Elementary operators on Hilbert C^* -modules

Ilja Gogić

University of Zagreb

International Workshop Hilbert C*-Modules Online Weekend in memory of William L. Paschke (1946-2019)

December 5-6, 2020 (online)

joint work with Ljiljana Arambašić

This research was supported by the Croatian Science Foundation under the project IP-2016-06-1046.

Introduction

Let A be a C^* -algebra. An attractive and fairly large class of bounded linear maps $\phi:A\to A$ that preserve all ideals of A is the class of **elementary operators**, that is, those that can be expressed as a finite sum

$$\phi = \sum_{i} M_{a_i,b_i}$$

of two-sided multiplications $M_{a_i,b_i}: x \mapsto a_i x b_i$, where $a_i, b_i \in M(A)$ (the multiplier algebra of A).

Introduction

Let A be a C^* -algebra. An attractive and fairly large class of bounded linear maps $\phi:A\to A$ that preserve all ideals of A is the class of **elementary operators**, that is, those that can be expressed as a finite sum

$$\phi = \sum_{i} M_{a_i,b_i}$$

of two-sided multiplications $M_{a_i,b_i}: x \mapsto a_i x b_i$, where $a_i,b_i \in M(A)$ (the multiplier algebra of A).

In fact, elementary operators are completely bounded (cb), i.e.

$$\|\phi\|_{cb} := \sup_{n \in \mathbb{N}} \|\phi_n\| < \infty,$$

where for each n, ϕ_n is an induced map on $M_n(A)$ (the C^* -algebra of $n \times n$ matrices over A), i.e.

$$\phi_n([a_{ij}]) = [\phi(a_{ij})].$$

Indeed, if $\phi = \sum_{i=1}^k M_{a_i,b_i}$ then, working inside $M_k(M(A))$, for each $x \in A$ we have

$$\|\phi(x)\| = \left\| \begin{bmatrix} a_1 & a_2 & \dots & a_k \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} \begin{bmatrix} x & 0 & \dots & 0 \\ 0 & x & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & x \end{bmatrix} \begin{bmatrix} b_1 & 0 & \dots & 0 \\ b_2 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ b_k & 0 & \dots & 0 \end{bmatrix} \right\|$$

$$\leq \left\| \begin{bmatrix} a_1 & a_2 & \dots & a_k \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} \right\| \left\| \begin{bmatrix} x & 0 & \dots & 0 \\ 0 & x & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & x \end{bmatrix} \right\| \left\| \begin{bmatrix} b_1 & 0 & \dots & 0 \\ b_2 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ b_k & 0 & \dots & 0 \end{bmatrix} \right\|$$

$$= \left\| \sum_{i=1}^k a_i a_i^* \right\|^{\frac{1}{2}} \left\| \sum_{i=1}^k b_i^* b_i \right\|^{\frac{1}{2}} \|x\|.$$

Indeed, if $\phi = \sum_{i=1}^k M_{a_i,b_i}$ then, working inside $M_k(M(A))$, for each $x \in A$ we have

$$\|\phi(x)\| = \left\| \begin{bmatrix} a_1 & a_2 & \dots & a_k \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} \begin{bmatrix} x & 0 & \dots & 0 \\ 0 & x & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} \right\| \begin{bmatrix} b_1 & 0 & \dots & 0 \\ b_2 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ b_k & 0 & \dots & 0 \end{bmatrix} \right\|$$

$$\leq \left\| \begin{bmatrix} a_1 & a_2 & \dots & a_k \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} \right\| \left\| \begin{bmatrix} x & 0 & \dots & 0 \\ 0 & x & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & x \end{bmatrix} \right\| \left\| \begin{bmatrix} b_1 & 0 & \dots & 0 \\ b_2 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ b_k & 0 & \dots & 0 \end{bmatrix} \right\|$$

$$= \left\| \sum_{i=1}^k a_i a_i^* \right\|^{\frac{1}{2}} \left\| \sum_{i=1}^k b_i^* b_i \right\|^{\frac{1}{2}} \|x\|.$$

