On operators on Hilbert C^{*}-modules

Stefan Ivkovic

The Mathematical Institute of the Serbian Academy of Sciences and Arts

December 5, 2020

Introduction

In this presentation we let \mathcal{A} be a unital C^{*}-algebra, $H_{\mathcal{A}}$ be the standard module over \mathcal{A} (this is $H_{\mathcal{A}}=I_{2}(\mathcal{A})$) and $B^{a}\left(H_{\mathcal{A}}\right)$ be the set of all \mathcal{A}-linear, bounded adjointable operators on $H_{\mathcal{A}}$.
We wish to solve the equations of the form $F x=y$, where $F \in B^{a}\left(H_{\mathcal{A}}\right)$ and $x, y \in H_{\mathcal{A}}$. Even if F is not invertible, we can still handle this equation if F is regular i.e. if F admits generalized inverse. This happens if ImF is closed and in this case F has the matrix $\left[\begin{array}{cc}F_{1} & 0 \\ 0 & 0\end{array}\right]$, w.r.t. the decomposition

$$
H_{\mathcal{A}}=\operatorname{ker} F^{\perp} \oplus \operatorname{ker} F \xrightarrow{F} I m F \oplus I m F^{\perp}=H_{\mathcal{A}},
$$

where F_{1} is an isomorphism and the generalized inverse of F has the matrix $\left[\begin{array}{ll}F_{1}^{-1} & 0 \\ 0 & 0\end{array}\right]$ w.r.t. the decomposition

$$
H_{\mathcal{A}}=I m F \oplus I m F^{\perp} \longrightarrow \operatorname{ker} F^{\perp} \oplus \operatorname{ker} F=H_{\mathcal{A}} .
$$

If in addition $I m F^{\perp}$ is finitely generated, then it is easy to check whether the equation $F x=y$ has a solution. On the other hand, if F is regular and in addition $\operatorname{ker} F$ is finitely generated, then we have an explicit formula for the solutions of the equation $F x=y$ in the case when the solution exists. This motivates to study the following classes of operators on H_{A}.

Semi- \mathcal{A}-Fredholm operators on $H_{\mathcal{A}}$

Inspired by definition of \mathcal{A}-Fredholm operator given in [MF], we give now the following definition.

Definition

Let $F \in B^{a}\left(H_{\mathcal{A}}\right)$. We say that F is an upper semi- \mathcal{A}-Fredholm operator if there exists a decomposition

$$
H_{\mathcal{A}}=M_{1} \tilde{\oplus} N_{1} \xrightarrow{F} M_{2} \tilde{\oplus} N_{2}=H_{\mathcal{A}}
$$

with respect to which F has the matrix

$$
\left[\begin{array}{ll}
F_{1} & 0 \\
0 & F_{4}
\end{array}\right]
$$

where F_{1} is an isomorphism $M_{1}, M_{2}, N_{1}, N_{2}$ are closed submodules of $H_{\mathcal{A}}$ and N_{1} is finitely generated. Similarly, we say that F is a lower semi- \mathcal{A}-Fredholm operator if all the above conditions hold except that in this case we assume that N_{2} (and not N_{1}) is finitely generated.

Set

$$
\begin{aligned}
& \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right)=\left\{F \in B^{a}\left(H_{\mathcal{A}}\right) \mid F \text { is upper semi- } \mathcal{A} \text {-Fredholm }\right\}, \\
& \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right)=\left\{F \in B^{a}\left(H_{\mathcal{A}}\right) \mid F \text { is lower semi- } \mathcal{A} \text {-Fredholm }\right\},
\end{aligned}
$$

$\mathcal{M} \Phi\left(H_{\mathcal{A}}\right)=\left\{F \in B^{a}\left(H_{\mathcal{A}}\right) \mid F\right.$ is \mathcal{A}-Fredholm operator on $\left.H_{\mathcal{A}}\right\}$. Then obviously $\mathcal{M} \Phi\left(H_{\mathcal{A}}\right) \subseteq \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right) \cap \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right)$. We are going to show later in this section that actually "=" holds.
Notice that if M, N are two arbitrary Hilbert modules C^{*}-modules, the definition above could be generalized to the classes $\mathcal{M} \Phi_{+}(M, N)$ and $\mathcal{M} \Phi_{-}(M, N)$.

We let now $K^{*}\left(H_{\mathcal{A}}\right)$ denote the closed, two sided ideal of adjointable compact operators in $B^{a}\left(H_{\mathcal{A}}\right)$, see [MT].
Theorem
Let $F \in B^{a}\left(H_{\mathcal{A}}\right)$. The following statements are equivalent

1) $F \in \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right)$
2) There exists $D \in B^{a}\left(H_{\mathcal{A}}\right)$ such that $D F=I+K$ for some $K \in K^{*}\left(H_{\mathcal{A}}\right)$

Theorem
Let $D \in B^{a}\left(H_{\mathcal{A}}\right)$. Then the following statements are equivalent:

1) $D \in \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right)$
2) There exist $F \in B^{a}\left(H_{\mathcal{A}}\right), K \in K^{*}\left(H_{\mathcal{A}}\right)$ s.t. $D F=I+K$

Corollary
$\mathcal{M} \Phi\left(H_{\mathcal{A}}\right)=\mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right) \cap \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right)$
Corollary
$\mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right)$ and $\mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right)$ are semigroups under multiplication.
Corollary
Let $F \in B^{a}(M, N)$. Then $F \in \mathcal{M} \Phi_{+}(M, N)$ if and only if $F^{*} \in \mathcal{M} \Phi_{-}(N, M)$. Moreover, if $F \in \mathcal{M} \Phi\left(H_{\mathcal{A}}\right)$, then $F^{*} \in \mathcal{M} \Phi\left(H_{\mathcal{A}}\right)$ and index $F=-$ index F^{*}.

Lemma

Let M be a closed submodule of $H_{\mathcal{A}}$ s.t. $H_{\mathcal{A}}=M \tilde{\oplus} N$ for some finitely generated submodule N. Let $F \in B^{a}\left(H_{\mathcal{A}}\right)$, J_{M} be the inclusion map from M into $H_{\mathcal{A}}$ and suppose that $F J_{M} \in \mathcal{M} \Phi_{+}\left(M, H_{\mathcal{A}}\right)$. Then $F \in \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right)$.

Lemma
Suppose that $D, F \in B^{a}\left(H_{\mathcal{A}}\right) D F \in \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right)$ and $\operatorname{Im} F$ is closed. Then $D J_{\mathrm{Im} F} \in \mathcal{M} \Phi_{+}\left(\operatorname{Im} F, H_{\mathcal{A}}\right)$.

Lemma

Let $F \in \mathcal{M} \Phi\left(H_{\mathcal{A}}\right)$ and suppose that there are two decompositions

$$
\begin{aligned}
& H_{\mathcal{A}}=M_{1} \tilde{\oplus} N_{1} \xrightarrow{F} M_{2} \tilde{\oplus} N_{2}=H_{\mathcal{A}} \\
& H_{\mathcal{A}}=M_{1}^{\prime} \tilde{\oplus} N_{1}^{\prime} \xrightarrow{F} M_{2}^{\prime} \tilde{\oplus} N_{2}^{\prime}=H_{\mathcal{A}}
\end{aligned}
$$

with respect to which F has matrices

$$
\left[\begin{array}{ll}
F_{1} & 0 \\
0 & F_{4}
\end{array}\right],\left[\begin{array}{ll}
F_{1}^{\prime} & 0 \\
0 & F_{4}^{\prime}
\end{array}\right]
$$

respectively, where $F_{1}, F_{1}{ }^{\prime}$ are isomorphisms, $N_{1}, N_{1}{ }^{\prime}, N_{2}$ are closed, finitely generated and $N_{2}{ }^{\prime}$ is just closed. Then $N_{2}{ }^{\prime}$ is finitely generated also.

Lemma

Let $F \in \mathcal{M} \Phi\left(H_{\mathcal{A}}\right)$ and let

$$
H_{\mathcal{A}}=M_{1} \tilde{\oplus} N_{1} \xrightarrow{F} M_{2} \tilde{\oplus} N_{2}=H_{\mathcal{A}}
$$

be a decomposition with respect to which F has the matrix

$$
\left[\begin{array}{ll}
F_{1} & 0 \\
0 & F_{4}
\end{array}\right]
$$

where F_{1} is an isomorphism, N_{2} is finitely generated and N_{1} is just closed. Then N_{1} is finitely generated.

Lemma

Let $F \in \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right)$ and suppose that $\operatorname{Im} F$ is closed. If

$$
\begin{aligned}
& H_{\mathcal{A}}=M_{1} \tilde{\oplus} N_{1} \xrightarrow{F} M_{2} \tilde{\oplus} N_{2}=H_{\mathcal{A}} \\
& H_{\mathcal{A}}=M_{1}^{\prime} \tilde{\oplus} N_{1}^{\prime} \xrightarrow{F} M_{2}^{\prime} \tilde{\oplus} N_{2}^{\prime}=H_{\mathcal{A}}
\end{aligned}
$$

are two $\mathcal{M} \Phi_{+}$decomposition for F then $F\left(N_{1}\right), F\left(N_{1}^{\prime}\right)$ are closed finitely generated projective modules and

$$
\left[N_{1}\right]-\left[F\left(N_{1}\right)\right]=\left[N_{1}^{\prime}\right]-\left[F\left(N_{1}^{\prime}\right)\right]
$$

in $K(A)$.

