BURES DISTANCE FOR COMPLETELY POSITIVE MAPS

B. V. Rajarama Bhat, Indian Statistical Institute, Bangalore.

December 5, 2020

International Workshop
HILBERT C*-MODULES ONLINE WEEKEND
In memory of William L. Paschke

Acknowledgements

- Thanks to the organisers for giving this opportunity to me.

Acknowledgements

- Thanks to the organisers for giving this opportunity to me.
- Thanks to JC Bose Fellowship

BURES DISTANCE

- Based on Bures distance for completely positive maps (with K. Sumesh)

BURES DISTANCE

- Based on Bures distance for completely positive maps (with K. Sumesh)
- Published in: Infin. Dimens. Anal. Quantum Probab. Relat. Top. 16 (2013), no. 4, 1350031, 22 pp.
DOI: 10.1142/S0219025713500318.

BURES DISTANCE

- Based on Bures distance for completely positive maps (with K. Sumesh)
- Published in: Infin. Dimens. Anal. Quantum Probab. Relat. Top. 16 (2013), no. 4, 1350031, 22 pp. DOI: 10.1142/S0219025713500318.
- and Two states, (with Mithun Mukherjee), arXiv:1710.00180v1,

BURES DISTANCE

- Based on Bures distance for completely positive maps (with K. Sumesh)
- Published in: Infin. Dimens. Anal. Quantum Probab. Relat. Top. 16 (2013), no. 4, 1350031, 22 pp. DOI: 10.1142/S0219025713500318.
- and Two states, (with Mithun Mukherjee), arXiv:1710.00180v1,
- to appear in the Houston Journal of Mathematics.

States and Gelfand Naimark Segal representation

- Let \mathcal{A} be a unital C^{*}-algebra.

States and Gelfand Naimark Segal representation

- Let \mathcal{A} be a unital C^{*}-algebra.
- Let $\phi: \mathcal{A} \rightarrow \mathbb{C}$ be a state.

States and Gelfand Naimark Segal representation

- Let \mathcal{A} be a unital C^{*}-algebra.
- Let $\phi: \mathcal{A} \rightarrow \mathbb{C}$ be a state.
- Then there exists a triple (\mathcal{H}, π, z), where

States and Gelfand Naimark Segal representation

- Let \mathcal{A} be a unital C^{*}-algebra.
- Let $\phi: \mathcal{A} \rightarrow \mathbb{C}$ be a state.
- Then there exists a triple (\mathcal{H}, π, z), where
- \mathcal{H} is a Hilbert space,

States and Gelfand Naimark Segal representation

- Let \mathcal{A} be a unital C^{*}-algebra.
- Let $\phi: \mathcal{A} \rightarrow \mathbb{C}$ be a state.
- Then there exists a triple (\mathcal{H}, π, z), where
- \mathcal{H} is a Hilbert space,
- $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$ is a representation,

States and Gelfand Naimark Segal representation

- Let \mathcal{A} be a unital C^{*}-algebra.
- Let $\phi: \mathcal{A} \rightarrow \mathbb{C}$ be a state.
- Then there exists a triple (\mathcal{H}, π, z), where
- \mathcal{H} is a Hilbert space,
- $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$ is a representation,
- $z \in \mathcal{H}$ is a unit vector such that

$$
\phi(a)=\langle z, \pi(a) z\rangle
$$

for all $a \in \mathcal{A}$.

States and Gelfand Naimark Segal representation

- Let \mathcal{A} be a unital C^{*}-algebra.
- Let $\phi: \mathcal{A} \rightarrow \mathbb{C}$ be a state.
- Then there exists a triple (\mathcal{H}, π, z), where
- \mathcal{H} is a Hilbert space,
- $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$ is a representation,
- $z \in \mathcal{H}$ is a unit vector such that

$$
\phi(a)=\langle z, \pi(a) z\rangle
$$

for all $a \in \mathcal{A}$.

- Minimality: $\mathcal{H}=\overline{\operatorname{span}}\{\pi(a) z: a \in \mathcal{A}\}$.

Two states

- Suppose ϕ_{1}, ϕ_{2} are two states on a unital C^{*}-algebra \mathcal{A}.

Two states

- Suppose ϕ_{1}, ϕ_{2} are two states on a unital C^{*}-algebra \mathcal{A}.
- Question: If ϕ_{1}, ϕ_{2} are close can we make GNS representations close?

Two states

- Suppose ϕ_{1}, ϕ_{2} are two states on a unital C^{*}-algebra \mathcal{A}.
- Question: If ϕ_{1}, ϕ_{2} are close can we make GNS representations close?
- Idea: Look at common representations: $\left(\mathcal{H}, \pi, z_{1}, z_{2}\right)$.

Two states

- Suppose ϕ_{1}, ϕ_{2} are two states on a unital C^{*}-algebra \mathcal{A}.
- Question: If ϕ_{1}, ϕ_{2} are close can we make GNS representations close?
- Idea: Look at common representations: $\left(\mathcal{H}, \pi, z_{1}, z_{2}\right)$.
- Existence of common representation?

Two states

- Suppose ϕ_{1}, ϕ_{2} are two states on a unital C^{*}-algebra \mathcal{A}.
- Question: If ϕ_{1}, ϕ_{2} are close can we make GNS representations close?
- Idea: Look at common representations: $\left(\mathcal{H}, \pi, z_{1}, z_{2}\right)$.
- Existence of common representation?
- Example: Consider GNS triples $\left(\mathcal{H}_{1}, \pi_{1}, x_{1}\right),\left(\mathcal{H}_{2}, \pi_{2}, x_{2}\right)$ where

$$
\phi_{i}(a)=\left\langle x_{i}, \pi_{i}(a) x_{i}\right\rangle .
$$

Two states

- Suppose ϕ_{1}, ϕ_{2} are two states on a unital C^{*}-algebra \mathcal{A}.
- Question: If ϕ_{1}, ϕ_{2} are close can we make GNS representations close?
- Idea: Look at common representations: $\left(\mathcal{H}, \pi, z_{1}, z_{2}\right)$.
- Existence of common representation?
- Example: Consider GNS triples $\left(\mathcal{H}_{1}, \pi_{1}, x_{1}\right),\left(\mathcal{H}_{2}, \pi_{2}, x_{2}\right)$ where

$$
\phi_{i}(a)=\left\langle x_{i}, \pi_{i}(a) x_{i}\right\rangle .
$$

- Take $\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}, \pi=\pi_{1} \oplus \pi_{2}$, and $z_{1}=x_{1} \oplus 0, z_{2}=0 \oplus x_{2}$.

Two states

- Suppose ϕ_{1}, ϕ_{2} are two states on a unital C^{*}-algebra \mathcal{A}.
- Question: If ϕ_{1}, ϕ_{2} are close can we make GNS representations close?
- Idea: Look at common representations: $\left(\mathcal{H}, \pi, z_{1}, z_{2}\right)$.
- Existence of common representation?
- Example: Consider GNS triples $\left(\mathcal{H}_{1}, \pi_{1}, x_{1}\right),\left(\mathcal{H}_{2}, \pi_{2}, x_{2}\right)$ where

$$
\phi_{i}(a)=\left\langle x_{i}, \pi_{i}(a) x_{i}\right\rangle .
$$

- Take $\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}, \pi=\pi_{1} \oplus \pi_{2}$, and $z_{1}=x_{1} \oplus 0, z_{2}=0 \oplus x_{2}$.
- Then $\left(H, \pi, z_{1}, z_{2}\right)$ is a common representation for ϕ_{1}, ϕ_{2}.