This shows

$$\|\phi\| \le \left\| \sum_{i=1}^k a_i a_i^* \right\|^{\frac{1}{2}} \left\| \sum_{i=1}^k b_i^* b_i \right\|^{\frac{1}{2}}.$$
 (1)

Similarly, for each $n \in \mathbb{N}$ and $\left[x_{ij}\right] \in \mathrm{M}_n(A)$ we have

$$\phi_n\left(\left[x_{ij}\right]\right) = \sum_{i=1}^k a_i^{(n)}\left[x_{ij}\right] b_i^{(n)},$$

where for each $a \in M(A)$, $a^{(n)} = \operatorname{diag}(a, \ldots, a) \in \operatorname{M}_n(M(A))$. Hence, by (1)

$$\|\phi_{n}\| \leq \left\| \sum_{i=1}^{k} a_{i}^{(n)} (a_{i}^{*})^{(n)} \right\|_{M_{n}(M(A))}^{\frac{1}{2}} \left\| \sum_{i=1}^{k} (b_{i}^{*})^{(n)} b_{i}^{(n)} \right\|_{M_{n}(M(A))}^{\frac{1}{2}}$$

$$= \left\| \sum_{i=1}^{k} a_{i} a_{i}^{*} \right\|^{\frac{1}{2}} \left\| \sum_{i=1}^{k} b_{i}^{*} b_{i} \right\|^{\frac{1}{2}},$$

Similarly, for each $n \in \mathbb{N}$ and $[x_{ij}] \in \mathrm{M}_n(A)$ we have

$$\phi_n\left(\left[x_{ij}\right]\right) = \sum_{i=1}^k a_i^{(n)}\left[x_{ij}\right] b_i^{(n)},$$

where for each $a \in M(A)$, $a^{(n)} = \operatorname{diag}(a, \ldots, a) \in \operatorname{M}_n(M(A))$. Hence, by (1)

$$\|\phi_{n}\| \leq \left\| \sum_{i=1}^{k} a_{i}^{(n)} (a_{i}^{*})^{(n)} \right\|_{M_{n}(M(A))}^{\frac{1}{2}} \left\| \sum_{i=1}^{k} (b_{i}^{*})^{(n)} b_{i}^{(n)} \right\|_{M_{n}(M(A))}^{\frac{1}{2}}$$

$$= \left\| \sum_{i=1}^{k} a_{i} a_{i}^{*} \right\|^{\frac{1}{2}} \left\| \sum_{i=1}^{k} b_{i}^{*} b_{i} \right\|^{\frac{1}{2}},$$

which shows

$$\|\phi\|_{cb} \le \left\| \sum_{i=1}^k a_i a_i^* \right\|^{\frac{1}{2}} \left\| \sum_{i=1}^k b_i^* b_i \right\|^{\frac{1}{2}}. \tag{2}$$

In particular, if $\|\cdot\|_h$ is the Haagerup tensor norm on $M(A)\otimes M(A)$, i.e.

$$||t||_h = \inf \left\{ \left\| \sum_i u_i u_i^* \right\|^{\frac{1}{2}} \left\| \sum_i v_i^* v_i \right\|^{\frac{1}{2}} : t = \sum_i u_i \otimes v_i \right\},$$

(2) implies that the natural map

$$(M(A) \otimes M(A), \|\cdot\|_h) \rightarrow (CB(A), \|\cdot\|_{cb})$$

given by

$$\sum_i a_i \otimes b_i \mapsto \sum_i M_{a_i,b_i}.$$

is a well-defined contraction. Its continuous extension to the completed Haagerup tensor product $M(A) \otimes_h M(A)$ is known as a **canonical contraction** from $M(A) \otimes_h M(A)$ to CB(A) and is denoted by Θ_A .

