Pre-Hilbert modules, normed modules and the parallelogram law

Dijana Ilišević

University of Zagreb, Croatia

Hilbert C*-Modules Online Weekend

December 6, 2020

The work of Dijana Ilišević has been fully supported by the

under the project IP-2016-06-1046.

Let A be a C^* -algebra.

A **pre-Hilbert** *A*-module is a right module *H* over *A* which is equipped with a generalized inner product, that is with an *A*-valued map $\langle ., . \rangle$ on $H \times H$, having the following properties: (H1) $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$ for all $x, y, z \in H$, (H2) $\langle x, ya \rangle = \langle x, y \rangle a$ for all $x, y \in H$ and $a \in A$, (H3) $\langle x, y \rangle^* = \langle y, x \rangle$ for all $x, y \in H$, (H4) $\langle x, x \rangle \ge 0$ for every $x \in H$ and $\langle x, x \rangle = 0$ implies x = 0.

Each pre-Hilbert A-module $(H, \langle ., . \rangle)$ is a metric space with respect to a metric $d: H \times H \to \mathbb{C}$ given by $d(x, y) = ||\langle x - y, x - y \rangle|^{1/2}$ (where ||.|| denotes the norm in A). If this metric space is complete, then $(H, \langle ., . \rangle)$ is called a **Hilbert** A-module.

Let A be an H*-algebra.

A **pre-Hilbert** *A*-module is a right module *H* over *A* which is equipped with a generalized inner product, that is with an $\tau(A)$ -valued map $\langle ., . \rangle$ on $H \times H$, having the following properties: (H1) $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$ for all $x, y, z \in H$, (H2) $\langle x, ya \rangle = \langle x, y \rangle a$ for all $x, y \in H$ and $a \in A$, (H3) $\langle x, y \rangle^* = \langle y, x \rangle$ for all $x, y \in H$, (H4) $\langle x, x \rangle \ge 0$ for every $x \in H$ and $\langle x, x \rangle = 0$ implies x = 0.

An **H*algebra** is a complex Banach algebra A whose norm is induced by an inner product $\langle ., . \rangle$ such that for each $a \in A$ there exists a unique $a^* \in A$ satisfying

$$\langle ab,c
angle = \langle b,a^*c
angle \; \text{and} \; \langle ba,c
angle = \langle b,ca^*
angle, \quad b,c\in A.$$

The **trace-class** for A is $\tau(A) = \{ab : a, b \in A\}$ equipped with the norm $\tau(.)$ such that $(\tau(A), \tau(.))$ is a Banach *-algebra.

Example

Let A be a C*-algebra or an H*-algebra such that there exists $x \in A$ with $xv \neq x$ for every $v \in A$. The set $A \times \mathbb{R}$, endowed with coordinatewise addition, is a right A-module under its action on A given by

$$(a, \lambda)b = (ab + \lambda b, 0), \quad a, b \in A, \ \lambda \in \mathbb{R}.$$

Note that

$$M = \{(a, \lambda) \in A imes \mathbb{R} : xa + \lambda x = 0\}$$

is a submodule of $A \times \mathbb{R}$. Let us put $H = (A \times \mathbb{R})/M$ and define

$$((a,\lambda)+M)+((b,\mu)+M)=(a+b,\lambda+\mu)+M, \quad a,b\in A, \, \lambda,\mu\in \mathbb{R},$$

$$ig((a,\lambda)+Mig)b=(ab+\lambda b,0)+M\quad a,b\in A,\,\lambda\in\mathbb{R}.$$

Under these operations, H is a right module over A. We can equip H with the structure of a pre-Hilbert A-module via

$$\langle (a,\lambda) + M, (b,\mu) + M \rangle = (xa + \lambda x)^* (xb + \mu x), \quad a, b \in A, \ \lambda, \mu \in \mathbb{R}.$$

Example (continuation)

Assume that *H* has the structure of a complex vector space compatible with the structure of *A*. Let $\{e_{\lambda} : \lambda \in \Lambda\}$ be an approximate identity for *A*. We have

$$(i \cdot ((0,1) + M))e_{\lambda} = ((0,1) + M)(ie_{\lambda}), \text{ that is,}$$

