On operators on Hilbert C^* -modules

Stefan Ivkovic

The Mathematical Institute of the Serbian Academy of Sciences and Arts

December 5, 2020

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introduction

In this presentation we let \mathcal{A} be a unital C^* -algebra, $H_{\mathcal{A}}$ be the standard module over \mathcal{A} (this is $H_{\mathcal{A}} = l_2(\mathcal{A})$) and $B^a(H_{\mathcal{A}})$ be the set of all \mathcal{A} -linear, bounded adjointable operators on $H_{\mathcal{A}}$. We wish to solve the equations of the form Fx = y, where $F \in B^a(H_{\mathcal{A}})$ and $x, y \in H_{\mathcal{A}}$. Even if F is not invertible, we can still handle this equation if F is regular i.e. if F admits generalized inverse. This happens if ImF is closed and in this case F has the matrix $\begin{bmatrix} F_1 & 0 \\ 0 & 0 \end{bmatrix}$, w.r.t. the decomposition

$$H_{\mathcal{A}} = \ker F^{\perp} \oplus \ker F \xrightarrow{F} ImF \oplus ImF^{\perp} = H_{\mathcal{A}},$$

where F_1 is an isomorphism and the generalized inverse of F has the matrix $\begin{bmatrix} F_1^{-1} & 0\\ 0 & 0 \end{bmatrix}$ w.r.t. the decomposition

$$H_{\mathcal{A}} = ImF \oplus ImF^{\perp} \longrightarrow \ker F^{\perp} \oplus \ker F = H_{\mathcal{A}}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If in addition ImF^{\perp} is finitely generated, then it is easy to check whether the equation Fx = y has a solution. On the other hand, if F is regular and in addition ker F is finitely generated, then we have an explicit formula for the solutions of the equation Fx = y in the case when the solution exists. This motivates to study the following classes of operators on H_A .

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Semi- \mathcal{A} -Fredholm operators on $\mathcal{H}_{\mathcal{A}}$

Inspired by definition of $\mathcal{A}\text{-}\mathsf{Fredholm}$ operator given in $[\mathsf{MF}],$ we give now the following definition.

Definition

Let $F \in B^a(H_A)$. We say that F is an upper semi-A-Fredholm operator if there exists a decomposition

$$H_{\mathcal{A}} = M_1 \tilde{\oplus} N_1 \stackrel{F}{\longrightarrow} M_2 \tilde{\oplus} N_2 = H_{\mathcal{A}}$$

with respect to which F has the matrix

$$\left[\begin{array}{cc}F_1 & 0\\ 0 & F_4\end{array}\right],$$

where F_1 is an isomorphism M_1, M_2, N_1, N_2 are closed submodules of H_A and N_1 is finitely generated. Similarly, we say that F is a lower semi-A-Fredholm operator if all the above conditions hold except that in this case we assume that N_2 (and not N_1) is finitely generated.

Set

 $\mathcal{M}\Phi_+(\mathcal{H}_{\mathcal{A}}) = \{ F \in B^a(\mathcal{H}_{\mathcal{A}}) \mid F \text{ is upper semi-}\mathcal{A}\text{-}\mathsf{Fredholm} \},\$

 $\mathcal{M}\Phi_{-}(\mathcal{H}_{\mathcal{A}}) = \{ F \in B^{a}(\mathcal{H}_{\mathcal{A}}) \mid F \text{ is lower semi-}\mathcal{A}\text{-}\mathsf{Fredholm} \},\$

 $\mathcal{M}\Phi(\mathcal{H}_{\mathcal{A}}) = \{F \in B^{a}(\mathcal{H}_{\mathcal{A}}) \mid F \text{ is } \mathcal{A}\text{-Fredholm operator on } \mathcal{H}_{\mathcal{A}}\}.$ Then obviously $\mathcal{M}\Phi(\mathcal{H}_{\mathcal{A}}) \subseteq \mathcal{M}\Phi_{+}(\mathcal{H}_{\mathcal{A}}) \cap \mathcal{M}\Phi_{-}(\mathcal{H}_{\mathcal{A}})$. We are going to show later in this section that actually "="holds.

Notice that if M, N are two arbitrary Hilbert modules C^* -modules, the definition above could be generalized to the classes $\mathcal{M}\Phi_+(M, N)$ and $\mathcal{M}\Phi_-(M, N)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We let now $K^*(H_A)$ denote the closed, two sided ideal of adjointable compact operators in $B^a(H_A)$, see [**MT**].

Theorem

Let $F \in B^{a}(H_{\mathcal{A}})$. The following statements are equivalent 1) $F \in \mathcal{M}\Phi_{+}(H_{\mathcal{A}})$ 2) There exists $D \in B^{a}(H_{\mathcal{A}})$ such that DF = I + K for some $K \in K^{*}(H_{\mathcal{A}})$

Theorem

Let $D \in B^{a}(H_{\mathcal{A}})$. Then the following statements are equivalent: 1) $D \in \mathcal{M}\Phi_{-}(H_{\mathcal{A}})$ 2) There exist $F \in B^{a}(H_{\mathcal{A}}), K \in K^{*}(H_{\mathcal{A}})$ s.t. DF = I + K

Corollary $\mathcal{M}\Phi(H_{\mathcal{A}}) = \mathcal{M}\Phi_{+}(H_{\mathcal{A}}) \cap \mathcal{M}\Phi_{-}(H_{\mathcal{A}})$

Corollary

 $\mathcal{M}\Phi_+(\mathcal{H}_{\mathcal{A}})$ and $\mathcal{M}\Phi_-(\mathcal{H}_{\mathcal{A}})$ are semigroups under multiplication.

Corollary

Let $F \in B^{a}(M, N)$. Then $F \in \mathcal{M}\Phi_{+}(M, N)$ if and only if $F^{*} \in \mathcal{M}\Phi_{-}(N, M)$. Moreover, if $F \in \mathcal{M}\Phi(H_{\mathcal{A}})$, then $F^{*} \in \mathcal{M}\Phi(H_{\mathcal{A}})$ and index $F = -index F^{*}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let M be a closed submodule of $H_{\mathcal{A}}$ s.t. $H_{\mathcal{A}} = M \widetilde{\oplus} N$ for some finitely generated submodule N. Let $F \in B^{a}(H_{\mathcal{A}})$, J_{M} be the inclusion map from M into $H_{\mathcal{A}}$ and suppose that $FJ_{M} \in \mathcal{M}\Phi_{+}(M, H_{\mathcal{A}})$. Then $F \in \mathcal{M}\Phi_{+}(H_{\mathcal{A}})$.

Lemma

Suppose that $D, F \in B^{a}(H_{\mathcal{A}}) DF \in \mathcal{M}\Phi_{+}(H_{\mathcal{A}})$ and $\mathrm{Im}F$ is closed. Then $DJ_{\mathrm{Im}F} \in \mathcal{M}\Phi_{+}(\mathrm{Im}F, H_{\mathcal{A}})$.

Let $F \in \mathcal{M}\Phi(H_A)$ and suppose that there are two decompositions

$$H_{\mathcal{A}} = M_1 \tilde{\oplus} N_1 \stackrel{F}{\longrightarrow} M_2 \tilde{\oplus} N_2 = H_{\mathcal{A}}$$

$$H_{\mathcal{A}} = M_{1}^{\prime} \tilde{\oplus} N_{1}^{\prime} \stackrel{F}{\longrightarrow} M_{2}^{\prime} \tilde{\oplus} N_{2}^{\prime} = H_{\mathcal{A}}$$

with respect to which F has matrices

$$\left[\begin{array}{cc}F_1 & 0\\ 0 & F_4\end{array}\right], \left[\begin{array}{cc}F_1' & 0\\ 0 & F_4'\end{array}\right],$$

respectively, where F_1 , F_1' are isomorphisms, N_1 , N_1' , N_2 are closed, finitely generated and N_2' is just closed. Then N_2' is finitely generated also.

Lemma Let $F \in \mathcal{M}\Phi(H_A)$ and let

$$H_{\mathcal{A}} = M_1 \tilde{\oplus} N_1 \xrightarrow{F} M_2 \tilde{\oplus} N_2 = H_{\mathcal{A}}$$

be a decomposition with respect to which F has the matrix

$$\begin{bmatrix} F_1 & 0 \\ 0 & F_4 \end{bmatrix},$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

where F_1 is an isomorphism, N_2 is finitely generated and N_1 is just closed. Then N_1 is finitely generated.

Let $F \in \mathcal{M}\Phi_+(\mathcal{H}_A)$ and suppose that $\mathrm{Im}F$ is closed. If

$$H_{\mathcal{A}} = M_{1} \tilde{\oplus} N_{1} \xrightarrow{F} M_{2} \tilde{\oplus} N_{2} = H_{\mathcal{A}}$$
$$H_{\mathcal{A}} = M_{1}' \tilde{\oplus} N_{1}' \xrightarrow{F} M_{2}' \tilde{\oplus} N_{2}' = H_{\mathcal{A}}$$

are two $M\Phi_+$ decomposition for F then $F(N_1), F(N'_1)$ are closed finitely generated projective modules and

$$[N_1] - [F(N_1)] = [N'_1] - [F(N'_1)]$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

in K(A).

Let $F \in \mathcal{M}\Phi_+(\mathcal{H}_A)$. Then there is no sequence of unit vectors $\{x_n\}$ in \mathcal{H}_A such that $\varphi(x_n) \to 0$ in \mathcal{A} for all $\varphi \in \mathcal{H}'_A$ and $\lim_{n\to\infty} \|Fx_n\| = 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Generalized Schechter characterization of $\mathcal{M}\Phi_+$ operators on \mathcal{H}_A

Lemma

Let $F \in B^{a}(M, N)$ Then $F \in \mathcal{M}\Phi_{+}(M, N)$ if and only if there exists a closed, orthogonally complementable submodule $M' \subseteq M$ such that $F_{|_{M'}}$ is bounded below and ${M'}^{\perp}$ is finitely generated.

Lemma

Let $F \in B^{a}(H_{\mathcal{A}}) \setminus \mathcal{M}\Phi_{+}(H_{\mathcal{A}})$. Then there exists a sequence $\{x_{k}\} \subseteq H_{\mathcal{A}}$ and an increasing sequence $\{n_{k}\} \subseteq \mathbb{N}$ s.t.

$$x_k \in \mathsf{L}_{n_k} \setminus \mathsf{L}_{n_{k-1}}$$
 for all $k \in \mathbb{N}, \parallel x_k \parallel \leq 1$ for all $k \in \mathbb{N}$

and

$$|| Fx_k || \leq 2^{1-2k}$$
 for all $k \in \mathbb{N}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Openness of the set of semi-A-Fredholm operators on H_A

Theorem

The sets $\mathcal{M}\Phi_+(\mathcal{H}_A) \setminus \mathcal{M}\Phi(\mathcal{H}_A)$ and $\mathcal{M}\Phi_-(\mathcal{H}_A) \setminus \mathcal{M}\Phi(\mathcal{H}_A)$ are open in $B^a(\mathcal{H}_A)$, where $B^a(\mathcal{H}_A)$ is equipped with the norm topology.

Corollary

If $F \in B^{a}(H_{\mathcal{A}})$ belongs to the boundary of $\mathcal{M}\Phi(H_{\mathcal{A}})$ in $B^{a}(H_{\mathcal{A}})$ then $F \notin \mathcal{M}\Phi_{\pm}(H_{\mathcal{A}})$.

Corollary

Let $f : [0,1] \rightarrow B^{a}(H_{\mathcal{A}})$ be continuous and assume that $f([0,1]) \subseteq \mathcal{M}\Phi_{\pm}(H_{\mathcal{A}})$. Then the following statments hold: 1) If $f(0) \in \mathcal{M}\Phi_{+}(H_{\mathcal{A}}) \setminus \mathcal{M}\Phi(H_{\mathcal{A}})$, then $f(1) \in \mathcal{M}\Phi_{+}(H_{\mathcal{A}}) \setminus \mathcal{M}\Phi(H_{\mathcal{A}})$ 2) If $f(0) \in \mathcal{M}\Phi_{-}(H_{\mathcal{A}}) \setminus \mathcal{M}\Phi(H_{\mathcal{A}})$, then $f(1) \in \mathcal{M}\Phi_{-}(H_{\mathcal{A}}) \setminus \mathcal{M}\Phi(H_{\mathcal{A}})$ 3) If $f(0) \in \mathcal{M}\Phi(H_{\mathcal{A}})$, then $f(1) \in \mathcal{M}\Phi(H_{\mathcal{A}})$ and indexf(0) = indexf(1). $\mathcal{M}\Phi^{-}_{+}$ and $\mathcal{M}\Phi^{+}_{-}$ operators on $\mathcal{H}_{\mathcal{A}}$

Definition

Let $F \in \mathcal{M}\Phi(\mathcal{H}_{\mathcal{A}})$. We say that $F \in \tilde{\mathcal{M}}\Phi^-_+(\mathcal{H}_{\mathcal{A}})$ if there exists a decomposition

$$H_{\mathcal{A}} = M_1 \tilde{\oplus} N_1 \stackrel{F}{\longrightarrow} M_2 \tilde{\oplus} N_2 = H_{\mathcal{A}}$$

with respect to which F has the matrix

$$\left[\begin{array}{cc}F_1 & 0\\ 0 & F_4\end{array}\right],$$

where F_1 is an isomorphism, N_1, N_2 are closed, finitely generated and $N_1 \leq N_2$, that is N_1 is isomorphic to a closed submodule of N_2 . We define similarly the class $\tilde{\mathcal{M}}\Phi^+_-(\mathcal{H}_A)$, the only difference in this case is that $N_2 \leq N_1$. Then we set

$$\mathcal{M}\Phi^-_+(\mathcal{H}_\mathcal{A}) = (ilde{\mathcal{M}}\Phi^-_+(\mathcal{H}_\mathcal{A})) \cup (\mathcal{M}\Phi_+(\mathcal{H}_\mathcal{A}) \setminus \mathcal{M}\Phi(\mathcal{H}_\mathcal{A}))$$

and

$$\mathcal{M}\Phi^+_{-}(\mathcal{H}_{\mathcal{A}}) = (\tilde{\mathcal{M}}\Phi^+_{-}(\mathcal{H}_{\mathcal{A}})) \cup (\mathcal{M}\Phi_{-}(\mathcal{H}_{\mathcal{A}}) \setminus \mathcal{M}\Phi(\mathcal{H}_{\mathcal{A}}))$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Further, we define $\mathcal{M}\Phi_0(\mathcal{H}_A)$ to be the set of all $F \in \mathcal{M}\Phi(\mathcal{H}_A)$ for which there exists an $\mathcal{M}\Phi$ -decomposition

$$H_{\mathcal{A}} = M_1 \tilde{\oplus} N_1 \stackrel{F}{\longrightarrow} M_2 \tilde{\oplus} N_2 = H_{\mathcal{A}},$$

where $N_1 \cong N_2$.

Lemma

Suppose that K(A) satisfies "the cancellation property". If $F \in \tilde{M}\Phi_{+}^{-}(H_{A})$, then for any decomposition

$$H_{\mathcal{A}} = M_1' \tilde{\oplus} N_1' \xrightarrow{F} M_2' \tilde{\oplus} N_2' = H_{\mathcal{A}}$$

with respect to which F has the matrix

$$\left[\begin{array}{cc}F_1' & 0\\0 & F_4'\end{array}\right],$$

where F'_1 is an isomorphism, N'_1, N'_2 are finitely generated, we have $N'_1 \leq N'_2$. Similarly $N'_1 \leq N'_2$ if $F \in \tilde{\mathcal{M}}\Phi^+(H_{\mathcal{A}})$.

Proposition

Let $K \in K^*(H_A)$ and $T \in B^a(H_A)$. Suppose that T is invertible and that K(A) satisfies the cancellation property. Then the equation (T + K)x = y has a solution for every $y \in H_A$ if and only if T + K is bounded below. In this case the solution of the equation above is unique.

Lemma $\tilde{\mathcal{M}}\Phi^-_+(\mathcal{H}_{\mathcal{A}})$ and $\tilde{\mathcal{M}}\Phi^+_-(\mathcal{H}_{\mathcal{A}})$ are semigroups under multiplication.

Lemma

 $\mathcal{M}\Phi^-_+(H_{\mathcal{A}})$ and $\mathcal{M}\Phi^+_-(H_{\mathcal{A}})$ are semigroups under multiplication.

Lemma

 $ilde{\mathcal{M}} \Phi^-_+(H_{\mathcal{A}})$ and $ilde{\mathcal{M}} \Phi^+_-(H_{\mathcal{A}})$ are open.

