HILBERT C*-MODULES WITH COMPLEMENTING PROPERTY

Boris Guljaš

University of Zagreb Department of mathematics

International Workshop Hilbert C*-Modules Online Weekend in memory of William L. Paschke (1946-2019) Moscow, Russia, December 5-6, 2020

Content

2 The main results

- Modules over algebra with compact like ideal
- Modules with complementing property
- Example

A (right) Hilbert *c**-module over a *c**-algebra \mathcal{A} is a right \mathcal{A} -module \mathcal{X} equipped with an \mathcal{A} -valued inner product $\langle \cdot | \cdot \rangle$ which is \mathcal{A} -linear in the second and *-conjugate linear in the first variable such that \mathcal{X} is a Banach space with the norm $||x|| = ||\langle x|x \rangle||^{\frac{1}{2}}$. \mathcal{X} is a full Hilbert \mathcal{A} -module if $\mathcal{A} = \langle \mathcal{X} | \mathcal{X} \rangle$ where $\langle \mathcal{X} | \mathcal{X} \rangle$ is the closed linear span of all elements in the underlying *c**-algebra \mathcal{A} of the form $\langle x|y \rangle, x, y \in \mathcal{X}$.

The main objects and tools in this presentation are related to the extensions of Hilbert modules on which Prof. Damir Bakić and I worked about fifteen years ago.

First of all let's note that throughout \mathcal{A} is a *c**-algebra with an essential closed two-sided ideal \mathcal{I} and \mathcal{X} is a Hilbert \mathcal{A} -module. We prefer that the ideal is the proper ideal because otherwise our results coincide with the already known results on the characterization of Hilbert modules over *c**-algebras of compact operators.

• Also we have so called multiplier module $M(\mathcal{X}_{\mathcal{I}})$ of $\mathcal{X}_{\mathcal{I}}$ that is (not necessarily full) Hilbert *c**-module over the multiplier algebra $M(\mathcal{I})$ and contains \mathcal{X} .

• Also we have so called multiplier module $M(\mathcal{X}_{\mathcal{I}})$ of $\mathcal{X}_{\mathcal{I}}$ that is (not necessarily full) Hilbert c^* -module over the multiplier algebra $M(\mathcal{I})$ and contains \mathcal{X} .

• Besides the norm topology, $M(\mathcal{X}_{\mathcal{I}})$ is also endowed with the strict topology induced by $\mathcal{X}_{\mathcal{I}}$. This is the topology induced by two families of seminorms: $v \mapsto ||\langle v|y \rangle||$, $(y \in \mathcal{X}_{\mathcal{I}})$, and $v \mapsto ||vb||$, $(b \in \mathcal{I})$. The strict topology is Hausdorff since \mathcal{I} is an essential ideal in \mathcal{A} .

• Also we have so called multiplier module $M(\mathcal{X}_{\mathcal{I}})$ of $\mathcal{X}_{\mathcal{I}}$ that is (not necessarily full) Hilbert c^* -module over the multiplier algebra $M(\mathcal{I})$ and contains \mathcal{X} .

• Besides the norm topology, $M(\mathcal{X}_{\mathcal{I}})$ is also endowed with the strict topology induced by $\mathcal{X}_{\mathcal{I}}$. This is the topology induced by two families of seminorms: $v \mapsto ||\langle v|y \rangle||$, $(y \in \mathcal{X}_{\mathcal{I}})$, and $v \mapsto ||vb||$, $(b \in \mathcal{I})$. The strict topology is Hausdorff since \mathcal{I} is an essential ideal in \mathcal{A} .

A net (v_{λ}) in $M(\mathcal{X}_{\mathcal{I}})$ converges strictly to $v \in M(\mathcal{X}_{\mathcal{I}})$, which is denoted by $v = \text{st-} \lim_{\lambda} v_{\lambda}$, if and only if $\langle v | y \rangle = \lim_{\lambda} \langle v_{\lambda} | y \rangle$, $\forall y \in \mathcal{X}_{\mathcal{I}}$, and $vb = \lim_{\lambda} v_{\lambda}b$, $\forall b \in \mathcal{I}$.