In particular, if $\|\cdot\|_h$ is the Haagerup tensor norm on $M(A)\otimes M(A)$, i.e.

$$||t||_h = \inf \left\{ \left\| \sum_i u_i u_i^* \right\|^{\frac{1}{2}} \left\| \sum_i v_i^* v_i \right\|^{\frac{1}{2}} : t = \sum_i u_i \otimes v_i \right\},$$

(2) implies that the natural map

$$(M(A) \otimes M(A), \|\cdot\|_h) \rightarrow (CB(A), \|\cdot\|_{cb})$$

given by

$$\sum_i a_i \otimes b_i \mapsto \sum_i M_{a_i,b_i}.$$

is a well-defined contraction. Its continuous extension to the completed Haagerup tensor product $M(A) \otimes_h M(A)$ is known as a **canonical contraction** from $M(A) \otimes_h M(A)$ to CB(A) and is denoted by Θ_A .

Problem

When is Θ_A isometric or injective?

A necessary condition for the injectivity of Θ_A is that A is a prime C^* -algebra. Indeed, if A is not prime, then there are two non-zero ideals I and J of A such that $IJ = \{0\}$. Choose any non-zero elements $a \in I$ and $b \in J$. Then $a \otimes b \neq 0$ in $M(A) \otimes_b M(A)$, while $\Theta_A(a \otimes b) = 0$.

A necessary condition for the injectivity of Θ_A is that A is a prime C^* -algebra. Indeed, if A is not prime, then there are two non-zero ideals I and J of A such that $IJ=\{0\}$. Choose any non-zero elements $a\in I$ and $b\in J$. Then $a\otimes b\neq 0$ in $M(A)\otimes_h M(A)$, while $\Theta_A(a\otimes b)=0$.

Theorem (Haagerup 1980)

 Θ_A is isometric if $A = B(\mathcal{H})$.

A necessary condition for the injectivity of Θ_A is that A is a prime C^* -algebra. Indeed, if A is not prime, then there are two non-zero ideals I and J of A such that $IJ=\{0\}$. Choose any non-zero elements $a\in I$ and $b\in J$. Then $a\otimes b\neq 0$ in $M(A)\otimes_h M(A)$, while $\Theta_A(a\otimes b)=0$.

Theorem (Haagerup 1980)

 Θ_A is isometric if $A = B(\mathcal{H})$.

Theorem (Chatterjee-Sinclair 1992)

 Θ_A is isometric if A is a separably-acting von Neumann factor.

A necessary condition for the injectivity of Θ_A is that A is a prime C^* -algebra. Indeed, if A is not prime, then there are two non-zero ideals I and J of A such that $IJ=\{0\}$. Choose any non-zero elements $a\in I$ and $b\in J$. Then $a\otimes b\neq 0$ in $M(A)\otimes_h M(A)$, while $\Theta_A(a\otimes b)=0$.

Theorem (Haagerup 1980)

 Θ_A is isometric if $A = B(\mathcal{H})$.

Theorem (Chatterjee-Sinclair 1992)

 Θ_A is isometric if A is a separably-acting von Neumann factor.

Theorem (Mathieu 2003)

Let A be a C*-algebra. TFAE:

- (i) Θ_A is isometric.
- (ii) Θ_A is injective.
- (iii) A is a prime C*-algebra.

• Throughout, X will be a (right) Hilbert module over a C^* -algebra A.

- Throughout, X will be a (right) Hilbert module over a C^* -algebra A.
- By $\langle X, X \rangle$ we denote the closed linear span of the set $\{\langle x, y \rangle : x, y \in X\}$. Clearly, $\langle X, X \rangle$ is an ideal of A. If $\langle X, X \rangle = A$, X is said to be **full** and if $\langle X, X \rangle$ is an essential ideal of A we say that X is **essentially full**.

