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A (right) Hilbert C∗-module over a C∗-algebra A is a right
A-module X equipped with an A-valued inner product 〈·|·〉
which is A-linear in the second and ∗-conjugate linear in the
first variable such that X is a Banach space with the norm
‖x‖ = ‖〈x |x〉‖

1
2 . X is a full Hilbert A-module if A = 〈X |X 〉

where 〈X |X 〉 is the closed linear span of all elements in the
underlying C∗-algebra A of the form 〈x |y〉, x , y ∈ X .
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The main objects and tools in this presentation are related to
the extensions of Hilbert modules on which Prof. Damir Bakić
and I worked about fifteen years ago.

First of all let’s note that throughout A is a C∗-algebra with an
essential closed two-sided ideal I and X is a Hilbert A-module.
We prefer that the ideal is the proper ideal because otherwise
our results coincide with the already known results on the
characterization of Hilbert modules over C∗-algebras of
compact operators.
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• The first object ideal submodule XI of X associated to I is
XI = XI = {x ∈ X : 〈x |x〉 ∈ I} = {x ∈ X ; 〈x |y〉 ∈ I,∀y ∈ X}.
If X is full module, then XI is full as a Hilbert I-module.



Content Introduction and preliminaries The main results

• The first object ideal submodule XI of X associated to I is
XI = XI = {x ∈ X : 〈x |x〉 ∈ I} = {x ∈ X ; 〈x |y〉 ∈ I,∀y ∈ X}.
If X is full module, then XI is full as a Hilbert I-module.

• Also we have so called multiplier module M(XI) of XI that is
(not necessarily full) Hilbert C∗-module over the multiplier
algebra M(I) and contains X .



Content Introduction and preliminaries The main results

• The first object ideal submodule XI of X associated to I is
XI = XI = {x ∈ X : 〈x |x〉 ∈ I} = {x ∈ X ; 〈x |y〉 ∈ I,∀y ∈ X}.
If X is full module, then XI is full as a Hilbert I-module.

• Also we have so called multiplier module M(XI) of XI that is
(not necessarily full) Hilbert C∗-module over the multiplier
algebra M(I) and contains X .

• Besides the norm topology, M(XI) is also endowed with the
strict topology induced by XI . This is the topology induced by
two families of seminorms: v 7→ ‖〈v |y〉‖, (y ∈ XI), and
v 7→ ‖vb‖, (b ∈ I). The strict topology is Hausdorff since I is
an essential ideal in A.



Content Introduction and preliminaries The main results

• The first object ideal submodule XI of X associated to I is
XI = XI = {x ∈ X : 〈x |x〉 ∈ I} = {x ∈ X ; 〈x |y〉 ∈ I,∀y ∈ X}.
If X is full module, then XI is full as a Hilbert I-module.

• Also we have so called multiplier module M(XI) of XI that is
(not necessarily full) Hilbert C∗-module over the multiplier
algebra M(I) and contains X .

• Besides the norm topology, M(XI) is also endowed with the
strict topology induced by XI . This is the topology induced by
two families of seminorms: v 7→ ‖〈v |y〉‖, (y ∈ XI), and
v 7→ ‖vb‖, (b ∈ I). The strict topology is Hausdorff since I is
an essential ideal in A.

A net (vλ) in M(XI) converges strictly to v ∈ M(XI), which is
denoted by v = st- limλ vλ, if and only if 〈v |y〉 = limλ〈vλ|y〉,
∀y ∈ XI , and vb = limλ vλb, ∀b ∈ I.
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It is known that XI is strictly dense in M(XI); moreover, it turns
out that M(XI) is the strict completion of XI . Also, if XI is a full
I-module, we can look at M(XI) as a largest Hilbert C∗-module
over C∗-algebra containing I as an essential ideal such that XI
is its ideal submodule with respect to I.
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It is known that XI is strictly dense in M(XI); moreover, it turns
out that M(XI) is the strict completion of XI . Also, if XI is a full
I-module, we can look at M(XI) as a largest Hilbert C∗-module
over C∗-algebra containing I as an essential ideal such that XI
is its ideal submodule with respect to I.

• For a submodule F of M(XI), X and XI we denote by F⊥ ,
F⊥X = F⊥ ∩ X and F⊥XI = F⊥ ∩ XI the orthogonal
complement of F in M(XI), X and XI , respectively.