Definition

Let $F \in \mathcal{M}\Phi_+(\mathcal{H}_A)$. We say that $F \in \mathcal{M}\Phi_+^{-\prime}(\mathcal{H}_A)$ if there exists a decomposition

$$H_{\mathcal{A}} = M_1 \tilde{\oplus} N_1 \stackrel{F}{\longrightarrow} M_2 \tilde{\oplus} N_2 = H_{\mathcal{A}}$$

with respect to which

$$\mathsf{F} = \left[egin{array}{cc} F_1 & 0 \\ 0 & F_4 \end{array}
ight],$$

where F_1 is an isomorphism, N_1 is closed, finitely generated and $N_1 \leq N_2$. Similarly, we define the class $\mathcal{M}\Phi_-^{+'}(H_A)$, only in this case $F \in \mathcal{M}\Phi_-(H_A)$, N_2 is finitely generated and $N_2 \leq N_1$. Proposition

$$\tilde{\mathcal{M}}\Phi^-_+(H_{\mathcal{A}})=\mathcal{M}\Phi^{-'}_+(H_{\mathcal{A}})\cap\mathcal{M}\Phi(H_{\mathcal{A}}), \\ \tilde{\mathcal{M}}\Phi^+_-(H_{\mathcal{A}})=\mathcal{M}\Phi^{+'}_-(H_{\mathcal{A}})\cap\mathcal{M}\Phi(H_{\mathcal{A}}).$$

Lemma The sets $\mathcal{M}\Phi_{-}^{+'}(H_{\mathcal{A}})$ and $\mathcal{M}\Phi_{+}^{-'}(H_{\mathcal{A}})$ are open. Moreover, if $F \in \mathcal{M}\Phi_{+}^{-'}(H_{\mathcal{A}})$ and $K \in K^{*}(H_{\mathcal{A}})$, then

$$(F+K)\in \mathcal{M}\Phi_{+}^{-\prime}(H_{\mathcal{A}}).$$

If $F \in \mathcal{M}\Phi_{-}^{+'}(H_{\mathcal{A}})$ and $K \in K^{*}(H_{\mathcal{A}})$, then

$$(F+K)\in \mathcal{M}\Phi_{-}^{+\prime}(H_{\mathcal{A}}).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Lemma

The sets $\mathcal{M}\Phi_{+}(\mathcal{H}_{\mathcal{A}}) \setminus \mathcal{M}\Phi_{+}^{-\prime}(\mathcal{H}_{\mathcal{A}})$, $\mathcal{M}\Phi_{-}(\mathcal{H}_{\mathcal{A}}) \setminus \mathcal{M}\Phi_{-}^{+\prime}(\mathcal{H}_{\mathcal{A}})$ and $\mathcal{M}\Phi(\mathcal{H}_{\mathcal{A}}) \setminus \mathcal{M}\Phi_{0}(\mathcal{H}_{\mathcal{A}})$ are open.

Theorem Let $F \in B^{a}(H_{\mathcal{A}})$. The following statements are equivalent 1) $F \in \mathcal{M}\Phi_{+}^{-'}(H_{\mathcal{A}})$ 2) There exist $D \in B^{a}(H_{\mathcal{A}}), K \in K^{*}(H_{\mathcal{A}})$ such that D is bounded below and F = D + K

Proposition 1) $F \in \mathcal{M}\Phi_{+}^{-'}(H_{\mathcal{A}}) \Leftrightarrow F^{*} \in \mathcal{M}\Phi_{-}^{+'}(H_{\mathcal{A}})$ 2) $F \in \tilde{\mathcal{M}}\Phi_{+}^{-}(H_{\mathcal{A}}) \Leftrightarrow F^{*} \in \tilde{\mathcal{M}}\Phi_{-}^{+}(H_{\mathcal{A}})$ 3) $F \in \mathcal{M}\Phi_{+}^{-}(H_{\mathcal{A}}) \Leftrightarrow F^{*} \in \mathcal{M}\Phi_{-}^{+}(H_{\mathcal{A}})$

Definition

We set $M^a(H_A) = \{F \in B^a(H_A) \mid F \text{ is bounded below}\}$ and $Q^a(H_A) = \{D \in B^a(H_A) \mid D \text{ is surjective }\}.$

Let $B^{a}(H_{\mathcal{A}})$. Then $F \in M^{a}(H_{\mathcal{A}})$ if and only if $F^{*} \in Q^{a}(H_{\mathcal{A}})$.

Corollary

Let $D \in B^{a}(H_{\mathcal{A}})$. The following statements are equivalent: 1) $D \in \mathcal{M}\Phi^{+'}_{-}(H_{\mathcal{A}})$ 2) There exist $Q \in Q^{a}(H_{\mathcal{A}}), K \in K^{*}(H_{\mathcal{A}})$ s.t. D = Q + K.

Theorem

Let $B^{a}(H_{\mathcal{A}})$. Then the following statements are equivalent: 1) $F \in \mathcal{M}\Phi_{0}(H_{\mathcal{A}})$ 2) There exist an invertible $D \in B^{a}(H_{\mathcal{A}})$ and $K \in K^{*}(H_{\mathcal{A}})$ such that F = D + K.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

On non-adjointable semi-Fredholm operators over a C*-algebra

Non adjointable semi-A-Fredholm operators on H_A

Definition

Let $F \in B(H_A)$, where $B(H_A)$ is the set of all bounded, (not necessarily adjointable) A-linear operators on H_A . We say that F is an upper semi-A-Fredholm operator if there exists a decomposition

$$H_{\mathcal{A}} = M_1 \tilde \oplus N_1 \stackrel{F}{\longrightarrow} M_2 \tilde \oplus N_2 = H_{\mathcal{A}}$$

with respect to which F has the matrix

$$\left[\begin{array}{cc}F_1 & 0\\ 0 & F_4\end{array}\right],$$

where F_1 is an isomorphism M_1, M_2, N_1, N_2 are closed submodules of H_A and N_1 is finitely generated. Similarly, we say that F is a lower semi-A-Fredholm operator if all the above conditions hold except that in this case we assume that N_2 (and not N_1) is finitely generated.

Set

$$\widehat{\mathcal{M}\Phi}_{I}(H_{\mathcal{A}}) = \{F \in B(H_{\mathcal{A}}) \mid F \text{ is upper semi-}\mathcal{A}\text{-}\mathsf{Fredholm} \},$$
$$\widehat{\mathcal{M}\Phi}_{r}(H_{\mathcal{A}}) = \{F \in B(H_{\mathcal{A}}) \mid F \text{ is lower semi-}\mathcal{A}\text{-}\mathsf{Fredholm} \},$$
$$\widehat{\mathcal{M}\Phi}(H_{\mathcal{A}}) = \{F \in B(H_{\mathcal{A}}) \mid F \text{ is }\mathcal{A}\text{-}\mathsf{Fredholm operator on } H_{\mathcal{A}} \}.$$
Then, by definition we have

$$\mathcal{M}\Phi_{+}(H_{\mathcal{A}}) = \widehat{\mathcal{M}}\Phi_{I}(H_{\mathcal{A}}) \cap B^{a}(H_{\mathcal{A}}),$$
$$\mathcal{M}\Phi_{-}(H_{\mathcal{A}}) = \widehat{\mathcal{M}}\Phi_{r}(H_{\mathcal{A}}) \cap B^{a}(H_{\mathcal{A}})$$

and

$$\mathcal{M}\Phi(H_{\mathcal{A}}) = \widehat{\mathcal{M}}\Phi(H_{\mathcal{A}}) \cap B^{a}(H_{\mathcal{A}}).$$

Definition

[IM] An \mathcal{A} -operator $K : H_{\mathcal{A}} \to H_{\mathcal{A}}$ is called a finitely generated \mathcal{A} -operator if it can be represented as a composition of bounded \mathcal{A} -operators f_1 and f_2 :

$$K: H_{\mathcal{A}} \stackrel{f_1}{\longrightarrow} M \stackrel{f_2}{\longrightarrow} H_{\mathcal{A}},$$

where M is a finitely generated Hilbert C^* -module. The set $FG(\mathcal{A}) \subset B(\mathcal{H}_{\mathcal{A}})$ of all finitely generated \mathcal{A} -operators forms a two sided ideal. By definition, an \mathcal{A} -operator K is called compact if it belongs to the closure

$$K(H_{\mathcal{A}}) = \overline{FG(\mathcal{A})} \subset B(H_{\mathcal{A}}),$$

which also forms two sided ideal.

Clearly, any operator $F \in \widehat{\mathcal{M}}\Phi_I(H_A)$ is also left invertible in $B(H_A)/K(H_A)$, whereas any operator $G \in \widehat{\mathcal{M}}\Phi_r(H_A)$ is right invertible $B(H_A)/K(H_A)$. The converse also holds:

Proposition

If *F* is left invertible in $B(H_A)/K(H_A)$, then $F \in \widehat{\mathcal{M}}\Phi_I(H_A)$. If *F* is right invertible in $B(H_A)/K(H_A)$, then $F \in \widehat{\mathcal{M}}\Phi_r(H_A)$.

Corollary

The sets $\widehat{\mathcal{M}\Phi}_{l}(\mathcal{H}_{\mathcal{A}})$ and $\widehat{\mathcal{M}\Phi}_{r}(\mathcal{H}_{\mathcal{A}})$ are closed under multiplication.

Inspired by definition of externel (Noether) decomposition given in $[\mathsf{IM}],$ we give the following definition.

Definition

We say that F has an upper external (Noether) decomposition if there exist two closed C^* -modules X_1, X_2 and two bounded A-operators E_2, E_3 , where X_2 finitely generated, the operator F_0 given by the operator matrix $\begin{pmatrix} F & E_2 \\ E_3 & 0 \end{pmatrix}$ with respect to the decomposition $H_A \oplus X_1 \xrightarrow{F_0} H_A \oplus X_2$ is invertible and ImE_2 is complementable in H_A . Similarly, we say that Fhas a lower external (Noether) decomposition if the above decomposition exists and F_0 is invertible, only in this case we assume that X_1 is finitely generated and that ker E_3 is complementable in H_A .

Proposition

A bounded \mathcal{A} -linear operator $F : H_{\mathcal{A}} \longrightarrow H_{\mathcal{A}}$ belongs to $\widehat{\mathcal{M}}\Phi_{I}(H_{\mathcal{A}})$ if and only if it admits an upper external (Noether) decomposition. Similarly, F belongs to $\widehat{\mathcal{M}}\Phi_{r}(H_{\mathcal{A}})$ if and only if F admits a lower external (Noether) decomposition.

Let $F, G \in B(H_A)$ and suppose that $GF \in \widehat{\mathcal{M}}\Phi(H_A)$. Then there exist decompositions

$$H_{\mathcal{A}} = M_1 \oplus N_1 \stackrel{F}{\longrightarrow} H_{\mathcal{A}} = M_3 \oplus N_3 \stackrel{G}{\longrightarrow} H_{\mathcal{A}} = M_2 \oplus N_2$$

with respect to which F, G have matrices $\begin{pmatrix} F_1 & 0 \\ 0 & F_4 \end{pmatrix}$, $\begin{pmatrix} G_1 & G_2 \\ 0 & G_4 \end{pmatrix}$, respectively, where F_1 , G_1 are isomorphisms and N_1 , N_2 are finitely generated.

Lemma

Let V be a finitely generated Hilbert submodule of $H_{\mathcal{A}}$, $F \in B(H_{\mathcal{A}})$ and suppose that $P_{V^{\perp}}F \in \widehat{\mathcal{M}\Phi}(H_{\mathcal{A}}, V^{\perp})$, where $P_{V^{\perp}}$ denotes the orthogonal projection onto V^{\perp} along V. Then $F \in \widehat{\mathcal{M}\Phi}_r(H_{\mathcal{A}})$.

Lemma

Let $G, F \in B(H_A)$, suppose that ImG is closed. Assume in addition that ker G and ImG are complementable in H_A . If $GF \in \widehat{\mathcal{M}\Phi}_r(H_A)$, then

$$\Box F \in \widehat{\mathcal{M}} \Phi_r(H_{\mathcal{A}}, N),$$

where ker $G \tilde{\oplus} N = H_A$ and \sqcap denotes the projection onto N along ker G_{\bullet}

Lemma Let $F \in \widehat{\mathcal{M}\Phi}(H_{\mathcal{A}})$ and suppose that

$$H_{\mathcal{A}} = M_1' \tilde{\oplus} N_1' \xrightarrow{F} M_2' \tilde{\oplus} N_2' = H_{\mathcal{A}}$$

is a decomposition with respect to which F has the matrix $\begin{bmatrix} F'_1 & 0 \\ 0 & F'_4 \end{bmatrix}$, where F'_1 is an isomorphism, N'_2 is finitely generated and N'_1 is just closed. Then N'_1 is finitely generated.

Lemma

Let $F \in B(H_A)$. Then F admits an upper external (Noether) decomposition with the property that $X_2 \preceq X_1$ if and only if $F \in \mathcal{M}\Phi_+^{-\prime}(H_A)$. Similarly, F admits a lower external (Noether) decomposition with the property that $X_1 \preceq X_2$ if and only if $F \in \mathcal{M}\Phi_+^{-\prime}(H_A)$.

・ロト・日本 キャー キャー キャー ション うくぐ

Recall now the definition of the closses $\mathcal{M}\Phi_{+}^{-'}(\mathcal{H}_{\mathcal{A}})$ and $\mathcal{M}\Phi_{-}^{+'}(\mathcal{H}_{\mathcal{A}})$. We are going to keep this notion in the next results, but without assuming the adjointability of operators.

Lemma

Let $F \in \mathcal{M}\Phi^{+\prime}_{-}(\mathcal{H}_{\mathcal{A}})$. Then $F + K \in \mathcal{M}\Phi^{+\prime}_{-}(\mathcal{H}_{\mathcal{A}})$ for all $K \in K(\mathcal{H}_{\mathcal{A}})$.

Lemma

Let $F \in B(H_A)$ and suppose that

$$H_{\mathcal{A}} = M_{1} \tilde{\oplus} N_{1} \xrightarrow{F} M_{2} \tilde{\oplus} N_{2} = H_{\mathcal{A}}$$

is a decomposition w.r.t. which F has the matrix $\begin{bmatrix} F_{1} & 0\\ 0 & F_{4} \end{bmatrix}$, where F_{1}
is an isomorphism. Then $N_{1} = F^{-1}(N_{2})$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Lemma

Let $F \in \mathcal{M}\Phi_{+}^{-'}(\mathcal{H}_{\mathcal{A}})$ and $K \in K(\mathcal{H}_{\mathcal{A}})$. Then $F + K \in \mathcal{M}\Phi_{+}^{-'}(\mathcal{H}_{\mathcal{A}})$.

Semi-Fredholm operators over W^* -algebras

Proposition

Let $F \in \widehat{\mathcal{M}\Phi}_{l}(\mathcal{H}_{\mathcal{A}})$ or $F \in \mathcal{M}\Phi_{+}(\mathcal{H}_{\mathcal{A}})$. Then there exists a decomposition.

$$H_{\mathcal{A}} = M_0 \tilde{\oplus} M_1' \tilde{\oplus} \ker F \stackrel{F}{\longrightarrow} N_0 \tilde{\oplus} N_1' \tilde{\oplus} N_1'' = H_{\mathcal{A}}$$

w.r.t. which F has the matrix

$$\left[\begin{array}{ccc} F_0 & 0 & 0 \\ 0 & F_1 & 0 \\ 0 & 0 & 0 \end{array}\right]$$

where F_0 is an isomorphism, M'_1 and ker F are finitely generated. Moreover $M'_1 \cong N'_1$ If $F \in \widehat{\mathcal{M}\Phi}_l(H_A)$ and ImF is closed, then ImF is complementable in H_A . In this case *F* has the matrix $\begin{bmatrix} F_1 & 0 \\ 0 & 0 \end{bmatrix}$, w.r.t. the decomposition

$$H_{\mathcal{A}} = \ker F^0 \tilde{\oplus} \ker F \xrightarrow{F} ImF \tilde{\oplus} ImF^0 = H_{\mathcal{A}}$$

where F_1 is an isomorphism and ker F^0 , ImF^0 denote the complements of ker F, ImF respectively.

Proposition

If $D \in \mathcal{M}\Phi_r(H_A)$ and ImD is closed and complementable in H_A , then the decomposition given above exists for the operator D. In this case, instead of ker D, we have that N_1'' is finitely generated and N_1'' is the complement of ImD.

If $F \in \widehat{\mathcal{M}}\Phi_r(H_{\mathcal{A}}) \setminus \widehat{\mathcal{M}}\Phi(H_{\mathcal{A}})$, ImF is closed and complementable, then the complement of ImF is not finitely generated.

Theorem

Let $F \in B^{a}(H_{\mathcal{A}})$. Then $F \in \mathcal{M}\Phi_{+}(H_{\mathcal{A}})$ if and only if ker(F - K) is finitely generated for all $K \in K^{*}(H_{\mathcal{A}})$.

Moreover, $F \in \mathcal{M}\Phi_{-}(H_{\mathcal{A}})$ if and only if $Im(F - K)^{\perp}$ is finitely generated for all $K \in K^{*}(H_{\mathcal{A}})$.

Definition

Let $F \in B(H_{\mathcal{A}})$. We say that $F \in \widehat{\mathcal{M}}\Phi_+(H_{\mathcal{A}})$ if there exist a closed submodule M and a finitely generated submodule N s.t. $H_{\mathcal{A}} = M \oplus \widetilde{\mathbb{M}}$ and $F_{|_{\mathcal{M}}}$ is bounded below.

Let $F \in B(H_A)$. Then $F \in \widehat{\mathcal{M}}\Phi_+(H_A)$ iff ker(F - K) is finitely generated for all $K \in K^*(H_A)$.

Set $\widehat{\mathcal{M}\Phi}_{-}(H_{\mathcal{A}}) = \{G \in B(H_{\mathcal{A}} \mid \text{there exists closed submodules } M, N, M' \text{ of } H_{\mathcal{A}} \text{ s.t. } H_{\mathcal{A}} = M \oplus N, N \text{ is finitely generated and } G_{|_{M'}}, \text{ is an isomorphism onto } M\}.$

Proposition

Let $G \in \widehat{\mathcal{M}}\Phi_{-}(H_{\mathcal{A}})$. Then for every $K \in K(H_{\mathcal{A}})$ there exists an inner product equivalent to the initial one and such that the orthogonal complement of $\overline{Im(G+K)}$ w.r.t this new inner product is finitely generated.

