text{span}} \{ \pi(a) Vg : a \in \mathcal{A}, g \in \mathcal{G} \}.$

Bures distance for CP maps

 A continuity theorem for Stinespring dilation by D. Kretschmann, D. Schlingemann, R. F. Werner, JFA (2008).

Bures distance for CP maps

 A continuity theorem for Stinespring dilation by D. Kretschmann, D. Schlingemann, R. F. Werner, JFA (2008).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Theorem: Suppose ϕ_1, ϕ_2 are CP maps from \mathcal{A} to $\mathcal{B}(\mathcal{G})$.

Bures distance for CP maps

- A continuity theorem for Stinespring dilation by D. Kretschmann, D. Schlingemann, R. F. Werner, JFA (2008).
- ▶ Theorem: Suppose ϕ_1, ϕ_2 are CP maps from \mathcal{A} to $\mathcal{B}(\mathcal{G})$.

Take

 $\beta(\phi_1,\phi_2) = \inf\{\|V_1 - V_2\| : (\mathcal{H},\pi,V_1,V_2)\}$

The infimum is over common representations of ϕ_1, ϕ_2 :

 $\phi_i(a) = V_i^* \pi(a) V_i, \quad i = 1, 2.$

Bures distance for CP maps

- A continuity theorem for Stinespring dilation by D. Kretschmann, D. Schlingemann, R. F. Werner, JFA (2008).
- Theorem: Suppose ϕ_1, ϕ_2 are CP maps from \mathcal{A} to $\mathcal{B}(\mathcal{G})$.

Take

 $\beta(\phi_1,\phi_2) = \inf\{\|V_1 - V_2\| : (\mathcal{H},\pi,V_1,V_2)\}$

The infimum is over common representations of ϕ_1, ϕ_2 :

$$\phi_i(a) = V_i^* \pi(a) V_i, \quad i = 1, 2.$$

• Then β is a metric.

The infimum is attained in some representation and one has lower and upper bounds for β:

$$\frac{\|\phi_1 - \phi_2\|_{cb}}{\sqrt{\|\phi_1\|_{cb}} + \sqrt{\|\phi_2\|_{cb}}} \le \beta(\phi_1, \phi_2) \le \sqrt{\|\phi_1 - \phi_2\|_{cb}}$$

Theorem (Paschke): Let φ : A → B be a completely positive map.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Theorem (Paschke): Let φ : A → B be a completely positive map.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• There exists a triple (E, π, z) , where

- Theorem (Paschke): Let φ : A → B be a completely positive map.
- There exists a triple (E, π, z) , where
- ► *E* is a Hilbert C^* , A B module (left action π from A and inner products take value in B),

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Theorem (Paschke): Let φ : A → B be a completely positive map.
- There exists a triple (E, π, z) , where
- ► *E* is a Hilbert C^* , A B module (left action π from A and inner products take value in B),

• $z \in E$ is a vector such that

 $\phi(a) = \langle z, \pi(a)z \rangle$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for all $a \in \mathcal{A}$.

- Theorem (Paschke): Let φ : A → B be a completely positive map.
- There exists a triple (E, π, z) , where
- ► *E* is a Hilbert C^* , A B module (left action π from A and inner products take value in B),

• $z \in E$ is a vector such that

 $\phi(a) = \langle z, \pi(a)z \rangle$

for all $a \in \mathcal{A}$.

• Minimality: $E = \overline{\text{span}} \{ \pi(a)zb : a \in \mathcal{A}, b \in \mathcal{B} \}.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Let ϕ_1, ϕ_2 be CP maps from \mathcal{A} to \mathcal{B} .

- Let ϕ_1, ϕ_2 be CP maps from \mathcal{A} to \mathcal{B} .
- Define Bures distance by

 $\beta(\phi_1,\phi_2) = \inf \|z_1 - z_2\|$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Let ϕ_1, ϕ_2 be CP maps from \mathcal{A} to \mathcal{B} .
- Define Bures distance by

 $\beta(\phi_1,\phi_2) = \inf \|z_1 - z_2\|$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• The infimum is over common representations $(\mathcal{E}, \pi, z_1, z_2)$ of ϕ_1, ϕ_2 .