Lemma

Let $F \in \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right)$. Then there is no sequence of unit vectors $\left\{x_{n}\right\}$ in $H_{\mathcal{A}}$ such that $\varphi\left(x_{n}\right) \rightarrow 0$ in \mathcal{A} for all $\varphi \in H_{\mathcal{A}}^{\prime}$ and $\lim _{n \rightarrow \infty}\left\|F x_{n}\right\|=0$.

Generalized Schechter characterization of $\mathcal{M} \Phi_{+}$operators on $H_{\mathcal{A}}$

Lemma

Let $F \in B^{a}(M, N)$ Then $F \in \mathcal{M} \Phi_{+}(M, N)$ if and only if there exists a closed, orthogonally complementable submodule $M^{\prime} \subseteq M$ such that $F_{\left.\right|_{M^{\prime}}}$ is bounded below and $M^{\perp \perp}$ is finitely generated.

Lemma

Let $F \in B^{a}\left(H_{\mathcal{A}}\right) \backslash \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right)$. Then there exists a sequence $\left\{x_{k}\right\} \subseteq H_{\mathcal{A}}$ and an increasing sequence $\left\{n_{k}\right\} \subseteq \mathbb{N}$ s.t.

$$
x_{k} \in L_{n_{k}} \backslash L_{n_{k-1}} \text { for all } k \in \mathbb{N},\left\|x_{k}\right\| \leq 1 \text { for all } k \in \mathbb{N}
$$

and

$$
\left\|F x_{k}\right\| \leq 2^{1-2 k} \text { for all } k \in \mathbb{N} .
$$

Openness of the set of semi- \mathcal{A}-Fredholm operators on $H_{\mathcal{A}}$

Theorem

The sets $\mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right) \backslash \mathcal{M} \Phi\left(H_{\mathcal{A}}\right)$ and $\mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right) \backslash \mathcal{M} \Phi\left(H_{\mathcal{A}}\right)$ are open in $B^{a}\left(H_{\mathcal{A}}\right)$, where $B^{a}\left(H_{\mathcal{A}}\right)$ is equipped with the norm topology.

Corollary

If $F \in B^{a}\left(H_{\mathcal{A}}\right)$ belongs to the boundary of $\mathcal{M} \Phi\left(H_{\mathcal{A}}\right)$ in $B^{a}\left(H_{\mathcal{A}}\right)$ then
$F \notin \mathcal{M} \Phi_{ \pm}\left(H_{\mathcal{A}}\right)$.
Corollary
Let $f:[0,1] \rightarrow B^{a}\left(H_{\mathcal{A}}\right)$ be continuous and assume that $f([0,1]) \subseteq \mathcal{M} \Phi_{ \pm}\left(H_{\mathcal{A}}\right)$. Then the following statments hold:

1) If $f(0) \in \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right) \backslash \mathcal{M} \Phi\left(H_{\mathcal{A}}\right)$, then $f(1) \in \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right) \backslash \mathcal{M} \Phi\left(H_{\mathcal{A}}\right)$
2) If $f(0) \in \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right) \backslash \mathcal{M} \Phi\left(H_{\mathcal{A}}\right)$, then $f(1) \in \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right) \backslash \mathcal{M} \Phi\left(H_{\mathcal{A}}\right)$
3) If $f(0) \in \mathcal{M} \Phi\left(H_{\mathcal{A}}\right)$, then $f(1) \in \mathcal{M} \Phi\left(H_{\mathcal{A}}\right)$ and
$\operatorname{indexf}(0)=\operatorname{indexf}(1)$.

$$
\mathcal{M} \Phi_{+}^{-} \text {and } \mathcal{M} \Phi_{-}^{+} \text {operators on } H_{\mathcal{A}}
$$

Definition

Let $F \in \mathcal{M} \Phi\left(H_{\mathcal{A}}\right)$. We say that $F \in \tilde{\mathcal{M}} \Phi_{+}^{-}\left(H_{\mathcal{A}}\right)$ if there exists a decomposition

$$
H_{\mathcal{A}}=M_{1} \tilde{\oplus} N_{1} \xrightarrow{F} M_{2} \tilde{\oplus} N_{2}=H_{\mathcal{A}}
$$

with respect to which F has the matrix

$$
\left[\begin{array}{ll}
F_{1} & 0 \\
0 & F_{4}
\end{array}\right]
$$

where F_{1} is an isomorphism, N_{1}, N_{2} are closed, finitely generated and $N_{1} \preceq N_{2}$, that is N_{1} is isomorphic to a closed submodule of N_{2}. We define similarly the class $\tilde{\mathcal{M}} \Phi_{-}^{+}\left(H_{\mathcal{A}}\right)$, the only difference in this case is that $N_{2} \preceq N_{1}$. Then we set

$$
\mathcal{M} \Phi_{+}^{-}\left(H_{\mathcal{A}}\right)=\left(\tilde{\mathcal{M}} \Phi_{+}^{-}\left(H_{\mathcal{A}}\right)\right) \cup\left(\mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right) \backslash \mathcal{M} \Phi\left(H_{\mathcal{A}}\right)\right)
$$

and

$$
\mathcal{M} \Phi_{-}^{+}\left(H_{\mathcal{A}}\right)=\left(\tilde{\mathcal{M}} \Phi_{-}^{+}\left(H_{\mathcal{A}}\right)\right) \cup\left(\mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right) \backslash \mathcal{M} \Phi\left(H_{\mathcal{A}}\right)\right)
$$

Further, we define $\mathcal{M} \Phi_{0}\left(H_{\mathcal{A}}\right)$ to be the set of all $F \in \mathcal{M} \Phi\left(H_{\mathcal{A}}\right)$ for which there exists an $\mathcal{M} \Phi$-decomposition

$$
H_{\mathcal{A}}=M_{1} \tilde{\oplus} N_{1} \xrightarrow{F} M_{2} \tilde{\oplus} N_{2}=H_{\mathcal{A}},
$$

where $N_{1} \cong N_{2}$.
Lemma
Suppose that $K(\mathcal{A})$ satisfies "the cancellation property". If $F \in \tilde{\mathcal{M}} \Phi_{+}^{-}\left(H_{\mathcal{A}}\right)$, then for any decomposition

$$
H_{\mathcal{A}}=M_{1}^{\prime} \tilde{\oplus} N_{1}^{\prime} \xrightarrow{F} M_{2}^{\prime} \tilde{\oplus} N_{2}^{\prime}=H_{\mathcal{A}}
$$

with respect to which F has the matrix

$$
\left[\begin{array}{ll}
F_{1}^{\prime} & 0 \\
0 & F_{4}^{\prime}
\end{array}\right]
$$

where F_{1}^{\prime} is an isomorphism, $N_{1}^{\prime}, N_{2}^{\prime}$ are finitely generated, we have $N_{1}^{\prime} \preceq N_{2}^{\prime}$. Similarly $N_{1}^{\prime} \preceq N_{2}^{\prime}$ if $F \in \tilde{\mathcal{M}} \Phi_{-}^{+}\left(H_{\mathcal{A}}\right)$.

Proposition

Let $K \in K^{*}\left(H_{\mathcal{A}}\right)$ and $T \in B^{a}\left(H_{\mathcal{A}}\right)$. Suppose that T is invertible and that $K(\mathcal{A})$ satisfies the cancellation property. Then the equation $(T+K) x=y$ has a solution for every $y \in H_{\mathcal{A}}$ if and only if $T+K$ is bounded below. In this case the solution of the equation above is unique.
Lemma
$\tilde{\mathcal{M}} \Phi_{+}^{-}\left(H_{\mathcal{A}}\right)$ and $\tilde{\mathcal{M}} \Phi_{-}^{+}\left(H_{\mathcal{A}}\right)$ are semigroups under multiplication.
Lemma
$\mathcal{M} \Phi_{+}^{-}\left(H_{\mathcal{A}}\right)$ and $\mathcal{M} \Phi_{-}^{+}\left(H_{\mathcal{A}}\right)$ are semigroups under multiplication.
Lemma
$\tilde{\mathcal{M}} \Phi_{+}^{-}\left(H_{\mathcal{A}}\right)$ and $\tilde{\mathcal{M}} \Phi_{-}^{+}\left(H_{\mathcal{A}}\right)$ are open.