Lemma

 $\mathcal{M}\Phi_{+}(\mathcal{H}_{\mathcal{A}}) = \widehat{\mathcal{M}}\Phi_{+}(\mathcal{H}_{\mathcal{A}}) \cap B^{a}(\mathcal{H}_{\mathcal{A}}), \\ \mathcal{M}\Phi_{-}(\mathcal{H}_{\mathcal{A}}) = \widehat{\mathcal{M}}\Phi_{-}(\mathcal{H}_{\mathcal{A}}) \cap B^{a}(\mathcal{H}_{\mathcal{A}}).$

Proposition

Let $F, G \in \widehat{\mathcal{M}\Phi}_{l}(H_{\mathcal{A}})$ with closed images and suppose that ImGF is closed. Then ImF, ImG and ImGF are complementable in $H_{\mathcal{A}}$. Moreover, if $ImF^{0}, ImG^{0}, ImGF^{0}$ denote the complements of ImF, ImG, ImGF, respectively, then

 $ImGF^0 \preceq ImF^0 \oplus ImG^0$,

 $\ker GF \preceq \ker G \oplus \ker F.$

If $F, G \in \widehat{\mathcal{M}}\Phi_r(H_A)$ and ImF, ImG, ImGF are closed, then the statement above holds under additional assumption that ImF, ImG, ImGF are complementable in H_A .

Lemma

Let $F,D\in B^a(H_{\mathcal{A}})$ and suppose that ImF, ImD and ImDF are closed. Then

 $ImDF^{\perp} \preceq ImF^{\perp} \oplus ImD^{\perp}$

 $\ker DF \preceq \ker D \oplus \ker F$

Let $F \in \mathcal{M}\Phi(M)$ be such that ImF is closed, where M is a Hilbert W^* -module. Then there exists an $\epsilon > 0$ such that for every $D \in B^a(M)$ with $|| D || < \epsilon$, we have

$$\ker(F+D) \preceq \ker F$$
, $Im(F+D)^{\perp} \preceq ImF^{\perp}$.

Definition

Let *M* be a countably generated Hilbert *W*^{*}- module. For $F \in \mathcal{M}\Phi(M)$, we say that F satisfies the condition (*) if the following holds:

1)
$$ImF^n$$
 is closed for all n

2)
$$F(\bigcap_{n=1}^{\infty} Im(F^n)) = \bigcap_{n=1}^{\infty} Im(F^n)$$

Theorem

Let $F \in \mathcal{M}\Phi(\tilde{M})$ where \tilde{M} is countably generated Hilbert \mathcal{A} -module and suppose that F satisfies (*). Then there exists an $\epsilon > 0$ such that, if $\alpha \in Z(\mathcal{A}) \cap G(\mathcal{A})$ and $|| \alpha || < \epsilon$, then $[\ker(F - \alpha I)] + [N_1] = [\ker F]$ and $[Im(F - \alpha I)^{\perp}] + [N_1] = [Im(F)^{\perp}]$ for some fixed, finitely generated closed submodule N_1 .

Theorem

Let \tilde{M} be a Hilbert module over a C^* -algebra \mathcal{A} , $\alpha \in \mathbb{C}$ and $F \in B^a(H_{\mathcal{A}})$. Suppose that $\alpha \in iso \ \sigma(F)$ and assume either that $R(F - \alpha I)$ is closed or that $R(P_0)$ is self dual and that \mathcal{A} is a W^* -algebra, where P_0 denotes the spectral projection corresponding to α of the operator F. Then the following conditions are equivalent: a) $(F - \alpha I) \in \mathcal{M}\Phi_{\pm}(\tilde{M})$ b)There exist closed submodules $M, N \subseteq \tilde{M}$ such that. $(F - \alpha I)$ has the matrix

$$\left[\begin{array}{cc} (F - \alpha I)_1 & 0\\ 0 & (F - \alpha I)_4 \end{array}\right]$$

w.r.t. the decomposition $\tilde{M} = M \oplus N \xrightarrow{F-\alpha I} M \oplus N = \tilde{M}$, where $(F - \alpha I)_1$ is an isomorphism and N is finitely generated. Moreover, if $(F - \alpha I)$ is not invertible in $B(\tilde{M})$, then $N(F - \alpha I) \neq \{0\}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

On generalized A-Fredholm and A-Weyl operators

Definition

Let $F \in B^a(H_A)$. 1) We say that $F \in \mathcal{M}\Phi^{gc}(H_A)$ if ImF is closed and in addition ker Fand ImF^{\perp} are self-dual. 2) We say that $F \in \mathcal{M}\Phi_0^{gc}(H_A)$ if ImF is closed and $kerF \cong ImF^{\perp}$ (here we do not require the self-duality of kerF, ImF^{\perp}).

Proposition

Let $F, D \in \mathcal{M}\Phi_0^{gc}(\mathcal{H}_A)$ and suppose that ImDF is closed. Then $DF \in \mathcal{M}\Phi_0^{gc}(\mathcal{H}_A)$.

Definition

Let $M_1, ..., M_n$ be Hilbert submodules of H_A . We say that the sequence $0 \rightarrow M_1 \rightarrow M_2 \rightarrow ... \rightarrow M_n \rightarrow 0$ is exact if for each $k \in \{2, ..., n-1\}$ there exist closed submodules M'_k and M''_k such that the following holds: 1) $M_k = M'_k \oplus M''_k$ for all $k \in \{2, ..., n-1\}$; 2) $M'_2 \cong M_1$ and $M''_{n-1} \cong M_n$; 3) $M''_k \cong M'_{k+1}$ for all $k \in \{2, ..., n-2\}$.

Lemma

Let $F, D \in B^{a}(H_{A})$ and suppose that ImF, ImD, ImDF are closed. Then the sequence

$$0 o$$
 ker $F o$ ker $DF o$ ker $D o$ Im $F^{\perp} o$ Im $DF^{\perp} o$ Im $D^{\perp} o$ 0

is exact.

Lemma

Let $F, D \in \mathcal{M}\Phi^{gc}(H_{\mathcal{A}})$ and suppose that ImDF is closed. Then $DF \in \mathcal{M}\Phi^{gc}(H_{\mathcal{A}})$.

Lemma

Let $F \in B^{a}(H_{\mathcal{A}})$. Then $F \in \mathcal{M}\Phi^{gc}(H_{\mathcal{A}})$ if and only if $F^{*} \in \mathcal{M}\Phi^{gc}(H_{\mathcal{A}})$.

Proposition

Let $F, D \in B^a(H_A)$, suppose that ImF, ImD are closed and $DF \in \mathcal{M}\Phi^{gc}(H_A)$. Then the following statements hold: a) $D \in \mathcal{M}\Phi^{gc}(H_A) \Leftrightarrow F \in \mathcal{M}\Phi^{gc}(H_A)$; b) if ker D is self-dual, then $F, D \in \mathcal{M}\Phi^{gc}(H_A)$; c) if ImF^{\perp} is self-dual, then $F, D \in \mathcal{M}\Phi^{gc}(H_A)$.

Lemma

Let $F \in B^{a}(H_{\mathcal{A}})$ and suppose that ImF is closed. Moreover, assume that there exist operators $D, D' \in B^{a}(H_{\mathcal{A}})$ with closed images such that $D'F, FD \in \mathcal{M}\Phi^{gc}(H_{\mathcal{A}})$. Then $F \in \mathcal{M}\Phi^{gc}(H_{\mathcal{A}})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Definition

Let X, Y be Banach spaces and $T \in B(X, Y)$. Then T is called a regular operator if T(X) is closed in Y and in addition $T^{-1}(0)$ and T(X) are complementable in X and Y, respectively.

Definition

[DDj2] Let X, Y be Banach spaces and $T \in B(X, Y)$. Then we say that T is generalized Weyl, if T(X) is closed in Y, and $T^{-1}(0)$ and $Y/_{T(X)}$ are mutually isomorphic Banach spaces.

Proposition

Let X, Y, Z be Banach spaces and let $T \in B(X, Y), S \in B(Y, Z)$. Suppose that T, S, ST are regular, that is T(X), S(Y), ST(X) are closed and T, S, ST admit generalized inverse. If T and S are generalized Weyl operators, then ST is a generalized Weyl operator.

Definition

Let X, Y be Banach spaces and $T \in B(X, Y)$ be a regular operator. Then T is said to be a generalized upper semi-Weyl operator if ker $T \leq Y \setminus R(T)$. Similarly T is said to be a generalized lower semi-Weyl operator if $Y \setminus R(T) \leq \text{ker } T$.

Lemma

Let $T \in B(X, Y)$ $S \in B(Y, Z)$ and suppose that S, T, ST are regular. If S and T are upper (or lower) generalized semi-Weyl operators, then ST is an upper (or respectively lower) generalized semi-Weyl operator.

Definition

For two Hilbert C^* – modules M and M', We set $\tilde{\mathcal{M}}\Phi_0^{gc}(M, M')$ to be the class of all closed range operators $F \in B^a(M, M')$ such that there exist finitely generated Hilbert submodules N, \tilde{N} with the property that $N \oplus \ker F \cong \tilde{N} \oplus ImF^{\perp}$.

Lemma

Let $T \in \tilde{\mathcal{M}}\Phi_0^{gc}(H_A)$ and $F \in B^a(H_A)$ s.t. ImF is closed, finitely generated. Suppose that Im(T + F), $T(\ker F)$, $P(\ker T)$, $P(\ker(T + F))$ are closed, where P denotes the orthogonal projection onto $\ker F^{\perp}$. Then $T + F \in \tilde{\mathcal{M}}\Phi_0^{gc}(H_A)$.

Corollary

Let $T \in \mathcal{M}\Phi_0^{gc}(\mathcal{H}_A)$ and suppose that ker $T \cong ImT^{\perp} \cong \mathcal{H}_A$. If $F \in B^a(\mathcal{H}_A)$ satisfies the assumptions of Lemma 64, then $\ker(T+F) \cong Im(T+F)^{\perp} \cong \mathcal{H}_A$. In particular, $T+F \in \mathcal{M}\Phi_0^{gc}(\mathcal{H}_A)$.

Lemma

Let $F \in B^{a}(M)$ where M is a Hilbert C^{*} -module and suppose that ImF is closed. Then the following statements hold: a) $F \in \mathcal{M}\Phi_{+}(M)$, if and only if ker F is finitely generated; b) $F \in \mathcal{M}\Phi_{-}(M)$, if and only if Im F^{\perp} is finitely generated.

Lemma

Let $T \in \mathcal{M}\Phi(H_{\mathcal{A}})$ and suppose that ImT is closed. Then $T \in \tilde{\mathcal{M}}\Phi_0^{gc}(H_{\mathcal{A}})$.

On semi-*A*-*B*-**Fredholm operators**

Definition

Let $F \in B^a(H_A)$. Then F is said to be an upper semi-A-B-Fredhom operator if there exists some $n \in \mathbb{N}$ such that ImF^m is closed for all $m \ge n$ and $F_{|_{ImF^n}}$ is an upper semi-A-Fredhom operator.

Similarly, *F* is said to be a lower semi-A-*B*-Fredholm operator if the conditions above hold except that in this case we assume that $F_{|_{ImF^n}}$ is a lower semi-A-Fredhom operator and not an upper semi-A-Fredhom operator.

Proposition

If *F* is an upper semi-*A*-*B*-Fredholm operator (respectively, a lower semi-*A*-*B*-Fredholm operator) and $n \in \mathbb{N}$ is such that ImF^m is closed for all $m \ge n$ and $F_{|_{ImF^n}}$ is an upper semi-*A*-Fredholm operator (respectively, a lower semi-*A*-Fredholm operator), then $F_{|_{ImF^m}}$ is an upper semi-*A*-Fredholm operator (respectively, a lower semi-*A*-Fredholm operator) for all $m \ge n$. Moreover, if *F* is an *A*-*B*-Fredholm operator and $n \in \mathbb{N}$ is such that $ImF^n \cong H_A$, ImF^m is closed for all $m \ge n$ and $F_{|_{ImF^n}}$ is an *A*-Fredholm operator, then $ImF^m \cong H_A F_{|_{ImF^m}}$ is an *A*-Fredholm operator and index $F_{|_{ImF^m}} = indexF_{|_{ImF^n}}$ for all $m \ge n$.

Lemma

Let $F \in \mathcal{M}\Phi(H_{\mathcal{A}})$, let $P \in B(H_{\mathcal{A}})$ be a projection such that N(P) is finitely generated. Then $PF_{|_{R(P)}} \in \mathcal{M}\Phi(R(P))$ and $indexPF_{|_{R(P)}} = indexF$.

Theorem

Let T be an A-B-Fredholm operator on H_A and suppose that $m \in \mathbb{N}$ is such that $T_{|_{ImT^m}}$ is an A-Fredholm operator and ImT^n is closed for all $n \ge m$. Let F be in the linear span of elementary operators and suppose that $Im(T + F)^n$ is closed for all $n \ge m$. Finally, assume that $ImT^m \cong H_A$ and that $Im(\tilde{F}), T^m(\ker \tilde{F})$ are closed, where $\tilde{F} = (T + F)^m - T^m$. Then T + F is an A-B-Fredholm operator and indexT + F = indexT.

Proposition

Let $F \in B(H_{\mathcal{A}})$. If $n \in \mathbb{N}$ is s.t. ImF^n closed, $ImF^n \cong H_{\mathcal{A}}$, $F_{|_{ImF^n}}$ is upper semi- \mathcal{A} -Fredholm and ImF^m is closed for all $m \ge n$, then $F_{|_{ImF^m}}$ is upper semi- \mathcal{A} - Fredholm and $ImF^m \cong H_{\mathcal{A}}$ for all $m \ge n$. If $n \in \mathbb{N}$ is s.t. ImF^n is closed, $ImF^n \cong H_{\mathcal{A}}$, ImF^m is closed and complementable in ImF^n for all $m \ge n$ and $F_{|_{ImF^n}}$ is lower semi- \mathcal{A} -Fredholm, then $F_{|_{ImF^m}}$ is lower semi- \mathcal{A} -Fredholm for all $m \ge n$ and $ImF^m \cong H_{\mathcal{A}}$ for all $m \ge n$.

On closed range operators over C^* -algebras.

Lemma

Let $F, D \in B^{a}(H_{A})$ and suppose that ImF, ImD are closed. If $ImF + \ker D$ is closed, then $ImF + \ker D$ is orthogonally complementable.

Corollary

Let $F, D \in B^{a}(H_{A})$ and suppose that ImF, ImD are closed. Then ImDF is closed if and only if $ImF + \ker D$ is orthogonally complementable.

Definition

Given two closed submodules M, N of H_A , we set

 $c_0(M, N) = \sup\{\| < x, y > \| | x \in M, y \in N, \| x \|, \| y \| \le 1\}.$

We say then that the Dixmier angle between M and N is positive if $c_0(M, N) < 1$.

Lemma

Let M, N be two closed, submodules of H_A , assume that M orthogonally complementable and suppose that $M \cap N = \{0\}$. Then M + N is closed if the Dixmier angle between M and N is positive.

Corollary

Let $F, D \in B^a(H_A)$ and suppose that ImF, ImD are closed. Set $M = ImF \cap (\ker D \cap ImF)^{\perp}$, $M' = \ker D \cap (\ker D \cap ImF)^{\perp}$. Assume that $\ker D \cap ImF$ is orthogonally complementable. Then ImDF is closed if the Dixmier angle betwen M' and ImF, or equivalently the Dixmier angle between M and ker D is positive.

Lemma

Let M and N be two closed submodules of H_A . Suppose that M and N are orthogonally complementable in H_A and that $M \cap N = \{0\}$. Then M + N is closed if and only if $P_{|_N}$ is bounded below, where P denotes the orthogonal projection onto M^{\perp} .

Corollary

Let $F, D \in B^{a}(H_{\mathcal{A}})$ and suppose that ImF, ImD are closed. Then ImDF is closed if and only if ker $D \cap ImF$ is orthogonally complementable and $P_{|_{ImF \cap (\ker D \cap ImF)^{\perp}}}$ is bounded below, or equivalently $Q_{|_{\ker D \cap (\ker D \cap ImF)^{\perp}}}$ is bounded below, where P and Q denote the orthogonal projections onto ker D^{\perp} and ImF^{\perp} , respectively.

Lemma

Let $F, G \in \widehat{\mathcal{M}}\Phi_l(H_A)$ and suppose that ImG and ImF are closed. Then ImGF is closed if and only if ImF + ker G is closed and complementable. If $F, G \in \widehat{\mathcal{M}}\Phi_r(H_A)$ and ImG, ImF are closed, then the statment above holds under additional assumtion that ImG, ImF are complementable. Moreover, if $F, G \in \widehat{\mathcal{M}}\Phi_l(H_A)$ and ImF, ImG are closed and if the Dixmier angle between ker G and ImF \cap (ker $G \cap$ ImF)⁰ is positive, or equivalently the Dixmier angle between ImF and ker $G \cap$ (ker $G \cap$ ImF)⁰ is positive, where (ker $G \cap$ ImF)⁰ denotes the complement of ker $G \cap$ ImF, then ImGF is closed.

Proposition

Let $F \in B^{a}(H_{\mathcal{A}})$. Then the following statements are equivalent: 1) ImF is closed in $H_{\mathcal{A}}$ 2) ImL_{F} is closed in $B^{a}(H_{\mathcal{A}})$ 3) ImR_{F} is closed in $B^{a}(H_{\mathcal{A}})$.