- Let ϕ_1, ϕ_2 be CP maps from \mathcal{A} to \mathcal{B} .
- Define Bures distance by

 $\beta(\phi_1,\phi_2) = \inf \|z_1 - z_2\|$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- The infimum is over common representations $(\mathcal{E}, \pi, z_1, z_2)$ of ϕ_1, ϕ_2 .
- $\blacktriangleright \phi_i(a) = \langle z_i, \pi(a) z_i \rangle.$

- Let ϕ_1, ϕ_2 be CP maps from \mathcal{A} to \mathcal{B} .
- Define Bures distance by

 $\beta(\phi_1,\phi_2) = \inf \|z_1 - z_2\|$

- The infimum is over common representations $(\mathcal{E}, \pi, z_1, z_2)$ of ϕ_1, ϕ_2 .
- $\blacktriangleright \phi_i(a) = \langle z_i, \pi(a) z_i \rangle.$
- In good situations, such as when β is a von Neumann algebra, or an injective C*-algebra, β is a metric and has similar bounds.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Let ϕ_1, ϕ_2 be CP maps from \mathcal{A} to \mathcal{B} .
- Define Bures distance by

 $\beta(\phi_1,\phi_2) = \inf \|z_1 - z_2\|$

- The infimum is over common representations $(\mathcal{E}, \pi, z_1, z_2)$ of ϕ_1, ϕ_2 .
- $\blacktriangleright \phi_i(a) = \langle z_i, \pi(a) z_i \rangle.$
- In good situations, such as when B is a von Neumann algebra, or an injective C*-algebra, β is a metric and has similar bounds.
- Remark: The infimum is not attained in all common representations and in general it is not a metric (triangle inequality fails).

- Let ϕ_1, ϕ_2 be UCP maps from \mathcal{A} to \mathcal{B} .
- Consider joint representations $(\mathcal{E}, \pi_1, \pi_2, z)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Let ϕ_1, ϕ_2 be UCP maps from \mathcal{A} to \mathcal{B} .
- Consider joint representations $(\mathcal{E}, \pi_1, \pi_2, z)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\blacktriangleright \phi_i(a) = \langle z, \pi_i(a)z \rangle, \ i = 1, 2.$$

- Let ϕ_1, ϕ_2 be UCP maps from \mathcal{A} to \mathcal{B} .
- Consider joint representations $(\mathcal{E}, \pi_1, \pi_2, z)$.
- $\blacktriangleright \phi_i(a) = \langle z, \pi_i(a)z \rangle, \ i = 1, 2.$
- ► It can be proved that such joint representations $(\mathcal{E}, \pi_1, \pi_2, z)$ always exist.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Definition: Let ϕ_1, ϕ_2 be UCP maps from \mathcal{A} to \mathcal{B} .

(ロ)、(型)、(E)、(E)、 E) の(()

Definition: Let \$\phi_1\$, \$\phi_2\$ be UCP maps from \$\mathcal{A}\$ to \$\mathcal{B}\$.
Define representation metric by

$$\gamma(\phi_1, \phi_2) = \inf \|\pi_1 - \pi_2\|_{cb}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Definition: Let ϕ_1, ϕ_2 be UCP maps from \mathcal{A} to \mathcal{B} .
- Define representation metric by

$$\gamma(\phi_1, \phi_2) = \inf \|\pi_1 - \pi_2\|_{cb}$$

• The infimum is over joint representations $(\mathcal{E}, \pi_1, \pi_2, z)$ of ϕ_1, ϕ_2 .

- **•** Definition: Let ϕ_1, ϕ_2 be UCP maps from \mathcal{A} to \mathcal{B} .
- Define representation metric by

$$\gamma(\phi_1, \phi_2) = \inf \|\pi_1 - \pi_2\|_{cb}$$

• The infimum is over joint representations $(\mathcal{E}, \pi_1, \pi_2, z)$ of ϕ_1, ϕ_2 .

$$\blacktriangleright \phi_i(a) = \langle z, \pi_i(a)z \rangle, \ i = 1, 2.$$

• A joint representation $(\mathcal{E}, \pi_1, \pi_2, x)$ is said to be minimal if the module generated by x and left actions π_1, π_2 is \mathcal{E} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A joint representation (*E*, π₁, π₂, x) is said to be minimal if the module generated by x and left actions π₁, π₂ is *E*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

It suffices to consider minimal joint representations.

- A joint representation (*E*, π₁, π₂, x) is said to be minimal if the module generated by x and left actions π₁, π₂ is *E*.
- It suffices to consider minimal joint representations.
- Theorem 1: If the range algebra β is a von Neumann algebra or injective C*-algebra then γ is a metric.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- A joint representation (*E*, π₁, π₂, x) is said to be minimal if the module generated by x and left actions π₁, π₂ is *E*.
- It suffices to consider minimal joint representations.
- Theorem 1: If the range algebra β is a von Neumann algebra or injective C*-algebra then γ is a metric.
- Theorem 2: γ is invariant under ampliations:

 $\gamma(\phi_1^{(n)},\phi_2^{(n)}) = \gamma(\phi_1,\phi_2)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

for all $n \ge 1$.