Definition

Let $F \in \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right)$. We say that $F \in \mathcal{M} \Phi_{+}^{-1}\left(H_{\mathcal{A}}\right)$ if there exists a decomposition

$$
H_{\mathcal{A}}=M_{1} \tilde{\oplus} N_{1} \xrightarrow{F} M_{2} \tilde{\oplus} N_{2}=H_{\mathcal{A}}
$$

with respect to which

$$
F=\left[\begin{array}{ll}
F_{1} & 0 \\
0 & F_{4}
\end{array}\right],
$$

where F_{1} is an isomorphism, N_{1} is closed, finitely generated and $N_{1} \preceq N_{2}$. Similarly, we define the class $\mathcal{M} \Phi_{-}^{+}\left(H_{\mathcal{A}}\right)$, only in this case $F \in \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right), N_{2}$ is finitely generated and $N_{2} \preceq N_{1}$.
Proposition

$$
\tilde{\mathcal{M}} \Phi_{+}^{-}\left(H_{\mathcal{A}}\right)=\mathcal{M} \Phi_{+}^{-1}\left(H_{\mathcal{A}}\right) \cap \mathcal{M} \Phi\left(H_{\mathcal{A}}\right), \tilde{\mathcal{M}} \Phi_{-}^{+}\left(H_{\mathcal{A}}\right)=\mathcal{M} \Phi_{-}^{+{ }^{\prime}}\left(H_{\mathcal{A}}\right) \cap \mathcal{M} \Phi\left(H_{\mathcal{A}}\right) .
$$

Lemma

The sets $\mathcal{M} \Phi_{-}^{+\prime}\left(H_{\mathcal{A}}\right)$ and $\mathcal{M} \Phi_{+}^{-\prime}\left(H_{\mathcal{A}}\right)$ are open. Moreover, if
$F \in \mathcal{M} \Phi_{+}^{-1}\left(H_{\mathcal{A}}\right)$ and $K \in K^{*}\left(H_{\mathcal{A}}\right)$, then

$$
(F+K) \in \mathcal{M} \Phi_{+}^{-\prime}\left(H_{\mathcal{A}}\right)
$$

If $F \in \mathcal{M} \Phi_{-}^{+}\left(H_{\mathcal{A}}\right)$ and $K \in K^{*}\left(H_{\mathcal{A}}\right)$, then

$$
(F+K) \in \mathcal{M} \Phi_{-}^{+{ }^{\prime}}\left(H_{\mathcal{A}}\right)
$$

Lemma
The sets $\mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right) \backslash \mathcal{M} \Phi_{+}^{-\prime}\left(H_{\mathcal{A}}\right), \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right) \backslash \mathcal{M} \Phi_{-}^{+\prime}\left(H_{\mathcal{A}}\right)$ and $\mathcal{M} \Phi\left(H_{\mathcal{A}}\right) \backslash \mathcal{M} \Phi_{0}\left(H_{\mathcal{A}}\right)$ are open.

Theorem

Let $F \in B^{a}\left(H_{\mathcal{A}}\right)$. The following statements are equivalent

1) $F \in \mathcal{M} \Phi_{+}^{-1}\left(H_{\mathcal{A}}\right)$
2) There exist $D \in B^{a}\left(H_{\mathcal{A}}\right), K \in K^{*}\left(H_{\mathcal{A}}\right)$ such that D is bounded below and $F=D+K$

Proposition

1) $F \in \mathcal{M} \Phi_{+}^{+^{\prime}}\left(H_{\mathcal{A}}\right) \Leftrightarrow F^{*} \in \mathcal{M} \Phi_{-}^{+^{\prime}}\left(H_{\mathcal{A}}\right)$
2) $F \in \tilde{\mathcal{M}} \Phi_{+}^{-}\left(H_{\mathcal{A}}\right) \Leftrightarrow F^{*} \in \tilde{\mathcal{M}} \Phi_{-}^{+}\left(H_{\mathcal{A}}\right)$
3) $F \in \mathcal{M} \Phi_{+}^{-}\left(H_{\mathcal{A}}\right) \Leftrightarrow F^{*} \in \mathcal{M} \Phi_{-}^{+}\left(H_{\mathcal{A}}\right)$

Definition
We set $M^{a}\left(H_{\mathcal{A}}\right)=\left\{F \in B^{a}\left(H_{\mathcal{A}}\right) \mid F\right.$ is bounded below $\}$ and $Q^{a}\left(H_{\mathcal{A}}\right)=\left\{D \in B^{a}\left(H_{\mathcal{A}}\right) \mid D\right.$ is surjective $\}$.

Lemma

Let $B^{a}\left(H_{\mathcal{A}}\right)$. Then $F \in M^{a}\left(H_{\mathcal{A}}\right)$ if and only if $F^{*} \in Q^{a}\left(H_{\mathcal{A}}\right)$.
Corollary
Let $D \in B^{a}\left(H_{\mathcal{A}}\right)$. The following statements are equivalent:

1) $D \in \mathcal{M} \Phi_{-}^{+}\left(H_{\mathcal{A}}\right)$
2) There exist $Q \in Q^{a}\left(H_{\mathcal{A}}\right), K \in K^{*}\left(H_{\mathcal{A}}\right)$ s.t. $D=Q+K$.

Theorem
Let $B^{a}\left(H_{\mathcal{A}}\right)$. Then the following statements are equivalent:

1) $F \in \mathcal{M} \Phi_{0}\left(H_{\mathcal{A}}\right)$
2) There exist an invertible $D \in B^{a}\left(H_{\mathcal{A}}\right)$ and $K \in K^{*}\left(H_{\mathcal{A}}\right)$ such that
$F=D+K$.

On non-adjointable semi-Fredholm operators over a C^{*}-algebra

Non adjointable semi- \mathcal{A}-Fredholm operators on $H_{\mathcal{A}}$

Definition

Let $F \in B\left(H_{\mathcal{A}}\right)$, where $B\left(H_{\mathcal{A}}\right)$ is the set of all bounded, (not necessarily adjointable) \mathcal{A}-linear operators on $H_{\mathcal{A}}$. We say that F is an upper semi- \mathcal{A}-Fredholm operator if there exists a decomposition

$$
H_{\mathcal{A}}=M_{1} \tilde{\oplus} N_{1} \xrightarrow{F} M_{2} \tilde{\oplus} N_{2}=H_{\mathcal{A}}
$$

with respect to which F has the matrix

$$
\left[\begin{array}{ll}
F_{1} & 0 \\
0 & F_{4}
\end{array}\right]
$$

where F_{1} is an isomorphism $M_{1}, M_{2}, N_{1}, N_{2}$ are closed submodules of $H_{\mathcal{A}}$ and N_{1} is finitely generated. Similarly, we say that F is a lower semi- \mathcal{A}-Fredholm operator if all the above conditions hold except that in this case we assume that N_{2} (and not N_{1}) is finitely generated.

Set

$$
\begin{aligned}
& \widehat{\mathcal{M} \Phi}\left(H_{\mathcal{A}}\right)=\left\{F \in B\left(H_{\mathcal{A}}\right) \mid F \text { is upper semi- } \mathcal{A} \text {-Fredholm }\right\} \\
& {\widehat{\mathcal{M} \Phi} \Phi_{r}\left(H_{\mathcal{A}}\right)}=\left\{F \in B\left(H_{\mathcal{A}}\right) \mid F \text { is lower semi- } \mathcal{A} \text {-Fredholm }\right\}
\end{aligned}
$$

$\widehat{\mathcal{M} \Phi}\left(H_{\mathcal{A}}\right)=\left\{F \in B\left(H_{\mathcal{A}}\right) \mid F\right.$ is \mathcal{A}-Fredholm operator on $\left.H_{\mathcal{A}}\right\}$.
Then, by definition we have

$$
\begin{aligned}
& \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right)=\widehat{\mathcal{M} \Phi_{l}\left(H_{\mathcal{A}}\right) \cap B^{a}\left(H_{\mathcal{A}}\right),} \\
& \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right)=\widehat{\mathcal{M} \Phi_{r}\left(H_{\mathcal{A}}\right) \cap B^{a}\left(H_{\mathcal{A}}\right)}
\end{aligned}
$$

and

$$
\mathcal{M} \Phi\left(H_{\mathcal{A}}\right)=\widehat{\mathcal{M} \Phi}\left(H_{\mathcal{A}}\right) \cap B^{a}\left(H_{\mathcal{A}}\right)
$$

Definition

[IM] An \mathcal{A}-operator $K: H_{\mathcal{A}} \rightarrow H_{\mathcal{A}}$ is called a finitely generated \mathcal{A}-operator if it can be represented as a composition of bounded \mathcal{A}-operators f_{1} and f_{2} :

$$
K: H_{\mathcal{A}} \xrightarrow{f_{1}} M \xrightarrow{f_{2}} H_{\mathcal{A}},
$$

where M is a finitely generated Hilbert C^{*}-module. The set $F G(\mathcal{A}) \subset B\left(H_{\mathcal{A}}\right)$ of all finitely generated \mathcal{A}-operators forms a two sided ideal. By definition, an \mathcal{A}-operator K is called compact if it belongs to the closure

$$
K\left(H_{\mathcal{A}}\right)=\overline{F G(\mathcal{A})} \subset B\left(H_{\mathcal{A}}\right),
$$

which also forms two sided ideal.

Clearly, any operator $F \in \widehat{\mathcal{M} \Phi_{/}}\left(H_{\mathcal{A}}\right)$ is also left invertible in $B\left(H_{\mathcal{A}}\right) / K\left(H_{\mathcal{A}}\right)$, whereas any operator $G \in \widehat{\mathcal{M} \Phi_{r}}\left(H_{\mathcal{A}}\right)$ is right invertible $B\left(H_{\mathcal{A}}\right) / K\left(H_{\mathcal{A}}\right)$. The converse also holds:

Proposition
If F is left invertible in $B\left(H_{\mathcal{A}}\right) / K\left(H_{\mathcal{A}}\right)$, then $F \in \widehat{\mathcal{M} \Phi_{/}}\left(H_{\mathcal{A}}\right)$. If F is right invertible in $B\left(H_{\mathcal{A}}\right) / K\left(H_{\mathcal{A}}\right)$, then $F \in \widehat{\mathcal{M} \Phi_{r}}\left(H_{\mathcal{A}}\right)$.
Corollary
The sets $\widehat{\mathcal{M} \Phi} /\left(H_{\mathcal{A}}\right)$ and $\widehat{\mathcal{M} \Phi_{r}}\left(H_{\mathcal{A}}\right)$ are closed under multiplication.