 $(i \cdot ((0,1) + M))e_{\lambda} = (ie_{\lambda}, 0) + M.$
If $i \cdot ((0,1) + M) = (u, \eta) + M \in H$, then
 $(i \cdot ((0,1) + M))e_{\lambda} = ((u, \eta) + M)e_{\lambda} = (ue_{\lambda} + \eta e_{\lambda}, 0) + M.$

Therefore,

$$(ue_{\lambda} + \eta e_{\lambda} - ie_{\lambda}, 0) \in M, \quad \lambda \in \Lambda,$$
 so
 $x(ue_{\lambda} + \eta e_{\lambda} - ie_{\lambda}) = 0, \quad \lambda \in \Lambda.$

After taking limits, we get $xu = (i - \eta)x$. Since $\eta \in \mathbb{R}$, we have $\eta \neq i$. If we define $v = \frac{1}{i-\eta}u \in A$, then xv = x, contradicting our assumption.

Let A be a C*-algebra or an H*-algebra and let $(H, \langle ., . \rangle)$ be a pre-Hilbert A-module. For $x \in H$ set $N(x) = \langle x, x \rangle^{1/2} \in A$. Then we have: (1) $N(x) \ge 0$ for every $x \in H$, (2) N(x) = 0 implies x = 0, (3) N(xa) = |N(x)a| for all $x \in H$ and $a \in A$, (4) $||N(x+y)|| \le ||N(x)|| + ||N(y)||$ for all $x, y \in H$.

Let $(A, \|\cdot\|)$ be a C*-algebra or an H*-algebra. A **normed** A-**module** is a right module H over A together with a map $N: H \to A$ having the following properties: (N1) $N(x) \ge 0$ for every $x \in H$, (N2) N(x) = 0 implies x = 0, (N3) N(xa) = |N(x)a| for all $x \in H$ and $a \in A$, (N4) $||N(x+y)|| \le ||N(x)|| + ||N(y)||$ for all $x, y \in H$.

Every pre-Hilbert A-module is a normed A-module.

Note that (N3) and (N1) imply

$$N(xa)^2 = |N(x)a|^2 = a^*N(x)^2a, \qquad x \in H, a \in A.$$

Definition (B. Zalar, Acta Math. Hungar., 1995)

Let A be an H*-algebra and let H be a right A-module. Let $N: H \rightarrow A$ be a map with the following properties:

(1)
$$N(x) \ge 0$$
 for every $x \in H$,

(2)
$$N(x) = 0$$
 implies $x = 0$,

(3)
$$N(xa) = |N(x)a|$$
 for all $x \in H$ and $a \in A$,

(4)
$$||N(x+y)|| \le ||N(x)|| + ||N(y)||$$
 for all $x, y \in H$,

(5) if $\{x_{\lambda}\}$ is a generalized sequence in H such that for all $\varepsilon > 0$ there exists λ_0 such that for all $\lambda, \mu \ge \lambda_0$ we have $\|N(x_{\lambda} - x_{\mu})\| < \varepsilon$ then $\{N(x_{\lambda})\}$ is a generalized Cauchy sequence in A.

Then N is called an A-valued generalized norm (A-norm) and (H, N) is called a **generalized normed space** or a **normed** A-module.

Definition (N.C. Phillips and N. Weaver, Pacific J. Math., 1998)

Let A be a C*-algebra and let A_+ denote the set of positive elements in A. A **Finsler module** is a right A-module H which is equipped with a map $N: H \to A_+$ such that (1) the map $\|\cdot\|_{H}: x \mapsto \|N(x)\|$ is a Banach space norm on H, (2) $N(xa)^2 = aN(x)^2a$ for all $x \in H$, $a \in A$.

Theorem (B. Zalar, Acta Math. Hungar., 1995)

Let $(A, \|\cdot\|)$ be an H*-algebra. A normed A-module (H, N) satisfies the parallelogram law

$$N(x+y)^2 + N(x-y)^2 = 2N(x)^2 + 2N(y)^2, \quad x, y \in H,$$

if and only if H is a pre-Hilbert A-module with respect to the generalized inner product $\langle \cdot, \cdot \rangle$ such that $N(x)^2 = \langle x, x \rangle$ holds for all $x \in H$.

Theorem (N.C. Phillips and N. Weaver, Pacific J. Math., 1998)

Every Finsler A-module, when A is a C*-algebra without nonzero commutative closed two-sided ideals, arises from a unique Hilbert A-module.