Suppose C, D are two unital C^* -algebras.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Suppose \mathcal{C}, \mathcal{D} are two unital \mathcal{C}^* -algebras.
- Denote by C
 o D the unital *-algebra of all finite linear combinations of all possible finite words consists of elements of C and D.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Suppose \mathcal{C}, \mathcal{D} are two unital \mathcal{C}^* -algebras.
- Denote by C
 o D the unital *-algebra of all finite linear combinations of all possible finite words consists of elements of C and D.
- Define a norm on this algebra by

 $\|c\| = \sup \{ \|\pi(c)\| : \pi \text{ is a } * \text{-representation of } \mathcal{C} \circ \mathcal{D} \}.$

This is a C^* norm. Completion of $\mathcal{C} \circ \mathcal{D}$ under this norm is called the full free product of \mathcal{C} and \mathcal{D} and is denoted by $\mathcal{C} * \mathcal{D}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Suppose C, D are two unital C^* -algebras.
- Denote by C
 o D the unital *-algebra of all finite linear combinations of all possible finite words consists of elements of C and D.
- Define a norm on this algebra by

 $\|c\| = \sup \{ \|\pi(c)\| : \pi \text{ is a } * \text{-representation of } \mathcal{C} \circ \mathcal{D} \}.$

This is a C^* norm. Completion of $C \circ D$ under this norm is called the full free product of C and D and is denoted by C * D.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

There are canonical injections ρ_C : C → C * D, ρ_D : D → C * D. This way, C, D are considered as sub-algebras of C * D.

- Suppose \mathcal{C}, \mathcal{D} are two unital \mathcal{C}^* -algebras.
- Denote by C
 o D the unital *-algebra of all finite linear combinations of all possible finite words consists of elements of C and D.
- Define a norm on this algebra by

 $\|c\| = \sup \{ \|\pi(c)\| : \pi \text{ is a } * \text{-representation of } \mathcal{C} \circ \mathcal{D} \}.$

This is a C^* norm. Completion of $C \circ D$ under this norm is called the full free product of C and D and is denoted by C * D.

There are canonical injections ρ_C : C → C * D, ρ_D : D → C * D. This way, C, D are considered as sub-algebras of C * D.

There is a 1-1 correspondence between the *-representations of C * D and pairs of *-representations of C and D on a common Hilbert space H.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- There is 1-1 correspondence between $(\mathcal{E}, \sigma_1, \sigma_2)$ and $\mathcal{A} * \mathcal{A} \mathcal{B}$ bi-modules (\mathcal{E}, σ) .
- ► Then every joint representation module $(\mathcal{E}, \sigma_1, \sigma_2, x)$ corresponds uniquely to an $\mathcal{A} * \mathcal{A} \mathcal{B}$ bi-module (\mathcal{E}, x) .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- There is 1-1 correspondence between $(\mathcal{E}, \sigma_1, \sigma_2)$ and $\mathcal{A} * \mathcal{A} \mathcal{B}$ bi-modules (\mathcal{E}, σ) .
- ► Then every joint representation module $(\mathcal{E}, \sigma_1, \sigma_2, x)$ corresponds uniquely to an $\mathcal{A} * \mathcal{A} \mathcal{B}$ bi-module (\mathcal{E}, x) .
- The joint representation module is minimal if and only if $\overline{\mathcal{A} * \mathcal{A} \times \mathcal{B}} = \mathcal{E}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Representation metric through free products

Theorem 3: Let $\mathcal{A} * \mathcal{A}$ be the free product of \mathcal{A} with itself.

- **Theorem 3**: Let $\mathcal{A} * \mathcal{A}$ be the free product of \mathcal{A} with itself.
- Let ρ₁, ρ₂ be the canonical injections of A as first copy and second copy in A * A.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- **•** Theorem 3: Let $\mathcal{A} * \mathcal{A}$ be the free product of \mathcal{A} with itself.
- Let ρ₁, ρ₂ be the canonical injections of A as first copy and second copy in A * A.
- Take

 $\mathcal{K}(\phi_1,\phi_2) = \{\phi: \mathcal{A}*\mathcal{A} \to \mathcal{B}, \phi \text{ is a CP map, } \phi \circ \rho_1 = \phi_1, \phi \circ \rho_2 = \phi_2\}.$

- **•** Theorem 3: Let $\mathcal{A} * \mathcal{A}$ be the free product of \mathcal{A} with itself.
- Let ρ_1, ρ_2 be the canonical injections of \mathcal{A} as first copy and second copy in $\mathcal{A} * \mathcal{A}$.
- Take