Bures distance

- Suppose ϕ_{1}, ϕ_{2} are states on \mathcal{A} :

Bures distance

- Suppose ϕ_{1}, ϕ_{2} are states on \mathcal{A} :
- Take

$$
\beta\left(\phi_{1}, \phi_{2}\right)=\inf \left\{\left\|z_{1}-z_{2}\right\|:\left(\mathcal{H}, \pi, z_{1}, z_{2}\right)\right\}
$$

The infimum is over common representations of ϕ_{1}, ϕ_{2} :

$$
\phi_{i}(a)=\left\langle z_{i}, \pi(a) z_{i}\right\rangle, \quad i=1,2 .
$$

Bures distance

- Suppose ϕ_{1}, ϕ_{2} are states on \mathcal{A} :
- Take

$$
\beta\left(\phi_{1}, \phi_{2}\right)=\inf \left\{\left\|z_{1}-z_{2}\right\|:\left(\mathcal{H}, \pi, z_{1}, z_{2}\right)\right\}
$$

The infimum is over common representations of ϕ_{1}, ϕ_{2} :

$$
\phi_{i}(a)=\left\langle z_{i}, \pi(a) z_{i}\right\rangle, \quad i=1,2
$$

- Theorem (Bures): β is a metric on states and

$$
\beta\left(\phi_{1}, \phi_{2}\right) \leq \sqrt{\left\|\phi_{1}-\phi_{2}\right\|} .
$$

Bures distance

- Suppose ϕ_{1}, ϕ_{2} are states on \mathcal{A} :
- Take

$$
\beta\left(\phi_{1}, \phi_{2}\right)=\inf \left\{\left\|z_{1}-z_{2}\right\|:\left(\mathcal{H}, \pi, z_{1}, z_{2}\right)\right\}
$$

The infimum is over common representations of ϕ_{1}, ϕ_{2} :

$$
\phi_{i}(a)=\left\langle z_{i}, \pi(a) z_{i}\right\rangle, \quad i=1,2
$$

- Theorem (Bures): β is a metric on states and

$$
\beta\left(\phi_{1}, \phi_{2}\right) \leq \sqrt{\left\|\phi_{1}-\phi_{2}\right\|} .
$$

- The infimum is attained in every common representation.

Bures distance

- Suppose ϕ_{1}, ϕ_{2} are states on \mathcal{A} :
- Take

$$
\beta\left(\phi_{1}, \phi_{2}\right)=\inf \left\{\left\|z_{1}-z_{2}\right\|:\left(\mathcal{H}, \pi, z_{1}, z_{2}\right)\right\}
$$

The infimum is over common representations of ϕ_{1}, ϕ_{2} :

$$
\phi_{i}(a)=\left\langle z_{i}, \pi(a) z_{i}\right\rangle, \quad i=1,2
$$

- Theorem (Bures): β is a metric on states and

$$
\beta\left(\phi_{1}, \phi_{2}\right) \leq \sqrt{\left\|\phi_{1}-\phi_{2}\right\|} .
$$

- The infimum is attained in every common representation.
- The result has found many applications.

Completely positive (CP) maps

- A linear map $\phi: \mathcal{A} \rightarrow \mathcal{B}$ is said to be completely positive (CP) if,

$$
\sum_{i, j} b_{i}^{*} \phi\left(a_{i}^{*} a_{j}\right) b_{j} \geq 0
$$

for $a_{i} \in \mathcal{A}, b_{i} \in \mathcal{B}$.

Completely positive (CP) maps

- A linear map $\phi: \mathcal{A} \rightarrow \mathcal{B}$ is said to be completely positive (CP) if,

$$
\sum_{i, j} b_{i}^{*} \phi\left(a_{i}^{*} a_{j}\right) b_{j} \geq 0
$$

for $a_{i} \in \mathcal{A}, b_{i} \in \mathcal{B}$.

- *-homomorphisms, positive linear functionals are (CP).

Completely positive (CP) maps

- A linear map $\phi: \mathcal{A} \rightarrow \mathcal{B}$ is said to be completely positive (CP) if,

$$
\sum_{i, j} b_{i}^{*} \phi\left(a_{i}^{*} a_{j}\right) b_{j} \geq 0
$$

for $a_{i} \in \mathcal{A}, b_{i} \in \mathcal{B}$.

- *-homomorphisms, positive linear functionals are (CP).
- Compositions, sums, convex combinations of CP maps are CP.

Completely positive (CP) maps

- A linear $\operatorname{map} \phi: \mathcal{A} \rightarrow \mathcal{B}$ is said to be completely positive (CP) if,

$$
\sum_{i, j} b_{i}^{*} \phi\left(a_{i}^{*} a_{j}\right) b_{j} \geq 0
$$

for $a_{i} \in \mathcal{A}, b_{i} \in \mathcal{B}$.

- *-homomorphisms, positive linear functionals are (CP).
- Compositions, sums, convex combinations of CP maps are CP.
- CP maps are very important for understanding C^{*}-algebras and from applications point of view.

Stinespring's Theorem

- Theorem: Let $\phi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{G})$ be a completely positive map for some Hilbert space \mathcal{G}, then there exists a triple (\mathcal{H}, π, V), where

Stinespring's Theorem

- Theorem: Let $\phi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{G})$ be a completely positive map for some Hilbert space \mathcal{G}, then there exists a triple (\mathcal{H}, π, V), where
- \mathcal{H} is a Hilbert space,

Stinespring's Theorem

- Theorem: Let $\phi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{G})$ be a completely positive map for some Hilbert space \mathcal{G}, then there exists a triple (\mathcal{H}, π, V), where
- \mathcal{H} is a Hilbert space,
- $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$ is a representation.

Stinespring's Theorem

- Theorem: Let $\phi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{G})$ be a completely positive map for some Hilbert space \mathcal{G}, then there exists a triple (\mathcal{H}, π, V), where
- \mathcal{H} is a Hilbert space,
- $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$ is a representation.
- $V: \mathcal{G} \rightarrow \mathcal{H}$ is a bounded linear map such that

$$
\phi(a)=V^{*} \pi(a) V
$$

for all $a \in \mathcal{A}$.

Stinespring's Theorem

- Theorem: Let $\phi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{G})$ be a completely positive map for some Hilbert space \mathcal{G}, then there exists a triple (\mathcal{H}, π, V), where
- \mathcal{H} is a Hilbert space,
- $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$ is a representation.
- $V: \mathcal{G} \rightarrow \mathcal{H}$ is a bounded linear map such that

$$
\phi(a)=V^{*} \pi(a) V
$$

for all $a \in \mathcal{A}$.

- Minimality: $\mathcal{H}=\overline{\operatorname{span}}\{\pi(a) V g: a \in \mathcal{A}, g \in \mathcal{G}\}$.

Bures distance for CP maps

- A continuity theorem for Stinespring dilation by D. Kretschmann, D. Schlingemann, R. F. Werner, JFA (2008).

Bures distance for CP maps

- A continuity theorem for Stinespring dilation by D. Kretschmann, D. Schlingemann, R. F. Werner, JFA (2008).
- Theorem: Suppose ϕ_{1}, ϕ_{2} are CP maps from \mathcal{A} to $\mathcal{B}(\mathcal{G})$.

Bures distance for CP maps

- A continuity theorem for Stinespring dilation by D.

Kretschmann, D. Schlingemann, R. F. Werner, JFA (2008).