Let *M* be a right module over a *-ring *R*. A map $Q: M \rightarrow R$ is called a **quadratic functional** if it satisfies the parallelogram law

$$Q(x+y)+Q(x-y)=2Q(x)+2Q(y), \quad x,y\in M$$

and the homogeneity equation

$$Q(xa) = a^*Q(x)a, \quad x \in M, \ a \in R.$$

A biadditive form $S: M \times M \rightarrow R$ is called **sesquilinear** if

$$S(xa,y) = a^*S(x,y)$$
 and $S(x,ya) = S(x,y)a$, $x,y \in M, a \in R$.

For every sesquilinear form $S: M \times M \to R$, the map $Q: M \to R$ defined by Q(x) = S(x, x) is a quadratic functional.

What about the converse?

$\lim_{\lambda} \|e_{\lambda}^* a e_{\lambda} - a\| = 0, \quad a \in A$

Let $(A, \|.\|)$ be a complex Banach *-algebra with an approximate identity $\{e_{\lambda}\}$. If the generalized sequence $\{L_{e_{\lambda}}^{*}\}$ is bounded, then

$$egin{array}{rcl} \|e_\lambda^*ae_\lambda-a\|&\leq&\|e_\lambda^*ae_\lambda-e_\lambda^*a\|+\|e_\lambda^*a-a\|=\ &=&\|L_{e_\lambda^*}(ae_\lambda-a)\|+\|a^*e_\lambda-a^*\|\leq\ &\leq&\|L_{e_\lambda^*}\|\cdot\|ae_\lambda-a\|+\|a^*e_\lambda-a^*\|\longrightarrow 0. \end{array}$$

Examples of such algebras and approximate identities:

- A is a C*-algebra and {e_λ} is the canonical approximate identity for A.
- (II) A is an H*-algebra and {e_λ} is an approximate identity consisting of projections.
- (III) A is the trace-class associated with an H*-algebra and $\{e_{\lambda}\}$ is an approximate identity for that H*-algebra, consisting of projections.

Theorem

Let $(A, \|.\|)$ be a complex Banach *-algebra with an approximate identity $\{e_{\lambda}\}$ such that

$$\lim_{\lambda} \|e_{\lambda}^* a e_{\lambda} - a\| = 0, \quad a \in A.$$

Let *M* be a right module over *A* and let $Q: M \to A$ be a quadratic functional. There exists a unique sesquilinear form $S: M \times M \to A$ satisfying S(x,x) = Q(x) for every $x \in M$ if and only if for all $x, y \in M$ the limit $\lim_{\lambda} Q(x(ie_{\lambda}) + y) \in A$ exists. In that case,

$$S(x,y) = \frac{1}{4} (Q(x+y) - Q(x-y)) + \frac{i}{4} \lim_{\lambda} (Q(x(ie_{\lambda})+y) - Q(x(ie_{\lambda})-y)).$$

If $Q(x)^* = Q(x)$ for every $x \in M$, then $S(x, y)^* = S(y, x)$ for all $x, y \in M$.

Theorem

Let $(A, \|.\|)$ be a complex Banach *-algebra with an approximate identity $\{e_{\lambda}\}$ such that

$$\lim_{\lambda} \|e_{\lambda}^* a e_{\lambda} - a\| = 0, \quad a \in A.$$

Let the right module M over A be a complex vector space compatible with the structure of A. For each quadratic functional $Q: M \to A$ there exists a unique sesquilinear form $S: M \times M \to A$ such that S(x, x) = Q(x) for every $x \in M$. Furthermore,

$$S(x, y) = \frac{1}{4} (Q(x + y) - Q(x - y)) + \frac{i}{4} (Q(ix + y) - Q(ix - y)).$$

If $Q(x)^* = Q(x)$ for every $x \in M$, then $S(x, y)^* = S(y, x)$ for all $x, y \in M$.

Let \mathcal{H} be a (real or complex) Hilbert space. A **standard operator algebra** is a (not necessarily self-adjoint) subalgebra of $\mathcal{B}(\mathcal{H})$ that contains the ideal $\mathcal{F}(\mathcal{H})$ of finite rank operators.