Inspired by definition of externel (Noether) decomposition given in [IM], we give the following definition.

Definition

We say that F has an upper external (Noether) decomposition if there exist two closed C^{*}-modules X_{1}, X_{2} and two bounded \mathcal{A}-operators E_{2}, E_{3}, where X_{2} finitely generated, the operator F_{0} given by the operator matrix $\left(\begin{array}{cc}F & E_{2} \\ E_{3} & 0\end{array}\right)$ with respect to the decomposition $H_{\mathcal{A}} \oplus X_{1} \xrightarrow{F_{0}} H_{\mathcal{A}} \oplus X_{2}$ is invertible and $\operatorname{Im} E_{2}$ is complementable in $H_{\mathcal{A}}$. Similarly, we say that F has a lower external (Noether) decomposition if the above decomposition exists and F_{0} is invertible, only in this case we assume that X_{1} is finitely generated and that ker E_{3} is complementable in $H_{\mathcal{A}}$.

Proposition

A bounded \mathcal{A}-linear operator $F: H_{\mathcal{A}} \longrightarrow H_{\mathcal{A}}$ belongs to $\widehat{\mathcal{M} \Phi_{l}}\left(H_{\mathcal{A}}\right)$ if and only if it admits an upper external (Noether) decomposition.
 external (Noether) decomposition.

Lemma

Let $F, G \in B\left(H_{\mathcal{A}}\right)$ and suppose that $G F \in \widehat{\mathcal{M} \Phi}\left(H_{\mathcal{A}}\right)$. Then there exist decompositions

$$
H_{\mathcal{A}}=M_{1} \oplus N_{1} \xrightarrow{F} H_{\mathcal{A}}=M_{3} \oplus N_{3} \xrightarrow{G} H_{\mathcal{A}}=M_{2} \oplus N_{2}
$$

with respect to which F, G have matrices $\left(\begin{array}{cc}F_{1} & 0 \\ 0 & F_{4}\end{array}\right),\left(\begin{array}{cc}G_{1} & G_{2} \\ 0 & G_{4}\end{array}\right)$, respectively, where F_{1}, G_{1} are isomorphisms and N_{1}, N_{2} are finitely generated.

Lemma

Let V be a finitely generated Hilbert submodule of $H_{\mathcal{A}}, F \in B\left(H_{\mathcal{A}}\right)$ and suppose that $P_{V \perp} F \in \widehat{\mathcal{M} \Phi}\left(H_{\mathcal{A}}, V^{\perp}\right)$, where $P_{V \perp}$ denotes the orthogonal projection onto V^{\perp} along V. Then $F \in \widehat{\mathcal{M} \Phi_{r}}\left(H_{\mathcal{A}}\right)$.

Lemma

Let $G, F \in B\left(H_{\mathcal{A}}\right)$, suppose that $\operatorname{Im} G$ is closed. Assume in addition that ker G and $\operatorname{Im} G$ are complementable in $H_{\mathcal{A}}$. If $G F \in \widehat{\mathcal{M} \Phi_{r}\left(H_{\mathcal{A}}\right) \text {, then }}$

$$
\sqcap F \in{\widehat{\mathcal{M}} \Phi_{r}\left(H_{\mathcal{A}}, N\right), ~}_{\text {, }}
$$

where $\operatorname{ker} G \tilde{\oplus} N=H_{\mathcal{A}}$ and \sqcap denotes the projection onto N along $\operatorname{ker} G_{\underline{z}}$

Lemma

Let $F \in \widehat{\mathcal{M} \Phi}\left(H_{\mathcal{A}}\right)$ and suppose that

$$
H_{\mathcal{A}}=M_{1}^{\prime} \tilde{\oplus} N_{1}^{\prime} \xrightarrow{F} M_{2}^{\prime} \tilde{\oplus} N_{2}^{\prime}=H_{\mathcal{A}}
$$

is a decomposition with respect to which F has the matrix $\left[\begin{array}{ll}F_{1}^{\prime} & 0 \\ 0 & F_{4}^{\prime}\end{array}\right]$, where F_{1}^{\prime} is an isomorphism, N_{2}^{\prime} is finitely generated and N_{1}^{\prime} is just closed. Then N_{1}^{\prime} is finitely generated.

Lemma
Let $F \in B\left(H_{\mathcal{A}}\right)$. Then F admits an upper external (Noether) decomposition with the property that $X_{2} \preceq X_{1}$ if and only if $F \in \mathcal{M} \Phi_{+}^{-1}\left(H_{\mathcal{A}}\right)$. Similarly, F admits a lower external (Noether) decomposition with the property that $X_{1} \preceq X_{2}$ if and only if $F \in \mathcal{M} \Phi_{+}^{-1}\left(H_{\mathcal{A}}\right)$.

Recall now the definition of the closses $\mathcal{M} \Phi_{+}^{-^{\prime}}\left(H_{\mathcal{A}}\right)$ and $\mathcal{M} \Phi_{-}^{+\prime}\left(H_{\mathcal{A}}\right)$. We are going to keep this notion in the next results, but without assuming the adjointability of operators.
Lemma
Let $F \in \mathcal{M} \Phi_{-}^{+\prime}\left(H_{\mathcal{A}}\right)$. Then $F+K \in \mathcal{M} \Phi_{-}^{+\prime}\left(H_{\mathcal{A}}\right)$ for all $K \in K\left(H_{\mathcal{A}}\right)$.

Lemma

Let $F \in B\left(H_{\mathcal{A}}\right)$ and suppose that

$$
H_{\mathcal{A}}=M_{1} \tilde{\oplus} N_{1} \xrightarrow{F} M_{2} \tilde{\oplus} N_{2}=H_{\mathcal{A}}
$$

is a decomposition w.r.t. which F has the matrix $\left[\begin{array}{cc}F_{1} & 0 \\ 0 & F_{4}\end{array}\right]$, where F_{1} is an isomorphism. Then $N_{1}=F^{-1}\left(N_{2}\right)$.

Lemma
Let $F \in \mathcal{M} \Phi_{+}^{-\prime}\left(H_{\mathcal{A}}\right)$ and $K \in K\left(H_{\mathcal{A}}\right)$. Then $F+K \in \mathcal{M} \Phi_{+}^{-^{\prime}}\left(H_{\mathcal{A}}\right)$.

Semi-Fredholm operators over W^{*}-algebras

Proposition
Let $F \in \widehat{\mathcal{M} \Phi_{l}}\left(H_{\mathcal{A}}\right)$ or $F \in \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right)$. Then there exists a decomposition.

$$
H_{\mathcal{A}}=M_{0} \tilde{\oplus} M_{1}^{\prime} \tilde{\oplus} \operatorname{ker} F \xrightarrow{F} N_{0} \tilde{\oplus} N_{1}^{\prime} \tilde{\oplus} N_{1}^{\prime \prime}=H_{\mathcal{A}}
$$

w.r.t. which F has the matrix

$$
\left[\begin{array}{lll}
F_{0} & 0 & 0 \\
0 & F_{1} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

where F_{0} is an isomorphism, M_{1}^{\prime} and ker F are finitely generated. Moreover $M_{1}^{\prime} \cong N_{1}^{\prime}$ If $F \in \widehat{\mathcal{M} \Phi} /\left(H_{\mathcal{A}}\right)$ and ImF is closed, then ImF is complementable in $H_{\mathcal{A}}$.

In this case F has the matrix $\left[\begin{array}{cc}F_{1} & 0 \\ 0 & 0\end{array}\right]$, w.r.t. the decomposition

$$
H_{\mathcal{A}}=\operatorname{ker} F^{0} \tilde{\oplus} \operatorname{ker} F \xrightarrow{F} \operatorname{ImF} \tilde{\oplus} / m F^{0}=H_{\mathcal{A}}
$$

where F_{1} is an isomorphism and $\operatorname{ker} F^{0}, I m F^{0}$ denote the complements of ker F, ImF respectively.

Proposition
If $D \in \widehat{\mathcal{M} \Phi_{r}}\left(H_{\mathcal{A}}\right)$ and $I m D$ is closed and complementable in $H_{\mathcal{A}}$, then the decomposition given above exists for the operator D. In this case, instead of ker D, we have that $N_{1}^{\prime \prime}$ is finitely generated and $N_{1}^{\prime \prime}$ is the complement of ImD.

Lemma
If $F \in \widehat{\mathcal{M}} \Phi_{r}\left(H_{\mathcal{A}}\right) \backslash \widehat{\mathcal{M}} \Phi\left(H_{\mathcal{A}}\right)$, ImF is closed and complementable, then the complement of ImF is not finitely generated.

Theorem
Let $F \in B^{a}\left(H_{\mathcal{A}}\right)$. Then $F \in \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right)$ if and only if $\operatorname{ker}(F-K)$ is finitely generated for all $K \in K^{*}\left(H_{\mathcal{A}}\right)$.
Moreover, $F \in \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right)$ if and only if $\operatorname{Im}(F-K)^{\perp}$ is finitely generated for all $K \in K^{*}\left(H_{\mathcal{A}}\right)$.
Definition
Let $F \in B\left(H_{\mathcal{A}}\right)$. We say that $F \in \widehat{\mathcal{M} \Phi_{+}}\left(H_{\mathcal{A}}\right)$ if there exist a closed submodule M and a finitely generated submodule N s.t. $H_{\mathcal{A}}=M \tilde{\oplus} N$ and $F_{\mid M}$ is bounded below.