It is known that $\mathcal{X}_{\mathcal{I}}$ is strictly dense in $M(\mathcal{X}_{\mathcal{I}})$; moreover, it turns out that $M(\mathcal{X}_{\mathcal{I}})$ is the strict completion of $\mathcal{X}_{\mathcal{I}}$. Also, if $\mathcal{X}_{\mathcal{I}}$ is a full \mathcal{I} -module, we can look at $M(\mathcal{X}_{\mathcal{I}})$ as a largest Hilbert *c**-module over *c**-algebra containing \mathcal{I} as an essential ideal such that $\mathcal{X}_{\mathcal{I}}$ is its ideal submodule with respect to \mathcal{I} . It is known that $\mathcal{X}_{\mathcal{I}}$ is strictly dense in $M(\mathcal{X}_{\mathcal{I}})$; moreover, it turns out that $M(\mathcal{X}_{\mathcal{I}})$ is the strict completion of $\mathcal{X}_{\mathcal{I}}$. Also, if $\mathcal{X}_{\mathcal{I}}$ is a full \mathcal{I} -module, we can look at $M(\mathcal{X}_{\mathcal{I}})$ as a largest Hilbert *c**-module over *c**-algebra containing \mathcal{I} as an essential ideal such that $\mathcal{X}_{\mathcal{I}}$ is its ideal submodule with respect to \mathcal{I} .

• For a submodule \mathcal{F} of $M(\mathcal{X}_{\mathcal{I}})$, \mathcal{X} and $\mathcal{X}_{\mathcal{I}}$ we denote by \mathcal{F}^{\perp} , $\mathcal{F}^{\perp_{\mathcal{X}}} = \mathcal{F}^{\perp} \cap \mathcal{X}$ and $\mathcal{F}^{\perp_{\mathcal{X}_{\mathcal{I}}}} = \mathcal{F}^{\perp} \cap \mathcal{X}_{\mathcal{I}}$ the orthogonal complement of \mathcal{F} in $M(\mathcal{X}_{\mathcal{I}})$, \mathcal{X} and $\mathcal{X}_{\mathcal{I}}$, respectively. It is known that $\mathcal{X}_{\mathcal{I}}$ is strictly dense in $M(\mathcal{X}_{\mathcal{I}})$; moreover, it turns out that $M(\mathcal{X}_{\mathcal{I}})$ is the strict completion of $\mathcal{X}_{\mathcal{I}}$. Also, if $\mathcal{X}_{\mathcal{I}}$ is a full \mathcal{I} -module, we can look at $M(\mathcal{X}_{\mathcal{I}})$ as a largest Hilbert *c**-module over *c**-algebra containing \mathcal{I} as an essential ideal such that $\mathcal{X}_{\mathcal{I}}$ is its ideal submodule with respect to \mathcal{I} .

• For a submodule \mathcal{F} of $M(\mathcal{X}_{\mathcal{I}})$, \mathcal{X} and $\mathcal{X}_{\mathcal{I}}$ we denote by \mathcal{F}^{\perp} , $\mathcal{F}^{\perp_{\mathcal{X}}} = \mathcal{F}^{\perp} \cap \mathcal{X}$ and $\mathcal{F}^{\perp_{\mathcal{X}_{\mathcal{I}}}} = \mathcal{F}^{\perp} \cap \mathcal{X}_{\mathcal{I}}$ the orthogonal complement of \mathcal{F} in $M(\mathcal{X}_{\mathcal{I}})$, \mathcal{X} and $\mathcal{X}_{\mathcal{I}}$, respectively.

• We denote by $c\ell(\mathcal{F})$ the closure of \mathcal{F} in $M(\mathcal{X}_{\mathcal{I}})$ with respect to the norm topology.

For a submodule \mathcal{F} of $M(\mathcal{X}_{\mathcal{I}})$, \mathcal{X} and $\mathcal{X}_{\mathcal{I}}$ we denote by $c\ell^{st}(\mathcal{F})$, $c\ell^{st}_{\mathcal{X}}(\mathcal{F}) = c\ell^{st}(\mathcal{F}) \cap \mathcal{X}$ and $c\ell^{st}_{\mathcal{X}_{\mathcal{I}}}(\mathcal{F}) = c\ell^{st}(\mathcal{F}) \cap \mathcal{X}_{\mathcal{I}}$ the (relative) strict closure of \mathcal{F} in $M(\mathcal{X}_{\mathcal{I}})$, \mathcal{X} and $\mathcal{X}_{\mathcal{I}}$, respectively.