Lemma

Let $F \in M^{a}(H_{\mathcal{A}})$. If there exists a sequence $\{F_{n}\} \subseteq \mathcal{M}\Phi(H_{\mathcal{A}})$ of constant index such that $F_{n} \to F$, then $F \subset \mathcal{M}\Phi(H_{\mathcal{A}})$ and index $F = indexF_{n}$ for all n.

Lemma

Let $F \in B(H_A)$ and suppose that ImF is closed. Then F is a regular operator with the property that ImF⁰, ker F are finitely generated if and only if $F \in \widehat{\mathcal{M}}\Phi(H_A)$.

Proposition

Let $F \in B(H_A)$ be bounded below and suppose that there exists a sequence $\{F_n\} \subseteq \widehat{\mathcal{M}\Phi}(H_A)$ of constant index and such that $F_n \to F$. Suppose also that for each *n* there exists an $\widehat{\mathcal{M}\Phi}$ - decomposition

$$H_{\mathcal{A}} = M_1^{(n)} \tilde{\oplus} N_1^{(n)} \xrightarrow{F_n} M_2^{(n)} \tilde{\oplus} N_2^{(n)} = H_{\mathcal{A}}$$

such that the sequence of projections $\{\Box_n\}$ is uniformly bounded, where \Box_n denotes the projection onto $N_2^{(n)}$ along $M_2^{(n)}$ for each *n*. Then $F \in \widehat{\mathcal{M}\Phi}(\mathcal{H}_A)$ and $indexF_n = indexF$ for all *n*.

Lemma

Let X, Y be Banach spaces and $F \in M(X, Y)$. Suppose that there exists a sequence $\{F_n\}$ of regular operators in B(X, Y) such that $F_n \to F$. Moreover, assume that there exists a sequence of projections $\{\prod_n\}$ in B(Y) which is uniformly bounded in the norm and such that $Im(I - \prod_n) = ImF_n$ for all n. Then, F is a regular operator, i.e. ImF is complementable in Y.

On generalized spectra of operators over C*-algebras

Question: If \mathcal{A} is a \mathcal{C}^* -algebra, then for $\alpha \in \mathcal{A}$ could we define in a suitable way the operator αI on H_A and the generalized spectra in \mathcal{A} of operators in $B^{a}(H_{A})$ by setting for every $F \in B^{a}(H_{A})$ $\sigma^{\mathcal{A}}(F) = \{ \alpha \in \mathcal{A} \mid F - \alpha I \text{ is not invertible in } B^{a}(H_{\mathcal{A}}) \}?$ Answer: For $a \in \mathcal{A}$ we may let αI be the operator on $H_{\mathcal{A}}$ given by $\alpha I(x_1, x_2, \dots) = (\alpha x_1, \alpha x_2, \dots)$. It is straightforward to check that αI is an \mathcal{A} -linear operator on $\mathcal{H}_{\mathcal{A}}$. Moreover, αI is bounded and $\|\alpha I\| = \|\alpha\|$. Finally, αI is adjointable and its adjoint is given by $(\alpha I)^* = \alpha^* I$. We introduce then the following notion: $\sigma^{\mathcal{A}}(F) = \{ \alpha \in \mathcal{A} \mid F - \alpha I \text{ is not invertible in } B^{a}(H_{\mathcal{A}}) \};$ $\sigma_{\mathbf{p}}^{\mathcal{A}}(F) = \{ \alpha \in \mathcal{A} \mid \ker(F - \alpha I) \neq \{ \mathbf{0} \} \};$ $\sigma_{\mathcal{A}}^{\mathcal{A}}(F) = \{ \alpha \in \mathcal{A} \mid F - \alpha I \text{ is bounded below, but not surjective on } H_{\mathcal{A}} \} \};$ $\sigma_{cl}^{\mathcal{A}}(F) = \{ \alpha \in \mathcal{A} \mid Im(F - \alpha I) \text{ is not closed } \}. \text{ (where } F \in B^{a}(H_{\mathcal{A}}) \text{))}.$

・ロト・日本・モート モー シタウ

Proposition

Let \mathcal{A} be a unital C^* -algebra, $\{e_k\}_{k\in\mathbb{N}}$ denote the standard orthonormal basis of $\mathcal{H}_{\mathcal{A}}$ and S be the operator defined by $Se_k = e_{k+1}, k \in \mathbb{N}$, that is S is unilateral shift and $S^*e_{k+1} = e_k$ for all $k \in \mathbb{N}$. If $\mathcal{A} = L^{\infty}((0, 1))$ or if $\mathcal{A} = C([0, 1])$, then $\sigma^{\mathcal{A}}(S) = \{\alpha \in \mathcal{A} \mid \inf |\alpha| \leq 1\}$, (where in the case when $\mathcal{A} = L^{\infty}((0, 1))$, we set inf $|\alpha| = \inf\{C > 0 \mid \mu(|\alpha|^{-1}[0, C]) > 0\} = \sup\{K > 0 \mid |\alpha| > K\}$ a.e. on $(0, 1)\}$). Moreover, $\sigma_p^{\mathcal{A}}(S) = \emptyset$ in both cases.

Corollary

Let \mathcal{A} be a commutative unital C^* -algebra. Then $\sigma^{\mathcal{A}}(S) = \mathcal{A} \setminus G(\mathcal{A}) \cup \{ \alpha \in G(\mathcal{A}) | (\alpha^{-1}, \alpha^{-2}, \cdots, \alpha^{-k}, \cdots) \notin H_{\mathcal{A}} \}.$

Proposition

Let $\alpha \in \mathcal{A}$. We have 1. If $\alpha I - F$ is bounded below, and $F \in B^{a}(H_{\mathcal{A}})$ then $\alpha \in \sigma_{rl}^{\mathcal{A}}(F)$ if and only if $\alpha^{*} \in \sigma_{p}^{\mathcal{A}}(F^{*})$. 2. If $F, D \in B^{a}(H_{\mathcal{A}})$ and $D = U^{*}FU$ for some unitary operator U, then $\sigma^{\mathcal{A}}(F) = \sigma^{\mathcal{A}}(D), \sigma_{p}^{\mathcal{A}}(F) = \sigma_{p}^{\mathcal{A}}(D), \sigma_{cl}^{\mathcal{A}}(F) = \sigma_{cl}^{\mathcal{A}}(D)$ and $\sigma_{rl}^{\mathcal{A}}(F) = \sigma_{rl}^{\mathcal{A}}(D)$.

Proposition

Let $U \in B^{a}(H_{\mathcal{A}})$ be unitary. Then $\sigma^{\mathcal{A}}(U) \subseteq \{\alpha \in \mathcal{A} \mid || \alpha || \ge 1\}$ and $\sigma^{\mathcal{A}}(U) \cap G(\mathcal{A}) \subseteq \{\alpha \in G(\mathcal{A}) \mid || \alpha^{-1} ||, || \alpha || \ge 1\}.$

Consider again the orthonormal basis $\{e_k\}_{k\in\mathbb{N}}$ for H_A . We may enumerate this basis by indexes in \mathbb{Z} . Then we get orthonormal basis $\{e_j\}_{j\in\mathbb{Z}}$ for H_A and we can consider bilateral shift operator V w.r.t. this basis i.e. $Ve_k = e_{k+1}$ all $k \in \mathbb{Z}$, which gives $V^*e_k = e_{k-1}$ for all $k \in \mathbb{Z}$.

Proposition

Let V be bilateral shift operator. Then the following holds 1) If $\mathcal{A} = C([0,1])$, then $\sigma^{\mathcal{A}}(V) = \{f \in \mathcal{A} \mid |f|([0,1]) \cap \{1\} \neq \emptyset\}$ 2) If $\mathcal{A} = L^{\infty}([0,1])$, then $\sigma^{\mathcal{A}}(V) = \{f \in \mathcal{A} \mid \mu(|f|^{-1}((1-\epsilon, 1+\epsilon)) > 0 \ \forall \epsilon > 0\}$. In both cases $\sigma^{\mathcal{A}}_{\rho}(V) = \emptyset$.

Lemma

If F is a self-adjoint operator on H_A , then $\sigma_p^A(F)$ is a self-adjoint subset of A, that is $\alpha \in \sigma_p^A(F)$ if and only if $\alpha^* \in \sigma_p^A(F)$ in the case when A is a commutative C^* -algebra.

Lemma

Let \mathcal{A} be a commutative C^{*}-algebra. If F is a self-adjoint operator on $H_{\mathcal{A}}$ and $\alpha \in \mathcal{A} \setminus \sigma_p^{\mathcal{A}}(F)$, then $\overline{R(F - \alpha I)}^{\perp} = \{0\}$. Hence, if $\alpha \in \mathcal{A} \setminus \sigma_p^{\mathcal{A}}(F)$ and in addition $F - \alpha I$ is bounded below, then $\alpha \in \mathcal{A} \setminus \sigma^{\mathcal{A}}(F)$.

Lemma

Let \mathcal{A} be a commutative unital C^* -algebra and F be a normal operator on $\mathcal{H}_{\mathcal{A}}$, that is $FF^* = F^*F$. If $\alpha_1, \alpha_2 \in \sigma_p^{\mathcal{A}}(F)$ and $\alpha_1 - \alpha_2$ is invertible in \mathcal{A} , then ker $(F - \alpha_1 I) \perp \text{ker}(F - \alpha_2 I)$.

Lemma

Let \mathcal{A} be a commutative C^* -algebra and F be a normal operator on $H_{\mathcal{A}}$. Then $\sigma_{rl}^{\mathcal{A}}(F) = \emptyset$, hence $\sigma^{\mathcal{A}}(F) = \sigma_p^{\mathcal{A}}(F) \cup \sigma_{cl}^{\mathcal{A}}(F)$.

Lemma

Let $F \in B^{a}(H_{\mathcal{A}})$. Then the following statements are equivalent: a) $\alpha \in \mathcal{A} \setminus \sigma_{a}(F)$ b) $\alpha \in \mathcal{A} \setminus \sigma_{l}(F)$ c) $\alpha^{*} \in \mathcal{A} \setminus \sigma_{r}(F^{*})$ d) $Im(\alpha^{*}I - F^{*}) = H_{\mathcal{A}}.$ Next, for $F \in B^{a}(H_{\mathcal{A}})$, set $\sigma_{a}^{\mathcal{A}}(F) = \{ \alpha \in \mathcal{A} \mid F - \alpha I \text{ is not bounded below } \}.$

Proposition

For $F \in B^{a}(H_{\mathcal{A}})$, we have that $\sigma_{a}^{\mathcal{A}}(F)$ is a closed subset of \mathcal{A} in the norm topology and $\sigma^{\mathcal{A}}(F) = \sigma_{a}^{\mathcal{A}}(F) \cup \sigma_{rl}^{\mathcal{A}}(F)$.

Proposition

If $F \in B^{a}(H_{\mathcal{A}})$, then $\partial \sigma^{\mathcal{A}}(F) \subseteq \sigma_{a}^{\mathcal{A}}(F)$. Moreover, if M is a closed submodule of $H_{\mathcal{A}}$ and invariant with respect to F, and $F_{0} = F_{|_{M}}$, then we have $\partial \sigma^{\mathcal{A}}(F_{0}) \subseteq \sigma_{a}^{\mathcal{A}}(F)$, $\sigma^{\mathcal{A}}(F_{0}) \cap \sigma^{\mathcal{A}}(F) = \sigma_{r'}^{\mathcal{A}}(F_{0})$.

Definition Let $F \in B^{a}(H_{A})$. We set

$$\begin{aligned} \sigma_{ew}^{\mathcal{A}}(\mathbf{F}) &= \{ \alpha \in \mathcal{A} \mid (\mathbf{F} - \alpha \mathbf{I}) \notin \mathcal{M}\Phi_{0}(\mathcal{H}_{\mathcal{A}}) \}, \\ \sigma_{e\alpha}^{\mathcal{A}}(\mathbf{F}) &= \{ \alpha \in \mathcal{A} \mid (\mathbf{F} - \alpha \mathbf{I}) \notin \mathcal{M}\Phi_{+}(\mathcal{H}_{\mathcal{A}}) \}, \\ \sigma_{e\beta}^{\mathcal{A}}(\mathbf{F}) &= \{ \alpha \in \mathcal{A} \mid (\mathbf{F} - \alpha \mathbf{I}) \notin \mathcal{M}\Phi_{-}(\mathcal{H}_{\mathcal{A}}) \}, \\ \sigma_{ek}^{\mathcal{A}}(\mathbf{F}) &= \{ \alpha \in \mathcal{A} \mid (\mathbf{F} - \alpha \mathbf{I}) \notin \mathcal{M}\Phi_{+}(\mathcal{H}_{\mathcal{A}}) \cup \mathcal{M}\Phi_{-}(\mathcal{H}_{\mathcal{A}}) \}, \\ \sigma_{ef}^{\mathcal{A}}(\mathbf{F}) &= \{ \alpha \in \mathcal{A} \mid (\mathbf{F} - \alpha \mathbf{I}) \notin \mathcal{M}\Phi_{+}(\mathcal{H}_{\mathcal{A}}) \cup \mathcal{M}\Phi_{-}(\mathcal{H}_{\mathcal{A}}) \}, \end{aligned}$$

Definition

We set $ms_{\Phi}(F) = \inf\{ \| \alpha \| | \alpha \in \mathcal{A}, F - \alpha I \notin \mathcal{M}\Phi(\mathcal{H}_{\mathcal{A}}) \},\$

$$ms(F) = \inf\{ \| \alpha \| | \alpha \in \mathcal{A}, F - \alpha I \notin (\mathcal{M}\Phi_{+}(\mathcal{H}_{\mathcal{A}}) \cup \mathcal{M}\Phi_{-}(\mathcal{H}_{\mathcal{A}})) \},$$
$$ms_{+}(F) = \inf\{ \| \alpha \| | \alpha \in \mathcal{A}, F - \alpha I \notin \mathcal{M}\Phi_{+}(\mathcal{H}_{\mathcal{A}}) \},$$
$$ms_{-}(F) = \inf\{ \| \alpha \| | \alpha \in \mathcal{A}, F - \alpha I \notin \mathcal{M}\Phi_{-}(\mathcal{H}_{\mathcal{A}}) \}.$$

It follows that $ms_{\Phi}(F) = \max\{\epsilon \ge 0 \mid \parallel \alpha \parallel < \epsilon \Rightarrow F - \alpha I \in \mathcal{M}\Phi(H_{\mathcal{A}})\},\$

$$ms_{+}(F) = \max\{\epsilon \geq 0 \mid \parallel \alpha \parallel < \epsilon \Rightarrow F - \alpha I \in \mathcal{M}\Phi_{+}(H_{\mathcal{A}})\},\$$

$$\begin{split} ms_{-}(F) &= \max\{\epsilon \geq 0 \mid \parallel \alpha \parallel < \epsilon \Rightarrow F - \alpha I \in \mathcal{M}\Phi_{-}(H_{\mathcal{A}})\},\\ ms(F) &= \max\{\epsilon \geq 0 \mid \parallel \alpha \parallel < \epsilon \Rightarrow F - \alpha I \in (\mathcal{M}\Phi_{+}(H_{\mathcal{A}}) \cup \mathcal{M}\Phi_{-}(H_{\mathcal{A}}))\},\\ \text{it follows that } ms_{\Phi}(F) > 0 \Leftrightarrow F \in \mathcal{M}\Phi(H_{\mathcal{A}}), \end{split}$$

$$ms_+(F) > 0 \Leftrightarrow F \in \mathcal{M}\Phi_+(H_{\mathcal{A}}), ms_-(F) > 0 \Leftrightarrow F \in \mathcal{M}\Phi_-(H_{\mathcal{A}}),$$

 $ms(F) > 0 \Leftrightarrow F \in (\mathcal{M}\Phi_+(H_A) \cup \mathcal{M}\Phi_-(H_A)), \text{ it follows that}$ $ms_+(F) = ms_-(F^*), ms_{\Phi}(F) = ms_{\Phi}(F^*), ms(F) = ms(F^*).$

Lemma

Let $F \in B(H_A)$. If $ms_+(F) > 0$ and $ms_-(F) > 0$, then $ms_+(F) = ms_-(F)$.

Lemma

Let $F \in B(H_A)$. Then 1) $ms_{\Phi}(F) = \min\{ms_+(F), ms_-(F)\}$ 2) $ms(F) = \max\{ms_+(F), ms_-(F)\}$.

Lemma

Let $F \in B(H_{\mathcal{A}})$, where \mathcal{A} be a W^* -algebra and suppose that $K(\mathcal{A})$ satisfies the cancellation property. Then $\sigma^{\mathcal{A}}(F) = \sigma^{\mathcal{A}}_{ew}(F) \cup \sigma^{\mathcal{A}}_{p}(F) \cup \sigma^{\mathcal{A}}_{cl}(F).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Lemma

Let now \mathcal{A} be an arbitrary C^* -algebra. For $F \in B^a(\mathcal{H}_{\mathcal{A}})$ set $\sigma_{ewgc}^{\mathcal{A}}(F) = \{ \alpha \in \mathcal{A} \mid (F - \alpha I) \notin \mathcal{M}\Phi_0^{gc}(\mathcal{H}_{\mathcal{A}}) \}$. Then $\sigma^{\mathcal{A}}(F) = \sigma_{ewgc}^{\mathcal{A}}(F) \cup \sigma_p^{\mathcal{A}}(F)$.

Lemma

Let $F \in B^{a}(H_{\mathcal{A}})$ and suppose $K(\mathcal{A})$ satisfies the cancellation property. Then $\sigma^{\mathcal{A}}(F) = \sigma^{\mathcal{A}}_{ew}(F) \cup \sigma^{\mathcal{A}}_{p}(F) \cup \sigma^{\mathcal{A}}_{cl}(F)$.