Lemma

Let $F \in B\left(H_{\mathcal{A}}\right)$. Then $F \in \widehat{\mathcal{M} \Phi_{+}}\left(H_{\mathcal{A}}\right)$ iff $\operatorname{ker}(F-K)$ is finitely generated for all $K \in K^{*}\left(H_{\mathcal{A}}\right)$.

Set $\widehat{\mathcal{M} \Phi}{ }_{-}\left(H_{\mathcal{A}}\right)=\left\{G \in B\left(H_{\mathcal{A}} \mid\right.\right.$ there exists closed submodules M, N, M^{\prime} of $H_{\mathcal{A}}$ s.t. $H_{\mathcal{A}}=M \tilde{\oplus} N, N$ is finitely generated and $G_{M^{\prime}}$, is an isomorphism onto $M\}$.

Proposition
Let $G \in \widehat{\mathcal{M} \Phi}{ }_{-}\left(H_{\mathcal{A}}\right)$. Then for every $K \in K\left(H_{\mathcal{A}}\right)$ there exists an inner product equivalent to the initial one and such that the orthogonal complement of $\overline{\operatorname{Im}(G+K)}$ w.r.t this new inner product is finitely generated.
Lemma
$\mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right)=\widehat{\mathcal{M} \Phi_{+}}\left(H_{\mathcal{A}}\right) \cap B^{a}\left(H_{\mathcal{A}}\right)$,
$\mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right)=\widehat{\mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right) \cap B^{a}\left(H_{\mathcal{A}}\right) ~}$

Proposition

Let $F, G \in \widehat{\mathcal{M} \Phi}\left(H_{\mathcal{A}}\right)$ with closed images and suppose that ImGF is closed. Then ImF, $\operatorname{Im} G$ and $\operatorname{Im} G F$ are complementable in $H_{\mathcal{A}}$. Moreover, if $\operatorname{Im} F^{0}, \operatorname{Im} G^{0}, \operatorname{Im} G F^{0}$ denote the complements of $\operatorname{ImF}, \operatorname{Im} G, \operatorname{Im} G F$, respectively, then

$$
\begin{aligned}
& \operatorname{Im} G F^{0} \preceq \operatorname{Im} F^{0} \oplus \operatorname{Im} G^{0}, \\
& \operatorname{ker} G F \preceq \operatorname{ker} G \oplus \operatorname{ker} F .
\end{aligned}
$$

If $F, G \in \widehat{\mathcal{M} \Phi}\left(H_{\mathcal{A}}\right)$ and $\operatorname{ImF}, \operatorname{Im} G, \operatorname{Im} G F$ are closed, then the statement above holds under additional assumption that ImF, ImG, ImGF are complementable in $H_{\mathcal{A}}$.
Lemma
Let $F, D \in B^{a}\left(H_{\mathcal{A}}\right)$ and suppose that $\operatorname{ImF}, \operatorname{ImD}$ and ImDF are closed.
Then

$$
\begin{gathered}
\operatorname{ImDF^{\perp }} \preceq \operatorname{Im} F^{\perp} \oplus \operatorname{Im} D^{\perp} \\
\operatorname{ker} D F \preceq \operatorname{ker} D \oplus \operatorname{ker} F
\end{gathered}
$$

Lemma

Let $F \in \mathcal{M} \Phi(M)$ be such that ImF is closed, where M is a Hilbert W^{*}-module. Then there exists an $\epsilon>0$ such that for every $D \in B^{a}(M)$ with $\|D\|<\epsilon$, we have

$$
\operatorname{ker}(F+D) \preceq \operatorname{ker} F, \operatorname{Im}(F+D)^{\perp} \preceq \operatorname{Im} F^{\perp}
$$

Definition

Let M be a countably generated Hilbert W^{*} - module. For $F \in \mathcal{M} \Phi(M)$, we say that F satisfies the condition $\left(^{*}\right)$ if the following holds:

1) $I m F^{n}$ is closed for all n
2) $F\left(\bigcap_{n=1}^{\infty} \operatorname{Im}\left(F^{n}\right)\right)=\bigcap_{n=1}^{\infty} \operatorname{Im}\left(F^{n}\right)$

Theorem

Let $F \in \mathcal{M} \Phi(\tilde{M})$ where \tilde{M} is countably generated Hilbert \mathcal{A}-module and suppose that F satisfies (${ }^{*}$). Then there exists an $\epsilon>0$ such that, if $\alpha \in Z(\mathcal{A}) \cap G(\mathcal{A})$ and $\|\alpha\|<\epsilon$, then $[\operatorname{ker}(F-\alpha I)]+\left[N_{1}\right]=[\operatorname{ker} F]$ and $\left[\operatorname{Im}(F-\alpha I)^{\perp}\right]+\left[N_{1}\right]=\left[I m(F)^{\perp}\right]$ for some fixed, finitely generated closed submodule N_{1}.

Theorem

Let \tilde{M} be a Hilbert module over a C^{*}-algebra $\mathcal{A}, \alpha \in \mathbb{C}$ and $F \in B^{a}\left(H_{\mathcal{A}}\right)$. Suppose that $\alpha \in$ iso $\sigma(F)$ and assume either that $R(F-\alpha l)$ is closed or that $R\left(P_{0}\right)$ is self dual and that \mathcal{A} is a W^{*}-algebra, where P_{0} denotes the spectral projection corresponding to α of the operator F. Then the following conditions are equivalent:
a) $(F-\alpha I) \in \mathcal{M} \Phi_{ \pm}(\tilde{M})$
b)There exist closed submodules $M, N \subseteq \tilde{M}$ such that. $(F-\alpha I)$ has the matrix

$$
\left[\begin{array}{ll}
(F-\alpha I)_{1} & 0 \\
0 & (F-\alpha I)_{4}
\end{array}\right]
$$

w.r.t. the decomposition $\tilde{M}=M \tilde{\oplus} N \xrightarrow{F-\alpha \prime} M \tilde{\oplus} N=\tilde{M}$, where $(F-\alpha I)_{1}$ is an isomorphism and N is finitely generated. Moreover, if $(F-\alpha I)$ is not invertible in $B(\tilde{M})$, then $N(F-\alpha I) \neq\{0\}$.

On generalized \mathcal{A}-Fredholm and \mathcal{A}-Weyl operators

Definition

Let $F \in B^{a}\left(H_{\mathcal{A}}\right)$.

1) We say that $F \in \mathcal{M} \Phi^{g c}\left(H_{\mathcal{A}}\right)$ if $\operatorname{Im} F$ is closed and in addition $\operatorname{ker} F$ and $I m F^{\perp}$ are self-dual.
2) We say that $F \in \mathcal{M} \Phi_{0}^{g c}\left(H_{\mathcal{A}}\right)$ if ImF is closed and ker $F \cong \operatorname{Im} F^{\perp}$ (here we do not require the self-duality of $k e r F, I m F^{\perp}$).

Proposition
Let $F, D \in \mathcal{M} \Phi_{0}^{g c}\left(H_{\mathcal{A}}\right)$ and suppose that $I m D F$ is closed. Then $D F \in \mathcal{M} \Phi_{0}^{g c}\left(H_{\mathcal{A}}\right)$.

Definition

Let M_{1}, \ldots, M_{n} be Hilbert submodules of $H_{\mathcal{A}}$. We say that the sequence $0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow \ldots \rightarrow M_{n} \rightarrow 0$ is exact if for each $k \in\{2, \ldots, n-1\}$ there exist closed submodules M_{k}^{\prime} and $M_{k}^{\prime \prime}$ such that the following holds:

1) $M_{k}=M_{k}^{\prime} \tilde{\oplus} M_{k}^{\prime \prime}$ for all $k \in\{2, \ldots, n-1\}$;
2) $M_{2}^{\prime} \cong M_{1}$ and $M_{n-1}^{\prime \prime} \cong M_{n}$;
3) $M_{k}^{\prime \prime} \cong M_{k+1}^{\prime}$ for all $k \in\{2, \ldots, n-2\}$.

Lemma
Let $F, D \in B^{a}\left(H_{\mathcal{A}}\right)$ and suppose that $\operatorname{ImF}, \operatorname{ImD}$, ImDF are closed. Then the sequence

$$
0 \rightarrow \operatorname{ker} F \rightarrow \operatorname{ker} D F \rightarrow \operatorname{ker} D \rightarrow I m F^{\perp} \rightarrow I m D F^{\perp} \rightarrow I m D^{\perp} \rightarrow 0
$$

is exact.
Lemma
Let $F, D \in \mathcal{M} \Phi^{g c}\left(H_{\mathcal{A}}\right)$ and suppose that ImDF is closed. Then $D F \in \mathcal{M} \Phi^{g c}\left(H_{\mathcal{A}}\right)$.