• The hereditary *c**-subalgebras of some *c**-algebra \mathcal{B} is a *c**-subalgebra \mathcal{A} having the property that if for $0 \leq b \in \mathcal{B}$ there exists $0 \leq a \in \mathcal{A}$ such that $b \leq a$ then $b \in \mathcal{A}$. The useful characterization of hereditary *c**-subalgebras \mathcal{A} is $\mathcal{ABA} = \mathcal{A}$. By $\mathfrak{ha}(\mathcal{B})$ we denote the set of all such algebras. For nonempty set $S \subset \mathcal{B}$ we denote by $\mathfrak{ha}_S(\mathcal{B})$ the set of all *c**-algebras from $\mathfrak{ha}(\mathcal{B})$ containing *S*.

• The hereditary *c**-subalgebras of some *c**-algebra \mathcal{B} is a *c**-subalgebra \mathcal{A} having the property that if for $0 \leq b \in \mathcal{B}$ there exists $0 \leq a \in \mathcal{A}$ such that $b \leq a$ then $b \in \mathcal{A}$. The useful characterization of hereditary *c**-subalgebras \mathcal{A} is $\mathcal{ABA} = \mathcal{A}$. By $\mathfrak{ha}(\mathcal{B})$ we denote the set of all such algebras. For nonempty set $S \subset \mathcal{B}$ we denote by $\mathfrak{ha}_S(\mathcal{B})$ the set of all *c**-algebras from $\mathfrak{ha}(\mathcal{B})$ containing *S*.

• The hereditary \mathcal{A} -module of a full Hilbert \mathcal{B} -module \mathcal{X} , where $\mathcal{A} \in \mathfrak{ha}(\mathcal{B})$, is $\mathcal{X}_{\mathcal{A}} = \mathcal{X}\mathcal{A} = \{x \in \mathcal{X} : \langle x | x \rangle \in \mathcal{A}\} = \{x \in \mathcal{X}; |\langle y | x \rangle| \in \mathcal{A}, \forall y \in \mathcal{X}\}$. We note that hereditary \mathcal{A} -module of a Hilbert \mathcal{B} -module is its submodule iff it is a full module over some ideal in \mathcal{B} what is generally not the case with its hereditarry subalgebras. We denote by $\mathfrak{hm}(\mathcal{X})$ the set of all hereditary c^* -modules of the Hilbert c^* -module \mathcal{X} and for nonempty set $S \subset \mathcal{X}$ we denote by $\mathfrak{hm}_S(\mathcal{X})$ the set of all c^* -modules in $\mathfrak{hm}(\mathcal{X})$ containing S. • If \mathcal{X} and \mathcal{Y} are Hilbert \mathcal{A} -modules, we denote by $\mathbf{B}(\mathcal{X}, \mathcal{Y})$, $\mathbf{B}_a(\mathcal{X}, \mathcal{Y})$ and $\mathbf{K}(\mathcal{X}, \mathcal{Y})$ the Banach space of all bounded, adjointable and "compact" operators from \mathcal{X} to \mathcal{Y} , respectively, and $\mathbf{B}(\mathcal{X}) = \mathbf{B}(\mathcal{X}, \mathcal{X})$. The Banach space of all "compact" operators is generated by elementary "compact" operators $\Theta_{y,x}$, for all $x \in \mathcal{X}, y \in \mathcal{Y}$ acting as $\Theta_{y,x}z = y\langle x | z \rangle$, for all $z \in \mathcal{X}$. • Let $(\mathcal{B}_j, \|\cdot\|_j)_{j \in \mathcal{J}}$ be a family of Banach spaces. For any closed ideal \mathcal{C} of $\mathcal{C}_{\infty}(\mathcal{J})$ containing \mathcal{C}_0 we denote the outer direct sum

$$\mathcal{C} - \oplus_{j \in \mathcal{J}} \mathcal{B}_j = \{ x = (x_j)_{j \in \mathcal{J}} \in \Pi_{j \in \mathcal{J}} \mathcal{B}_j; (\|x_j\|_j)_{j \in \mathcal{J}} \in \mathcal{C} \}.$$
(1)

The set $c \cdot \bigoplus_{j \in \mathcal{J}} \mathcal{B}_j$ is a Banach space with the norm $\|x\|_{\infty} = \sup_{j \in \mathcal{J}} \|x_j\|_j$ and componentwise operations.