- Theorem: Suppose ϕ_{1}, ϕ_{2} are CP maps from \mathcal{A} to $\mathcal{B}(\mathcal{G})$.
- Take

$$
\beta\left(\phi_{1}, \phi_{2}\right)=\inf \left\{\left\|V_{1}-V_{2}\right\|:\left(\mathcal{H}, \pi, V_{1}, V_{2}\right)\right\}
$$

The infimum is over common representations of ϕ_{1}, ϕ_{2} :

$$
\phi_{i}(a)=V_{i}^{*} \pi(a) V_{i}, \quad i=1,2 .
$$

Bures distance for CP maps

- A continuity theorem for Stinespring dilation by D.

Kretschmann, D. Schlingemann, R. F. Werner, JFA (2008).

- Theorem: Suppose ϕ_{1}, ϕ_{2} are CP maps from \mathcal{A} to $\mathcal{B}(\mathcal{G})$.
- Take

$$
\beta\left(\phi_{1}, \phi_{2}\right)=\inf \left\{\left\|V_{1}-V_{2}\right\|:\left(\mathcal{H}, \pi, V_{1}, V_{2}\right)\right\}
$$

The infimum is over common representations of ϕ_{1}, ϕ_{2} :

$$
\phi_{i}(a)=V_{i}^{*} \pi(a) V_{i}, \quad i=1,2
$$

- Then β is a metric.
- The infimum is attained in some representation and one has lower and upper bounds for β :

$$
\frac{\left\|\phi_{1}-\phi_{2}\right\|_{c b}}{\sqrt{\left\|\phi_{1}\right\|_{c b}}+\sqrt{\left\|\phi_{2}\right\|_{c b}}} \leq \beta\left(\phi_{1}, \phi_{2}\right) \leq \sqrt{\left\|\phi_{1}-\phi_{2}\right\|_{c b}}
$$

Stinespring's theorem in Hilbert C^{*} - module language

- Theorem (Paschke): Let $\phi: \mathcal{A} \rightarrow \mathcal{B}$ be a completely positive map.

Stinespring's theorem in Hilbert C^{*} - module language

- Theorem (Paschke): Let $\phi: \mathcal{A} \rightarrow \mathcal{B}$ be a completely positive map.
- There exists a triple (E, π, z), where

Stinespring's theorem in Hilbert C^{*} - module language

- Theorem (Paschke): Let $\phi: \mathcal{A} \rightarrow \mathcal{B}$ be a completely positive map.
- There exists a triple (E, π, z), where
- E is a Hilbert $C^{*}, \mathcal{A}-\mathcal{B}$ module (left action π from \mathcal{A} and inner products take value in \mathcal{B}),

Stinespring's theorem in Hilbert C^{*} - module language

- Theorem (Paschke): Let $\phi: \mathcal{A} \rightarrow \mathcal{B}$ be a completely positive map.
- There exists a triple (E, π, z), where
- E is a Hilbert $C^{*}, \mathcal{A}-\mathcal{B}$ module (left action π from \mathcal{A} and inner products take value in \mathcal{B}),
- $z \in E$ is a vector such that

$$
\phi(a)=\langle z, \pi(a) z\rangle
$$

for all $a \in \mathcal{A}$.

Stinespring's theorem in Hilbert C^{*} - module language

- Theorem (Paschke): Let $\phi: \mathcal{A} \rightarrow \mathcal{B}$ be a completely positive map.
- There exists a triple (E, π, z), where
- E is a Hilbert $C^{*}, \mathcal{A}-\mathcal{B}$ module (left action π from \mathcal{A} and inner products take value in \mathcal{B}),
- $z \in E$ is a vector such that

$$
\phi(a)=\langle z, \pi(a) z\rangle
$$

for all $a \in \mathcal{A}$.

- Minimality: $E=\overline{\operatorname{span}}\{\pi(a) z b: a \in \mathcal{A}, b \in \mathcal{B}\}$.

Bures distance in Hilbert C^{*}-Module language

- Let ϕ_{1}, ϕ_{2} be CP maps from \mathcal{A} to \mathcal{B}.

Bures distance in Hilbert C^{*}-Module language

- Let ϕ_{1}, ϕ_{2} be CP maps from \mathcal{A} to \mathcal{B}.
- Define Bures distance by

$$
\beta\left(\phi_{1}, \phi_{2}\right)=\inf \left\|z_{1}-z_{2}\right\|
$$

Bures distance in Hilbert C^{*}-Module language

- Let ϕ_{1}, ϕ_{2} be CP maps from \mathcal{A} to \mathcal{B}.
- Define Bures distance by

$$
\beta\left(\phi_{1}, \phi_{2}\right)=\inf \left\|z_{1}-z_{2}\right\|
$$

- The infimum is over common representations $\left(\mathcal{E}, \pi, z_{1}, z_{2}\right)$ of ϕ_{1}, ϕ_{2}.

Bures distance in Hilbert C^{*}-Module language

- Let ϕ_{1}, ϕ_{2} be CP maps from \mathcal{A} to \mathcal{B}.
- Define Bures distance by

$$
\beta\left(\phi_{1}, \phi_{2}\right)=\inf \left\|z_{1}-z_{2}\right\|
$$

- The infimum is over common representations $\left(\mathcal{E}, \pi, z_{1}, z_{2}\right)$ of ϕ_{1}, ϕ_{2}.
- $\phi_{i}(a)=\left\langle z_{i}, \pi(a) z_{i}\right\rangle$.

Bures distance in Hilbert C^{*}-Module language

- Let ϕ_{1}, ϕ_{2} be CP maps from \mathcal{A} to \mathcal{B}.
- Define Bures distance by

$$
\beta\left(\phi_{1}, \phi_{2}\right)=\inf \left\|z_{1}-z_{2}\right\|
$$

- The infimum is over common representations $\left(\mathcal{E}, \pi, z_{1}, z_{2}\right)$ of ϕ_{1}, ϕ_{2}.
- $\phi_{i}(a)=\left\langle z_{i}, \pi(a) z_{i}\right\rangle$.
- In good situations, such as when \mathcal{B} is a von Neumann algebra, or an injective C^{*}-algebra, β is a metric and has similar bounds.

Bures distance in Hilbert C^{*}-Module language

- Let ϕ_{1}, ϕ_{2} be CP maps from \mathcal{A} to \mathcal{B}.
- Define Bures distance by

$$
\beta\left(\phi_{1}, \phi_{2}\right)=\inf \left\|z_{1}-z_{2}\right\|
$$

- The infimum is over common representations $\left(\mathcal{E}, \pi, z_{1}, z_{2}\right)$ of ϕ_{1}, ϕ_{2}.
- $\phi_{i}(a)=\left\langle z_{i}, \pi(a) z_{i}\right\rangle$.
- In good situations, such as when \mathcal{B} is a von Neumann algebra, or an injective C^{*}-algebra, β is a metric and has similar bounds.
- Remark: The infimum is not attained in all common representations and in general it is not a metric (triangle inequality fails).

Joint representations

- Let ϕ_{1}, ϕ_{2} be UCP maps from \mathcal{A} to \mathcal{B}.

Joint representations

- Let ϕ_{1}, ϕ_{2} be UCP maps from \mathcal{A} to \mathcal{B}.
- Consider joint representations $\left(\mathcal{E}, \pi_{1}, \pi_{2}, z\right)$.

Joint representations

- Let ϕ_{1}, ϕ_{2} be UCP maps from \mathcal{A} to \mathcal{B}.
- Consider joint representations $\left(\mathcal{E}, \pi_{1}, \pi_{2}, z\right)$.
- $\phi_{i}(a)=\left\langle z, \pi_{i}(a) z\right\rangle, i=1,2$.