Proposition

If $F \in B^{a}(H_{\mathcal{A}})$ then the components of $\mathcal{A} \setminus (\sigma_{e\alpha}^{\mathcal{A}}(F) \cap \sigma_{e\beta}^{\mathcal{A}}(F))$ are either completely contained in $\mathcal{M}\Phi_{+}(F) \setminus \mathcal{M}\Phi(F)$ or in $\mathcal{M}\Phi_{+}(F) \setminus \mathcal{M}\Phi(F)$ or index $(F - \alpha I)$ is constant on them.

Lemma

Let $F \in B^{\mathfrak{s}}(\mathcal{H}_{\mathcal{A}})$. If $\alpha \in \partial \sigma^{\mathcal{A}}(F) \setminus (\sigma_{e\alpha}^{\mathcal{A}}(F) \cap \sigma_{e\beta}^{\mathcal{A}}(F))$, then $\alpha \in \mathcal{M}\Phi_{0}(F)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Let now $\mathcal{M}\Phi_0(H_A)$ be the set of all $F \in B^a(H_A)$ such that there exists a decomposition

$$H_{\mathcal{A}} = M_1 \tilde{\oplus} N_1 \stackrel{\mathrm{F}}{\longrightarrow} M_2 \tilde{\oplus} N_2 = H_{\mathcal{A}}$$

w.r.t. which F has the matrix $\begin{bmatrix} F_1 & 0\\ 0 & F_4 \end{bmatrix}$, where F_1 is an isomorphism, N_1, N_2 are finitely generated and

$$N \oplus N_1 = N \oplus N_2 = H_A$$

for some closed submodule $N \subseteq H_A$. Notice that this implies that $F \in \mathcal{M}\Phi(\mathcal{H}_{\mathcal{A}})$ and $\mathcal{N}_1 \cong \mathcal{N}_2$, so that index $\mathbf{F} = [N_1] - [N_2] = 0$. Hence $\tilde{\mathcal{M}} \Phi_0(H_{\mathcal{A}}) \subseteq \mathcal{M} \Phi_0(H_{\mathcal{A}})$. Let $P(H_A) = \{P \in B(H_A) \mid P \text{ is a projection and } N(P) \text{ is finitely} \}$ generated} and let $\sigma_{\mathrm{sW}}^{\mathcal{A}}(\mathbf{F}) = \{ \alpha \in Z(\mathcal{A}) \mid (\mathbf{F} - \alpha \mathbf{I}) \notin \tilde{\mathcal{M}} \Phi_0(\mathcal{H}_{\mathcal{A}}) \}$

for $\mathbf{F} \in B^a(H_A)$.

Theorem Let $F \in B^{a}(H_{A})$. Then

$$\sigma_{e\mathbf{W}}^{\mathcal{A}}(\mathbf{F}) = \cap \{ \sigma^{\mathcal{A}}(\mathbf{PF}_{|_{\mathbf{R}(\mathbf{P})}}) \mid \mathbf{P} \in \mathbf{P}(\mathcal{H}_{\mathcal{A}}) \}$$

where

$$\sigma^{\mathcal{A}}(\mathrm{PF}_{|_{\mathrm{R}(\mathrm{P})}}) = \{ \alpha \in Z(\mathcal{A}) \mid (\mathrm{PF} - \alpha \mathrm{I})_{|_{\mathrm{R}(\mathrm{P})}} \text{ is not invertible in } B(\mathrm{R}(\mathrm{P})) \}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Lemma $\tilde{\mathcal{M}}\Phi_0(H_A)$ is open in $B^a(H_A)$.

We let now $\widehat{\mathcal{M}\Phi}_{+}^{-}(H_{\mathcal{A}})$ be the space of all $F \in B^{a}(H_{\mathcal{A}})$ such that there exists a decomposition

$$H_{\mathcal{A}} = M_1 \tilde{\oplus} N_1 \stackrel{\mathrm{F}}{\longrightarrow} M_2 \tilde{\oplus} N_2 = H_{\mathcal{A}},$$

w.r.t. which F has the matrix $\begin{bmatrix} F_1 & 0\\ 0 & F_4 \end{bmatrix}$, where F_1 is an isomorphism, N_1 is finitely generated and such that there exist closed submodules N'_2 , N where $N'_2 \subseteq N_2$, $N'_2 \cong N_1$, $H_A = N \oplus N_1 = N \oplus N'_2$ and the projection onto N along N'_2 is adjointable.

Then we set

$$\sigma_{e\tilde{a}}^{\mathcal{A}}(\mathbf{F}) := \{ \alpha \in Z(\mathcal{A}) \mid (\mathbf{F} - \alpha \mathbf{I}) \notin \widehat{\mathcal{M}} \Phi_{+}^{-}(\mathcal{H}_{\mathcal{A}}) \}.$$

Theorem

Let $F \in B^{a}(\mathcal{H}_{\mathcal{A}})$. Then $\sigma_{aa}^{\mathcal{A}}(F) = \cap \{\sigma_{a}^{\mathcal{A}}(PF_{|_{R(P)}}) \mid P \in P^{a}(\mathcal{H}_{\mathcal{A}})\}$ where $\sigma_{a}^{\mathcal{A}}(PF_{|_{R(P)}})$ is the set of all $\alpha \in Z(\mathcal{A})$ s.t. $(PF - \alpha I)_{|_{R(P)}}$ is not bounded below on R(P) and $P^{a}(\mathcal{H}_{\mathcal{A}}) = P(\mathcal{H}_{\mathcal{A}}) \cap B^{a}(\mathcal{H}_{\mathcal{A}})$.

 $\begin{array}{l} \text{Definition} \\ \text{We set } \widehat{\mathcal{M}} \Phi^+_-(\mathcal{H}_{\mathcal{A}}) \text{ to be the set of all } \mathrm{D} \in B^a(\mathcal{H}_{\mathcal{A}}) \text{ such that there} \end{array}$ exists a decomposition

$$H_{\mathcal{A}} = M_1' \tilde{\oplus} N_1' \stackrel{\mathrm{D}}{\longrightarrow} M_2' \tilde{\oplus} N_2' = H_{\mathcal{A}}$$

w.r.t. which D has the matrix $\left[\begin{array}{cc} D_1 & 0 \\ 0 & D_4 \end{array} \right],$ where D_1 is an isomorphism, N'_2 is finitely generated and such that $H_A = M'_1 \oplus N \oplus N'_2$ for some closed submodule N, where the projection onto $M'_1 \oplus N$ along N'_2 is adjointable. Then we set

$$\sigma_{e\tilde{d}}^{\mathcal{A}}(\mathbf{D}) = \{ \alpha \in Z(\mathcal{A}) \} \mid (\mathbf{D} - \alpha \mathbf{I}) \notin \widehat{\mathcal{M}\Phi}_{-}^{+}(\mathcal{H}_{\mathcal{A}}) \}$$

and for $P \in P^{a}(H_{A})$ we set

$$\sigma_d^{\mathcal{A}}(\mathrm{PD}_{|_{\mathrm{R}(\mathrm{P})}}) = \{ \alpha \in Z(\mathcal{A}) \} \mid (\mathrm{PD} - \alpha \mathrm{I})_{|_{\mathrm{R}(\mathrm{P})}} \text{ is not onto } \mathrm{R}(\mathrm{P}) \}.$$

Theorem Let $D \in B^{a}(H_{\mathcal{A}})$. Then

$$\sigma_{e\tilde{d}}^{\mathcal{A}}(\mathbf{D}) = \bigcap \{ \sigma_{d}^{\mathcal{A}}(\mathbf{PD}_{|_{\mathbf{R}(\mathbf{P})}}) \mid \mathbf{P} \in \mathbf{P}^{a}(\mathcal{H}_{\mathcal{A}}) \}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition

We let $\widehat{\mathcal{M}}\Phi_+(\mathcal{H}_A)$ be the set of all $F \in B(\mathcal{H}_A)$ such that there exists an $\mathcal{M}\Phi_+$ -decomposition for F

$$H_{\mathcal{A}} = M_1 \tilde{\oplus} N_1 \stackrel{F}{\longrightarrow} M_2 \tilde{\oplus} N_2 = H_{\mathcal{A}},$$

and closed submodules $N,\,N_2'$ with the property that N_1 is isomorphic to $N_2',\,N_2'\subseteq N_2\;$ and

$$H_{\mathcal{A}} = N \tilde{\oplus} N_1 = N \tilde{\oplus} N_2'.$$

Theorem

For $F \in B(H_A)$ we have

$$\sigma_{e\breve{a}0}^{\mathcal{A}}(F) = \cap \{\sigma_{a0}^{\mathcal{A}}(PF_{|_{R(P)}}) \mid P \in P(\mathcal{H}_{\mathcal{A}})\},\$$

where $\sigma_{a0}^{\mathcal{A}}(PF_{|_{R(P)}}) = \{ \alpha \in Z(\mathcal{A}) \mid (PF - \alpha I)_{|R(P)} \text{ is not bounded below on } R(P) \text{ or } R(PF - \alpha P) \text{ is not complementable in } R(P) \}.$

Definition We set $\widehat{\widehat{\mathcal{M}\Phi}}_{-}^{+}(H_{\mathcal{A}})$ to be the set of all $G \in B(H_{\mathcal{A}})$ such that there exists an $\mathcal{M}\Phi_{-}$ -decomposition for G

$$H_{\mathcal{A}} = M_1' \tilde{\oplus} N_1' \stackrel{G}{\longrightarrow} M_2' \tilde{\oplus} N_2' = H_{\mathcal{A}},$$

and a closed submodule N with the property that $H_{\mathcal{A}} = M'_1 \tilde{\oplus} N \tilde{\oplus} {N_2}'$.

Theorem

For $G \in B(H_A)$ we have

$$\sigma_{\tilde{ed0}}^{\mathcal{A}}(G) = \cap \{\sigma_{d0}^{\mathcal{A}}(PG_{|_{R(P)}}) \mid P \in P(H_{\mathcal{A}})\},\$$

where $\sigma_{d0}^{\mathcal{A}}(PG_{|_{R(P)}}) = \{ \alpha \in Z(\mathcal{A}) \mid R(P) \text{ does not split into the decomposition } R(P) = \tilde{N} \oplus \tilde{\tilde{N}}$ with the property that $PG_{|_{\tilde{N}}}$ is an isomorphism onto $R(P) \}$.

The boundary of several kinds of Fredholm spectra in \mathcal{A}

Theorem Let $F \in B^{a}(H_{A})$. Then the following inclusions hold:

$$\partial \sigma_{ew}^{\mathcal{A}}(\mathbf{F}) \subseteq \partial \sigma_{ef}^{\mathcal{A}}(\mathbf{F}) \subseteq \begin{array}{c} \partial \sigma_{e\beta}^{\mathcal{A}}(\mathbf{F}) \\ \partial \sigma_{e\alpha}^{\mathcal{A}}(\mathbf{F}) \end{array} \subseteq \partial \sigma_{ek}^{\mathcal{A}}(\mathbf{F}).$$

Theorem Let $F \in B^{a}(H_{A})$. Then

$$\partial \sigma_{ew}^{\mathcal{A}}(\mathbf{F}) \subseteq \partial \sigma_{e\tilde{a}}^{\mathcal{A}}(\mathbf{F}) \subseteq \partial \sigma_{ea}^{\mathcal{A}}(\mathbf{F})$$

Moreover, $\partial \sigma_{ea}^{\mathcal{A}}(F) \subseteq \partial \sigma_{e\alpha}^{\mathcal{A}}(F)$ if $K(\mathcal{A})$ satisfies the cancellation property.

Perturbations of the generalized spectra in \mathcal{A}

Lemma $\mathcal{M}I(\mathcal{H}_{\mathcal{A}})$ is a closed two sided ideal in $B^{a}(\mathcal{H}_{\mathcal{A}})$ and

$$\mathcal{M}I(H_{\mathcal{A}}) = \{ D \in B^{a}(H_{\mathcal{A}}) \mid I + DF \in \mathcal{M}\Phi(H_{\mathcal{A}}) \; \forall F \in B^{a}(H_{\mathcal{A}}) \} =$$
$$= \{ D \in B^{a}(H_{\mathcal{A}}) \mid I + DF \in \mathcal{M}\Phi(H_{\mathcal{A}}) \; \forall F \in \mathcal{M}\Phi(H_{\mathcal{A}}) \} =$$
$$= \{ D \in B^{a}(H_{\mathcal{A}}) \mid I + FD \in \mathcal{M}\Phi(H_{\mathcal{A}}) \; \forall F \in B^{a}(H_{\mathcal{A}}) \} =$$
$$= \{ D \in B^{a}(H_{\mathcal{A}}) \mid I + FD \in \mathcal{M}\Phi(H_{\mathcal{A}}) \; \forall F \in F \in \mathcal{M}\Phi(H_{\mathcal{A}}) \}.$$

Lemma

a) If $F \in \mathcal{M}\Phi_{+}(H_{\mathcal{A}}) \setminus \mathcal{M}\Phi(H_{\mathcal{A}})$ and $D \in P(\mathcal{M}\Phi(H_{\mathcal{A}}))$, then $F + D \in \mathcal{M}\Phi_{+}(H_{\mathcal{A}}) \setminus \mathcal{M}\Phi(H_{\mathcal{A}})$. b) If $F \in \mathcal{M}\Phi_{-}(H_{\mathcal{A}}) \setminus \mathcal{M}\Phi(H_{\mathcal{A}})$ and $D \in P(\mathcal{M}\Phi(H_{\mathcal{A}}))$, then $F + D \in \mathcal{M}\Phi_{-}(H_{\mathcal{A}}) \setminus \mathcal{M}\Phi(H_{\mathcal{A}})$. c) If $\mathcal{M}\Phi(H_{\mathcal{A}})$ and $D \in P(\mathcal{M}\Phi(H_{\mathcal{A}}))$, then $D + F \in \mathcal{M}\Phi(H_{\mathcal{A}})$ and index D + F = index F. Lemma We have $P(\mathcal{M}\Phi_0(H_A)) = P(\mathcal{M}\Phi(H_A)).$

Proposition

Let $F \in B^a(H_A)$. Then

$$\sigma_{ew}^{\mathcal{A}}(F) = \bigcap_{D \in K^*(H_{\mathcal{A}})} \sigma^{\mathcal{A}}(F+D) = \bigcap_{D \in \mathcal{M}I(H_{\mathcal{A}})} \sigma^{\mathcal{A}}(F+D).$$

Theorem

The operator $D \in B^{a}(H_{\mathcal{A}})$ satisfies the condition $\sigma_{ek}^{\mathcal{A}}(F + D) = \sigma_{ek}^{\mathcal{A}}(F)$ for every $F \in B^{a}(H_{\mathcal{A}})$ if and only if $D \in P(\mathcal{M}\Phi_{+}(H_{\mathcal{A}})) \cap P(\mathcal{M}\Phi_{-}(H_{\mathcal{A}})) = P(\mathcal{M}\Phi(H_{\mathcal{A}})).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lemma

The operator $D \in B^{a}(H_{\mathcal{A}})$ satisfies the condition $\sigma_{e\alpha}^{\mathcal{A}}(F + D) = \sigma_{e\alpha}^{\mathcal{A}}(F)$ for every $F \in B^{a}(H_{\mathcal{A}})$ if and only if $D \in P(\mathcal{M}\Phi(H_{\mathcal{A}}))$.

Lemma

The operator $D \in B^{a}(H_{\mathcal{A}})$ satisfies the condition $\sigma_{e\beta}^{\mathcal{A}}(F + D) = \sigma_{e\beta}^{\mathcal{A}}(F)$ for every $F \in B^{a}(H_{\mathcal{A}})$ if and only if $D \in P(\mathcal{M}\Phi(H_{\mathcal{A}}))$.

Lemma

The operator $D \in B^{a}(H_{\mathcal{A}})$ satisfies the condition $\sigma_{ef}^{\mathcal{A}}(F + D) = \sigma_{ef}^{\mathcal{A}}(F)$ for every $F \in B^{a}(H_{\mathcal{A}})$ if and only if $D \in P(\mathcal{M}\Phi(H_{\mathcal{A}}))$.

Lemma

The operator $D \in B^{a}(H_{\mathcal{A}})$ satisfies the condition $\sigma_{ew}^{\mathcal{A}}(F + D) = \sigma_{ew}^{\mathcal{A}}(F)$ for every $F \in B^{a}(H_{\mathcal{A}})$ if and only if $D \in P(\mathcal{M}\Phi(H_{\mathcal{A}}))$.