The main results

In what follows, for simplicity, we call *compact like* c^* -algebra any c^* -algebra which is isomorphic to a c^* -algebra of not necessarily all compact operators on a Hilbert space.

The main results

First we give characterizations and description of a class of full Hilbert *c**-modules over *c**-algebras containing an essential compact like ideal.

Theorem 1

Let \mathcal{A} be c^* -algebra with an essential ideal \mathcal{I} and let \mathcal{X} be a full Hilbert \mathcal{A} -module. The following statements are equivalent:

(i) \mathcal{I} is a compact like c^* -algebra.

Theorem 1

Let \mathcal{A} be c^* -algebra with an essential ideal \mathcal{I} and let \mathcal{X} be a full Hilbert \mathcal{A} -module. The following statements are equivalent:

(i) \mathcal{I} is a compact like c^* -algebra.

(ii) There is a strict orthogonal bases for \mathcal{X} .

Theorem 1

Let \mathcal{A} be c^* -algebra with an essential ideal \mathcal{I} and let \mathcal{X} be a full Hilbert \mathcal{A} -module. The following statements are equivalent:

- (i) \mathcal{I} is a compact like c^* -algebra.
- (ii) There is a strict orthogonal bases for \mathcal{X} .
- (iii) For every relatively strictly closed submodule *F* in *X* submodule *F* ⊕ *F*[⊥]^{*x*} is relatively strictly dense in *X*, i.e. *X* = cℓst_{*x*}(*F* ⊕ *F*[⊥]^{*x*}).

Theorem 1

Let \mathcal{A} be c^* -algebra with an essential ideal \mathcal{I} and let \mathcal{X} be a full Hilbert \mathcal{A} -module. The following statements are equivalent:

- (i) \mathcal{I} is a compact like c^* -algebra.
- (ii) There is a strict orthogonal bases for \mathcal{X} .
- (iii) For every relatively strictly closed submodule \mathcal{F} in \mathcal{X} submodule $\mathcal{F} \oplus \mathcal{F}^{\perp_{\mathcal{X}}}$ is relatively strictly dense in \mathcal{X} , i.e. $\mathcal{X} = c\ell_{\mathcal{X}}^{st}(\mathcal{F} \oplus \mathcal{F}^{\perp_{\mathcal{X}}}).$
- (iv) Each relatively strictly closed submodule in \mathcal{X} is orthogonally closed.

Theorem 1

Let \mathcal{A} be c^* -algebra with an essential ideal \mathcal{I} and let \mathcal{X} be a full Hilbert \mathcal{A} -module. The following statements are equivalent:

(v) There are families of Hilbert spaces $(H_j)_{j \in \mathcal{J}}, (G_j)_{j \in \mathcal{J}},$ a family of *c*^{*}-algebras $\mathbf{A} = (\mathbf{A}_j)_{j \in \mathcal{J}},$ $\mathbf{K}(H_j) \subseteq \mathbf{A}_j \subseteq \mathbf{B}(H_j), j \in \mathcal{J},$ (1)

and a family of Banach spaces of bounded linear operators $\mathbf{X} = (\mathbf{X}_j)_{j \in \mathcal{J}}$,

 $\mathbf{K}(H_j, G_j) \subseteq \mathbf{X}_j \subseteq \mathbf{B}(H_j, G_j), \, j \in \mathcal{J},$ (2)

such that \mathcal{I} is isomorphic to $c_0 - \bigoplus_j \mathbf{K}(H_j)$, ideal submodule $\mathcal{X}_{\mathcal{I}}$ is isomorphic to $c_0 - \bigoplus_j \mathbf{K}(H_j, G_j)$ and \mathcal{A} -module \mathcal{X} is isomorphic to \mathbf{A} -module \mathbf{X} .

The main results

In the following theorem we characterize and describe the class of all full Hilbert *c**-modules which have the complementing property.

The main results

In the following theorem we characterize and describe the class of all full Hilbert *c*^{*}-modules which have the complementing property.