Lemma
Let $F \in B^{a}\left(H_{\mathcal{A}}\right)$. Then $F \in \mathcal{M} \Phi^{g c}\left(H_{\mathcal{A}}\right)$ if and only if $F^{*} \in \mathcal{M} \Phi^{g c}\left(H_{\mathcal{A}}\right)$.
Proposition
Let $F, D \in B^{a}\left(H_{\mathcal{A}}\right)$, suppose that $\operatorname{ImF}, I m D$ are closed and $D F \in \mathcal{M} \Phi^{g c}\left(H_{\mathcal{A}}\right)$. Then the following statements hold:
a) $D \in \mathcal{M} \Phi^{g c}\left(H_{\mathcal{A}}\right) \Leftrightarrow F \in \mathcal{M} \Phi^{g c}\left(H_{\mathcal{A}}\right)$;
b) if $\operatorname{ker} D$ is self-dual, then $F, D \in \mathcal{M} \Phi^{g c}\left(H_{\mathcal{A}}\right)$;
c) if $I m F^{\perp}$ is self-dual, then $F, D \in \mathcal{M} \Phi^{g c}\left(H_{\mathcal{A}}\right)$.

Lemma
Let $F \in B^{a}\left(H_{\mathcal{A}}\right)$ and suppose that ImF is closed. Moreover, assume that there exist operators $D, D^{\prime} \in B^{a}\left(H_{\mathcal{A}}\right)$ with closed images such that $D^{\prime} F, F D \in \mathcal{M} \Phi^{g c}\left(H_{\mathcal{A}}\right)$. Then $F \in \mathcal{M} \Phi^{g c}\left(H_{\mathcal{A}}\right)$.

Definition

Let X, Y be Banach spaces and $T \in B(X, Y)$. Then T is called a regular operator if $T(X)$ is closed in Y and in addition $T^{-1}(0)$ and $T(X)$ are complementable in X and Y, respectively.

Definition
[DDj2] Let X, Y be Banach spaces and $T \in B(X, Y)$. Then we say that T is generalized Weyl, if $T(X)$ is closed in Y, and $T^{-1}(0)$ and $Y / T(X)$ are mutually isomorphic Banach spaces.

Proposition
Let X, Y, Z be Banach spaces and let $T \in B(X, Y), S \in B(Y, Z)$.
Suppose that $T, S, S T$ are regular, that is $T(X), S(Y), S T(X)$ are closed and $T, S, S T$ admit generalized inverse. If T and S are generalized Weyl operators, then $S T$ is a generalized Weyl operator.

Definition

Let X, Y be Banach spaces and $T \in B(X, Y)$ be a regular operator. Then T is said to be a generalized upper semi-Weyl operator if ker $T \preceq Y \backslash R(T)$. Similarly T is said to be a generalized lower semi-Weyl operator if $Y \backslash R(T) \preceq \operatorname{ker} T$.

Lemma

Let $T \in B(X, Y) S \in B(Y, Z)$ and suppose that $S, T, S T$ are regular. If S and T are upper (or lower) generalized semi-Weyl operators, then ST is an upper (or respectively lower) generalized semi-Weyl operator.

Definition

For two Hilbert C^{*} - modules M and M^{\prime}, We set $\tilde{\mathcal{M}} \Phi_{0}^{g c}\left(M, M^{\prime}\right)$ to be the class of all closed range operators $F \in B^{a}\left(M, M^{\prime}\right)$ such that there exist finitely generated Hilbert submodules N, \tilde{N} with the property that $N \oplus \operatorname{ker} F \cong \tilde{N} \oplus I m F^{\perp}$.

Lemma

Let $T \in \tilde{\mathcal{M}} \Phi_{0}^{g c}\left(H_{\mathcal{A}}\right)$ and $F \in B^{a}\left(H_{\mathcal{A}}\right)$ s.t. ImF is closed, finitely generated. Suppose that $\operatorname{Im}(T+F), T(\operatorname{ker} F), P(\operatorname{ker} T), P(\operatorname{ker}(T+F))$ are closed, where P denotes the orthogonal projection onto $\operatorname{ker} F^{\perp}$. Then $T+F \in \tilde{\mathcal{M}} \Phi_{0}^{g c}\left(H_{\mathcal{A}}\right)$.

Corollary

Let $T \in \mathcal{M} \Phi_{0}^{g c}\left(H_{\mathcal{A}}\right)$ and suppose that ker $T \cong I m T^{\perp} \cong H_{\mathcal{A}}$. If
$F \in B^{a}\left(H_{\mathcal{A}}\right)$ satisfies the assumptions of Lemma 64, then
$\operatorname{ker}(T+F) \cong \operatorname{Im}(T+F)^{\perp} \cong H_{\mathcal{A}}$. In particular, $T+F \in \mathcal{M} \Phi_{0}^{g C}\left(H_{\mathcal{A}}\right)$.

Lemma

Let $F \in B^{a}(M)$ where M is a Hilbert C^{*}-module and suppose that ImF is closed. Then the following statements hold:
a) $F \in \mathcal{M} \Phi_{+}(M)$, if and only if ker F is finitely generated;
b) $F \in \mathcal{M} \Phi_{-}(M)$, if and only if $\operatorname{ImF}{ }^{\perp}$ is finitely generated.

Lemma

Let $T \in \mathcal{M} \Phi\left(H_{\mathcal{A}}\right)$ and suppose that $\operatorname{Im} T$ is closed. Then $T \in \tilde{\mathcal{M}} \Phi_{0}^{g c}\left(H_{\mathcal{A}}\right)$.

On semi- $\mathcal{A}-B$-Fredholm operators

Definition

Let $F \in B^{a}\left(H_{\mathcal{A}}\right)$. Then F is said to be an upper semi- \mathcal{A} - B-Fredhom operator if there exists some $n \in \mathbb{N}$ such that $\operatorname{lm} F^{m}$ is closed for all $m \geq n$ and $F_{l_{m F n}}$ is an upper semi- \mathcal{A}-Fredhom operator.

Similarly, F is said to be a lower semi- $\mathcal{A}-B$-Fredholm operator if the conditions above hold except that in this case we assume that $F_{l_{\text {ImF }}}$ is a lower semi- \mathcal{A}-Fredhom operator and not an upper semi- \mathcal{A}-Fredhom operator.

Proposition
If F is an upper semi- \mathcal{A} - B-Fredholm operator (respectively, a lower semi- \mathcal{A} - B-Fredholm operator) and $n \in \mathbb{N}$ is such that ImF^{m} is closed for all $m \geq n$ and $F_{\left.\right|_{I m F n}}$ is an upper semi- \mathcal{A}-Fredholm operator (respectively, a lower semi- \mathcal{A}-Fredholm operator), then $F_{l_{\text {ImFm }}}$ is an upper semi- \mathcal{A}-Fredholm operator (respectively, a lower semi- \mathcal{A}-Fredholm operator) for all $m \geq n$. Moreover, if F is an \mathcal{A} - B-Fredholm operator and $n \in \mathbb{N}$ is such that $I m F^{n} \cong H_{\mathcal{A}}, I m F^{m}$ is closed for all $m \geq n$ and $F_{\left.\right|_{I m F n}}$ is an \mathcal{A}-Fredholm operator, then $\operatorname{ImF} F^{m} \cong H_{\mathcal{A}} F_{\mid \text {ImFm }}$ is an \mathcal{A} Fredholm operator and index $F_{l_{\text {ImFm }}}=\operatorname{index} F_{l_{\text {ImFn }}}$ for all $m \geq n$.

Lemma

Let $F \in \mathcal{M} \Phi\left(H_{\mathcal{A}}\right)$, let $P \in B\left(H_{\mathcal{A}}\right)$ be a projection such that $N(P)$ is finitely generated. Then $P F_{\left.\right|_{R(P)}} \in \mathcal{M} \Phi(R(P))$ and index $P F_{\left.\right|_{R(P)}}=$ indexF.

Theorem

Let T be an \mathcal{A}-B-Fredholm operator on $H_{\mathcal{A}}$ and suppose that $m \in \mathbb{N}$ is such that $T_{l_{I m T m}}$ is an \mathcal{A}-Fredholm operator and $\operatorname{Im} T^{n}$ is closed for all $n \geq m$. Let F be in the linear span of elementary operators and suppose that $\operatorname{Im}(T+F)^{n}$ is closed for all $n \geq m$. Finally, assume that $\operatorname{Im} T^{m} \cong H_{\mathcal{A}}$ and that $\operatorname{Im}(\tilde{F}), T^{m}(\operatorname{ker} \tilde{F})$ are closed, where $\tilde{F}=(T+F)^{m}-T^{m}$. Then $T+F$ is an \mathcal{A}-B-Fredholm operator and index $T+F=$ index T.

Proposition

Let $F \in B\left(H_{\mathcal{A}}\right)$. If $n \in \mathbb{N}$ is s.t. $I_{m} F^{n}$ closed, $I m F^{n} \cong H_{\mathcal{A}}, F_{l_{\text {lmFn }}}$ is upper semi- \mathcal{A}-Fredholm and $I m F^{m}$ is closed for all $m \geqslant n$, then $F_{\left.\right|_{I m F m}}$ is upper semi- \mathcal{A} - Fredholm and $I m F^{m} \cong H_{\mathcal{A}}$ for all $m \geqslant n$. If $n \in \mathbb{N}$ is s.t. $\operatorname{ImF} F^{n}$ is closed, $\operatorname{Im} F^{n} \cong H_{\mathcal{A}}, I m F^{m}$ is closed and complementable in $I m F^{n}$ for all $m \geqslant n$ and $F_{l_{\text {lmFn }}}$ is lower semi- \mathcal{A}-Fredholm, then $F_{l_{\text {ImFm }}}$ is lower semi- \mathcal{A}-Fredholm for all $m \geqslant n$ and $I m F^{m} \cong H_{\mathcal{A}}$ for all $m \geqslant n$.