Joint representations

- Let ϕ_{1}, ϕ_{2} be UCP maps from \mathcal{A} to \mathcal{B}.
- Consider joint representations $\left(\mathcal{E}, \pi_{1}, \pi_{2}, z\right)$.
- $\phi_{i}(a)=\left\langle z, \pi_{i}(a) z\right\rangle, i=1,2$.
- It can be proved that such joint representations $\left(\mathcal{E}, \pi_{1}, \pi_{2}, z\right)$ always exist.

Representation metric

- Definition: Let ϕ_{1}, ϕ_{2} be UCP maps from \mathcal{A} to \mathcal{B}.

Representation metric

- Definition: Let ϕ_{1}, ϕ_{2} be UCP maps from \mathcal{A} to \mathcal{B}.
- Define representation metric by

$$
\gamma\left(\phi_{1}, \phi_{2}\right)=\inf \left\|\pi_{1}-\pi_{2}\right\|_{c b}
$$

Representation metric

- Definition: Let ϕ_{1}, ϕ_{2} be UCP maps from \mathcal{A} to \mathcal{B}.
- Define representation metric by

$$
\gamma\left(\phi_{1}, \phi_{2}\right)=\inf \left\|\pi_{1}-\pi_{2}\right\|_{c b}
$$

- The infimum is over joint representations $\left(\mathcal{E}, \pi_{1}, \pi_{2}, z\right)$ of ϕ_{1}, ϕ_{2}.

Representation metric

- Definition: Let ϕ_{1}, ϕ_{2} be UCP maps from \mathcal{A} to \mathcal{B}.
- Define representation metric by

$$
\gamma\left(\phi_{1}, \phi_{2}\right)=\inf \left\|\pi_{1}-\pi_{2}\right\|_{c b}
$$

- The infimum is over joint representations $\left(\mathcal{E}, \pi_{1}, \pi_{2}, z\right)$ of ϕ_{1}, ϕ_{2}.
- $\phi_{i}(a)=\left\langle z, \pi_{i}(a) z\right\rangle, i=1,2$.

Representation metric basics

- A joint representation $\left(\mathcal{E}, \pi_{1}, \pi_{2}, x\right)$ is said to be minimal if the module generated by x and left actions π_{1}, π_{2} is \mathcal{E}.

Representation metric basics

- A joint representation $\left(\mathcal{E}, \pi_{1}, \pi_{2}, x\right)$ is said to be minimal if the module generated by x and left actions π_{1}, π_{2} is \mathcal{E}.
- It suffices to consider minimal joint representations.

Representation metric basics

- A joint representation $\left(\mathcal{E}, \pi_{1}, \pi_{2}, x\right)$ is said to be minimal if the module generated by x and left actions π_{1}, π_{2} is \mathcal{E}.
- It suffices to consider minimal joint representations.
- Theorem 1: If the range algebra \mathcal{B} is a von Neumann algebra or injective C^{*}-algebra then γ is a metric.

Representation metric basics

- A joint representation $\left(\mathcal{E}, \pi_{1}, \pi_{2}, x\right)$ is said to be minimal if the module generated by x and left actions π_{1}, π_{2} is \mathcal{E}.
- It suffices to consider minimal joint representations.
- Theorem 1: If the range algebra \mathcal{B} is a von Neumann algebra or injective C^{*}-algebra then γ is a metric.
- Theorem 2: γ is invariant under ampliations:

$$
\gamma\left(\phi_{1}^{(n)}, \phi_{2}^{(n)}\right)=\gamma\left(\phi_{1}, \phi_{2}\right)
$$

for all $n \geq 1$.

Free product of C^{*}-algebras

- Suppose \mathcal{C}, \mathcal{D} are two unital C^{*}-algebras.

Free product of C^{*}-algebras

- Suppose \mathcal{C}, \mathcal{D} are two unital C^{*}-algebras.
- Denote by $\mathcal{C} \circ \mathcal{D}$ the unital $*$-algebra of all finite linear combinations of all possible finite words consists of elements of \mathcal{C} and \mathcal{D}.

Free product of C^{*}-algebras

- Suppose \mathcal{C}, \mathcal{D} are two unital C^{*}-algebras.
- Denote by $\mathcal{C} \circ \mathcal{D}$ the unital $*$-algebra of all finite linear combinations of all possible finite words consists of elements of \mathcal{C} and \mathcal{D}.
- Define a norm on this algebra by

$$
\|c\|=\sup \{\|\pi(c)\|: \pi \text { is a } * \text {-representation of } \mathcal{C} \circ \mathcal{D}\}
$$

This is a C^{*} norm. Completion of $\mathcal{C} \circ \mathcal{D}$ under this norm is called the full free product of \mathcal{C} and \mathcal{D} and is denoted by $\mathcal{C} * \mathcal{D}$.

Free product of C^{*}-algebras

- Suppose \mathcal{C}, \mathcal{D} are two unital C^{*}-algebras.
- Denote by $\mathcal{C} \circ \mathcal{D}$ the unital $*$-algebra of all finite linear combinations of all possible finite words consists of elements of \mathcal{C} and \mathcal{D}.
- Define a norm on this algebra by

$$
\|c\|=\sup \{\|\pi(c)\|: \pi \text { is a } * \text {-representation of } \mathcal{C} \circ \mathcal{D}\}
$$

This is a C^{*} norm. Completion of $\mathcal{C} \circ \mathcal{D}$ under this norm is called the full free product of \mathcal{C} and \mathcal{D} and is denoted by $\mathcal{C} * \mathcal{D}$.

- There are canonical injections $\rho_{\mathcal{C}}: \mathcal{C} \rightarrow \mathcal{C} * \mathcal{D}$, $\rho_{\mathcal{D}}: \mathcal{D} \rightarrow \mathcal{C} * \mathcal{D}$. This way, \mathcal{C}, \mathcal{D} are considered as sub-algebras of $\mathcal{C} * \mathcal{D}$.

Free product of C^{*}-algebras

- Suppose \mathcal{C}, \mathcal{D} are two unital C^{*}-algebras.
- Denote by $\mathcal{C} \circ \mathcal{D}$ the unital $*$-algebra of all finite linear combinations of all possible finite words consists of elements of \mathcal{C} and \mathcal{D}.
- Define a norm on this algebra by

$$
\|c\|=\sup \{\|\pi(c)\|: \pi \text { is a } * \text {-representation of } \mathcal{C} \circ \mathcal{D}\}
$$

This is a C^{*} norm. Completion of $\mathcal{C} \circ \mathcal{D}$ under this norm is called the full free product of \mathcal{C} and \mathcal{D} and is denoted by $\mathcal{C} * \mathcal{D}$.

- There are canonical injections $\rho_{\mathcal{C}}: \mathcal{C} \rightarrow \mathcal{C} * \mathcal{D}$, $\rho_{\mathcal{D}}: \mathcal{D} \rightarrow \mathcal{C} * \mathcal{D}$. This way, \mathcal{C}, \mathcal{D} are considered as sub-algebras of $\mathcal{C} * \mathcal{D}$.
- There is a 1-1 correspondence between the $*$-representations of $\mathcal{C} * \mathcal{D}$ and pairs of $*$-representations of \mathcal{C} and \mathcal{D} on a common Hilbert space \mathcal{H}.

Joint representation module and free product

Joint representation module and free product

- There is 1-1 correspondence between $\left(\mathcal{E}, \sigma_{1}, \sigma_{2}\right)$ and $\mathcal{A} * \mathcal{A}-\mathcal{B}$ bi-modules (\mathcal{E}, σ).