In what follows we say that Hilbert's c^* -module has the complementing property if each of its relatively strictly closed submodules is complemented.

Let \mathcal{A} be a c^* -algebra with an essential compact like ideal \mathcal{K} and let \mathcal{X} be a full Hilbert \mathcal{A} -module. The following statements are equivalent:

(i) Hilbert A-module X has the complementing property.

Let \mathcal{A} be a c^* -algebra with an essential compact like ideal \mathcal{K} and let \mathcal{X} be a full Hilbert \mathcal{A} -module. The following statements are equivalent:

- (i) Hilbert A-module X has the complementing property.
- (ii) For each relatively strictly closed submodule $\mathcal{F} \subseteq \mathcal{X}$ the orthogonal sum $\mathcal{F} \oplus \mathcal{F}^{\perp_{\mathcal{X}}}$ is relatively strictly closed in \mathcal{X} .

Let \mathcal{A} be a c^* -algebra with an essential compact like ideal \mathcal{K} and let \mathcal{X} be a full Hilbert \mathcal{A} -module. The following statements are equivalent:

- (i) Hilbert A-module X has the complementing property.
- (ii) For each relatively strictly closed submodule $\mathcal{F} \subseteq \mathcal{X}$ the orthogonal sum $\mathcal{F} \oplus \mathcal{F}^{\perp_{\mathcal{X}}}$ is relatively strictly closed in \mathcal{X} .
- (iii) For every relatively strictly closed submodules
 𝔅,𝔅⊆𝔅,𝔅⊥𝔅, the orthogonal sum 𝔅⊕𝔅 is relatively strictly closed in𝔅.

Let \mathcal{A} be a c^* -algebra with an essential compact like ideal \mathcal{K} and let \mathcal{X} be a full Hilbert \mathcal{A} -module. The following statements are equivalent:

- (i) Hilbert A-module X has the complementing property.
- (ii) For each relatively strictly closed submodule $\mathcal{F} \subseteq \mathcal{X}$ the orthogonal sum $\mathcal{F} \oplus \mathcal{F}^{\perp_{\mathcal{X}}}$ is relatively strictly closed in \mathcal{X} .
- (iii) For every relatively strictly closed submodules $\mathcal{F}, \mathcal{G} \subseteq \mathcal{X}, \mathcal{F} \perp \mathcal{G}$, the orthogonal sum $\mathcal{F} \oplus \mathcal{G}$ is relatively strictly closed in \mathcal{X} .
- (iv) c^* -algebras $\mathbf{B}_a(\mathcal{X})$ and $\mathbf{B}_a(\mathcal{X}_{\mathcal{K}})$ of all adjointable operators on \mathcal{X} and $\mathcal{X}_{\mathcal{K}}$ are isomorphic by isomorphism acting as restriction.

The main results

In the following corollary we characterize one class of c^* -algebras by generic categorical property of some class of Hilbert c^* -modules over them.

Corollary 3

Let \mathcal{A} be a c^* -algebra with an essential ideal \mathcal{I} . Then \mathcal{A} is a hereditary subalgebra of $M(\mathcal{I})$ if and only if for any c^* -Hilbert module of the form $\mathcal{X} = M(\mathcal{X}_{\mathcal{I}})\mathcal{A}$ the mapping $\beta : \mathbf{B}_a(\mathcal{X}) \to \mathbf{B}_a(\mathcal{X}_{\mathcal{I}})$ which acts as restriction is an isomorphism.

The main results

In the following theorem we characterize and describe the class of all full Hilbert *c**-modules which have the complementing property.

Modules with complementing property

Let A be c^* -algebra with an essential ideal \mathcal{I} and let \mathcal{X} be a full Hilbert A-module. The following statements are equivalent:

(i) Hilbert A-module X has the complementing property.