Definition For $F \in B^{a}(H_{\mathcal{A}})$ we set $\sigma_{e\alpha'}^{\mathcal{A}}(F) = \{ \alpha \in \mathcal{A} \mid F - \alpha I \notin \mathcal{M}\Phi_{+}^{-\prime}(H_{\mathcal{A}}) \}$ and $\sigma_{e\beta'}^{\mathcal{A}}(F) = \{ \alpha \in \mathcal{A} \mid F - \alpha I \notin \mathcal{M}\Phi_{-}^{+\prime}(H_{\mathcal{A}}) \}.$

Lemma

Let $F \in B^{a}(H_{A})$. Then

$$\sigma_{e\alpha'}^{\mathcal{A}}(F) = \bigcap_{D \in K^*(H_{\mathcal{A}})} \sigma_a^{\mathcal{A}}(F+D) = \bigcap_{D \in P(\mathcal{M}\Phi_+^{-\prime}(H_{\mathcal{A}}))} \sigma_a^{\mathcal{A}}(F+D),$$

$$\sigma_{e\beta'}^{\mathcal{A}}(F) = \bigcap_{D \in K^*(H_{\mathcal{A}})} \sigma_d^{\mathcal{A}}(F+D) = \bigcap_{D \in P(\mathcal{M}\Phi_-^{+\prime}(H_{\mathcal{A}}))} \sigma_d^{\mathcal{A}}(F+D),$$

Lemma

Let $F \in B^{a}(H_{\mathcal{A}})$. Then 1) We have $\sigma_{e\alpha'}^{\mathcal{A}}(F + D) = \sigma_{e\alpha'}^{\mathcal{A}}(D)$ for every $D \in B^{a}(H_{\mathcal{A}})$ if and only if $F \in P(\mathcal{M}\Phi_{+}^{-\prime}(H_{\mathcal{A}}))$. 2) We have $\sigma_{e\beta'}^{\mathcal{A}}(D) = \sigma_{e\beta'}^{\mathcal{A}}(F + D)$ for every $D \in B^{a}(H_{\mathcal{A}})$ if and only $F \in P(\mathcal{M}\Phi_{-}^{+\prime}(H_{\mathcal{A}}))$.

On operator 2×2 matrices over C^* -algebras

We will consider the operator $M_{C}^{\mathcal{A}}(F, D) : \mathcal{H}_{\mathcal{A}} \oplus \mathcal{H}_{\mathcal{A}} \to \mathcal{H}_{\mathcal{A}} \oplus \mathcal{H}_{\mathcal{A}}$ given as 2×2 operator matrix

$$\begin{bmatrix} F & C \\ 0 & D \end{bmatrix},$$

where $F, C, D \in B^a(\mathcal{H}_A)$.

To simplify notation we will only write M_C^A instead of $M_C^A(F, D)$ when $F, D \in B^a(H_A)$ are given.

Proposition

For given $F, C, D \in B^{a}(\mathcal{H}_{\mathcal{A}})$, one has

$$\sigma_{e}^{\mathcal{A}}(\mathsf{M}_{\mathrm{C}}^{\mathcal{A}}) \subset (\sigma_{e}^{\mathcal{A}}(\mathrm{F}) \cup \sigma_{e}^{\mathcal{A}}(\mathrm{D})).$$

Theorem

Let $F, D \in B^{a}(\mathcal{H}_{\mathcal{A}})$. If $\mathbf{M}_{C}^{\mathcal{A}} \in \mathcal{M}\Phi(\mathcal{H}_{\mathcal{A}} \oplus \mathcal{H}_{\mathcal{A}})$ for some $C \in B^{a}(\mathcal{H}_{\mathcal{A}})$, then $F \in \mathcal{M}\Phi_{+}(\mathcal{H}_{\mathcal{A}}), D \in \mathcal{M}\Phi_{-}(\mathcal{H}_{\mathcal{A}})$ and for all decompositions

$$\begin{aligned} H_{\mathcal{A}} &= M_{1} \tilde{\oplus} N_{1} \stackrel{\mathrm{F}}{\longrightarrow} M_{2} \tilde{\oplus} N_{2} = H_{\mathcal{A}}, \\ H_{\mathcal{A}} &= M_{1}' \tilde{\oplus} N_{1}' \stackrel{\mathrm{D}}{\longrightarrow} M_{2}' \tilde{\oplus} N_{2}' = H_{\mathcal{A}} \\ \text{w.r.t. which } \mathrm{F}, \mathrm{D} \text{ have matrices } \begin{bmatrix} \mathrm{F}_{1} & 0 \\ 0 & \mathrm{F}_{4} \end{bmatrix}, \begin{bmatrix} \mathrm{D}_{1} & 0 \\ 0 & \mathrm{D}_{4} \end{bmatrix}, \text{ respectively,} \\ \text{where } \mathrm{F}_{1}, \mathrm{D}_{1} \text{ are isomorphisms, and } N_{1}, N_{2}' \text{ are finitely generated, there} \\ \text{exist closed submodules} \\ \tilde{N}_{1}', \tilde{N}_{1}', \tilde{N}_{2}, \tilde{N}_{2} \text{ such that } N_{2} \cong \tilde{N}_{2}, N_{1}' \cong \tilde{N}_{1}', \tilde{N}_{2} \text{ and } \tilde{N}_{1}' \text{ are finitely} \\ \text{generated and} \\ \tilde{\mathcal{U}} \subset \tilde{\mathcal{U}} \subset \tilde{\mathcal{U}} \subset \tilde{\mathcal{U}}' \\ \end{array}$$

$$\tilde{N}_2 \tilde{\oplus} \tilde{\tilde{N}_2} \cong \tilde{N'_1} \tilde{\oplus} \tilde{\tilde{N'_1}}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Proposition

Suppose that there exists some $C \in B^a(\mathcal{H}_A)$ such that the inclusion $\sigma_e^{\mathcal{A}}(\mathbf{M}_C^{\mathcal{A}}) \subset \sigma_e^{\mathcal{A}}(F) \cup \sigma_e^{\mathcal{A}}(D)$ is proper. Then for any

$$\alpha \in [\sigma_e^{\mathcal{A}}(\mathbf{F}) \cup \sigma_e^{\mathcal{A}}(\mathbf{D})] \setminus \sigma_e^{\mathcal{A}}(\mathbf{M}_{\mathbf{C}}^{\mathcal{A}})$$

we have

$$\alpha \in \sigma_e^{\mathcal{A}}(\mathbf{F}) \cap \sigma_e^{\mathcal{A}}(\mathbf{D}).$$

Next, we define the following classes of operators on $H_{\mathcal{A}}$:

$$\mathcal{MS}_{+}(\mathcal{H}_{\mathcal{A}}) = \{ F \in B^{a}(\mathcal{H}_{\mathcal{A}}) \mid (F - \alpha 1) \in \mathcal{M}\Phi_{-}^{+}(\mathcal{H}_{\mathcal{A}}) \\$$
whenever $\alpha \in \mathcal{A}$ and $(F - \alpha 1) \in \mathcal{M}\Phi_{\pm}(\mathcal{H}_{\mathcal{A}}) \},$
$$\mathcal{MS}_{-}(\mathcal{H}_{\mathcal{A}}) = \{ F \in B^{a}(\mathcal{H}_{\mathcal{A}}) \mid (F - \alpha 1) \in \mathcal{M}\Phi_{+}^{-}(\mathcal{H}_{\mathcal{A}}) \\$$
whenever $\alpha \in \mathcal{A}$ and $(F - \alpha 1) \in \mathcal{M}\Phi_{\pm}(\mathcal{H}_{\mathcal{A}}) \}.$

Proposition If $F \in \mathcal{M}S_+(\mathcal{H}_{\mathcal{A}})$ or $D \in \mathcal{M}S_-(\mathcal{H}_{\mathcal{A}})$, then for all $C \in B^a(\mathcal{H}_{\mathcal{A}})$, we have

$$\sigma_e^{\mathcal{A}}(\mathsf{M}_{\mathrm{C}}^{\mathcal{A}}) = \sigma_e^{\mathcal{A}}(\mathrm{F}) \cup \sigma_e^{\mathcal{A}}(\mathrm{D})$$

Let $F\in \mathcal{M}\Phi_+(H_\mathcal{A}), D\in \mathcal{M}\Phi_-(H_\mathcal{A})$ and suppose that there exist decompositions

$$H_{\mathcal{A}} = M_{1} \tilde{\oplus} N_{1} \xrightarrow{\mathrm{F}} N_{2}^{\perp} \oplus N_{2} = H_{\mathcal{A}}$$
$$H_{\mathcal{A}} = N_{1}^{\prime \perp} \oplus N_{1}^{\prime} \xrightarrow{\mathrm{D}} M_{2}^{\prime} \tilde{\oplus} N_{2}^{\prime} = H_{\mathcal{A}}$$

w.r.t. which F, D have matrices

$$\left[\begin{array}{cc} \mathrm{F}_1 & 0 \\ 0 & \mathrm{F}_4 \end{array}\right], \left[\begin{array}{cc} \mathrm{D}_1 & 0 \\ 0 & \mathrm{D}_4 \end{array}\right],$$

respectively, where F_1 , D_1 are isomorphims, N_1 , N'_2 are finitely generated and assume also that one of the following statements hold:

a) There exists some $J \in B^a(N_2, N_1')$ such that $N_2 \cong ImJ$ and ImJ^{\perp} is finitely generated.

b) There exists some $J' \in B^a(N'_1, N_2)$ such that $N'_1 \cong ImJ', (ImJ')^{\perp}$ is finitely generated.

Then $\mathbf{M}_{\mathrm{C}}^{\mathcal{A}} \in \mathcal{M}\Phi(\mathcal{H}_{\mathcal{A}} \oplus \mathcal{H}_{\mathcal{A}})$ for some $\mathrm{C} \in B^{\mathfrak{a}}(\mathcal{H}_{\mathcal{A}})$.

Suppose $\mathbf{M}_{C}^{\mathcal{A}} \in \mathcal{M}\Phi_{-}(\mathcal{H}_{\mathcal{A}} \oplus \mathcal{H}_{\mathcal{A}})$ for some $C \in B^{a}(\mathcal{H}_{\mathcal{A}})$. Then $D \in \mathcal{M}\Phi_{-}(\mathcal{H}_{\mathcal{A}})$ and in addition the following statement holds: Either $F \in \mathcal{M}\Phi_{-}(\mathcal{H}_{\mathcal{A}})$ or there exists decompositions

$$H_{\mathcal{A}} \oplus H_{\mathcal{A}} = M_1 \tilde{\oplus} N_1 \xrightarrow{\mathrm{F}'} M_2 \tilde{\oplus} N_2 = H_{\mathcal{A}} \oplus H_{\mathcal{A}},$$

$$\begin{array}{l} H_{\mathcal{A}} \oplus H_{\mathcal{A}} = M_{1}^{\prime} \tilde{\oplus} N_{1}^{\prime} \xrightarrow{D^{\prime}} M_{2}^{\prime} \tilde{\oplus} N_{2}^{\prime} = H_{\mathcal{A}} \oplus H_{\mathcal{A}}, \\ \text{w.r.t. which } \mathrm{F}^{\prime}, \mathrm{D}^{\prime} \text{ have the matrices } \begin{bmatrix} \mathrm{F}_{1}^{\prime} & 0\\ 0 & \mathrm{F}_{4}^{\prime} \end{bmatrix}, \begin{bmatrix} \mathrm{D}_{1}^{\prime} & 0\\ 0 & \mathrm{D}_{4}^{\prime} \end{bmatrix}, \text{ where } \end{array}$$

 F'_1, D'_1 are isomorphisms, N'_2 is finitely generated, N_1, N_2, N'_1 are closed, but <u>not</u> finitely generated, and $M_2 \cong M'_1, N_2 \cong N'_1$.

Let $F, D \in B^{a}(\mathcal{H}_{\mathcal{A}})$ and suppose that $D \in \mathcal{M}\Phi_{-}(\mathcal{H}_{\mathcal{A}})$ and either $F \in \mathcal{M}\Phi_{-}(\mathcal{H}_{\mathcal{A}})$ or that there exist decompositions

$$\mathcal{H}_{\mathcal{A}} = \mathcal{M}_1 \tilde{\oplus} \mathcal{N}_1 \stackrel{\mathrm{F}}{\longrightarrow} \mathcal{N}_2^{\perp} \tilde{\oplus} \mathcal{N}_2 = \mathcal{H}_{\mathcal{A}},$$

$$H_{\mathcal{A}} = {N_1'}^{\perp} \tilde{\oplus} N_1' \stackrel{\mathrm{D}}{\longrightarrow} M_2' \tilde{\oplus} N_2' = H_{\mathcal{A}},$$

w.r.t. which F, D have the matrices $\begin{bmatrix} F_1 & 0 \\ 0 & F_4 \end{bmatrix}, \begin{bmatrix} D_1 & 0 \\ 0 & D_4 \end{bmatrix}$, respectively, where F_1, D_1 are isomorphisms N'_2 , is finitely generated and that there exists some

(日)(1)

 $\iota \in B^{a}(N_{2}, N_{1}')$ such that ι is an isomorphism onto its image in N_{1}' . Then $\mathbf{M}_{\mathrm{C}}^{\mathcal{A}} \in \mathcal{M}\Phi_{-}(\mathcal{H}_{\mathcal{A}} \oplus \mathcal{H}_{\mathcal{A}})$ for some $\mathrm{C} \in B^{a}(\mathcal{H}_{\mathcal{A}})$. Theorem Let $\mathbf{M}_{C}^{\mathcal{A}} \in \mathcal{M}\Phi_{+}(\mathcal{H}_{\mathcal{A}} \oplus \mathcal{H}_{\mathcal{A}})$. Then $F' \in \mathcal{M}\Phi_{+}(\mathcal{H}_{\mathcal{A}} \oplus \mathcal{H}_{\mathcal{A}})$ and either $D \in \mathcal{M}\Phi_{+}(\mathcal{H}_{\mathcal{A}})$ or there exist decompositions

$$\begin{split} H_{\mathcal{A}} \oplus H_{\mathcal{A}} &= M_{1} \tilde{\oplus} N_{1} \stackrel{\mathrm{F'}}{\longrightarrow} M_{2} \tilde{\oplus} N_{2} = H_{\mathcal{A}} \oplus H_{\mathcal{A}}, \\ H_{\mathcal{A}} \oplus H_{\mathcal{A}} &= M_{1}' \tilde{\oplus} N_{1}' \stackrel{\mathrm{D'}}{\longrightarrow} M_{2}' \tilde{\oplus} N_{2}' = H_{\mathcal{A}} \oplus H_{\mathcal{A}}, \\ \text{w.r.t. which } \mathrm{F'}, \mathrm{D'} \text{ have matrices } \begin{bmatrix} \mathrm{F}_{1}' & 0\\ 0 & \mathrm{F}_{4}' \end{bmatrix}, \begin{bmatrix} \mathrm{D}_{1}' & 0\\ 0 & \mathrm{D}_{4}' \end{bmatrix}, \\ \text{respectively, where } \mathrm{F}_{1}', \mathrm{D}_{1}' \text{ are isomorphisms, } M_{2} \cong M_{1}' \text{ and } N_{2} \cong N_{1}', N_{1} \\ \text{ is finitely generated and } N_{2}, N_{1}' \text{ are closed, but not finitely generated.} \end{split}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Let $F \in \mathcal{M}\Phi_+(\mathcal{H}_A)$ and suppose that either $D \in \mathcal{M}\Phi_+(\mathcal{H}_A)$ or that there exist decompositions

$$\begin{split} H_{\mathcal{A}} &= M_1 \tilde{\oplus} N_1 \xrightarrow{\mathrm{F}} N_2^{\perp} \tilde{\oplus} N_2 = H_{\mathcal{A}}, \\ H_{\mathcal{A}} &= N_1'^{\perp} \tilde{\oplus} N_1' \xrightarrow{\mathrm{D}} M_2' \tilde{\oplus} N_2' = H_{\mathcal{A}} \\ \text{w.r.t. which } \mathrm{F}, \mathrm{D} \text{ have matrices } \begin{bmatrix} \mathrm{F}_1 & 0 \\ 0 & \mathrm{F}_4 \end{bmatrix}, \begin{bmatrix} \mathrm{D}_1 & 0 \\ 0 & \mathrm{D}_4 \end{bmatrix}, \text{ respectively,} \\ \text{where } \mathrm{F}_1, \mathrm{D}_1 \text{ are isomorphisms, } N_1' \text{ is finitely generated and in addition} \\ \text{there exists some} \\ \iota \in B^a(N_1', N_2) \text{ such that } \iota \text{ is an isomorphism onto its image. Then} \end{split}$$

$$\mathbf{M}_{\mathrm{C}}^{\mathcal{A}} \in \mathcal{M}\Phi_{+}(\mathcal{H}_{\mathcal{A}} \oplus \mathcal{H}_{\mathcal{A}}),$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

for some $C \in B^{a}(H_{\mathcal{A}})$.

Definition

Let \mathcal{X} be a Banach space. A sequence $(T_n)_{n \in \mathbb{N}_0}$ of operators in $B(\mathcal{X})$ is called *topologically transitive* if for each non-empty open subsets U, V of $\mathcal{X}, T_n(U) \cap V \neq \emptyset$ for some $n \in \mathbb{N}$. If $T_n(U) \cap V \neq \emptyset$ holds from some n onwards, then $(T_n)_{n \in \mathbb{N}_0}$ is called *topologically mixing*.

Definition

Let \mathcal{X} be a Banach space. A sequence $(T_n)_{n \in \mathbb{N}_0}$ of operators in $B(\mathcal{X})$ is called *hypercyclic* if there is an element $x \in \mathcal{X}$ (called *hypercyclic vector*) such that the orbit $\mathcal{O}_x := \{T_n x : n \in \mathbb{N}_0\}$ is dense in \mathcal{X} . The set of all hypercyclic vectors of a sequence $(T_n)_{n \in \mathbb{N}_0}$ is denoted by $HC((T_n)_{n \in \mathbb{N}_0})$. If $HC((T_n)_{n \in \mathbb{N}_0})$ is dense in \mathcal{X} , the sequence $(T_n)_{n \in \mathbb{N}_0}$ is called *densely hypercyclic*. An operator $T \in B(\mathcal{X})$ is called *hypercyclic* if the sequence $(T^n)_{n \in \mathbb{N}_0}$ is hypercyclic.