On closed range operators over C^{*}-algebras.

Lemma

Let $F, D \in B^{a}\left(H_{\mathcal{A}}\right)$ and suppose that $\operatorname{ImF}, \operatorname{ImD}$ are closed. If ImF $+\operatorname{ker} D$ is closed, then ImF $+\operatorname{ker} D$ is orthogonally complementable.

Corollary

Let $F, D \in B^{a}\left(H_{\mathcal{A}}\right)$ and suppose that $\operatorname{ImF}, \operatorname{ImD}$ are closed. Then ImDF is closed if and only if $\operatorname{ImF}+$ ker D is orthogonally complementable.

Definition

Given two closed submodules M, N of $H_{\mathcal{A}}$, we set

$$
c_{0}(M, N)=\sup \{\|<x, y>\|\|x \in M, y \in N,\| x\|,\| y \| \leq 1\} .
$$

We say then that the Dixmier angle between M and N is positive if $c_{0}(M, N)<1$.

Lemma

Let M, N be two closed, submodules of $H_{\mathcal{A}}$, assume that M orthogonally complementable and suppose that $M \cap N=\{0\}$. Then $M+N$ is closed if the Dixmier angle between M and N is positive.

Corollary

Let $F, D \in B^{a}\left(H_{\mathcal{A}}\right)$ and suppose that $\operatorname{ImF}, I m D$ are closed. Set $M=I m F \cap(\operatorname{ker} D \cap I m F)^{\perp}, M^{\prime}=\operatorname{ker} D \cap(\operatorname{ker} D \cap I m F)^{\perp}$. Assume that ker $D \cap I m F$ is orthogonally complementable. Then ImDF is closed if the Dixmier angle betwen M^{\prime} and ImF, or equivalently the Dixmier angle between M and $\operatorname{ker} D$ is positive.

Lemma

Let M and N be two closed submodules of $H_{\mathcal{A}}$. Suppose that M and N are orthogonally complementable in $H_{\mathcal{A}}$ and that $M \cap N=\{0\}$. Then $M+N$ is closed if and only if $P_{\left.\right|_{N}}$ is bounded below, where P denotes the orthogonal projection onto M^{\perp}.

Corollary

Let $F, D \in B^{a}\left(H_{\mathcal{A}}\right)$ and suppose that $\operatorname{ImF}, \operatorname{ImD}$ are closed. Then ImDF is closed if and only if ker $D \cap I m F$ is orthogonally complementable and $P_{\left.\right|_{I m F \cap(\text { ker } D \cap I m F)^{\perp}}}$ is bounded below, or equivalently $Q_{\left.\right|_{\text {ker Dn(ker D } D / m F)^{\perp}}}$ is bounded below, where P and Q denote the orthogonal projections onto ker D^{\perp} and $I m F^{\perp}$, respectively.

Lemma
Let $F, G \in \widehat{\mathcal{M} \Phi_{l}}\left(H_{\mathcal{A}}\right)$ and suppose that ImG and ImF are closed. Then ImGF is closed if and only if $\operatorname{ImF}+$ ker G is closed and complementable. If $F, G \in \widehat{\mathcal{M} \Phi_{r}}\left(H_{\mathcal{A}}\right)$ and $\operatorname{Im} G$, ImF are closed, then the statment above holds under additional assumtion that Im, ImF are complementable. Moreover, if $F, G \in \widehat{\mathcal{M} \Phi} /\left(H_{\mathcal{A}}\right)$ and $\operatorname{ImF}, \operatorname{Im} G$ are closed and if the Dixmier angle between $\operatorname{ker} G$ and $\operatorname{ImF} \cap(\operatorname{ker} G \cap \operatorname{ImF})^{0}$ is positive, or equivalently the Dixmier angle berween ImF and $\operatorname{ker} G \cap(\operatorname{ker} G \cap I m F)^{0}$ is positive, where $(\operatorname{ker} G \cap I m F)^{0}$ denotes the complement of ker $G \cap \operatorname{ImF}$, then ImGF is closed.

Proposition

Let $F \in B^{a}\left(H_{\mathcal{A}}\right)$. Then the following statements are equivalent:

1) $I m F$ is closed in $H_{\mathcal{A}}$
2) $I m L_{F}$ is closed in $B^{a}\left(H_{\mathcal{A}}\right)$
3) $I m R_{F}$ is closed in $B^{a}\left(H_{\mathcal{A}}\right)$.

Lemma
Let $F \in M^{a}\left(H_{\mathcal{A}}\right)$. If there exists a sequence $\left\{F_{n}\right\} \subseteq \mathcal{M} \Phi\left(H_{\mathcal{A}}\right)$) of constant index such that $F_{n} \rightarrow F$, then $F \subset \mathcal{M} \Phi\left(H_{\mathcal{A}}\right)$ and index $F=$ index $_{n}$ for all n.

Lemma
Let $F \in B\left(H_{\mathcal{A}}\right)$ and suppose that ImF is closed. Then F is a regular operator with the property that $\operatorname{Im} F^{0}$, $\operatorname{ker} F$ are finitely generated if and only if $F \in \widehat{\mathcal{M} \Phi}\left(H_{\mathcal{A}}\right)$.

Proposition

Let $F \in B\left(H_{\mathcal{A}}\right)$ be bounded below and suppose that there exists a sequence $\left\{F_{n}\right\} \subseteq \widehat{\mathcal{M} \Phi}\left(H_{\mathcal{A}}\right)$ of constant index and such that $F_{n} \rightarrow F$. Suppose also that for each n there exists an $\widehat{\mathcal{M} \Phi}$ - decomposition

$$
H_{\mathcal{A}}=M_{1}^{(n)} \tilde{\oplus} N_{1}^{(n)} \xrightarrow{F_{n}} M_{2}^{(n)} \tilde{\oplus} N_{2}^{(n)}=H_{\mathcal{A}}
$$

such that the sequence of projections $\left\{\square_{n}\right\}$ is uniformly bounded, where Π_{n} denotes the projection onto $N_{2}^{(n)}$ along $M_{2}^{(n)}$ for each n. Then $F \in \widehat{\mathcal{M} \Phi}\left(H_{\mathcal{A}}\right)$ and index $F_{n}=$ index F for all n.

Lemma

Let X, Y be Banach spaces and $F \in M(X, Y)$. Suppose that there exists a sequence $\left\{F_{n}\right\}$ of regular operators in $B(X, Y)$ such that $F_{n} \rightarrow F$. Moreover, assume that there exists a sequence of projections $\left\{\sqcap_{n}\right\}$ in $B(Y)$ which is uniformly bounded in the norm and such that $\operatorname{Im}\left(I-\Pi_{n}\right)=\operatorname{Im} F_{n}$ for all n. Then, F is a regular operator, i.e. ImF is complementable in Y.

On generalized spectra of operators over C^{*}-algebras

Question: If \mathcal{A} is a C^{*}-algebra, then for $\alpha \in \mathcal{A}$ could we define in a suitable way the operator $\alpha /$ on $H_{\mathcal{A}}$ and the generalized spectra in \mathcal{A} of operators in $B^{a}\left(H_{\mathcal{A}}\right)$ by setting for every $F \in B^{a}\left(H_{\mathcal{A}}\right)$ $\sigma^{\mathcal{A}}(F)=\left\{\alpha \in \mathcal{A} \mid F-\alpha l\right.$ is not invertible in $\left.B^{a}\left(H_{\mathcal{A}}\right)\right\}$?
Answer: For $a \in \mathcal{A}$ we may let α l be the operator on $H_{\mathcal{A}}$ given by $\alpha l\left(x_{1}, x_{2}, \cdots\right)=\left(\alpha x_{1}, \alpha x_{2}, \cdots\right)$. It is straightforward to check that αl is an \mathcal{A}-linear operator on $H_{\mathcal{A}}$. Moreover, αl is bounded and $\|\alpha l\|=\|\alpha\|$. Finally, αl is adjointable and its adjoint is given by $(\alpha l)^{*}=\alpha^{*} l$.
We introduce then the following notion:
$\sigma^{\mathcal{A}}(F)=\left\{\alpha \in \mathcal{A}|F-\alpha|\right.$ is not invertible in $\left.B^{a}\left(H_{\mathcal{A}}\right)\right\} ;$
$\sigma_{p}^{\mathcal{A}}(F)=\{\alpha \in \mathcal{A} \mid \operatorname{ker}(F-\alpha I) \neq\{0\}\} ;$
$\sigma_{r l}^{\mathcal{A}}(F)=\left\{\alpha \in \mathcal{A} \mid F-\alpha l\right.$ is bounded below, but not surjective on $\left.\left.H_{\mathcal{A}}\right)\right\}$;
$\sigma_{c l}^{\mathcal{A}}(F)=\{\alpha \in \mathcal{A} \mid \operatorname{Im}(F-\alpha I)$ is not closed $\}$. (where $\left.F \in B^{a}\left(H_{\mathcal{A}}\right)\right)$).