- Throughout, X will be a (right) Hilbert module over a C^* -algebra A.
- By $\langle X, X \rangle$ we denote the closed linear span of the set $\{\langle x, y \rangle : x, y \in X\}$. Clearly, $\langle X, X \rangle$ is an ideal of A. If $\langle X, X \rangle = A$, X is said to be **full** and if $\langle X, X \rangle$ is an essential ideal of A we say that X is **essentially full**.
- if Y is another Hilbert A-module, by $\mathbb{B}(X,Y)$ we denote the set of all **adjointable operators** from X to Y, that is those $u:X\to Y$ for which there is $u^*:Y\to X$ with the property

$$\langle ux, y \rangle = \langle x, u^*y \rangle \quad \forall x \in X, y \in Y.$$

It is well-known that all adjointable operators are bounded and A-linear (i.e. u(xa) = (ux)a for all $x \in X$ and $a \in A$).

- Throughout, X will be a (right) Hilbert module over a C^* -algebra A.
- By $\langle X, X \rangle$ we denote the closed linear span of the set $\{\langle x, y \rangle : x, y \in X\}$. Clearly, $\langle X, X \rangle$ is an ideal of A. If $\langle X, X \rangle = A$, X is said to be **full** and if $\langle X, X \rangle$ is an essential ideal of A we say that X is **essentially full**.
- if Y is another Hilbert A-module, by $\mathbb{B}(X,Y)$ we denote the set of all **adjointable operators** from X to Y, that is those $u:X\to Y$ for which there is $u^*:Y\to X$ with the property

$$\langle ux, y \rangle = \langle x, u^*y \rangle \quad \forall x \in X, y \in Y.$$

It is well-known that all adjointable operators are bounded and A-linear (i.e. u(xa) = (ux)a for all $x \in X$ and $a \in A$).

• By $\mathbb{K}(X,Y)$ we denote the closed linear subspace of $\mathbb{B}(X,Y)$ generated by the maps $z\mapsto y\langle x,z\rangle$ $(x\in X,\ y\in Y)$.

- Throughout, X will be a (right) Hilbert module over a C^* -algebra A.
- By $\langle X, X \rangle$ we denote the closed linear span of the set $\{\langle x, y \rangle : x, y \in X\}$. Clearly, $\langle X, X \rangle$ is an ideal of A. If $\langle X, X \rangle = A$, X is said to be **full** and if $\langle X, X \rangle$ is an essential ideal of A we say that X is **essentially full**.
- if Y is another Hilbert A-module, by $\mathbb{B}(X,Y)$ we denote the set of all **adjointable operators** from X to Y, that is those $u:X\to Y$ for which there is $u^*:Y\to X$ with the property

$$\langle ux, y \rangle = \langle x, u^*y \rangle \quad \forall x \in X, y \in Y.$$

It is well-known that all adjointable operators are bounded and A-linear (i.e. u(xa) = (ux)a for all $x \in X$ and $a \in A$).

- By $\mathbb{K}(X,Y)$ we denote the closed linear subspace of $\mathbb{B}(X,Y)$ generated by the maps $z\mapsto y\langle x,z\rangle$ $(x\in X,\ y\in Y)$.
- If X = Y we write $\mathbb{B}(X)$ (or $\mathbb{B}_A(X)$) and $\mathbb{K}(X)$ (or $\mathbb{K}_A(X)$). Then $\mathbb{B}(X)$ is a C^* -algebra and $\mathbb{K}(X)$ is an essential ideal of $\mathbb{B}(X)$. Moreover, $\mathbb{B}(X) = M(\mathbb{K}(X))$.