Joint representation module and free product

- There is 1-1 correspondence between $\left(\mathcal{E}, \sigma_{1}, \sigma_{2}\right)$ and $\mathcal{A} * \mathcal{A}-\mathcal{B}$ bi-modules (\mathcal{E}, σ).
- Then every joint representation module $\left(\mathcal{E}, \sigma_{1}, \sigma_{2}, x\right)$ corresponds uniquely to an $\mathcal{A} * \mathcal{A}-\mathcal{B}$ bi-module (\mathcal{E}, x).

Joint representation module and free product

- There is $1-1$ correspondence between $\left(\mathcal{E}, \sigma_{1}, \sigma_{2}\right)$ and $\mathcal{A} * \mathcal{A}-\mathcal{B}$ bi-modules (\mathcal{E}, σ).
- Then every joint representation module $\left(\mathcal{E}, \sigma_{1}, \sigma_{2}, x\right)$ corresponds uniquely to an $\mathcal{A} * \mathcal{A}-\mathcal{B}$ bi-module (\mathcal{E}, x).
- The joint representation module is minimal if and only if $\overline{\mathcal{A} * \mathcal{A} \times \mathcal{B}}=\mathcal{E}$.

Representation metric through free products

- Theorem 3: Let $\mathcal{A} * \mathcal{A}$ be the free product of \mathcal{A} with itself.

Representation metric through free products

- Theorem 3: Let $\mathcal{A} * \mathcal{A}$ be the free product of \mathcal{A} with itself.
- Let ρ_{1}, ρ_{2} be the canonical injections of \mathcal{A} as first copy and second copy in $\mathcal{A} * \mathcal{A}$.

Representation metric through free products

- Theorem 3: Let $\mathcal{A} * \mathcal{A}$ be the free product of \mathcal{A} with itself.
- Let ρ_{1}, ρ_{2} be the canonical injections of \mathcal{A} as first copy and second copy in $\mathcal{A} * \mathcal{A}$.
- Take

$$
K\left(\phi_{1}, \phi_{2}\right)=\left\{\phi: \mathcal{A} * \mathcal{A} \rightarrow \mathcal{B}, \phi \text { is a CP map, } \phi \circ \rho_{1}=\phi_{1}, \phi \circ \rho_{2}=\phi_{2}\right\} .
$$

Representation metric through free products

- Theorem 3: Let $\mathcal{A} * \mathcal{A}$ be the free product of \mathcal{A} with itself.
- Let ρ_{1}, ρ_{2} be the canonical injections of \mathcal{A} as first copy and second copy in $\mathcal{A} * \mathcal{A}$.
- Take

$$
K\left(\phi_{1}, \phi_{2}\right)=\left\{\phi: \mathcal{A} * \mathcal{A} \rightarrow \mathcal{B}, \phi \text { is a CP map, } \phi \circ \rho_{1}=\phi_{1}, \phi \circ \rho_{2}=\phi_{2}\right\} .
$$

- Then

$$
\gamma\left(\phi_{1}, \phi_{2}\right)=\inf _{\phi \in K\left(\phi_{1}, \phi_{2}\right)}\left\{\left\|\sigma_{1}-\sigma_{2}\right\|_{c b}^{\mathcal{E}}:(\mathcal{E}, \sigma, x)_{\phi}\right\}
$$

Representation metric through free products

- Theorem 3: Let $\mathcal{A} * \mathcal{A}$ be the free product of \mathcal{A} with itself.
- Let ρ_{1}, ρ_{2} be the canonical injections of \mathcal{A} as first copy and second copy in $\mathcal{A} * \mathcal{A}$.
- Take

$$
K\left(\phi_{1}, \phi_{2}\right)=\left\{\phi: \mathcal{A} * \mathcal{A} \rightarrow \mathcal{B}, \phi \text { is a CP map, } \phi \circ \rho_{1}=\phi_{1}, \phi \circ \rho_{2}=\phi_{2}\right\} .
$$

- Then

$$
\gamma\left(\phi_{1}, \phi_{2}\right)=\inf _{\phi \in K\left(\phi_{1}, \phi_{2}\right)}\left\{\left\|\sigma_{1}-\sigma_{2}\right\|_{c b}^{\mathcal{E}}:(\mathcal{E}, \sigma, x)_{\phi}\right\}
$$

- where $\sigma_{i}=\sigma \circ \rho_{i} \quad i=1,2$.
- $(\mathcal{E}, \sigma, x)_{\phi}$ is the minimal Stinespring dilation of ϕ.

Representation metric through free products

- Theorem 3: Let $\mathcal{A} * \mathcal{A}$ be the free product of \mathcal{A} with itself.
- Let ρ_{1}, ρ_{2} be the canonical injections of \mathcal{A} as first copy and second copy in $\mathcal{A} * \mathcal{A}$.
- Take

- Then

$$
\gamma\left(\phi_{1}, \phi_{2}\right)=\inf _{\phi \in K\left(\phi_{1}, \phi_{2}\right)}\left\{\left\|\sigma_{1}-\sigma_{2}\right\|_{c b}^{\mathcal{E}}:(\mathcal{E}, \sigma, x)_{\phi}\right\}
$$

- where $\sigma_{i}=\sigma \circ \rho_{i} \quad i=1,2$.
- $(\mathcal{E}, \sigma, x)_{\phi}$ is the minimal Stinespring dilation of ϕ.
- Remark: A CP map in $K\left(\phi_{1}, \phi_{2}\right)$ is like a bivariate distribution with given marginals. This shows that the metric γ is somewhat like the Wasserstein metric for probability measures.

Consequences

- Theorem 4: Let \mathcal{A}, \mathcal{B} and \mathcal{C} be C^{*}-algebras. Let ϕ_{1}, ϕ_{2} be UCP maps from \mathcal{A} to \mathcal{B} and ψ is a UCP map from \mathcal{B} to \mathcal{C}. Then

$$
\gamma\left(\psi \circ \phi_{1}, \psi \circ \phi_{2}\right) \leq \gamma\left(\phi_{1}, \phi_{2}\right)
$$

Consequences

- Theorem 4: Let \mathcal{A}, \mathcal{B} and \mathcal{C} be C^{*}-algebras. Let ϕ_{1}, ϕ_{2} be UCP maps from \mathcal{A} to \mathcal{B} and ψ is a UCP map from \mathcal{B} to \mathcal{C}. Then

$$
\gamma\left(\psi \circ \phi_{1}, \psi \circ \phi_{2}\right) \leq \gamma\left(\phi_{1}, \phi_{2}\right)
$$

- Theorem 5 (Attainability of the metric): There is a $\phi \in K\left(\phi_{1}, \phi_{2}\right)$ for which the infimum is attained for $\gamma\left(\phi_{1}, \phi_{2}\right)$, that is,

$$
\gamma\left(\phi_{1}, \phi_{2}\right)=\left\|\sigma_{1}-\sigma_{2}\right\|_{c b}^{\phi} .
$$

Main result for states: Relationship with Bures metric

- Theorem 6. For states ϕ_{1}, ϕ_{2},

$$
\beta^{2}\left(\phi_{1}, \phi_{2}\right)=2-\sqrt{4-\gamma^{2}\left(\phi_{1}, \phi_{2}\right)}
$$

Main result for states: Relationship with Bures metric

- Theorem 6. For states ϕ_{1}, ϕ_{2},

$$
\beta^{2}\left(\phi_{1}, \phi_{2}\right)=2-\sqrt{4-\gamma^{2}\left(\phi_{1}, \phi_{2}\right)}
$$