 $\mathcal{K}(\phi_1,\phi_2) = \{\phi: \mathcal{A}*\mathcal{A} \to \mathcal{B}, \phi \text{ is a CP map, } \phi \circ \rho_1 = \phi_1, \phi \circ \rho_2 = \phi_2 \}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$$\gamma(\phi_1,\phi_2) = \inf_{\phi \in \mathcal{K}(\phi_1,\phi_2)} \{ \|\sigma_1 - \sigma_2\|_{cb}^{\mathcal{E}} : (\mathcal{E},\sigma,x)_{\phi} \}$$

- **•** Theorem 3: Let $\mathcal{A} * \mathcal{A}$ be the free product of \mathcal{A} with itself.
- Let ρ₁, ρ₂ be the canonical injections of A as first copy and second copy in A * A.
- Take

 $\mathcal{K}(\phi_1,\phi_2) = \{\phi: \mathcal{A}*\mathcal{A} \to \mathcal{B}, \phi \text{ is a CP map, } \phi \circ \rho_1 = \phi_1, \phi \circ \rho_2 = \phi_2\}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\gamma(\phi_1,\phi_2) = \inf_{\phi \in \mathcal{K}(\phi_1,\phi_2)} \{ \|\sigma_1 - \sigma_2\|_{cb}^{\mathcal{E}} : (\mathcal{E},\sigma,x)_{\phi} \}$$

where σ_i = σ ∘ ρ_i i = 1, 2.
 (ε, σ, x)_φ is the minimal Stinespring dilation of φ.

- **•** Theorem 3: Let $\mathcal{A} * \mathcal{A}$ be the free product of \mathcal{A} with itself.
- Let ρ₁, ρ₂ be the canonical injections of A as first copy and second copy in A * A.
- Take

 $\mathcal{K}(\phi_1,\phi_2) = \{\phi: \mathcal{A}*\mathcal{A} \to \mathcal{B}, \phi \text{ is a CP map, } \phi \circ \rho_1 = \phi_1, \phi \circ \rho_2 = \phi_2 \}.$

$$\gamma(\phi_1,\phi_2) = \inf_{\phi \in \mathcal{K}(\phi_1,\phi_2)} \{ \|\sigma_1 - \sigma_2\|_{cb}^{\mathcal{E}} : (\mathcal{E},\sigma,x)_{\phi} \}$$

• where $\sigma_i = \sigma \circ \rho_i$ i = 1, 2.

- $(\mathcal{E}, \sigma, x)_{\phi}$ is the minimal Stinespring dilation of ϕ .
- Remark: A CP map in K(φ₁, φ₂) is like a bivariate distribution with given marginals. This shows that the metric γ is somewhat like the Wasserstein metric for probability measures.

Consequences

• Theorem 4: Let \mathcal{A}, \mathcal{B} and \mathcal{C} be C^* -algebras. Let ϕ_1, ϕ_2 be UCP maps from \mathcal{A} to \mathcal{B} and ψ is a UCP map from \mathcal{B} to \mathcal{C} . Then

 $\gamma(\psi \circ \phi_1, \psi \circ \phi_2) \leq \gamma(\phi_1, \phi_2).$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Consequences

► Theorem 4: Let \mathcal{A}, \mathcal{B} and \mathcal{C} be C^* -algebras. Let ϕ_1, ϕ_2 be UCP maps from \mathcal{A} to \mathcal{B} and ψ is a UCP map from \mathcal{B} to \mathcal{C} . Then

 $\gamma(\psi \circ \phi_1, \psi \circ \phi_2) \leq \gamma(\phi_1, \phi_2).$

• Theorem 5 (Attainability of the metric): There is a $\phi \in K(\phi_1, \phi_2)$ for which the infimum is attained for $\gamma(\phi_1, \phi_2)$, that is,

$$\gamma(\phi_1,\phi_2) = \|\sigma_1-\sigma_2\|_{cb}^{\phi}.$$

• Theorem 6. For states ϕ_1, ϕ_2 ,

$$eta^2(\phi_1,\phi_2)=2-\sqrt{4-\gamma^2(\phi_1,\phi_2)}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Theorem 6. For states ϕ_1, ϕ_2 ,

$$eta^2(\phi_1,\phi_2)=2-\sqrt{4-\gamma^2(\phi_1,\phi_2)}$$

Remark: Actually we get:

$$\gamma(\phi_1,\phi_2)=eta(\phi_1,\phi_2)\sqrt{4-eta^2(\phi_1,\phi_2)},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Theorem 6. For states ϕ_1, ϕ_2 ,

$$eta^2(\phi_1,\phi_2)=2-\sqrt{4-\gamma^2(\phi_1,\phi_2)}$$

Remark: Actually we get:

$$\gamma(\phi_1,\phi_2)=eta(\phi_1,\phi_2)\sqrt{4-eta^2(\phi_1,\phi_2)},$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• So $\beta^2(\phi_1, \phi_2) = 2 \pm \sqrt{4 - \gamma^2(\phi_1, \phi_2)}$