The **linking algebra** of X is defined as $\mathcal{L}(X) := \mathbb{K}(A \oplus X)$. We can write

$$\mathcal{L}(X) = \begin{bmatrix} \mathbb{K}(A) & \mathbb{K}(X,A) \\ \mathbb{K}(A,X) & \mathbb{K}(X) \end{bmatrix} = \left\{ \begin{bmatrix} T_a & l_y \\ r_x & u \end{bmatrix} : a \in A, x,y \in X, u \in \mathbb{K}(X) \right\},\,$$

where $T_a(b) = ab$ and $r_X(b) = xb$ for all $b \in A$, while $I_y(z) = \langle y, z \rangle$ for all $z \in X$. Thereby, $a \mapsto T_a$ is an isomorphism of C^* -algebras A and $\mathbb{K}(A)$, $y \mapsto I_y$ is an isometric conjugate linear isomorphism between Banach spaces X and $\mathbb{K}(X,A)$, and $x \mapsto r_X$ is an isometric linear isomorphism between Banach spaces X and $\mathbb{K}(A,X)$.

The **linking algebra** of X is defined as $\mathcal{L}(X) := \mathbb{K}(A \oplus X)$. We can write

$$\mathcal{L}(X) = \begin{bmatrix} \mathbb{K}(A) & \mathbb{K}(X,A) \\ \mathbb{K}(A,X) & \mathbb{K}(X) \end{bmatrix} = \left\{ \begin{bmatrix} T_a & l_y \\ r_x & u \end{bmatrix} : a \in A, x,y \in X, u \in \mathbb{K}(X) \right\},\,$$

where $T_a(b) = ab$ and $r_x(b) = xb$ for all $b \in A$, while $I_y(z) = \langle y, z \rangle$ for all $z \in X$. Thereby, $a \mapsto T_a$ is an isomorphism of C^* -algebras A and $\mathbb{K}(A)$, $y \mapsto I_y$ is an isometric conjugate linear isomorphism between Banach spaces X and $\mathbb{K}(X,A)$, and $x \mapsto r_x$ is an isometric linear isomorphism between Banach spaces X and $\mathbb{K}(A,X)$.

Besides $\mathcal{L}(X)$, we need another subalgebra of $\mathbb{B}(A \oplus X)$, larger than $\mathcal{L}(X)$. We define an **extended linking algebra** of X as

$$\mathcal{L}_{\text{ext}}(X) = \begin{bmatrix} \mathbb{B}(A) & \mathbb{K}(X, A) \\ \mathbb{K}(A, X) & \mathbb{B}(X) \end{bmatrix}$$
$$= \left\{ \begin{bmatrix} T_v & I_y \\ r_x & u \end{bmatrix} : v \in M(A), x, y \in X, u \in \mathbb{B}(X) \right\},$$

where, similarly as before, for $v \in M(A)$, $T_v : A \to A$ is defined by $T_v(a) = va$. It is easy to see that $\mathcal{L}_{\mathrm{ext}}(X)$ is a C^* -subalgebra of $\mathbb{B}(A \oplus X)$ which contains $\mathcal{L}(X)$ as an essential ideal.

If X is a Hilbert A-module, we can introduce the operator space structure on X via the operator space structure of its linking algebra $\mathcal{L}(X)$ (or extended linking algebra $\mathcal{L}_{\mathrm{ext}}(X)$), after identifying X as the 2-1 corner in $\mathcal{L}(X)$ (or $\mathcal{L}_{\mathrm{ext}}(X)$), via the isometric isomorphism $X \cong \mathbb{K}(A,X)$, $x \mapsto r_x$. That is, for all $n \in \mathbb{N}$ and $\left[x_{ij}\right] \in \mathrm{M}_n(X)$ we define

$$\left\| \begin{bmatrix} x_{ij} \end{bmatrix} \right\|_{\mathbf{M}_n(X)} := \left\| \begin{bmatrix} \begin{bmatrix} 0 & 0 \\ r_{x_{ij}} & 0 \end{bmatrix} \right\|_{\mathbf{M}_n(\mathcal{L}(X))} = \left\| \begin{bmatrix} \begin{bmatrix} 0 & 0 \\ r_{x_{ij}} & 0 \end{bmatrix} \right\|_{\mathbf{M}_n(\mathcal{L}_{\mathrm{ext}}(X))},$$

so that the canonical embedding

$$\iota_X:X\hookrightarrow\mathcal{L}_{\mathrm{ext}}(X),\qquad\iota_X:x\mapsto\begin{bmatrix}0&0\\r_x&0\end{bmatrix}$$

becomes a complete isometry. This structure is called the **canonical operator space structure** on X.