- Remark: Actually we get:

$$
\gamma\left(\phi_{1}, \phi_{2}\right)=\beta\left(\phi_{1}, \phi_{2}\right) \sqrt{4-\beta^{2}\left(\phi_{1}, \phi_{2}\right)},
$$

Main result for states: Relationship with Bures metric

- Theorem 6. For states ϕ_{1}, ϕ_{2},

$$
\beta^{2}\left(\phi_{1}, \phi_{2}\right)=2-\sqrt{4-\gamma^{2}\left(\phi_{1}, \phi_{2}\right)}
$$

- Remark: Actually we get:

$$
\gamma\left(\phi_{1}, \phi_{2}\right)=\beta\left(\phi_{1}, \phi_{2}\right) \sqrt{4-\beta^{2}\left(\phi_{1}, \phi_{2}\right)},
$$

- So $\beta^{2}\left(\phi_{1}, \phi_{2}\right)=2 \pm \sqrt{4-\gamma^{2}\left(\phi_{1}, \phi_{2}\right)}$

Main result for states: Relationship with Bures metric

- Theorem 6. For states ϕ_{1}, ϕ_{2},

$$
\beta^{2}\left(\phi_{1}, \phi_{2}\right)=2-\sqrt{4-\gamma^{2}\left(\phi_{1}, \phi_{2}\right)}
$$

- Remark: Actually we get:

$$
\gamma\left(\phi_{1}, \phi_{2}\right)=\beta\left(\phi_{1}, \phi_{2}\right) \sqrt{4-\beta^{2}\left(\phi_{1}, \phi_{2}\right)}
$$

- So $\beta^{2}\left(\phi_{1}, \phi_{2}\right)=2 \pm \sqrt{4-\gamma^{2}\left(\phi_{1}, \phi_{2}\right)}$
- Only the negative sign is permissible, as $0 \leq \beta^{2}\left(\phi_{1}, \phi_{2}\right), \gamma\left(\phi_{1}, \phi_{2}\right) \leq 2$ is trivially true for unital CP maps.

Idea of the proof

- Suppose ($\left.\mathcal{K}, \pi_{1}, \pi_{2}, x\right)$ is a joint representation of a pair of states ϕ_{1}, ϕ_{2}.

Idea of the proof

- Suppose $\left(\mathcal{K}, \pi_{1}, \pi_{2}, x\right)$ is a joint representation of a pair of states ϕ_{1}, ϕ_{2}.
- We may consider instead ($\left.\mathcal{K} \oplus \mathcal{K}, \pi_{1} \oplus \pi_{2}, \pi_{2} \oplus \pi_{1}, x \oplus 0\right)$.

Idea of the proof

- Suppose $\left(\mathcal{K}, \pi_{1}, \pi_{2}, x\right)$ is a joint representation of a pair of states ϕ_{1}, ϕ_{2}.
- We may consider instead ($\mathcal{K} \oplus \mathcal{K}, \pi_{1} \oplus \pi_{2}, \pi_{2} \oplus \pi_{1}, x \oplus 0$).
- This does not change the norm difference:

$$
\left\|\pi_{1}-\pi_{2}\right\|_{c b}=\left\|\left(\pi_{1} \oplus \pi_{2}\right)-\left(\pi_{2} \oplus \pi_{1}\right)\right\|_{c b}
$$

Idea of the proof

- Suppose $\left(\mathcal{K}, \pi_{1}, \pi_{2}, x\right)$ is a joint representation of a pair of states ϕ_{1}, ϕ_{2}.
- We may consider instead ($\mathcal{K} \oplus \mathcal{K}, \pi_{1} \oplus \pi_{2}, \pi_{2} \oplus \pi_{1}, x \oplus 0$).
- This does not change the norm difference:
$\left\|\pi_{1}-\pi_{2}\right\|_{c b}=\left\|\left(\pi_{1} \oplus \pi_{2}\right)-\left(\pi_{2} \oplus \pi_{1}\right)\right\|_{c b}$.
- In other words, we may restrict ourselves to unitarily equivalent representations π_{1}, π_{2} two compute the representation metric γ.

Idea of the proof

- Suppose $\left(\mathcal{K}, \pi_{1}, \pi_{2}, x\right)$ is a joint representation of a pair of states ϕ_{1}, ϕ_{2}.
- We may consider instead ($\mathcal{K} \oplus \mathcal{K}, \pi_{1} \oplus \pi_{2}, \pi_{2} \oplus \pi_{1}, x \oplus 0$).
- This does not change the norm difference:
$\left\|\pi_{1}-\pi_{2}\right\|_{c b}=\left\|\left(\pi_{1} \oplus \pi_{2}\right)-\left(\pi_{2} \oplus \pi_{1}\right)\right\|_{c b}$.
- In other words, we may restrict ourselves to unitarily equivalent representations π_{1}, π_{2} two compute the representation metric γ.
- Suppose U is a unitary on \mathcal{K} so that $\pi_{2}(\cdot)=U^{*} \pi_{1}(\cdot) U$. Let $y=U x$.

Idea of the proof

- Suppose $\left(\mathcal{K}, \pi_{1}, \pi_{2}, x\right)$ is a joint representation of a pair of states ϕ_{1}, ϕ_{2}.
- We may consider instead ($\mathcal{K} \oplus \mathcal{K}, \pi_{1} \oplus \pi_{2}, \pi_{2} \oplus \pi_{1}, x \oplus 0$).
- This does not change the norm difference:
$\left\|\pi_{1}-\pi_{2}\right\|_{c b}=\left\|\left(\pi_{1} \oplus \pi_{2}\right)-\left(\pi_{2} \oplus \pi_{1}\right)\right\|_{c b}$.
- In other words, we may restrict ourselves to unitarily equivalent representations π_{1}, π_{2} two compute the representation metric γ.
- Suppose U is a unitary on \mathcal{K} so that $\pi_{2}(\cdot)=U^{*} \pi_{1}(\cdot) U$. Let $y=U x$.
- So we are led to consider all tuples $(\mathcal{K}, \pi, U, x, y)$ such that $\phi_{1}(\cdot)=\langle x, \pi(\cdot) x\rangle$ and $\phi_{2}(\cdot)=\langle y, \pi(\cdot) y\rangle, U x=y$.

Idea of the proof

- Suppose $\left(\mathcal{K}, \pi_{1}, \pi_{2}, x\right)$ is a joint representation of a pair of states ϕ_{1}, ϕ_{2}.
- We may consider instead ($\mathcal{K} \oplus \mathcal{K}, \pi_{1} \oplus \pi_{2}, \pi_{2} \oplus \pi_{1}, x \oplus 0$).
- This does not change the norm difference:
$\left\|\pi_{1}-\pi_{2}\right\|_{c b}=\left\|\left(\pi_{1} \oplus \pi_{2}\right)-\left(\pi_{2} \oplus \pi_{1}\right)\right\|_{c b}$.
- In other words, we may restrict ourselves to unitarily equivalent representations π_{1}, π_{2} two compute the representation metric γ.
- Suppose U is a unitary on \mathcal{K} so that $\pi_{2}(\cdot)=U^{*} \pi_{1}(\cdot) U$. Let $y=U x$.
- So we are led to consider all tuples $(\mathcal{K}, \pi, U, x, y)$ such that $\phi_{1}(\cdot)=\langle x, \pi(\cdot) x\rangle$ and $\phi_{2}(\cdot)=\langle y, \pi(\cdot) y\rangle, U x=y$.
- It follows that

$$
\gamma\left(\phi_{1}, \phi_{2}\right)=\inf _{\{\mathcal{K}, \pi, U, x, y\}}\left\|\pi-U^{*} \pi U\right\|_{c b}
$$

Technical Lemma 1

- Let x, y be unit vectors in a Hilbert space \mathcal{K}. For a unitary U in \mathcal{K}, denote by $A d_{U}$ the automorphism $X \mapsto U X U^{*}$, on $\mathcal{B}(\mathcal{K})$.