• We denote by c`(F) the closure of F in M(XI) with respect
to the norm topology.
For a submodule F of M(XI), X and XI we denote by c`st (F),
c`st
X (F) = c`st (F) ∩ X and c`st

XI
(F) = c`st (F) ∩ XI the

(relative) strict closure of F in M(XI), X and XI , respectively.
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• The hereditary C∗-subalgebras of some C∗-algebra B is a
C∗-subalgebra A having the property that if for 0 ≤ b ∈ B there
exists 0 ≤ a ∈ A such that b ≤ a then b ∈ A. The useful
characterization of hereditary C∗-subalgebras A is ABA = A.
By ha(B) we denote the set of all such algebras. For nonempty
set S ⊂ B we denote by haS(B) the set of all C∗-algebras from
ha(B) containing S.
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• The hereditary C∗-subalgebras of some C∗-algebra B is a
C∗-subalgebra A having the property that if for 0 ≤ b ∈ B there
exists 0 ≤ a ∈ A such that b ≤ a then b ∈ A. The useful
characterization of hereditary C∗-subalgebras A is ABA = A.
By ha(B) we denote the set of all such algebras. For nonempty
set S ⊂ B we denote by haS(B) the set of all C∗-algebras from
ha(B) containing S.• The hereditary A-module of a full Hilbert B-module X ,
where A ∈ ha(B), is XA = XA = {x ∈ X : 〈x |x〉 ∈ A} =
{x ∈ X ; |〈y |x〉| ∈ A,∀y ∈ X}. We note that hereditary
A-module of a Hilbert B-module is its submodule iff it is a full
module over some ideal in B what is generally not the case with
its hereditarry subalgebras. We denote by hm(X ) the set of all
hereditary C∗-modules of the Hilbert C∗-module X and for
nonempty set S ⊂ X we denote by hmS(X ) the set of all
C∗-modules in hm(X ) containing S.
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• If X and Y are Hilbert A-modules, we denote by B(X ,Y),
Ba(X ,Y) and K(X ,Y) the Banach space of all bounded,
adjointable and "compact" operators from X to Y, respectively,
and B(X ) = B(X ,X ). The Banach space of all "compact"
operators is generated by elementary "compact" operators
Θy ,x , for all x ∈ X , y ∈ Y acting as Θy ,xz = y〈x |z〉, for all
z ∈ X .
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• Let (Bj , ‖ · ‖j)j∈J be a family of Banach spaces. For any
closed ideal C of C∞(J ) containing C0 we denote the outer
direct sum

C-⊕j∈J Bj = {x =(xj)j∈J ∈Πj∈JBj ; (‖xj‖j)j∈J ∈C}. (1)

The set C-⊕j∈J Bj is a Banach space with the norm
‖x‖∞=supj∈J ‖xj‖j and componentwise operations.
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In what follows, for simplicity, we call compact like C∗-algebra
any C∗-algebra which is isomorphic to a C∗-algebra of not
necessarily all compact operators on a Hilbert space.
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The main results

First we give characterizations and description of a class of full
Hilbert C∗-modules over C∗-algebras containing an essential
compact like ideal.
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Modules over algebra with compact like ideal

Theorem 1

Let A be C∗-algebra with an essential ideal I and let X be a full
Hilbert A-module. The following statements are equivalent:

(i) I is a compact like C∗-algebra.
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Modules over algebra with compact like ideal

Theorem 1

Let A be C∗-algebra with an essential ideal I and let X be a full
Hilbert A-module. The following statements are equivalent:

(i) I is a compact like C∗-algebra.
(ii) There is a strict orthogonal bases for X .
(iii) For every relatively strictly closed submodule F in X

submodule F ⊕ F⊥X is relatively strictly dense in X , i.e.
X = c`st

X (F ⊕ F⊥X ).
(iv) Each relatively strictly closed submodule in X is

orthogonally closed.
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Modules over algebra with compact like ideal

Theorem 1

Let A be C∗-algebra with an essential ideal I and let X be a full
Hilbert A-module. The following statements are equivalent:

(v) There are families of Hilbert spaces (Hj)j∈J , (Gj)j∈J ,
a family of C∗-algebras A = (Aj)j∈J ,

K(Hj) ⊆ Aj ⊆ B(Hj), j ∈ J , (1)
and a family of Banach spaces of bounded linear operators
X = (Xj)j∈J ,

K(Hj ,Gj) ⊆ Xj ⊆ B(Hj ,Gj), j ∈ J , (2)
such that I is isomorphic to C0-⊕j K(Hj), ideal submodule
XI is isomorphic to C0-⊕j K(Hj ,Gj) and A-module X is
isomorphic to A-module X.
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Modules with complementing property

In the following theorem we characterize and describe the class
of all full Hilbert C∗-modules which have the complementing
property.
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Modules with complementing property

In the following theorem we characterize and describe the class
of all full Hilbert C∗-modules which have the complementing
property.
In what follows we say that Hilbert’s C∗-module has the
complementing property if each of its relatively strictly closed
submodules is complemented.
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Modules with complementing property

Theorem 2

Let A be a C∗-algebra with an essential compact like ideal K
and let X be a full Hilbert A-module. The following statements
are equivalent:
(i) Hilbert A-module X has the complementing property.