Definition

Let \mathcal{X} be a Banach space, and $(T_n)_{n \in \mathbb{N}_0}$ be a sequence of operators in $B(\mathcal{X})$. A vector $x \in \mathcal{X}$ is called a *periodic element* of $(T_n)_{n \in \mathbb{N}_0}$ if there exists a constant $N \in \mathbb{N}$ such that for each $k \in \mathbb{N}$, $T_{kN}x = x$. The set of all periodic elements of $(T_n)_{n \in \mathbb{N}_0}$ is denoted by $\mathcal{P}((T_n)_{n \in \mathbb{N}_0})$. The sequence $(T_n)_{n \in \mathbb{N}_0}$ is called *chaotic* if $(T_n)_{n \in \mathbb{N}_0}$ is topologically transitive and $\mathcal{P}((T_n)_{n \in \mathbb{N}_0})$ is dense in \mathcal{X} . An operator $T \in B(\mathcal{X})$ is called *chaotic* if the sequence $\{T^n\}_{n \in \mathbb{N}_0}$ is chaotic.

Linear dynamics of Elementary Operators on $B_0(\mathcal{H})$ and $\mathcal{K}(\mathcal{H}_{\mathcal{A}})$

Definition

Let $U, W \in B(\mathcal{H})$. We define the operator $T_{U,W} : B(\mathcal{H}) \to B(\mathcal{H})$ by

$$T_{U,W}(F) := WFU \tag{1}$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

for all $F \in B(\mathcal{H})$.

Then the operator $T_{U,W}$ is invertible and its inverse is given by $T_{U^*,W^{-1}}$, i.e. $(T_{U,W})^{-1} = T_{U^*,W^{-1}}$. We will denote this inverse by $S_{U,W}$ and for each $n \in \mathbb{N}$ we set

$$C_{U,W}^{n} = \frac{1}{2}(T_{U,W}^{n} + S_{U,W}^{n}).$$

Let \mathcal{H} be a separable Hilbert space. Let $W \in B(\mathcal{H})$ be invertible and $U \in B(\mathcal{H})$ be unitary such that for each $k \in \mathbb{N}$ there exists an $N_k \in \mathbb{N}$ with

$$U^n(L_k) \perp L_k$$
 for all $n \ge N_k$. (2)

Then, the following statements are equivalent.

- (i) *T*_{U,W} is hypercyclic on B₀(*H*), where B₀(*H*) is equipped with the operator norm || · ||.
- (ii) For each $m \in \mathbb{N}$ there exist a strictly increasing sequence $\{n_k\}$ in \mathbb{N} and the sequences $\{D_k\}$ and $\{G_k\}$ of operators in $B_0(\mathcal{H})$ such that

$$\lim_{k \to \infty} \|D_k - P_m\| = \lim_{k \to \infty} \|G_k - P_m\| = 0,$$
(3)

and

$$\lim_{k\to\infty} \|W^{n_k}G_k\| = \lim_{k\to\infty} \|W^{-n_k}D_k\| = 0,$$
(4)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

where P_m denotes the orthogonal projection onto L_m .

Definition

Let \mathcal{X} be a Banach space, $a \in \mathcal{X}$, and $T \in B(\mathcal{X})$. We say that T is *a*-transitive if for each two non-empty open subsets \mathcal{O}_1 and \mathcal{O}_2 of \mathcal{X} with $a \in \mathcal{O}_1$, there are $m, n \in \mathbb{N}$ such that

$$T^n(\mathcal{O}_1)\cap\mathcal{O}_2\neq\varnothing,\qquad T^m(\mathcal{O}_2)\cap\mathcal{O}_1\neq\varnothing.$$

Theorem

Let $U, W \in B(\mathcal{H})$ such that W is invertible and U is unitary. Then, the following statements are equivalent.

- (i) $T_{U,W}$ and $S_{U,W}$ are 0-transitive on $B_0(\mathcal{H})$.
- (ii) For every finite dimensional subspace K of H there are strictly increasing sequences {n_j} and {m_j} in N and sequences of operators {G_j} and {D_j} in B₀(H) such that

$$\lim_{j\to\infty} \|G_j - P_K\| = \lim_{j\to\infty} \|D_j - P_K\| = 0,$$
(5)

and

$$\lim_{j \to \infty} \|W^{-m_j} G_j\| = \lim_{j \to \infty} \|W^{n_j} D_j\| = 0.$$
 (6)

Let $U, W \in B(\mathcal{H})$ such that W be invertible and U be unitary. If $T_{U,W}$ is hypercyclic on $B_0(\mathcal{H})$, then m(W) < 1 < ||W||.

Theorem

Let $U, W \in B(\mathcal{H})$ such that W be invertible and U be unitary. Suppose that there is a finite dimensional subspace K of \mathcal{H} such that for a constant N > 0, $U^n(K) \perp K$ for all $n \geq N$. Then, we have (i) \Rightarrow (ii):

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- (i) $P_{\mathcal{K}}$ belongs to the closure of $\mathcal{P}(\{S_{U,W}^n\}_{n\in\mathbb{N}_0})$ in $B_0(\mathcal{H})$.
- (ii) There exists an increasing sequence (n_k) in \mathbb{N} such that $m(W^{-n_k}) \to 0$ as $k \to \infty$.

Let \mathcal{H} be a separable Hilbert space and $U, W \in B(\mathcal{H})$ such that W be invertible and U be unitary. Then, we have (ii) \Rightarrow (i):

- (i) the operators $T_{U,W}$ and $S_{U,W}$ are chaotic on $B_0(\mathcal{H})$.
- (ii) For each $m \in \mathbb{N}$ there is a strictly increasing sequence $\{n_k\} \subseteq \mathbb{N}$ such that

$$\lim_{k\to\infty}\sum_{l=1}^{\infty}\|W^{ln_k}P_m\|=\lim_{k\to\infty}\sum_{l=1}^{\infty}\|W^{-ln_k}P_m\|=0,$$

where the corresponding series are convergent for each k.

Cosine Operator Functions

Theorem

Suppose that $U, W \in B(\mathcal{H})$ such that W is invertible and U is unitary. Then, we have (ii) \Rightarrow (i):

- (i) The sequence $(C_{U,W}^{(n)})_{n\in\mathbb{N}_0}$ is topologically transitive on $B_0(\mathcal{H})$.
- (ii) For each m ∈ N, there are sequences (E_k) and (R_k) of subspaces of L_m and an strictly increasing sequence (n_k) of positive integers such that L_m = E_k ⊕ R_k and

$$\lim_{k \to \infty} \|W^{n_k} P_m\| = \lim_{k \to \infty} \|W^{-n_k} P_m\| = 0, \tag{7}$$

$$\lim_{k \to \infty} \| W^{2n_k} P_{E_k} \| = \lim_{k \to \infty} \| W^{-2n_k} P_{R_k} \| = 0.$$
 (8)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Suppose that $U, W \in B(\mathcal{H})$ such that W is invertible and U is unitary. Let there exist a closed subspace K of \mathcal{H} such that $U^n(K) \perp K$ for all $n \geq N$. Then, (i) \Rightarrow (ii).

(i)
$$\mathcal{P}(C_{U,W}^{(n)})$$
 is dense in $B_0(\mathcal{H})$, and for each $F \in B_0(\mathcal{H})$,
 $\lim_{n\to\infty} S_{U,W}^n(F) = 0$ in $B_0(\mathcal{H})$.
(ii) $m(M) \leq 1$

(ii) m(W) < 1.

Theorem

Suppose that $U, W \in B(\mathcal{H})$ such that W is invertible and U is unitary. Assume that there exists a closed subspace K of \mathcal{H} such that $U^n(K) \perp K$ for all $n \geq N$. We have (i) \Rightarrow (ii). (i) $\mathcal{P}(C_{U,W}^{(n)})$ is dense in $B_0(\mathcal{H})$, and $\lim_{n\to\infty} T_{U,W}^n F = F$ for all $F \in B_0(\mathcal{H})$.

(ii) $m(W^{-1}) < 1$.

Let \mathcal{H} be a separable Hilbert space. We have (ii) \Rightarrow (i):

- (i) The sequence $\{C_{U,W}^{(n)}\}$ is chaotic on $B_0(\mathcal{H})$.
- (ii) For each $m \in \mathbb{N}$, there exists a strictly increasing sequence $\{n_k\} \subseteq \mathbb{N}$ such that

$$\lim_{k \to \infty} \sum_{l=1}^{\infty} \| W^{ln_k} P_m \| = \lim_{k \to \infty} \sum_{l=1}^{\infty} \| W^{-ln_k} P_m \| = 0,$$
 (9)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where the corresponding series are convergent for each k.

Remark

Our sufficient conditions for topological transitivity in the norm topology of $B_0(\mathcal{H})$ are also sufficient conditions for topological transitivity in the strong topology of $B(\mathcal{H})$. Indeed, since $\{e_n\}$ is an orthonormal basis for \mathcal{H} , it is easily seen that the set $\{P_nF : F \in B(\mathcal{H}), n \in \mathbb{N}\}$ is dense in $B(\mathcal{H})$ in the strong operator topology. Moreover, in this case the conditions (3)-(4) in Theorem 128 can even be relaxed by considering the strong limits instead of the limit in norm and by dropping the requirement that the sequences $\{D_k\}$ and $\{G_k\}$ should belong to $B_0(\mathcal{H})$. Hence, also in the case of strong operator topology on $B(\mathcal{H})$, the operator W in Example satisfies the sufficient conditions for topological transitivity of $T_{U,W}$ and $\{C_{U,W}^{(n)}\}_n$.

Remark

Except from the implication (i) \Rightarrow (ii) in Theorem 128, all our results about sufficient conditions for topological transitivity, easily generalize to the case where $B_0(\mathcal{H})$ is replaced by an arbitrary non-unital C^* -algebra \mathcal{A} , and the set of all finite rank orthogonal projections on \mathcal{H} is replaced by the canonical approximate unit in \mathcal{A} . Indeed, if \mathcal{A} is a non-unital C^* -algebra, then it can be isometrically embedded into a unital C^* -algebra \mathcal{A}_1 such that \mathcal{A} becomes an ideal in \mathcal{A}_1 . If u and w are invertible elements in \mathcal{A}_1 and u is unitary (i.e. $uu^* = u^*u = 1_{\mathcal{A}_1}$), then we can define the operator $T_{u,w}$ on \mathcal{A} by $T_{u,w}(a) := wau$ for all $a \in \mathcal{A}$. Therefore, all our results regarding the sufficient conditions for $T_{u,w}$ to be topologically transitive or chaotic can be generalized in this setting.

Moreover, if \mathcal{A} is a unital C^* -algebra and $H_{\mathcal{A}}$ denotes the standard Hilbert module over \mathcal{A} , then all our results so far can be transferred directly to the case where $B_0(\mathcal{H})$ and $B(\mathcal{H})$ are replaced by $K(H_{\mathcal{A}})$ and $B(H_{\mathcal{A}})$, respectively. Here, $K(H_{\mathcal{A}})$ and $B(H_{\mathcal{A}})$ stand for the set of all compact and all bounded \mathcal{A} -linear operators on $H_{\mathcal{A}}$, respectively.

Let $w \in A_1$ be invertible and u be a unitary element of A_1 . Suppose that there exist an element $a \in A^+$ and an $N \in \mathbb{N}$ such that $au^n a = 0$ for all $n \ge N$. Then, (i) \Rightarrow (ii).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

(i)
$$\mathcal{P}((C_{u,w}^{(n)})_n)$$
 is dense in \mathcal{A} .

(ii) $m(\varphi(w)) < 1 < || \varphi(w) ||$, where (φ, \mathcal{H}) is the universal representation of \mathcal{A}_1 .

Dynamics of the Adjoint Operator

Theorem

Suppose that for every $m \in \mathbb{N}$ there exist sequences (E_k) and (R_k) of subspaces of L_m and an increasing sequence $(n_k) \subseteq \mathbb{N}$ such that for each k, $L_m = E_k \oplus R_k$ and

$$\lim_{k \to \infty} \| W^{n_k} P_m \| = \lim_{k \to \infty} \| W^{-n_k} P_m \| = 0,$$
 (10)

$$\lim_{k \to \infty} \| W^{2n_k} P_{E_k} \| = \lim_{k \to \infty} \| W^{-2n_k} P_{R_k} \| = 0.$$
 (11)

Then, $\{C_{U,W}^{*(n)}\}$ is topologically transitive on $B_1(\mathcal{H})$.

Theorem

(ii) m(W) < 1.

Suppose that $U, W \in B(\mathcal{H})$ such that W is invertible and U is unitary. Assume that there exists a finite dimensional subspace K of \mathcal{H} such that $U^n(K) \perp K$ for all $n \geq N$. Then, (i) \Rightarrow (ii).

(i)
$$\mathcal{P}(C_{U,W}^{(n)^*})$$
 is dense in $B_1(\mathcal{H})$, and for each $F \in B_1(\mathcal{H})$,
 $\lim_{n\to\infty} S^*{}^n_{U,W}(F) = 0$ in $B(\mathcal{H})$.

▲□▶▲□▶▲□▶▲□▶ = のへの

Let $U, W \in B(\mathcal{H})$ be invertible such that U is unitary. Suppose that there exists a finite dimensional subspace K of \mathcal{H} and $N \in \mathbb{N}$ such that $U^n(K) \perp K$ for all $n \geq N$. Then, (i) \Rightarrow (ii):

- (i) $\mathcal{P}\{(C^*_{U,W})^n\}$ is dense in $B(\mathcal{H})'$ and $\lim_{n\to\infty} (S^*_{U,W})^n \varphi = 0$ for all $\varphi \in B(\mathcal{H})'$.
- (ii) m(W) < 1.

Theorem

We have (ii) \Rightarrow (i):

- (i) $(C_{U,W}^{(n)*})$ is topologically transitive in $B(\mathcal{H})'$.
- (ii) For every m ∈ N there exist sequences (E_k) and (R_k) of subspaces of L_m and an increasing sequence (n_k) ⊆ N such that for each k, L_m = E_k ⊕ R_k and

$$\lim_{k \to \infty} \|P_m W^{n_k}\| = \lim_{k \to \infty} \|P_m W^{-n_k}\| = 0,$$
(12)

$$\lim_{k \to \infty} \|P_{E_k} W^{2n_k}\| = \lim_{k \to \infty} \|P_{R_k} W^{-2n_k}\| = 0.$$
(13)

Theorem We have (i) \Rightarrow (ii): (i) $P(T_{U,W}^{*^n})$ is dense in $B(\mathcal{H})'$. (ii) m(W) < 1.

Theorem We have (i) \Rightarrow (ii): (i) $P(S_{U,W}^{*^{n}})$ is dense in $B(\mathcal{H})'$. (ii) $m(W^{-1}) = ||W||^{-1} < 1$, that is ||W|| > 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let $B(\mathcal{H})$ be equipped with the strong topology, and $B(\mathcal{H})'$ be equipped with the w*-topology, where $B(\mathcal{H})'$ is the dual of $B(\mathcal{H})$. Then we have (ii) \Rightarrow (i):

- (i) $\{T_{U,W}^{*^n}\}$ and $\{S_{U,W}^{*^n}\}$ are topologically transitive on $B(\mathcal{H})'$.
- (ii) for every n ∈ N there exist an increasing sequence {n_k} ⊆ N and sequences of operators {G_k} and {D_k} in B(H) such that same as theorem 3.2 in the draft with

$$\lim_{k\to\infty}\|G_kW^{n_k}\|=\lim_{k\to\infty}\|D_kW^{-n_k}\|=0,$$

and

$$s-\lim_{k\to\infty}G_k=s-\lim_{k\to\infty}D_k=P_n,$$

where s-lim denotes the limit in the strong operator topology.

Let $\{e_j\}_{j\in\mathbb{N}}$ be an orthonormal basis for a Hilbert space \mathcal{H} . Define $W\in B(\mathcal{H})$ by

$$W(e_j) := \left\{ egin{array}{ll} rac{1}{2} \, e_{j+2}, & ext{if } j ext{ is odd}, \ & 2 \, e_{j-2}, & ext{if } j ext{ is even and } j > 2, \ & e_1, & ext{if } j = 2. \end{array}
ight.$$

Then, W is invertible and ||W|| = 2. For each fixed $k \in \mathbb{N}$ it is easily checked that $||W^{2k-1+m}P_{2k}|| = \frac{1}{2^m}$ for all $m \in \mathbb{N}$. Consequently, $||W^{2k-1+m}P_{2k-1}|| \leq \frac{1}{2^m}$. Further, it is also easily verified that for each $k, m \in \mathbb{N}$ we have $||W^{-2k-m}P_{2k+1}|| = \frac{1}{2^{m-1}}$, and this gives that $||W^{-2k-m}P_{2k}|| \leq \frac{1}{2^{m-1}}$. As above, P_n denotes the orthogonal projection onto span $\{e_1, \ldots, e_n\}$. It follows that

$$\|P_{2k}(W^*)^{2k-1+m}\| = rac{1}{2^m}, \qquad \|P_{2k+1}(W^*)^{-2k-m}\| = rac{1}{2^{m-1}},$$

for all $k, m \in \mathbb{N}$.