Technical Lemma 1

- Let x, y be unit vectors in a Hilbert space \mathcal{K}. For a unitary U in \mathcal{K}, denote by $A d_{U}$ the automorphism $X \mapsto U X U^{*}$, on $\mathcal{B}(\mathcal{K})$.
- Theorem (Stampfli [St]): $\|i d-\operatorname{Ad} u\|=2 d(U, \mathbb{C})$.

Technical Lemma 1

- Let x, y be unit vectors in a Hilbert space \mathcal{K}. For a unitary U in \mathcal{K}, denote by $A d_{U}$ the automorphism $X \mapsto U X U^{*}$, on $\mathcal{B}(\mathcal{K})$.
- Theorem (Stampfli [St]): $\|i d-\operatorname{Ad} u\|=2 d(U, \mathbb{C})$.

$$
\inf _{U: U x=y}\left\|i d-A d_{U}\right\|_{c b}=\inf _{U: U x=y}\left\|i d-A d_{U}\right\|=2 \inf _{U: U x=y} d(U, \mathbb{C})
$$

Technical Lemma 1

- Let x, y be unit vectors in a Hilbert space \mathcal{K}. For a unitary U in \mathcal{K}, denote by $A d_{U}$ the automorphism $X \mapsto U X U^{*}$, on $\mathcal{B}(\mathcal{K})$.
- Theorem (Stampfli [St]): $\left\|i d-A d_{U}\right\|=2 d(U, \mathbb{C})$.

$$
\inf _{U: U x=y}\left\|i d-A d_{U}\right\|_{c b}=\inf _{U: U x=y}\left\|i d-A d_{U}\right\|=2 \inf _{U: U x=y} d(U, \mathbb{C})
$$

- Lemma 1:

$$
\inf _{U: U x=y}\left\|i d-A d_{U}\right\|_{c b}=2 \sqrt{1-|\langle x, y\rangle|^{2}}
$$

Technical Lemma 2

- Lemma 2: Let x, y be some unit vectors in a Hilbert space \mathcal{K}.

Technical Lemma 2

- Lemma 2: Let x, y be some unit vectors in a Hilbert space \mathcal{K}.
- Let W be a unitary on \mathcal{K} such that $W x=y$.

Technical Lemma 2

- Lemma 2: Let x, y be some unit vectors in a Hilbert space \mathcal{K}.
- Let W be a unitary on \mathcal{K} such that $W x=y$.
- Let P be a positive operator on \mathcal{K}.

Technical Lemma 2

- Lemma 2: Let x, y be some unit vectors in a Hilbert space \mathcal{K}.
- Let W be a unitary on \mathcal{K} such that $W x=y$.
- Let P be a positive operator on \mathcal{K}.
- Then

$$
\|W-P\| \geq \sqrt{1-[\operatorname{Re}\langle x, y\rangle]^{2}}
$$

Technical Lemma 2

- Lemma 2: Let x, y be some unit vectors in a Hilbert space \mathcal{K}.
- Let W be a unitary on \mathcal{K} such that $W x=y$.
- Let P be a positive operator on \mathcal{K}.
- Then

$$
\|W-P\| \geq \sqrt{1-[\operatorname{Re}\langle x, y\rangle]^{2}}
$$

- Theorem (Johnson [Jh]): Suppose π is a faithful representation of a C^{*}-algebra \mathcal{A} on \mathcal{K} and U is a unitary on \mathcal{K}. Then

Technical Lemma 2

- Lemma 2: Let x, y be some unit vectors in a Hilbert space \mathcal{K}.
- Let W be a unitary on \mathcal{K} such that $W x=y$.
- Let P be a positive operator on \mathcal{K}.
- Then

$$
\|W-P\| \geq \sqrt{1-[\operatorname{Re}\langle x, y\rangle]^{2}}
$$

- Theorem (Johnson [Jh]): Suppose π is a faithful representation of a C^{*}-algebra \mathcal{A} on \mathcal{K} and U is a unitary on \mathcal{K}. Then

$$
\left\|\pi-A d_{U} \circ \pi\right\|_{c b}=2 d\left(U, \pi(\mathcal{A})^{\prime}\right) .
$$

Main Result for CP Maps

- Theorem 7: Let \mathcal{A} be a unital C^{*}-algebra.

Main Result for CP Maps

- Theorem 7: Let \mathcal{A} be a unital C^{*}-algebra.
- Let $\mathcal{B} \subset \mathcal{B}(\mathcal{G})$ be an injective C^{*}-algebra.

Main Result for CP Maps

- Theorem 7: Let \mathcal{A} be a unital C^{*}-algebra.
- Let $\mathcal{B} \subset \mathcal{B}(\mathcal{G})$ be an injective C^{*}-algebra.
- Suppose $\phi_{1}, \phi_{2} \in U C P(\mathcal{A}, B)$.

Main Result for CP Maps

- Theorem 7: Let \mathcal{A} be a unital C^{*}-algebra.
- Let $\mathcal{B} \subset \mathcal{B}(\mathcal{G})$ be an injective C^{*}-algebra.
- Suppose $\phi_{1}, \phi_{2} \in U C P(\mathcal{A}, B)$.
- Then

$$
\gamma\left(\phi_{1}, \phi_{2}\right)=\beta\left(\phi_{1}, \phi_{2}\right) \sqrt{4-\beta^{2}\left(\phi_{1}, \phi_{2}\right)} .
$$

Constrained Dilation Theorem of Choi and Li

- Theorem [CL]: Let T be a contraction on a Hilbert space \mathcal{K} satisfying $T+T^{*} \geq r l$ for some $r \in \mathbb{R}$.

Constrained Dilation Theorem of Choi and Li

- Theorem [CL]: Let T be a contraction on a Hilbert space \mathcal{K} satisfying $T+T^{*} \geq r l$ for some $r \in \mathbb{R}$.
- Then there exists a unitary dilation V of T on $\mathcal{K} \oplus \mathcal{K}$, satisfying

Constrained Dilation Theorem of Choi and Li

- Theorem [CL]: Let T be a contraction on a Hilbert space \mathcal{K} satisfying $T+T^{*} \geq r l$ for some $r \in \mathbb{R}$.
- Then there exists a unitary dilation V of T on $\mathcal{K} \oplus \mathcal{K}$, satisfying

$$
V+V^{*} \geq r l
$$

Constrained Dilation Theorem of Choi and Li

- Theorem [CL]: Let T be a contraction on a Hilbert space \mathcal{K} satisfying $T+T^{*} \geq r l$ for some $r \in \mathbb{R}$.
- Then there exists a unitary dilation V of T on $\mathcal{K} \oplus \mathcal{K}$, satisfying

$$
V+V^{*} \geq r l
$$

- Proposition: Let T be a strict contraction on a Hilbert space \mathcal{K}. Then any unitary dilation V of T on $\mathcal{K} \oplus \mathcal{K}$ is up to unitary equivalence of the form

$$
V=\left(\begin{array}{cc}
T & -\left(I-T T^{*}\right)^{\frac{1}{2}} W \\
\left(I-T^{*} T\right)^{\frac{1}{2}} & T^{*} W
\end{array}\right)
$$

for some unitary W on \mathcal{K}.