Let \mathcal{A} be c^* -algebra with an essential ideal \mathcal{I} and let \mathcal{X} be a full Hilbert \mathcal{A} -module. The following statements are equivalent: (i) Hilbert \mathcal{A} -module \mathcal{X} has the complementing property. (ii) \mathcal{I} is compact like c^* -algebra, $\mathcal{A} \in \mathfrak{ha}_{\mathcal{I}}(\mathcal{M}(\mathcal{I}))$ and $\mathcal{X} = \mathcal{M}(\mathcal{X}_{\mathcal{I}})\mathcal{A} \in \mathfrak{hm}_{\mathcal{X}_{\mathcal{I}}}(\mathcal{M}(\mathcal{X}_{\mathcal{I}})).$

Let \mathcal{A} be c^* -algebra with an essential ideal \mathcal{I} and let \mathcal{X} be a full Hilbert \mathcal{A} -module. The following statements are equivalent:

- (i) Hilbert A-module X has the complementing property.
- (ii) \mathcal{I} is compact like c^* -algebra, $\mathcal{A} \in \mathfrak{ha}_{\mathcal{I}}(M(\mathcal{I}))$ and $\mathcal{X} = M(\mathcal{X}_{\mathcal{I}})\mathcal{A} \in \mathfrak{hm}_{\mathcal{X}_{\mathcal{I}}}(M(\mathcal{X}_{\mathcal{I}})).$
- (iii) There are families of Hilbert spaces $(H_j)_{j \in \mathcal{J}}$, $(G_j)_{j \in \mathcal{J}}$, c^* -algebra $\mathbf{A} = (\mathbf{A}_j)_{j \in \mathcal{J}} \in \mathfrak{ha}_{\mathbf{K}}(M(\mathbf{K}))$ and \mathbf{A} -module $\mathbf{X} = (\mathbf{X}_j)_{j \in \mathcal{J}} \in \mathfrak{hm}_{\mathbf{X}_{\mathbf{K}}}(M(\mathbf{X}_{\mathbf{K}}))$, such that $\mathbf{K} = c_0 \cdot \oplus_j \mathbf{K}(H_j)$, ideal submodule $\mathbf{X}_{\mathbf{K}} = c_0 \cdot \oplus_j \mathbf{K}(H_j, G_j)$, \mathcal{I} is isomorphic to \mathbf{K} and \mathcal{A} -module \mathcal{X} is isomorphic to \mathbf{A} -module \mathbf{X} .

The main results

Finally, we give an important hereditary property of Hilbert c^* -modules having the complementing property. Namely we claim that any relatively strictly closed submodule of such module possess the complementing property.

Proposition 4

Let $\mathcal{X} = (\mathcal{X}_j)_{j \in \mathcal{J}}$ be a full hereditary Hilbert \mathcal{A} -module of $M(\mathcal{X}_{\mathcal{K}})$ and $\mathcal{A} = (\mathcal{A}_j)_{j \in \mathcal{J}} \in \mathfrak{ha}_{\mathcal{K}}(M(\mathcal{K}))$, were $\mathcal{K} = c_0 \cdot \bigoplus_{j \in \mathcal{J}} \mathcal{K}_j$ and \mathcal{K}_j is isomorphic to c^* -algebra of all compact operators on some Hilbert space H_j , $j \in \mathcal{J}$. Then every relatively strictly closed submodule \mathcal{Y} in \mathcal{X} is a hereditary (not necessarily full) \mathcal{A} -submodule of $M(\mathcal{Y}_{\mathcal{K}})$.

Proposition 4

Let $\mathcal{X} = (\mathcal{X}_i)_{i \in \mathcal{J}}$ be a full hereditary Hilbert \mathcal{A} -module of $M(\mathcal{X}_{\mathcal{K}})$ and $\mathcal{A} = (\mathcal{A}_i)_{i \in \mathcal{I}} \in \mathfrak{ha}_{\mathcal{K}}(\mathcal{M}(\mathcal{K}))$, were $\mathcal{K} = c_0 - \bigoplus_{i \in \mathcal{I}} \mathcal{K}_i$ and \mathcal{K}_i is isomorphic to c*-algebra of all compact operators on some Hilbert space H_i , $j \in \mathcal{J}$. Then every relatively strictly closed submodule \mathcal{Y} in \mathcal{X} is a hereditary (not necessarily full) A-submodule of $M(\mathcal{Y}_{\mathcal{K}})$. If $p = (p_i)_{i \in \mathcal{J}} \in \mathbf{B}_a(M(\mathcal{X}_{\mathcal{K}}))$ is a projection such that $\mathcal{Y} = p\mathcal{X}$, then for all $j \in \mathcal{J}$ we have $\langle \mathcal{Y}_i | \mathcal{Y}_i \rangle_i = \mathcal{I}_i$, where \mathcal{I}_i is an ideal of \mathcal{A}_i containing \mathcal{K}_i , if and only if $\mathcal{Y}_i = \mathcal{Y}_{i\mathcal{I}_i}$ if and only if $p_i \in \mathbf{K}_{\mathcal{I}_i}(\mathcal{X}_i) = c\ell(\operatorname{span}(\{\Theta_{x,y}; x, y \in \mathcal{X}_i\})) = \{T \in \mathbf{B}_a(\mathcal{X}_i); t \in \mathcal{X}_i\}$ $T\mathcal{X}_{i} \subseteq \mathcal{X}_{i\mathcal{I}_{i}} \geq \mathbf{K}(\mathcal{X}_{i\mathcal{I}_{i}})$. If H_{i} is separable Hilbert space then