Content Introduction and preliminaries The main results

Modules with complementing property

Theorem 2

Let A be a C∗-algebra with an essential compact like ideal K
and let X be a full Hilbert A-module. The following statements
are equivalent:
(i) Hilbert A-module X has the complementing property.
(ii) For each relatively strictly closed submodule F ⊆ X the

orthogonal sum F ⊕ F⊥X is relatively strictly closed in X .



Content Introduction and preliminaries The main results

Modules with complementing property

Theorem 2

Let A be a C∗-algebra with an essential compact like ideal K
and let X be a full Hilbert A-module. The following statements
are equivalent:
(i) Hilbert A-module X has the complementing property.
(ii) For each relatively strictly closed submodule F ⊆ X the

orthogonal sum F ⊕ F⊥X is relatively strictly closed in X .
(iii) For every relatively strictly closed submodules

F ,G⊆X ,F⊥G, the orthogonal sum F ⊕ G is relatively
strictly closed inX .



Content Introduction and preliminaries The main results

Modules with complementing property

Theorem 2

Let A be a C∗-algebra with an essential compact like ideal K
and let X be a full Hilbert A-module. The following statements
are equivalent:
(i) Hilbert A-module X has the complementing property.
(ii) For each relatively strictly closed submodule F ⊆ X the

orthogonal sum F ⊕ F⊥X is relatively strictly closed in X .
(iii) For every relatively strictly closed submodules

F ,G⊆X ,F⊥G, the orthogonal sum F ⊕ G is relatively
strictly closed inX .

(iv) C∗-algebras Ba(X ) and Ba(XK) of all adjointable operators
on X and XK are isomorphic by isomorphism acting as
restriction.
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Modules with complementing property

In the following corollary we characterize one class of
C∗-algebras by generic categorical property of some class of
Hilbert C∗-modules over them.
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Modules with complementing property

Corollary 3

Let A be a C∗-algebra with an essential ideal I. Then A is a
hereditary subalgebra of M(I) if and only if for any C∗-Hilbert
module of the form X = M(XI)A the mapping
β : Ba(X )→ Ba(XI) which acts as restriction is an
isomorphism.
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Let A be C∗-algebra with an essential ideal I and let X be a full
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Modules with complementing property

Theorem 3

Let A be C∗-algebra with an essential ideal I and let X be a full
Hilbert A-module. The following statements are equivalent:

(i) Hilbert A-module X has the complementing property.
(ii) I is compact like C∗-algebra, A ∈ haI(M(I)) and
X = M(XI)A ∈ hmXI (M(XI)).

(iii) There are families of Hilbert spaces (Hj)j∈J , (Gj)j∈J ,
C∗-algebra A = (Aj)j∈J ∈ haK(M(K)) and A-module
X = (Xj)j∈J ∈ hmXK

(M(XK)), such that K = C0-⊕j K(Hj),
ideal submodule XK = C0-⊕j K(Hj ,Gj), I is isomorphic to K
and A-module X is isomorphic to A-module X.
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Modules with complementing property

Finally, we give an important hereditary property of Hilbert
C∗-modules having the complementing property. Namely we
claim that any relatively strictly closed submodule of such
module possess the complementing property.
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Modules with complementing property

Proposition 4

Let X = (Xj)j∈J be a full hereditary Hilbert A-module of M(XK)
and A = (Aj)j∈J ∈ haK(M(K)), were K = C0-⊕j∈J Kj and Kj is
isomorphic to C∗-algebra of all compact operators on some
Hilbert space Hj , j ∈ J . Then every relatively strictly closed
submodule Y in X is a hereditary (not necessarily full)
A-submodule of M(YK).
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Modules with complementing property

Proposition 4

Let X = (Xj)j∈J be a full hereditary Hilbert A-module of M(XK)
and A = (Aj)j∈J ∈ haK(M(K)), were K = C0-⊕j∈J Kj and Kj is
isomorphic to C∗-algebra of all compact operators on some
Hilbert space Hj , j ∈ J . Then every relatively strictly closed
submodule Y in X is a hereditary (not necessarily full)
A-submodule of M(YK).
If p = (pj)j∈J ∈ Ba(M(XK)) is a projection such that Y = pX ,
then for all j ∈ J we have 〈Yj |Yj〉j = Ij , where Ij is an ideal of
Aj containing Kj , if and only if Yj = YjIj if and only if
pj ∈ KIj (Xj) = c`(span({Θx ,y ; x , y ∈ XjIj})) = {T ∈ Ba(Xj);
TXj ⊆ XjIj} ' K(XjIj ). If Hj is separable Hilbert space then
〈Yj |Yj〉j = Aj or 〈Yj |Yj〉j = Kj , for all j ∈ J .
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Example