• If B is any C^* -algebra that contains A as an ideal, then X can be also regarded as a Hilbert B-module with respect to the same inner product (which takes values in $A \subseteq B$), while the right action of B on X is defined as follows. For $x \in X$, $a \in A$ and $b \in B$, set

$$(xa)b := x(ab).$$

Obviously, $\mathbb{B}_B(X) = \mathbb{B}_A(X)$ and $\mathbb{K}_A(X) = \mathbb{K}_B(X)$, so all $u \in \mathbb{B}_A(X)$ are also B-linear.

- In particular, by taking B=M(A), any Hilbert A-module X can be regarded as a Hilbert M(A)-module. Now for all $u\in \mathbb{B}(X)$, $x\in X$ and $v\in M(A)$ we have u(xv)=(ux)v, so in this way X becomes a Banach $\mathbb{B}(X)-M(A)$ -bimodule (in particular, the product uxv is unambiguously defined).
- Moreover, it is straightforward to check that each matrix space $\mathrm{M}_n(X)$ is a Banach $\mathrm{M}_n(\mathbb{B}(X)) \mathrm{M}_n(M(A))$ -bimodule in the canonical way.

Elementary operators on Hilbert *C****-modules**

We now extend the notion of elementary operators to Hilbert C^* -modules. First of all, following the C^* -algebraic case, for each $u \in \mathbb{B}(X)$ and $v \in M(A)$ we define a map

$$M_{u,v}: X \to X$$
 by $M_{u,v}: x \mapsto uxv$.

Elementary operators on Hilbert *C****-modules**

We now extend the notion of elementary operators to Hilbert C^* -modules. First of all, following the C^* -algebraic case, for each $u \in \mathbb{B}(X)$ and $v \in M(A)$ we define a map

$$M_{u,v}:X\to X$$
 by $M_{u,v}:x\mapsto uxv.$

Definition

By an **elementary operator** on a Hilbert A-module X we mean a map $\phi: X \to X$ for which there exists a finite number of elements $u_1, \ldots, u_k \in \mathbb{B}(X)$ and $v_1, \ldots, v_k \in M(A)$ such that

$$\phi = \sum_{i=1}^k M_{u_i, v_i}.$$

If a C^* -algebra A is considered as a Hilbert A-module in the standard way, then $\mathbb{B}(A)$ and M(A) coincide, so elementary operators on A, as a Hilbert A-module, agree with the usual notion of elementary operators on A.

If a C^* -algebra A is considered as a Hilbert A-module in the standard way, then $\mathbb{B}(A)$ and M(A) coincide, so elementary operators on A, as a Hilbert A-module, agree with the usual notion of elementary operators on A.

As in the C^* -algebraic case it is easy to see that any elementary operator ϕ on X is completely bounded. Moreover, if ϕ is represented as $\phi = \sum_i M_{u_i,v_i}$, then

$$\|\phi\|_{cb} \leq \left\|\sum_{i} u_{i} \otimes v_{i}\right\|_{h}.$$

If a C^* -algebra A is considered as a Hilbert A-module in the standard way, then $\mathbb{B}(A)$ and M(A) coincide, so elementary operators on A, as a Hilbert A-module, agree with the usual notion of elementary operators on A.