• Theorem 6. For states ϕ_1, ϕ_2 ,

$$eta^2(\phi_1,\phi_2)=2-\sqrt{4-\gamma^2(\phi_1,\phi_2)}$$

Remark: Actually we get:

$$\gamma(\phi_1,\phi_2)=eta(\phi_1,\phi_2)\sqrt{4-eta^2(\phi_1,\phi_2)},$$

- So $\beta^2(\phi_1, \phi_2) = 2 \pm \sqrt{4 \gamma^2(\phi_1, \phi_2)}$
- Only the negative sign is permissible, as 0 ≤ β²(φ₁, φ₂), γ(φ₁, φ₂) ≤ 2 is trivially true for unital CP maps.

Suppose (K, π₁, π₂, x) is a joint representation of a pair of states φ₁, φ₂.

- Suppose (K, π₁, π₂, x) is a joint representation of a pair of states φ₁, φ₂.
- We may consider instead $(\mathcal{K} \oplus \mathcal{K}, \pi_1 \oplus \pi_2, \pi_2 \oplus \pi_1, x \oplus 0)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Suppose (K, π₁, π₂, x) is a joint representation of a pair of states φ₁, φ₂.
- We may consider instead $(\mathcal{K} \oplus \mathcal{K}, \pi_1 \oplus \pi_2, \pi_2 \oplus \pi_1, x \oplus 0)$.
- This does not change the norm difference: $\|\pi_1 - \pi_2\|_{cb} = \|(\pi_1 \oplus \pi_2) - (\pi_2 \oplus \pi_1)\|_{cb}.$

- Suppose (K, π₁, π₂, x) is a joint representation of a pair of states φ₁, φ₂.
- We may consider instead $(\mathcal{K} \oplus \mathcal{K}, \pi_1 \oplus \pi_2, \pi_2 \oplus \pi_1, x \oplus 0)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- This does not change the norm difference: $\|\pi_1 - \pi_2\|_{cb} = \|(\pi_1 \oplus \pi_2) - (\pi_2 \oplus \pi_1)\|_{cb}.$
- ln other words, we may restrict ourselves to unitarily equivalent representations π_1, π_2 two compute the representation metric γ .

- Suppose (K, π₁, π₂, x) is a joint representation of a pair of states φ₁, φ₂.
- We may consider instead $(\mathcal{K} \oplus \mathcal{K}, \pi_1 \oplus \pi_2, \pi_2 \oplus \pi_1, x \oplus 0)$.
- This does not change the norm difference: $\|\pi_1 - \pi_2\|_{cb} = \|(\pi_1 \oplus \pi_2) - (\pi_2 \oplus \pi_1)\|_{cb}.$
- ln other words, we may restrict ourselves to unitarily equivalent representations π_1, π_2 two compute the representation metric γ .
- Suppose U is a unitary on \mathcal{K} so that $\pi_2(\cdot) = U^* \pi_1(\cdot) U$. Let y = Ux.

- Suppose (K, π₁, π₂, x) is a joint representation of a pair of states φ₁, φ₂.
- We may consider instead $(\mathcal{K} \oplus \mathcal{K}, \pi_1 \oplus \pi_2, \pi_2 \oplus \pi_1, x \oplus 0)$.
- This does not change the norm difference: $\|\pi_1 - \pi_2\|_{cb} = \|(\pi_1 \oplus \pi_2) - (\pi_2 \oplus \pi_1)\|_{cb}.$
- ln other words, we may restrict ourselves to unitarily equivalent representations π_1, π_2 two compute the representation metric γ .
- Suppose U is a unitary on K so that π₂(·) = U^{*}π₁(·)U. Let y = Ux.
- So we are led to consider all tuples $(\mathcal{K}, \pi, U, x, y)$ such that $\phi_1(\cdot) = \langle x, \pi(\cdot)x \rangle$ and $\phi_2(\cdot) = \langle y, \pi(\cdot)y \rangle$, Ux = y.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Suppose (K, π₁, π₂, x) is a joint representation of a pair of states φ₁, φ₂.
- We may consider instead $(\mathcal{K} \oplus \mathcal{K}, \pi_1 \oplus \pi_2, \pi_2 \oplus \pi_1, x \oplus 0)$.
- This does not change the norm difference: $\|\pi_1 - \pi_2\|_{cb} = \|(\pi_1 \oplus \pi_2) - (\pi_2 \oplus \pi_1)\|_{cb}.$
- ln other words, we may restrict ourselves to unitarily equivalent representations π_1, π_2 two compute the representation metric γ .
- Suppose U is a unitary on K so that π₂(·) = U^{*}π₁(·)U. Let y = Ux.
- So we are led to consider all tuples $(\mathcal{K}, \pi, U, x, y)$ such that $\phi_1(\cdot) = \langle x, \pi(\cdot)x \rangle$ and $\phi_2(\cdot) = \langle y, \pi(\cdot)y \rangle$, Ux = y.
- It follows that