Example

Let \mathcal{H} be a separable infinite-dimensional Hilbert space. Let us choose $U \in \mathcal{B}(\mathcal{H})$ such that the kernel of U^* is infinite-dimensional and such that $U^*U = I$ (concretely, $U = \sum_n e_{2n} \otimes e_n$, where (e_n) is an orthonormal basis for \mathcal{H}). The algebra $A = \mathcal{F}(\mathcal{H}) + U \cdot \mathcal{B}(\mathcal{H})$ is a standard operator algebra and $U = 0 + U \cdot I \in A$. If we assume $U^* \in A$, then $U^* = F + UB$ for some $F \in \mathcal{F}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{H})$, hence $U = F^* + B^* U^*$. This first implies $I = U^*F^* + U^*B^*U^*$ and then $I - U^*B^*U^* = U^*F^* \in \mathcal{F}(\mathcal{H})$. However, $I - U^*B^*U^*$ is the identity operator on the kernel of U^* , hence it is not a finite rank operator. Therefore, $U^* \notin A$.

Theorem

Let $A \subseteq \mathcal{B}(\mathcal{H})$, dim $\mathcal{H} > 1$, be a standard operator algebra and let M be a right module over A. Then for each quadratic functional $Q: M \to A$ there exists a sesquilinear form $S: M \times M \to \mathcal{B}(\mathcal{H})$ such that S(x, x) = Q(x) for every $x \in M$.

One of the key ingredients in the proof is the fact that

$$\lim_{\lambda} |p_{\lambda}ap_{\lambda}\xi - a\xi| = 0, \quad a \in A, \ \xi \in \mathcal{H}$$

for a generalized sequence $\{p_{\lambda}\}$ in \mathcal{H} consisting of finite rank projections such that $\lim_{\lambda} |p_{\lambda}\xi - \xi| = 0$ for every $\xi \in \mathcal{H}$.

Let $A \subseteq \mathcal{B}(\mathcal{H})$, dim $\mathcal{H} > 1$, be a standard operator algebra. Let $\xi \in \mathcal{H}$ and let p be the orthogonal projection on the subspace of \mathcal{H} generated by ξ . Take any η orthogonal to ξ having the same norm as ξ and define $q : \mathcal{H} \to \mathcal{H}$ by $q(\lambda \eta + \varrho) = \lambda \xi$ for every scalar λ and every ϱ orthogonal to η . Then $p, q \in A$ are such that

$$p = p^*, \ p\xi = \xi, \ qp = 0, \ qq^* = p.$$

If $Q: M \to A$ satisfies $Q(xa) = a^*Q(x)a$ for all $x \in M$ and $a \in A$ then we have

 $\langle Q(x\pm y)\xi,\xi\rangle = \langle (p\pm q)Q(xp+yq)(p\pm q^*)\xi,\xi\rangle, \xi\in\mathcal{H}, x,y\in M.$

Adding yields the parallelogram law.

Lemma

Let $(A, \|\cdot\|)$ be a C*-algebra or an H*-algebra without nonzero commutative closed two-sided ideals. Let (H, N) be a normed A-module. If $\{e_{\lambda}\}$ is an approximate identity for A, then, for all $x, y \in H$, a generalized sequence $\{N(x(ie_{\lambda}) + y)^2\}$ converges in $(A, \|\cdot\|)$ if A is a C*-algebra or in $(\tau(A), \tau(\cdot))$ if A is an H*-algebra.

The proof is based on the following inequalities:

$$\|N(x)^2 - N(y)^2\| \le \|N(x - y)\|(\|N(x)\| + \|N(y)\|), \quad x, y \in H$$

in case of C*-algebras, and

$$au(N(x)^2 - N(y)^2) \le \|N(x - y)\|(\|N(x)\| + \|N(y)\|), \quad x, y \in H$$

in case of H*-algebras.

Theorem

Let A be a C*-algebra or an H*-algebra without nonzero commutative closed two-sided ideals. Then the class of normed A-modules coincides with the class of pre-Hilbert A-modules.

The A-valued inner product can be recovered from the A-valued norm via

$$\langle x, y \rangle = \frac{1}{4} \left(N(x+y)^2 - N(x-y)^2 \right) \\ + \frac{i}{4} \lim_{\lambda} \left(N(x(ie_{\lambda})+y)^2 - N(x(ie_{\lambda})-y)^2 \right).$$

D.l., Quadratic functionals on modules over complex Banach *-algebras with an approximate identity, Studia Math. 171 (2005) Homogeneity equation: $Q(xa) = a^*Q(x)a$ for all x and a, that is, for A-valued norm: N(xa) = |N(x)a| for all x and a.