Then W and W^* satisfy the sufficient condition in various results above on topological transitivity. If we instead of H consider H_A and let $\{e_j\}_{j\in\mathbb{N}}$ denote the standard basis, then the same arguments applies in this case also.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Let $F(e_k) = e_{2k}$ for all k. Then $F \in \mathcal{M}\Phi_+(\mathcal{H}_A)$

Example

Let $D(e_{2k-1}) = 0$, $D(e_{2k}) = e_k$. Then $D \in \mathcal{M}\Phi_-(\mathcal{H}_A)$

Example

In general, let $\iota : \mathbb{N} \to \iota(\mathbb{N})$ be a bijection such that $\iota(\mathbb{N}) \subseteq \mathbb{N}$ and $\mathbb{N} \setminus \iota(\mathbb{N})$ infinite. Moreover we may define ι in a such way s.t. $\iota(1) < \iota(2) < \iota(3) < \dots$. Then, if we define an \mathcal{A} -linear operator F as $F(e_k) = e_{\iota(k)}$ for all k, we get that $F \in \mathcal{M}\Phi_+(\mathcal{H}_{\mathcal{A}})$. Moreover, if we define an \mathcal{A} -linear operator D as $\int e_{\iota(-1)(\iota)}$, for $k \in \iota(\mathbb{N})$.

$$D(e_k) = egin{cases} e_{\iota^{-1}(k)}, & ext{for } k \in \iota(\mathbb{N}) \ 0, & ext{else} \ ext{then } D \in \mathcal{M} \Phi_{-}(\mathcal{H}_{\mathcal{A}}). \end{cases}$$

Those examples are also valid in the case when $\mathcal{A} = \mathbb{C}$, that is when $\mathcal{H}_{\mathcal{A}} = \mathcal{H}$ is a Hilbert space. We will now introduce examples where we use the structure of \mathcal{A} itself in the case when $\mathcal{A} \neq \mathbb{C}$:

Example

Let $\mathcal{A} = (L^{\infty}([0,1]), \mu)$, where μ is a Borel probability measure. Set

$$F(f_1, f_2, f_3, \ldots) = (\mathcal{X}_{[0, \frac{1}{2}]} f_1, \mathcal{X}_{[\frac{1}{2}, 1]} f_1, \mathcal{X}_{[0, \frac{1}{2}]} f_2, \mathcal{X}_{[\frac{1}{2}, 1]} f_2, \ldots) .$$

Then F is bounded A- linear operator, ker $F = \{0\}$,

$$\textit{ImF} = \textit{Span}_{\mathcal{A}}\{\mathcal{X}_{[0,\frac{1}{2}]}e_{1}, \mathcal{X}_{[\frac{1}{2},1]}e_{2}, \mathcal{X}_{[0,\frac{1}{2}]}e_{3}, \mathcal{X}_{[\frac{1}{2},1]}e_{4}, ... \},$$

and clearly $F \in \mathcal{M}\Phi_+(\mathcal{H}_A)$.

Example

Let again $\mathcal{A} = (L^{\infty}([0,1]), \mu)$. Set

$$D(g_1, g_2, g_3, \ldots) = \left(\mathcal{X}_{[0, \frac{1}{2}]} g_1 + \mathcal{X}_{[\frac{1}{2}, 1]} g_2, \mathcal{X}_{[0, \frac{1}{2}]} g_3 + \mathcal{X}_{[\frac{1}{2}, 1]} g_4, \ldots \right) \,.$$

Then ker D = ImF, D is an A-linear, bounded operator and $ImD = H_A$. Thus $D \in \mathcal{M}\Phi_-(H_A)$. Indeed, $D = F^*$.

Let $\mathcal{A} = B(H)$, where H is a Hilbert space and let P be an orthogonal projection on H. Set

$$\begin{split} F(T_1, T_2, ...) &= (PT_1, (I - P)T_1, PT_2, (I - P)T_2, ...), \\ D(S_1, S_2, ...) &= (PS_1 + (I - P)S_2, PS_3 + (I - P)S_4, ...), \\ \text{then by similar arguments } F \in \mathcal{M}\Phi_+(H_{\mathcal{A}}), D \in \mathcal{M}\Phi_-(H_{\mathcal{A}}). \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

In general, suppose that $\{p_j^i\}_{j,i\in\mathbb{N}}$ is a family of projections in \mathcal{A} s.t. $p_{j_1}^i p_{j_2}^i = 0$ for all i, whenever $j_1 \neq j_2$ and $\sum_{j=1}^k p_j^i = 1$ for some $k \in \mathbb{N}$. Set

$$F'(\alpha_1, ..., \alpha_n, ...) = (p_1^1 \alpha_1, p_2^1 \alpha_1, ... p_k^1 \alpha_1, p_2^1 \alpha_2, p_2^2 \alpha_2, ... p_k^2 \alpha_2, ...),$$

$$D'(\beta_1,...,\beta_n,...) = (\sum_{i=1}^k p_i^1 \beta_i, \sum_{i=1}^k p_i^2 \beta_{i+k},...).$$

Then $F' \in \mathcal{M}\Phi_+(\mathcal{H}_{\mathcal{A}}), D' \in \mathcal{M}\Phi_-(\mathcal{H}_{\mathcal{A}}).$

Recalling now that a composition of two $\mathcal{M}\Phi_+$ operators is again an $\mathcal{M}\Phi_+$ operator and that the same is true for $\mathcal{M}\Phi_-$ operators, we may take suitable comprositions of operators from these examples in order to construct more $\mathcal{M}\Phi_\pm$ operators.

Even more $\mathcal{M}\Phi_{\pm}$ operators can be obtained by composing these operators with isomorphisms of $H_{\mathcal{A}}$. We will present here also some isomorphisms of $H_{\mathcal{A}}$.

Let $j : \mathbb{N} \to \mathbb{N}$ be a bijection. Then the operator U given by $U(e_k) = e_{j(k)}$ for all k is an isomorphism of H_A . This is a classical well known example of an isomorphism.

Example

Let $(\alpha_1, ..., \alpha_n, ...) \in \mathcal{A}^{\mathbb{N}}$ be a sequence of invertible elements in \mathcal{A} s.t. $\| \alpha_k \| \leq M$ for all $k \in \mathbb{N}$ and some M > 0. If the operator V is given by $V(e_k) = e_k \cdot \alpha_k$ for all k, then V is an isomorphism of $\mathcal{H}_{\mathcal{A}}$. Moreover, if $(\alpha_1, \cdots, \alpha_n, \cdots)$ is the sequence from above, we may let \tilde{V} be the operator on $\mathcal{H}_{\mathcal{A}}$ given by $\tilde{V}(x_1, \cdots, x_n) = (\alpha_1 x_1, \cdots, \alpha_n x_n, \cdots)$. Then \tilde{V} is also an isomorphism of $\mathcal{H}_{\mathcal{A}}$.

Thank you for attention!

Stefan Ivković

stefan.iv10@outlook.com

The Mathematical Institute of the Serbian Academy of Sciences and Arts

(ロ)、(型)、(E)、(E)、 E) の(()

- [AH] T. Aghasizadeh, S. Hejazian, *Maps preserving semi-Fredholm operators on Hilbert C*-modules*, J. Math. Anal. Appl. **354**(2009), 625-629.
- [BS] M. Berkani and M. Sarih, On semi B-Fredholm operators, Glasgow Mathematical Journal, Volume 43, Issue 3. May 2001, pp. 457-465, DOI: https://doi.org/10.1017/S0017089501030075
- [BM] M. Berkani, Index of B-Fredholm Operators and Generalization of a Weyl Theorem, Proceedings of the American Mathematical Society, Volume 130, Number 6, Pages 1717-1723, S 0002-9939(01)06291-8, Article electronically published on October 17, 2001
- [BId] Richard Bouldin, The product of operators with closed range, Thoku Math. Journ. 25 (1973), 359-363.
- [DDJ] Dragan S. Djordjević, Perturbations of spectra of operator matrices, J. Operator Theory 48(2002), 467-486.
- [DDj2] Dragan S.Djordjević, On generalized Weyl operators, Proceedings of the American Mathematical Society, Volume 130, Number 1, Pages 81 II4, s 0002-9939(01)0608r-6, April 26,2001

- [FM] M. Frank and and E. V. Troitsky, Lefschetz numbers and geometry of oerators in W*-modules, Funktsional Anal. i Priloshen. 30 (1996), no. 4 45-57
- [MFT] M. Frank , Manuilov V., Troitsky E. A reflexivity criterion for Hilbert C*-modules over commutative C*-algebras New York Journal of Mathematics 16 (2010), 399"408.
- [F] E. I. Fredholm, Sur une classe d'equations fontionnelles, Acta Math. 27 (1903), 365–390.
- [HLL] J.H. Han, H.Y. Lee, W.Y. Lee, Invertible completions of 2 × 2 upper triangular operator matrices, Proc. Amer.Math. Soc. 128 (2000), 119-123.
- [H] R.E. Harte, *The ghost of an index theorem*, Proceedings of the American Mathematical Society **106** (1989). 1031-1033. MR 92j:47029
- [HA] S. Hejazian, T. Aghasizadeh, *Equivalence classes of linear mappings on B(M)*, Bull. Malays. Math. Sci. Soc. (2) 3(2012), no. 3, 627-632.

- [HG] G. Hong , F. Gao, Moore-Penrose Inverses of Operators in Hilbert C*-modules , International Journal of Mathematical Analysis Vol. 11, 2017, no. 8, 389 - 396
- [IM] Anwar A. Irmatov and Alexandr S. Mishchenko, On Compact and Fredholm Operators over C*-algebras and a New Topology in the Space of Compact Operators, J. K-Theory 2 (2008), 329-351, doi:10.1017/is008004001jkt034
- [IS1] S. Ivkovic, Semi-Fredholm theory on Hilbert C*-modules, Banach Journal of Mathematical Analysis, Vol.13 no. 4 2019, 989-1016 doi:10.1215/17358787-2019-0022. https://projecteuclid.org/euclid.bjma/1570608171
- [IS3] S. Ivkovic, On operators with closed range and semi-Fredholm operators over W*-algebras, *Russ. J. Math. Phys.* 27, 48–60 (2020) http://link.springer.com/article/10.1134/S1061920820010057
- [IS4] S. Ivkovic, On compressions and generalized spectra of operators over C*-algebra, Annals of Functional Analysis 2020, https://doi.org/10.1007/s43034-019-00034-z

- [IS5] S. Ivkovic, On various generalizations of semi-A-Fredholm operators, *Complex Anal. Oper. Theory* 14, 41 (2020). https://doi.org/10.1007/s11785-020-00995-3
- [IS6] S. Ivkovic, On upper triangular operator 2 by 2 matrices over C*-algebras (to appear in Filomat, 2020), https://arxiv.org/abs/1906.05359
- [IS7] S. Ivkovic, On semi-Weyl and semi-B-Fredholm operators over C*-algebras https://arxiv.org/abs/2002.04905
- [JC]Conway, John B., A Course in Functional Analysis ,Graduate Texts in Mathematics, ISBN 978-1-4757-4383-8
- [JS] P. Sam Johnson, Multiplication Operators with Closed Range in Operator Algebras, Journal of Analysis and Number Theory, No. 1, 1-5 (2013)
- [KY] Kung Wei Yang, The generalized Fredholm operators, Transactions of the American Mathematical Society Vol. 216 (Feb., 1976), pp. 313-326

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

[LAN] E.C. Lance , On nuclear C*-algebras, J. Func. Anal. 12 (1973),157-176

- [LAY] D.Lay, Spectral analysis using ascent, descent, nullity and defect, Math. Ann. 184(1970), 197-214.
- [L]Z. Lazović, Compact and "compact" operators on standard Hilbert modules over C*-algebras, Adv. Oper. Theory 3 (2018), no. 4, 829–836.
- [LIN] H. Lin, *Injective Hilbert C*-modules*, Pacific J. Math. **154** (1992), 133-164
- [LS] A. Lebow and M. Schechter, *Semigroups of operators and measures of non-compactness*, J. Funct. Anal. **7**(1971), 1-26.
- [MT] V. M. Manuilov, E. V. Troitsky, *Hilbert C*-modules*, In: Translations of Mathematical Monographs. 226, American Mathematical Society, Providence, RI, 2005.
- [MV] D. Miličić and K. Veselić, 0n the boundary of essential spectra, Glasnik Mat. tom 6 (26) No 1 (1971). 73â€"788
- [M] A. S. Mishchenko, Banach algebras, pseudodifferential operators and their applications to K theory, Uspekhi Mat. Nauk, no. 6, 67-79, English transl., Russian Math. Surveys 34 (1979), no. 6, 77–91.

- [MF] A. S. Mishchenko, A.T. Fomenko, *The index of eliptic operators over C*-algebras*, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 831–859; English transl., Math. USSR-Izv.15 (1980) 87–112.
- [MSFC] M. S. Moslehian, K. Sharifi, M. Forough and M. Chakoshi, Moore-Penrose inverses of Gram operator on Hilbert C*-modules, Studia Mathematica, 210 (2012), 189-196.
- [N] Gyokai Nikaido , Remarks on the Lower Bound of a linear Operator, Proc. Japan Acad. Ser. A Math. Sci., Volume 56, Number 7 (1980), 321-323.
- [P] W. L. Paschke, Inner product modules over B*-algebras, Trans. Amer. Math. Soc. 182 (1973), 443–468.
- [PO] A. Pokrzywa, A characterizations of the Weyl spectum, Proc. Am. math. Soc. 92. 215-218.
- S] M. O. Searcoid, *The continuity of the semi-Fredholm index*, IMS Bulletin **29** (1992), 13–18.
- [S2] M. Schechter, Quantities related to strictly singular operators, Indiana Univ. Math. J., vol 21, No 11 (1972), 1061–1071.

- SC] M. Schechter, *Quantities related to strictly singular operators*, Indiana Univ. Math. J., vol. **21**, No 11(1972), 1061-1071.
- [SE] M. O. Searooid, The continuity of the semi-Fredholm index, IMS Bulletin 29(1992), 13-18.
- [SH3] K. Sharifi, The product of operators with closed range in Hilbert C*-modules, Linear Algebra App. 435 (2011), no. 5, 1122–1130
- [T]E. V. Troitsky, Orthogonal complements and endomorphisms of Hilbert modules and C*-elliptic complexes, Novikov Conjectures, Index Theorems and Rigidity, Vol 2 (S.C. Ferry, A. Ranicki, and J. Rosenberg. Eds.), London Math. Soc. Lecture Note Ser., vol. 227, Cambridge Univ. Press, (1995), pp. 309–331.
- [W] N. E. Wegge –Olsen, *K-theory and C*-algebras*, Oxford Univ. Press, Oxford, 1993.
- [ZE] J. Zemanek, Compressions and the Weyl-Browder spectra, Proc. Roy. Irish Acad. Sec. A 86 (1986), 57-62.
- [ZZDH] S. Č. Živković-Zlatanović, D. S. Djordjević, R. E. Harte, Left-right Browder and left-right Fredholm operators, Integral Equations Operator Theory 69 (2011), 347–363.

- [ZZRD] S. Živković Zlatanović, V. Rakočević, D.S. Đorđević, Fredholm theory, University of Niš Faculty of Sciences and Mathematics, Niš, to appear (2019).
- [BMbook] F. Bayart and É. Matheron, Dynamics of Linear Operators, Cambridge Tracts in Math. 179, Cambridge University Press, Cambridge, 2009.
- [BG99] L. Bernal-González, On hypercyclic operators on Banach spaces, Proc. Amer. Math. Soc. 127 (1999) 1003-1010.
- [ChaChe] S-J. Chang and C-C. Chen, Topological mixing for cosine operator functions generated by shifts, Topol. Appl. 160 (2013) 382-386.
- [Chen11] C-C. Chen, *Chaotic weighted translations on groups*, Arch. Math. 97 (2011) 61-68.
- [Chen141] C-C. Chen, Chaos for cosine operator functions generated by shifts, Int. J. Bifurcat. Chaos 24 (2014) Article ID 1450108, 7 pages.

[Chen15] C-C. Chen, Topological transitivity for cosine operator functions on groups, Topol. Appl. 191[] (2015) 48-57.

- [Ccot] C-C. Chen, K-Y. Chen, S. Öztop and S.M. Tabatabaie, *Chaotic translations on weighted Orlicz spaces*, Ann. Polon. Math. **122** (2019) 129-142.
- [Cc11] C-C. Chen and C-H. Chu, Hypercyclic weighted translations on groups, Proc. Amer. Math. Soc. 139 (2011) 2839-2846.
- [Cd18] C-C. Chen and W-S. Du, Some characterizations of disjoint topological transitivity on Orlicz spaces, J. Inequalities and Applications 2018 2018:88.
- [Chta2] C-C. Chen and S.M. Tabatabaie, Chaotic operators on hypergroups, Oper. Matrices, 12(1) (2018) 143-156.
- [Chta3] C-C. Chen and S.M. Tabatabaie, Chaotic and hypercyclic operators on solid Banach function spaces, Probl. Anal. Issues Anal., to appear.
- [Conw] J.B. Conway, A Course in Functional Analysis, Springer-Verlag, New York, 1985.
- **[**Ge00] K-G. Grosse-Erdmann, *Hypercyclic and chaotic weighted shifts*, Studia Math. **139** (2000) 47-68.

- Gpbook] K-G. Grosse-Erdmann and A. Peris, Linear Chaos, Universitext, Springer, 2011.
- [Kalmes10] T. Kalmes, Hypercyclicity and mixing for cosine operator functions generated by second order partial differential operators, J. Math. Anal. Appl. 365 (2010) 363-375.
- - [Kostic] M. Kostić, *Hypercyclic and chaotic integrated C-cosine functions*, Filomat **26** (2012) 1-44.
- [Sha] S-Y. Shaw, Growth order and stability of semigroups and cosine operator functions, J. Math. Anal. Appl. 357 (2009) 340-348.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00