$$\gamma(\phi_1, \phi_2) = \inf_{\{\mathcal{K}, \pi, U, x, y\}} \|\pi - U^* \pi U\|_{cb}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let x, y be unit vectors in a Hilbert space K. For a unitary U in K, denote by Ad_U the automorphism X → UXU^{*}, on B(K).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▶ Let x, y be unit vectors in a Hilbert space \mathcal{K} . For a unitary U in \mathcal{K} , denote by Ad_U the automorphism $X \mapsto UXU^*$, on $\mathcal{B}(\mathcal{K})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▶ Theorem (Stampfli [St]): $||id - Ad_U|| = 2d(U, \mathbb{C})$.

- Let x, y be unit vectors in a Hilbert space K. For a unitary U in K, denote by Ady the automorphism X → UXU^{*}, on B(K).
- ▶ Theorem (Stampfli [St]): $||id Ad_U|| = 2d(U, \mathbb{C}).$

 $\inf_{U:Ux=y} \|id - Ad_U\|_{cb} = \inf_{U:Ux=y} \|id - Ad_U\| = 2\inf_{U:Ux=y} d(U,\mathbb{C})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- Let x, y be unit vectors in a Hilbert space K. For a unitary U in K, denote by Ad_U the automorphism X → UXU^{*}, on B(K).
- ► Theorem (Stampfli [St]): $||id Ad_U|| = 2d(U, \mathbb{C}).$

$$\inf_{U:U=y} \|id - Ad_U\|_{cb} = \inf_{U:U=y} \|id - Ad_U\| = 2\inf_{U:U=y} d(U, \mathbb{C})$$

Lemma 1:

$$\inf_{U:Ux=y} \|id - Ad_U\|_{cb} = 2\sqrt{1-|\langle x,y\rangle|^2}.$$

Lemma 2: Let x, y be some unit vectors in a Hilbert space \mathcal{K} .

Lemma 2: Let x, y be some unit vectors in a Hilbert space \mathcal{K} .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Let W be a unitary on \mathcal{K} such that Wx = y.

Lemma 2: Let x, y be some unit vectors in a Hilbert space \mathcal{K} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Let W be a unitary on \mathcal{K} such that Wx = y.
- Let *P* be a positive operator on \mathcal{K} .

Lemma 2: Let x, y be some unit vectors in a Hilbert space \mathcal{K} .

- Let W be a unitary on \mathcal{K} such that Wx = y.
- Let P be a positive operator on \mathcal{K} .

Then

$$\|W - P\| \ge \sqrt{1 - [\operatorname{Re}\langle x, y \rangle]^2}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Lemma 2: Let x, y be some unit vectors in a Hilbert space \mathcal{K} .

- Let W be a unitary on \mathcal{K} such that Wx = y.
- Let P be a positive operator on \mathcal{K} .

Then

$$\|W - P\| \ge \sqrt{1 - [\operatorname{Re}\langle x, y \rangle]^2}.$$

Theorem (Johnson [Jh]): Suppose π is a faithful representation of a C*-algebra A on K and U is a unitary on K. Then

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Lemma 2: Let x, y be some unit vectors in a Hilbert space \mathcal{K} .

- Let W be a unitary on \mathcal{K} such that Wx = y.
- Let *P* be a positive operator on \mathcal{K} .

Then

$$\|W - P\| \ge \sqrt{1 - [\operatorname{Re}\langle x, y \rangle]^2}.$$

Theorem (Johnson [Jh]): Suppose π is a faithful representation of a C*-algebra A on K and U is a unitary on K. Then

$$\|\pi - \mathsf{Ad}_U \circ \pi\|_{\mathsf{cb}} = 2\mathsf{d}(U, \pi(\mathcal{A})').$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Theorem 7: Let \mathcal{A} be a unital C^* -algebra.