In the following example we discuss some basic C∗-algebras
and Hilbert C∗-modules with the complementing property and
those without it.
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Example 5

Let H be infinite-dimensional separable Hilbert space, let B be
a C∗-algebra of all bounded operators on H and let K be a
C∗-algebra of all compact operators on H.
Then for C∗-algebra A, where K ⊂ A ⊆ B, K is an unique
essential ideal in A and B. In B we define inner product
∀x , y ∈ B, 〈x |y〉 = x∗y with which K, A and B are full right
Hilbert C∗-modules over K, A and B respectively. Strict topology
in this modules is standard strict topology in B generated by K.
Submodules in this Hilbert modules are right ideals in
corresponding algebras and ideal submodule of A and B is K.
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Example 5
As for Hilbert modules in which each relatively strictly closed
submodule is orthogonally complemented in this example we
have basic cases A = K, X = K and A = B, X = B. Also, for
any projection p ∈ B with infinite rank and kernel A = pBp + K
is hereditary C∗-subalgebra of B containing K, and associated
hereditary module is X = BA = Bp + K. By the way, the
multiplier algebra of A is M(A) = pBp + (e − p)B(e − p) + K,
where e is unit in B. Note that the C∗-algebra Y = A is also a
full Hilbert C∗-module over A, but Y = pBp + K $ X. This
implies that some relatively strictly closed submodules in Y are
not complemented.
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Example

Example 5
In order to determine which submodules are complemented we
write Hilbert space H = R ⊕ L, where R = pH, L = (e − p)H.

Then projection p has a 2× 2 matrix form p =

[
e1 03
0∗3 02

]
where

e1 ∈ B(R) is unit, 03 ∈ B(L,R), 02 ∈ B(R), and therefore

Y =

[
B(R) K(L,R)

K(R,L) K(L)

]
. Any projection q from B(H) can be

identified with the matrix q =

[
a c
c∗ b

]
, where a ∈ B(R),

b,e2 ∈ B(L), e2 is unit, and c ∈ B(L,R) such that 0 ≤ a ≤ e1,
0 ≤ b ≤ e2, cc∗ = a(e1 − a), c∗c = b(e2 − b) and
ac = c(e2 − b), i.e. a = 1

2(e1 ± (e1 − 4cc∗)
1
2 ) and

b = 1
2(e2 ∓ (e2 − 4c∗c)

1
2 ).
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Then qY is of the form

qY =

[
aB(R) + cK(R,L) aK(L,R) + cK(L)
c∗B(R) + bK(R,L) c∗K(L,R) + bK(L)

]
. From that it

follows qY ⊆ Y⇔ c∗B(R) ⊆ K(R,L)⇔ c ∈ K(L,R). Thus
complemented are those and only those submodules in Y of the
form qB∩Y = qY for which the c component of the projection q
is a compact operator. Other submodules of the form qB ∩ Y
are not complemented in Y, but they are relatively strictly
closed in Y and hence orthogonally closed in Y by Theorem 1.



Content Introduction and preliminaries The main results

Example

Example 5
Let’s consider now A = Ce + K, a minimal unitization of K,
which is not a hereditary C∗-subalgebra of B. We know that
every submodule in A which is closed in relatively strict
topology, which is also orthogonally closed in A, is of the form
G = (e − p)B ∩ A for some projection p ∈ B. Then every t ∈ G
is of the form t = (e − p)b = αe + k for some b ∈ B, k ∈ K and
α ∈ C. This implies that compact operator k = (e − p)b − αe
for some b ∈ B and α ∈ C. Then pk = −αp, and this is possible
if and only if α = 0 or the dimension of the range of p is finite.



Content Introduction and preliminaries The main results

Example

Example 5
Relatively strictly closed submodules in A defined by
projections with infinite-dimensional range and kernel are
closed submodules of K (case α = 0), i.e. G = (e − p)K and
G⊥A = G⊥K = pK. They are not complemented in A, but they
are complemented in K, i.e. G ⊕ G⊥A = K, so the orthogonal
sum is not relatively strictly closed in A, but it is relatively
strictly dense in A. This submodule G is also an example of a
submodule that is orthogonally closed in A but not
complemented in A.
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Example 5
Consider a relatively strictly closed submodule in A that is
defined by a projection with a finite-dimensional range or
kernel. Then exactly one of the projections p or e − p is in K. If
this is p, then pA = Cp + pK ⊂ K ⊂ A, and then we have
(e − p)A ⊆ A− pA ⊆ A, which gives
A = (e − p)A⊕ pA = G ⊕ G⊥A . Thus, submodules are
orthogonally complemented in A if and only if the associated
projection has a finite-dimensional range or kernel. ♦
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THANK YOU FOR YOUR ATTENTION
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