As in the C^* -algebraic case it is easy to see that any elementary operator ϕ on X is completely bounded. Moreover, if ϕ is represented as $\phi = \sum_i M_{u_i,v_i}$, then

$$\|\phi\|_{cb} \leq \left\|\sum_{i} u_{i} \otimes v_{i}\right\|_{h}.$$

Therefore, the mapping

$$\left(\mathbb{B}(X) \otimes M(A), \|\cdot\|_h\right) \to \left(\mathrm{CB}(X), \|\cdot\|_{cb}\right) \quad \text{given by} \quad \sum_i u_i \otimes v_i \mapsto \sum_i M_{u_i,v_i},$$

is a well-defined contraction, so we can continuously extend it to the map

$$\Theta_X: (\mathbb{B}(X) \otimes_h M(A), \|\cdot\|_h) \to (\mathrm{CB}(X), \|\cdot\|_{cb}).$$

Theorem (Arambašić-G. 2020)

Let X be a non-zero Hilbert A-module. TFAE:

- (i) Θ_X is isometric.
- (ii) Θ_X is injective.
- (iii) A is a prime C*-algebra.

Theorem (Arambašić-G. 2020)

Let X be a non-zero Hilbert A-module. TFAE:

- (i) Θ_X is isometric.
- (ii) Θ_X is injective.
- (iii) A is a prime C*-algebra.

Lemma

For each map $\phi: X \to X$ we define a map

$$\widetilde{\phi}:\mathcal{L}_{\mathrm{ext}}(X) o \mathcal{L}_{\mathrm{ext}}(X) \qquad \text{by} \qquad \widetilde{\phi}\left(egin{bmatrix} T_v & \mathit{l}_y \ \mathit{r}_x & \mathit{u} \end{bmatrix}
ight) := egin{bmatrix} 0 & 0 \ \mathit{r}_{\phi(x)} & 0 \end{bmatrix}.$$

- (a) If $\phi \in CB(X)$ then $\widetilde{\phi} \in CB(\mathcal{L}_{ext}(X))$ and $\|\widetilde{\phi}\|_{cb} = \|\phi\|_{cb}$.
- **(b)** For each $t \in \mathbb{B}(X) \otimes_h M(A)$ we have

$$\widetilde{\Theta_X(t)} = \Theta_{\mathcal{L}_{\mathrm{ext}}(X)}((\iota_{\mathbb{B}(X)} \otimes \iota_{M(A)})(t)).$$

We shall also need the following characterisations of Hilbert C^* -modules over prime C^* -algebras:

Proposition

Let X be a non-zero Hilbert A-module. TFAE:

- (i) A is prime.
- (ii) X is essentially full and $\mathbb{K}(X)$ is prime.
- (iii) The linking algebra $\mathcal{L}(X)$ is prime.
- (iv) The extended linking algebra $\mathcal{L}_{\mathrm{ext}}(X)$ is prime.
- (v) If $a \in A$ and $u \in \mathbb{K}(X)$ are such that uxa = 0 for all $x \in X$, then a = 0 or u = 0.
- (vi) X is essentially full and if $x_1, x_2 \in X$ are such that $x_1\langle x, x_2\rangle = 0$ for all $x \in X$, then $x_1 = 0$ or $x_2 = 0$.

We shall also need the following characterisations of Hilbert C^* -modules over prime C^* -algebras:

Proposition

Let X be a non-zero Hilbert A-module. TFAE:

- (i) A is prime.
- (ii) X is essentially full and $\mathbb{K}(X)$ is prime.
- (iii) The linking algebra $\mathcal{L}(X)$ is prime.
- (iv) The extended linking algebra $\mathcal{L}_{\mathrm{ext}}(X)$ is prime.
- (v) If $a \in A$ and $u \in \mathbb{K}(X)$ are such that uxa = 0 for all $x \in X$, then a = 0 or u = 0.
- (vi) X is essentially full and if $x_1, x_2 \in X$ are such that $x_1\langle x, x_2\rangle = 0$ for all $x \in X$, then $x_1 = 0$ or $x_2 = 0$.

Corollary

The primeness is an invariant property under Morita equivalence.

Proof of Theorem. (i) \Longrightarrow (ii). This is trivial.