- **Theorem 7**: Let \mathcal{A} be a unital C^* -algebra.
- Let $\mathcal{B} \subset \mathcal{B}(\mathcal{G})$ be an injective C^* -algebra.

- Theorem 7: Let \mathcal{A} be a unital C^* -algebra.
- Let $\mathcal{B} \subset \mathcal{B}(\mathcal{G})$ be an injective C^* -algebra.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Suppose $\phi_1, \phi_2 \in UCP(\mathcal{A}, B)$.

- Theorem 7: Let \mathcal{A} be a unital C^* -algebra.
- Let $\mathcal{B} \subset \mathcal{B}(\mathcal{G})$ be an injective C^* -algebra.
- Suppose $\phi_1, \phi_2 \in UCP(\mathcal{A}, B)$.
- Then

$$\gamma(\phi_1,\phi_2) = \beta(\phi_1,\phi_2) \sqrt{4 - \beta^2(\phi_1,\phi_2)}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

► Theorem [CL]: Let *T* be a contraction on a Hilbert space \mathcal{K} satisfying $T + T^* \ge rl$ for some $r \in \mathbb{R}$.

► Theorem [CL]: Let *T* be a contraction on a Hilbert space \mathcal{K} satisfying $T + T^* \ge rl$ for some $r \in \mathbb{R}$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

▶ Then there exists a unitary dilation V of T on $\mathcal{K} \oplus \mathcal{K}$, satisfying

- ► Theorem [CL]: Let *T* be a contraction on a Hilbert space \mathcal{K} satisfying $T + T^* \ge rl$ for some $r \in \mathbb{R}$.
- ▶ Then there exists a unitary dilation V of T on $\mathcal{K} \oplus \mathcal{K}$, satisfying

 $V + V^* \ge rI$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- ► Theorem [CL]: Let *T* be a contraction on a Hilbert space \mathcal{K} satisfying $T + T^* \ge rl$ for some $r \in \mathbb{R}$.
- ► Then there exists a unitary dilation V of T on $\mathcal{K} \oplus \mathcal{K}$, satisfying

$$V+V^*\geq rI.$$

Proposition: Let *T* be a strict contraction on a Hilbert space *K*. Then any unitary dilation *V* of *T* on *K* ⊕ *K* is up to unitary equivalence of the form

$$V = \begin{pmatrix} T & -(I - TT^*)^{\frac{1}{2}}W \\ (I - T^*T)^{\frac{1}{2}} & T^*W \end{pmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

for some unitary W on \mathcal{K} .

Example

Example: Let *H* be a separable infinite dimensional Hilbert space. Let *K* denote the set of all compact operators on *H*. Set *K*₊ = span {*K*, C*I_H*}. Let

$$\mathcal{A} = \left(egin{array}{cc} \mathcal{K}_+ & \mathcal{K} \\ \mathcal{K} & \mathcal{K}_+ \end{array}
ight) \subset \mathcal{B}(H \oplus H), \ \ \mathcal{B} = \mathcal{K}_+.$$

Let p be a projection on H such that range of p and 1 - p are both infinite dimensional subspaces of H. Let $0 < \theta < \frac{\pi}{2}$. Set

$$u:=e^{i\theta}p+e^{-i\theta}(1-p).$$

Then u is a unitary and $u \notin \mathcal{K}_+$. Let

$$z_1 = rac{1}{\sqrt{2}} \left(egin{array}{c} I \\ I \end{array}
ight), \quad z_2 = rac{1}{\sqrt{2}} \left(egin{array}{c} u \\ I \end{array}
ight).$$

Define unital CP maps $\phi_i : \mathcal{A} \to \mathcal{B}$, by $\phi_i(a) = z_i^* a z_i, a \in \mathcal{A}, i = 1, 2$.

・ロト・1回ト・1回ト・1回ト・1回・1000

• Let $\iota : \mathcal{B} \to \mathcal{B}(H)$ be the inclusion map.

• Let $\iota : \mathcal{B} \to \mathcal{B}(\mathcal{H})$ be the inclusion map.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Let $\tilde{\phi}_i = \iota \circ \phi_i, i = 1, 2$.