Example

- Example: Let H be a separable infinite dimensional Hilbert space. Let \mathcal{K} denote the set of all compact operators on H. Set $\mathcal{K}_{+}=\operatorname{span}\left\{\mathcal{K}, \mathbb{C} l_{H}\right\}$. Let

$$
\mathcal{A}=\left(\begin{array}{cc}
\mathcal{K}_{+} & \mathcal{K} \\
\mathcal{K} & \mathcal{K}_{+}
\end{array}\right) \subset \mathcal{B}(H \oplus H), \quad \mathcal{B}=\mathcal{K}_{+} .
$$

Let p be a projection on H such that range of p and $1-p$ are both infinite dimensional subspaces of H.
Let $0<\theta<\frac{\pi}{2}$. Set

$$
u:=e^{i \theta} p+e^{-i \theta}(1-p)
$$

Then u is a unitary and $u \notin \mathcal{K}_{+}$. Let

$$
z_{1}=\frac{1}{\sqrt{2}}\binom{l}{l}, \quad z_{2}=\frac{1}{\sqrt{2}}\binom{u}{l} .
$$

Define unital CP maps $\phi_{i}: \mathcal{A} \rightarrow \mathcal{B}$, by $\phi_{i}(a)=z_{i}^{*} a z_{i}, a \in \mathcal{A}, i=1,2$.

Example -continued

- Let $\iota: \mathcal{B} \rightarrow \mathcal{B}(H)$ be the inclusion map.

Example -continued

- Let $\iota: \mathcal{B} \rightarrow \mathcal{B}(H)$ be the inclusion map.
- Let $\tilde{\phi}_{i}=\iota \circ \phi_{i}, i=1,2$.

Example -continued

- Let $\iota: \mathcal{B} \rightarrow \mathcal{B}(H)$ be the inclusion map.
- Let $\tilde{\phi}_{i}=\iota \circ \phi_{i}, i=1,2$.
- As $\mathcal{B}(H)$ is injective, we have

$$
\gamma\left(\tilde{\phi}_{1}, \tilde{\phi}_{2}\right)=\beta\left(\tilde{\phi}_{1}, \tilde{\phi}_{2}\right) \sqrt{4-\beta^{2}\left(\tilde{\phi}_{1}, \tilde{\phi}_{2}\right)} .
$$

Example -continued

- Let $\iota: \mathcal{B} \rightarrow \mathcal{B}(H)$ be the inclusion map.
- Let $\tilde{\phi}_{i}=\iota \circ \phi_{i}, i=1,2$.
- As $\mathcal{B}(H)$ is injective, we have

$$
\gamma\left(\tilde{\phi}_{1}, \tilde{\phi}_{2}\right)=\beta\left(\tilde{\phi}_{1}, \tilde{\phi}_{2}\right) \sqrt{4-\beta^{2}\left(\tilde{\phi}_{1}, \tilde{\phi}_{2}\right)} .
$$

$$
\gamma\left(\phi_{1}, \phi_{2}\right)>\sqrt{(3+\cos \theta)(1-\cos \theta)}=\gamma\left(\tilde{\phi}_{1}, \tilde{\phi}_{2}\right)
$$

Example -continued

- Let $\iota: \mathcal{B} \rightarrow \mathcal{B}(H)$ be the inclusion map.
- Let $\tilde{\phi}_{i}=\iota \circ \phi_{i}, i=1,2$.
- As $\mathcal{B}(H)$ is injective, we have

$$
\gamma\left(\tilde{\phi}_{1}, \tilde{\phi}_{2}\right)=\beta\left(\tilde{\phi}_{1}, \tilde{\phi}_{2}\right) \sqrt{4-\beta^{2}\left(\tilde{\phi}_{1}, \tilde{\phi}_{2}\right)} .
$$

$$
\gamma\left(\phi_{1}, \phi_{2}\right)>\sqrt{(3+\cos \theta)(1-\cos \theta)}=\gamma\left(\tilde{\phi}_{1}, \tilde{\phi}_{2}\right) .
$$

$$
\gamma\left(\phi_{1}, \phi_{2}\right) \neq \beta\left(\phi_{1}, \phi_{2}\right) \sqrt{4-\beta^{2}\left(\phi_{1}, \phi_{2}\right)} .
$$

Example -continued

- Let $\iota: \mathcal{B} \rightarrow \mathcal{B}(H)$ be the inclusion map.
- Let $\tilde{\phi}_{i}=\iota \circ \phi_{i}, i=1,2$.
- As $\mathcal{B}(H)$ is injective, we have

$$
\gamma\left(\tilde{\phi}_{1}, \tilde{\phi}_{2}\right)=\beta\left(\tilde{\phi}_{1}, \tilde{\phi}_{2}\right) \sqrt{4-\beta^{2}\left(\tilde{\phi}_{1}, \tilde{\phi}_{2}\right)}
$$

$$
\gamma\left(\phi_{1}, \phi_{2}\right)>\sqrt{(3+\cos \theta)(1-\cos \theta)}=\gamma\left(\tilde{\phi}_{1}, \tilde{\phi}_{2}\right)
$$

$$
\gamma\left(\phi_{1}, \phi_{2}\right) \neq \beta\left(\phi_{1}, \phi_{2}\right) \sqrt{4-\beta^{2}\left(\phi_{1}, \phi_{2}\right)} .
$$

- In other words, the formula we have proved may not hold without some assumptions on the range algebra.

Example -continued

- Let $\iota: \mathcal{B} \rightarrow \mathcal{B}(H)$ be the inclusion map.
- Let $\tilde{\phi}_{i}=\iota \circ \phi_{i}, i=1,2$.
- As $\mathcal{B}(H)$ is injective, we have

$$
\gamma\left(\tilde{\phi}_{1}, \tilde{\phi}_{2}\right)=\beta\left(\tilde{\phi}_{1}, \tilde{\phi}_{2}\right) \sqrt{4-\beta^{2}\left(\tilde{\phi}_{1}, \tilde{\phi}_{2}\right)}
$$

$$
\gamma\left(\phi_{1}, \phi_{2}\right)>\sqrt{(3+\cos \theta)(1-\cos \theta)}=\gamma\left(\tilde{\phi}_{1}, \tilde{\phi}_{2}\right) .
$$

$$
\gamma\left(\phi_{1}, \phi_{2}\right) \neq \beta\left(\phi_{1}, \phi_{2}\right) \sqrt{4-\beta^{2}\left(\phi_{1}, \phi_{2}\right)} .
$$

- In other words, the formula we have proved may not hold without some assumptions on the range algebra.
- Qpen Question: Does the formula for β in terms of γ hold when the range algebra is a general von Neumann algebra?

References

[Bu] Bures, D., An extension of Kakutani's theorem on infinite product measures to the tensor product of semifinite w^{*}-algebras, Trans. Amer. Math. Soc. 135 (1969), 199-212.
[CL] Choi, M., Li, C., Constrained unitary dilations and Numerical ranges, J. Operator Theory, 46 (2001) ,435-447.
[Jo] Johnson, B., Characterization and norms of derivations on von Neumann algebras, Springer lecture notes. [KSW] Kretschmann, D., Schlingemann, D., Werner, R., A continuity theorem for Stinesprings dilation, J. Funct. Anal. 255 (2008), no. 8, 1889-1904.
[Muk] Mukherjee, M. , Structure theorem of the generator of a norm continuous completely positive semigroup: an alternative proof using Bures distance, Positivity, (2017), 1-11.
[St] Stampfli, J., The norm of a derivation, Pacific J. Math.
Volume 33, Number 3 (1970), 737-747.

THANK YOU FOR YOUR PATIENCE