Proof of Theorem. (i) \Longrightarrow (ii). This is trivial.

(ii) \Longrightarrow (iii). Assume that A is not prime. Then there are non-zero elements $u \in \mathbb{K}(X)$ and $a \in A$ such that uxa = 0 for all $x \in X$. Then $u \otimes a$ is a non-zero tensor in $\mathbb{K}(X) \otimes A \subseteq \mathbb{B}(X) \otimes M(A)$ but $\Theta_X(u \otimes a)(x) = uxa = 0$ for all $x \in X$.

Proof of Theorem. (i) \Longrightarrow (ii). This is trivial.

(ii) \Longrightarrow (iii). Assume that A is not prime. Then there are non-zero elements $u \in \mathbb{K}(X)$ and $a \in A$ such that uxa = 0 for all $x \in X$. Then $u \otimes a$ is a non-zero tensor in $\mathbb{K}(X) \otimes A \subseteq \mathbb{B}(X) \otimes M(A)$ but $\Theta_X(u \otimes a)(x) = uxa = 0$ for all $x \in X$.

(iii) \Longrightarrow (i). Since the canonical embeddings $\iota_{\mathbb{B}(X)}: \mathbb{B}(X) \hookrightarrow \mathcal{L}_{\mathrm{ext}}(X)$ and $\iota_{M(A)}: M(A) \hookrightarrow \mathcal{L}_{\mathrm{ext}}(X)$ are completely isometric, the injectivity of the Haagerup tensor product implies

$$\|(\iota_{\mathbb{B}(X)}\otimes\iota_{M(A)})(t)\|_{h}=\|t\|_{h} \qquad \forall t\in\mathbb{B}(X)\otimes_{h}M(A).$$

If A is a prime C^* -algebra, then $\mathcal{L}_{\mathrm{ext}}(X)$ is also prime, so Mathieu's theorem implies

$$\|\Theta_{\mathcal{L}_{\mathrm{ext}}(X)}(t')\|_{cb} = \|t'\|_{h} \qquad \forall t' \in \mathcal{L}_{\mathrm{ext}}(X) \otimes_{h} \mathcal{L}_{\mathrm{ext}}(X).$$

Hence, for all $t \in \mathbb{B}(X) \otimes_h M(A)$ we have

$$\begin{split} \|\Theta_X(t)\|_{cb} &= \|\widetilde{\Theta_X(t)}\|_{cb} = \|\Theta_{\mathcal{L}_{\mathrm{ext}}(X)}((\iota_{\mathbb{B}(X)} \otimes \iota_{M(A)})(t))\|_{cb} \\ &= \|(\iota_{\mathbb{B}(X)} \otimes \iota_{M(A)})(t)\|_h = \|t\|_h. \end{split}$$

Thus, Θ_X is isometric.

Some open problems

Problem

If the underlying C^* -algebra A of X is not prime (so that Θ_X is non-injective), can we describe the kernel of Θ_X ?

Some open problems

Problem

If the underlying C^* -algebra A of X is not prime (so that Θ_X is non-injective), can we describe the kernel of Θ_X ?

Problem

When is the set of elementary operators on X closed as a subset of $\mathrm{CB}(X)$? (Comment: this is still not completely solved in the C^* -algebraic case.)

Some open problems

Problem

If the underlying C^* -algebra A of X is not prime (so that Θ_X is non-injective), can we describe the kernel of Θ_X ?

Problem

When is the set of elementary operators on X closed as a subset of $\mathrm{CB}(X)$? (Comment: this is still not completely solved in the C^* -algebraic case.)

Problem

By a beautiful result due to Archbold, Mathieu and Somerset from 1999 we know that for any elementary operator ϕ on a C^* -algebra A we have $\|\phi\|_{cb} = \|\phi\|$ if and only if A is an extension of an antiliminal C^* -algebra by an abelian one. Can we generalize this result in the context of Hilbert C^* -modules?