- Let $\iota : \mathcal{B} \to \mathcal{B}(\mathcal{H})$ be the inclusion map.
- Let $\tilde{\phi}_i = \iota \circ \phi_i, i = 1, 2.$
- As $\mathcal{B}(H)$ is injective, we have

$$\gamma(ilde{\phi_1}, ilde{\phi_2})=eta(ilde{\phi_1}, ilde{\phi_2})\sqrt{4-eta^2(ilde{\phi_1}, ilde{\phi_2})}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Let $\iota : \mathcal{B} \to \mathcal{B}(\mathcal{H})$ be the inclusion map.
- Let $\tilde{\phi}_i = \iota \circ \phi_i, i = 1, 2.$
- As $\mathcal{B}(H)$ is injective, we have

$$\gamma(\tilde{\phi_1},\tilde{\phi_2})=eta(\tilde{\phi}_1,\tilde{\phi}_2)\sqrt{4-eta^2(\tilde{\phi}_1,\tilde{\phi}_2)}.$$

 $\gamma(\phi_1,\phi_2) > \sqrt{(3+\cos heta)(1-\cos heta)} = \gamma(ilde{\phi}_1, ilde{\phi}_2).$

- Let $\iota : \mathcal{B} \to \mathcal{B}(\mathcal{H})$ be the inclusion map.
- Let $\tilde{\phi}_i = \iota \circ \phi_i, i = 1, 2.$
- As $\mathcal{B}(H)$ is injective, we have

$$\gamma(ilde{\phi_1}, ilde{\phi_2})=eta(ilde{\phi}_1, ilde{\phi}_2)\sqrt{4-eta^2(ilde{\phi}_1, ilde{\phi}_2)}.$$

 $\gamma(\phi_1,\phi_2) > \sqrt{(3+\cos heta)(1-\cos heta)} = \gamma(ilde{\phi}_1, ilde{\phi}_2).$

$$\gamma(\phi_1,\phi_2) \neq \beta(\phi_1,\phi_2)\sqrt{4-\beta^2(\phi_1,\phi_2)}.$$

- Let $\iota : \mathcal{B} \to \mathcal{B}(\mathcal{H})$ be the inclusion map.
- Let $\tilde{\phi}_i = \iota \circ \phi_i, i = 1, 2.$
- As B(H) is injective, we have

$$\gamma(ilde{\phi_1}, ilde{\phi_2})=eta(ilde{\phi}_1, ilde{\phi}_2)\sqrt{4-eta^2(ilde{\phi}_1, ilde{\phi}_2)}.$$

$$\gamma(\phi_1,\phi_2)>\sqrt{(3+\cos heta)(1-\cos heta)}=\gamma(ilde{\phi}_1, ilde{\phi}_2).$$

$$\gamma(\phi_1,\phi_2) \neq \beta(\phi_1,\phi_2)\sqrt{4-\beta^2(\phi_1,\phi_2)}.$$

In other words, the formula we have proved may not hold without some assumptions on the range algebra.

- Let $\iota : \mathcal{B} \to \mathcal{B}(\mathcal{H})$ be the inclusion map.
- Let $\tilde{\phi}_i = \iota \circ \phi_i, i = 1, 2.$
- As $\mathcal{B}(H)$ is injective, we have

$$\gamma(ilde{\phi_1}, ilde{\phi_2})=eta(ilde{\phi}_1, ilde{\phi}_2)\sqrt{4-eta^2(ilde{\phi}_1, ilde{\phi}_2)}.$$

$$\gamma(\phi_1,\phi_2)>\sqrt{(3+\cos heta)(1-\cos heta)}=\gamma(ilde{\phi}_1, ilde{\phi}_2).$$

$$\gamma(\phi_1,\phi_2) \neq \beta(\phi_1,\phi_2)\sqrt{4-\beta^2(\phi_1,\phi_2)}$$

- In other words, the formula we have proved may not hold without some assumptions on the range algebra.
- ▶ Qpen Question: Does the formula for β in terms of γ hold when the range algebra is a general von Neumann algebra?

References

[Bu] Bures, D., An extension of Kakutani's theorem on infinite product measures to the tensor product of semifinite w*-algebras, Trans. Amer. Math. Soc. 135 (1969), 199-212.

[CL] Choi, M., Li, C., *Constrained unitary dilations and Numerical ranges*, J. Operator Theory, 46 (2001) ,435-447.

[Jo] Johnson, B., *Characterization and norms of derivations on von Neumann algebras*, Springer lecture notes.

[KSW] Kretschmann, D., Schlingemann, D., Werner, R., *A continuity theorem for Stinesprings dilation*, J. Funct. Anal. 255 (2008), no. 8, 1889-1904.

[Muk] Mukherjee, M., Structure theorem of the generator of a norm continuous completely positive semigroup: an alternative proof using Bures distance, Positivity, (2017), 1-11. [St] Stampfli, J., The norm of a derivation, Pacific J. Math.

Volume 33, Number 3 (1970), 737-747.

THANK YOU FOR YOUR PATIENCE