 $\langle \mathcal{Y}_j | \mathcal{Y}_j \rangle_j = \mathcal{A}_j \text{ or } \langle \mathcal{Y}_j | \mathcal{Y}_j \rangle_j = \mathcal{K}_j, \text{ for all } j \in \mathcal{J}.$

The main results

In the following example we discuss some basic c^* -algebras and Hilbert c^* -modules with the complementing property and those without it.

Example 5

Let *H* be infinite-dimensional separable Hilbert space, let **B** be a *c*^{*}-algebra of all bounded operators on *H* and let **K** be a *c*^{*}-algebra of all compact operators on *H*. Then for *c*^{*}-algebra **A**, where $\mathbf{K} \subset \mathbf{A} \subseteq \mathbf{B}$, **K** is an unique essential ideal in **A** and **B**. In **B** we define inner product $\forall x, y \in \mathbf{B}, \langle x | y \rangle = x^* y$ with which **K**, **A** and **B** are full right Hilbert *c*^{*}-modules over **K**, **A** and **B** respectively. Strict topology in this modules is standard strict topology in **B** generated by **K**. Submodules in this Hilbert modules are right ideals in corresponding algebras and ideal submodule of **A** and **B** is **K**.

As for Hilbert modules in which each relatively strictly closed submodule is orthogonally complemented in this example we have basic cases $\mathbf{A} = \mathbf{K}$, $\mathbf{X} = \mathbf{K}$ and $\mathbf{A} = \mathbf{B}$, $\mathbf{X} = \mathbf{B}$. Also, for any projection $p \in \mathbf{B}$ with infinite rank and kernel $\mathbf{A} = p\mathbf{B}p + \mathbf{K}$ is hereditary *c**-subalgebra of **B** containing **K**, and associated hereditary module is $\mathbf{X} = \mathbf{B}\mathbf{A} = \mathbf{B}\mathbf{p} + \mathbf{K}$. By the way, the multiplier algebra of **A** is $M(\mathbf{A}) = p\mathbf{B}p + (e-p)\mathbf{B}(e-p) + \mathbf{K}$, where *e* is unit in **B**. Note that the c^* -algebra **Y** = **A** is also a full Hilbert *c**-module over **A**, but $\mathbf{Y} = \rho \mathbf{B} \rho + \mathbf{K} \subsetneq \mathbf{X}$. This implies that some relatively strictly closed submodules in Y are not complemented.

In order to determine which submodules are complemented we write Hilbert space $H = R \oplus L$, where R = pH, L = (e - p)H. Then projection *p* has a 2 × 2 matrix form $p = \begin{bmatrix} e_1 & 0_3 \\ 0_2^* & 0_2 \end{bmatrix}$ where $e_1 \in \mathbf{B}(R)$ is unit, $0_3 \in \mathbf{B}(L, R)$, $0_2 \in \mathbf{B}(R)$, and therefore $\mathbf{Y} = \begin{bmatrix} \mathbf{B}(R) & \mathbf{K}(L,R) \\ \mathbf{K}(R,L) & \mathbf{K}(L) \end{bmatrix}$. Any projection *q* from $\mathbf{B}(H)$ can be identified with the matrix $q = \begin{bmatrix} a & c \\ c^* & b \end{bmatrix}$, where $a \in \mathbf{B}(R)$, $b, e_2 \in \mathbf{B}(L), e_2$ is unit, and $c \in \mathbf{B}(L, R)$ such that $0 \le a \le e_1$, $0 \le b \le e_2$, $cc^* = a(e_1 - a)$, $c^*c = b(e_2 - b)$ and $ac = c(e_2 - b)$, i.e. $a = \frac{1}{2}(e_1 \pm (e_1 - 4cc^*)^{\frac{1}{2}})$ and $b = \frac{1}{2}(e_2 \mp (e_2 - 4c^*c)^{\frac{1}{2}}).$