In normed spaces: $\|\lambda x\| = |\lambda| \|x\|$ for all λ and x. Note that $\|\lambda x\| \le |\lambda| \|x\|$ implies $\|\lambda x\| = |\lambda| \|x\|$.

Let us also note that $||N(xa)|| \le ||N(x)|| ||a||$.

Example

Let *H* be a pre-Hilbert *A*-module and let $x_0 \in H$. Let $M = \{x \in H : \langle x_0, x \rangle = 0\}$; it is a submodule of *H*. On *H*/*M* we define an *A*-valued map *N* by $N(x) = (\langle x_0, x \rangle \langle x, x_0 \rangle)^{1/2}$. Then *N* is positive definite, and satisfies both the homogeneity and the triangle inequality for the composition of the norm in *A* and *N*.

Let $(A, \|\cdot\|)$ be a C*-algebra or an H*-algebra.

A **normed** A-**module** is a right module H over A together with a map $N: H \rightarrow A$ having the following properties:

(N1)
$$N(x) \ge 0$$
 for every $x \in H$,

(N2)
$$N(x) = 0$$
 implies $x = 0$,

(N3) $||N(xa)|| \le ||N(x)|| ||a||$ for all $x \in H$ and $a \in A$,

(N4) $||N(x+y)|| \le ||N(x)|| + ||N(y)||$ for all $x, y \in H$.

Let $(A, \|\cdot\|)$ be a C*-algebra or an H*-algebra. A **normed** A-**module** is a right module H over A together with a map $\|\cdot\|_{H} \colon H \to \mathbb{C}$ having the following properties: (N1) $\|x\|_{H} \ge 0$ for every $x \in H$, (N2) $\|x\|_{H} = 0$ implies x = 0, (N3) $\|xa\|_{H} \le \|x\|_{H} \|a\|$ for all $x \in H$ and $a \in A$, (N4) $\|x + y\|_{H} \le \|x\|_{H} + \|y\|_{H}$ for all $x, y \in H$.

The map $\|\cdot\|_H \colon H \to \mathbb{C}$ defined by $\|x\|_H = \|\langle x, x \rangle\|^{1/2}$ is a norm on Hand $\|xa\|_H \le \|x\|_H \|a\|$ holds for all $x \in H$ and $a \in A$.

Let $(A, \|\cdot\|)$ be a C*-algebra or an H*-algebra.

A **normed** A-**module** is a right module H over A together with a map $N: H \rightarrow A$ having the following properties:

(N1)
$$N(x) \ge 0$$
 for every $x \in H$,

(N2)
$$N(x) = 0$$
 implies $x = 0$,

(N3) $N(xa) \leq |N(x)a|$ for all $x \in H$ and $a \in A$,

(N4) $||N(x+y)|| \le ||N(x)|| + ||N(y)||$ for all $x, y \in H$.

Let $(A, \|\cdot\|)$ be a C*-algebra or an H*-algebra.

A **normed** A-**module** is a right module H over A together with a map $N: H \rightarrow A$ having the following properties:

(N1)
$$N(x) \ge 0$$
 for every $x \in H$,

(N2)
$$N(x) = 0$$
 implies $x = 0$,

(N3) $N(xa)^2 \le a^*N(x)^2a$ for all $x \in H$ and $a \in A$,

(N4) $||N(x+y)|| \le ||N(x)|| + ||N(y)||$ for all $x, y \in H$.

Connection with orthogonality

- Birkhoff-James orthogonality: $||x|| \le ||x + \lambda y||, \forall \lambda$.
- Isosceles orthogonality: ||x + y|| = ||x y||.
- Roberts' orthogonality: $||x + \lambda y|| = ||x \lambda y||, \forall \lambda$.
- Pythagorean orthogonality: $||x + y||^2 = ||x||^2 + ||y||^2$.
- etc.

There are many known results of the following type:

If a given orthogonality is equivalent to (or implies) another one, then a normed space is an inner product space.

Corresponding results for normed modules?