Example 5

Then $q\mathbf{Y}$ is of the form $q\mathbf{Y} = \begin{bmatrix} a\mathbf{B}(R) + c\mathbf{K}(R,L) & a\mathbf{K}(L,R) + c\mathbf{K}(L) \\ c^*\mathbf{B}(R) + b\mathbf{K}(R,L) & c^*\mathbf{K}(L,R) + b\mathbf{K}(L) \end{bmatrix}$. From that it follows $q\mathbf{Y} \subseteq \mathbf{Y} \Leftrightarrow c^*\mathbf{B}(R) \subseteq \mathbf{K}(R,L) \Leftrightarrow c \in \mathbf{K}(L,R)$. Thus complemented are those and only those submodules in \mathbf{Y} of the form $q\mathbf{B} \cap \mathbf{Y} = q\mathbf{Y}$ for which the *c* component of the projection *q* is a compact operator. Other submodules of the form $q\mathbf{B} \cap \mathbf{Y}$ are not complemented in \mathbf{Y} , but they are relatively strictly closed in \mathbf{Y} and hence orthogonally closed in \mathbf{Y} by Theorem 1.

Let's consider now $\mathcal{A} = \mathbb{C}e + \mathbf{K}$, a minimal unitization of \mathbf{K} , which is not a hereditary c^* -subalgebra of \mathbf{B} . We know that every submodule in \mathcal{A} which is closed in relatively strict topology, which is also orthogonally closed in \mathcal{A} , is of the form $\mathcal{G} = (e - p)\mathbf{B} \cap \mathbf{A}$ for some projection $p \in \mathbf{B}$. Then every $t \in \mathcal{G}$ is of the form $t = (e - p)b = \alpha e + k$ for some $b \in \mathbf{B}$, $k \in \mathbf{K}$ and $\alpha \in \mathbb{C}$. This implies that compact operator $k = (e - p)b - \alpha e$ for some $b \in \mathbf{B}$ and $\alpha \in \mathbb{C}$. Then $pk = -\alpha p$, and this is possible if and only if $\alpha = 0$ or the dimension of the range of p is finite.

Relatively strictly closed submodules in \mathcal{A} defined by projections with infinite-dimensional range and kernel are closed submodules of **K** (case $\alpha = 0$), i.e. $\mathcal{G} = (e - p)\mathbf{K}$ and $\mathcal{G}^{\perp_{\mathcal{A}}} = \mathcal{G}^{\perp_{\mathbf{K}}} = p\mathbf{K}$. They are not complemented in \mathcal{A} , but they are complemented in **K**, i.e. $\mathcal{G} \oplus \mathcal{G}^{\perp_{\mathcal{A}}} = \mathbf{K}$, so the orthogonal sum is not relatively strictly closed in \mathcal{A} , but it is relatively strictly dense in \mathcal{A} . This submodule \mathcal{G} is also an example of a submodule that is orthogonally closed in \mathcal{A} but not complemented in \mathcal{A} .

Consider a relatively strictly closed submodule in \mathcal{A} that is defined by a projection with a finite-dimensional range or kernel. Then exactly one of the projections p or e - p is in **K**. If this is p, then $p\mathcal{A} = \mathbb{C}p + p\mathbf{K} \subset \mathbf{K} \subset \mathcal{A}$, and then we have $(e - p)\mathcal{A} \subseteq \mathcal{A} - p\mathcal{A} \subseteq \mathcal{A}$, which gives $\mathcal{A} = (e - p)\mathcal{A} \oplus p\mathcal{A} = \mathcal{G} \oplus \mathcal{G}^{\perp_{\mathcal{A}}}$. Thus, submodules are orthogonally complemented in \mathcal{A} if and only if the associated projection has a finite-dimensional range or kernel.

THANK YOU FOR YOUR ATTENTION