Proposition
Let \mathcal{A} be a unital C^{*}-algebra, $\left\{e_{k}\right\}_{k \in \mathbb{N}}$ denote the standard orthonormal basis of $H_{\mathcal{A}}$ and S be the operator defined by $S e_{k}=e_{k+1}, k \in \mathbb{N}$, that is S is unilateral shift and $S^{*} e_{k+1}=e_{k}$ for all $k \in \mathbb{N}$. If $\mathcal{A}=L^{\infty}((0,1))$ or if $\mathcal{A}=C([0,1])$, then $\sigma^{\mathcal{A}}(S)=\{\alpha \in \mathcal{A}|\inf | \alpha \mid \leq 1\}$, (where in the case when $\mathcal{A}=L^{\infty}((0,1))$, we set $\inf |\alpha|=\inf \left\{C>0 \mid \mu\left(|\alpha|^{-1}[0, C]\right)>0\right\}=$ $\sup \{K>0| | \alpha \mid>K)$ a.e. on $(0,1)\})$. Moreover, $\sigma_{p}^{\mathcal{A}}(S)=\varnothing$ in both cases.
Corollary
Let \mathcal{A} be a commutative unital C^{*}-algebra. Then $\sigma^{\mathcal{A}}(S)=\mathcal{A} \backslash G(\mathcal{A}) \cup\left\{\alpha \in G(\mathcal{A}) \mid\left(\alpha^{-1}, \alpha^{-2}, \cdots, \alpha^{-k}, \cdots\right) \notin H_{\mathcal{A}}\right\}$.

Proposition
Let $\alpha \in \mathcal{A}$. We have

1. If $\alpha I-F$ is bounded below, and $F \in B^{a}\left(H_{\mathcal{A}}\right)$ then $\alpha \in \sigma_{r l}^{\mathcal{A}}(F)$ if and only if $\alpha^{*} \in \sigma_{p}^{\mathcal{A}}\left(F^{*}\right)$.
2. If $F, D \in B^{a}\left(H_{\mathcal{A}}\right)$ and $D=U^{*} F U$ for some unitary operator U, then $\sigma^{\mathcal{A}}(F)=\sigma^{\mathcal{A}}(D), \sigma_{p}^{\mathcal{A}}(F)=\sigma_{p}^{\mathcal{A}}(D), \sigma_{c l}^{\mathcal{A}}(F)=\sigma_{c l}^{\mathcal{A}}(D)$ and
$\sigma_{r l}^{\mathcal{A}}(F)=\sigma_{r l}^{\mathcal{A}}(D)$.
Proposition
Let $U \in B^{a}\left(H_{\mathcal{A}}\right)$ be unitary. Then $\sigma^{\mathcal{A}}(U) \subseteq\{\alpha \in \mathcal{A} \mid\|\alpha\| \geq 1\}$ and $\sigma^{\mathcal{A}}(U) \cap G(\mathcal{A}) \subseteq\left\{\alpha \in G(\mathcal{A}) \mid\left\|\alpha^{-1}\right\|,\|\alpha\| \geq 1\right\}$.

Consider again the orthonormal basis $\left\{e_{k}\right\}_{k \in \mathbb{N}}$ for $H_{\mathcal{A}}$. We may enumerate this basis by indexes in \mathbb{Z}. Then we get orthonormal basis $\left\{e_{j}\right\}_{j \in \mathbb{Z}}$ for $H_{\mathcal{A}}$ and we can consider bilateral shift operator V w.r.t. this basis i.e. $V e_{k}=e_{k+1}$ all $k \in \mathbb{Z}$, which gives $V^{*} e_{k}=e_{k-1}$ for all $k \in \mathbb{Z}$.

Proposition

Let V be bilateral shift operator. Then the following holds

1) If $\mathcal{A}=C([0,1])$, then $\sigma^{\mathcal{A}}(V)=\{f \in \mathcal{A}| | f \mid([0,1]) \cap\{1\} \neq \varnothing\}$
2) If $\mathcal{A}=L^{\infty}([0,1])$, then
$\sigma^{\mathcal{A}}(V)=\left\{f \in \mathcal{A} \mid \mu\left(|f|^{-1}((1-\epsilon, 1+\epsilon))>0 \forall \epsilon>0\right\}\right.$. In both cases
$\sigma_{p}^{\mathcal{A}}(V)=\varnothing$.

Lemma

If F is a self-adjoint operator on $H_{\mathcal{A}}$, then $\sigma_{p}^{\mathcal{A}}(F)$ is a self-adjoint subset of \mathcal{A}, that is $\alpha \in \sigma_{p}^{\mathcal{A}}(F)$ if and only if $\alpha^{*} \in \sigma_{p}^{\mathcal{A}}(F)$ in the case when \mathcal{A} is a commutative C^{*}-algebra.

Lemma

Let \mathcal{A} be a commutative C^{*}-algebra. If F is a self-adjoint operator on $H_{\mathcal{A}}$ and $\alpha \in \mathcal{A} \backslash \sigma_{p}^{\mathcal{A}}(F)$, then $\overline{R(F-\alpha I)}{ }^{\perp}=\{0\}$. Hence, if $\alpha \in \mathcal{A} \backslash \sigma_{p}^{\mathcal{A}}(F)$ and in addition $F-\alpha$ l is bounded below, then $\alpha \in \mathcal{A} \backslash \sigma^{\mathcal{A}}(F)$.

Lemma
Let \mathcal{A} be a commutative unital C^{*}-algebra and F be a normal operator on $H_{\mathcal{A}}$, that is $F F^{*}=F^{*} F$. If $\alpha_{1}, \alpha_{2} \in \sigma_{p}^{\mathcal{A}}(F)$ and $\alpha_{1}-\alpha_{2}$ is invertible in \mathcal{A}, then $\operatorname{ker}\left(F-\alpha_{1} I\right) \perp \operatorname{ker}\left(F-\alpha_{2} I\right)$.

Lemma
Let \mathcal{A} be a commutative C^{*}-algebra and F be a normal operator on $H_{\mathcal{A}}$. Then $\sigma_{r l}^{\mathcal{A}}(F)=\varnothing$, hence $\sigma^{\mathcal{A}}(F)=\sigma_{p}^{\mathcal{A}}(F) \cup \sigma_{c l}^{\mathcal{A}}(F)$.

Lemma

Let $F \in B^{a}\left(H_{\mathcal{A}}\right)$. Then the following statements are equivalent:
a) $\alpha \in \mathcal{A} \backslash \sigma_{a}(F)$
b) $\alpha \in \mathcal{A} \backslash \sigma_{l}(F)$
c) $\alpha^{*} \in \mathcal{A} \backslash \sigma_{r}\left(F^{*}\right)$
d) $\operatorname{Im}\left(\alpha^{*} I-F^{*}\right)=H_{\mathcal{A}}$.

Next, for $F \in B^{a}\left(H_{\mathcal{A}}\right)$, set $\sigma_{a}^{\mathcal{A}}(F)=\{\alpha \in \mathcal{A} \mid F-\alpha l$ is not bounded below \}.

Proposition
For $F \in B^{a}\left(H_{\mathcal{A}}\right)$, we have that $\sigma_{a}^{\mathcal{A}}(F)$ is a closed subset of \mathcal{A} in the norm topology and $\sigma^{\mathcal{A}}(F)=\sigma_{a}^{\mathcal{A}}(F) \cup \sigma_{r l}^{\mathcal{A}}(F)$.

Proposition

If $F \in B^{a}\left(H_{\mathcal{A}}\right)$, then $\partial \sigma^{\mathcal{A}}(F) \subseteq \sigma_{a}^{\mathcal{A}}(F)$. Moreover, if M is a closed submodule of $H_{\mathcal{A}}$ and invariant with respect to F, and $F_{0}=F_{\mid M}$, then we have $\partial \sigma^{\mathcal{A}}\left(F_{0}\right) \subseteq \sigma_{a}^{\mathcal{A}}(F), \sigma^{\mathcal{A}}\left(F_{0}\right) \cap \sigma^{\mathcal{A}}(F)=\sigma_{r l}^{\mathcal{A}}\left(F_{0}\right)$.

Definition

Let $\mathrm{F} \in B^{a}\left(H_{\mathcal{A}}\right)$. We set

$$
\begin{gathered}
\sigma_{e w}^{\mathcal{A}}(\mathrm{F})=\left\{\alpha \in \mathcal{A} \mid(\mathrm{F}-\alpha \mathrm{I}) \notin \mathcal{M} \Phi_{0}\left(H_{\mathcal{A}}\right)\right\}, \\
\sigma_{\text {é } \alpha}^{\mathcal{A}}(\mathrm{F})=\left\{\alpha \in \mathcal{A} \mid(\mathrm{F}-\alpha \mathrm{I}) \notin \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right)\right\}, \\
\sigma_{e \beta}^{\mathcal{A}}(\mathrm{F})=\left\{\alpha \in \mathcal{A} \mid(\mathrm{F}-\alpha \mathrm{I}) \notin \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right)\right\}, \\
\sigma_{e k}^{\mathcal{A}}(\mathrm{F})=\left\{\alpha \in \mathcal{A} \mid(\mathrm{F}-\alpha \mathrm{I}) \notin \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right) \cup \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right)\right\}, \\
\left.\sigma_{e f}^{\mathcal{A}}(\mathrm{F})=\left\{\alpha \in \mathcal{A} \mid(\mathrm{F}-\alpha \mathrm{I}) \notin \mathcal{M} \Phi^{(} H_{\mathcal{A}}\right)\right\} .
\end{gathered}
$$

Definition

We set $m s_{\Phi}(F)=\inf \left\{\|\alpha\| \mid \alpha \in \mathcal{A}, F-\alpha \| \notin \mathcal{M} \Phi\left(H_{\mathcal{A}}\right)\right\}$,

$$
\begin{gathered}
m s(F)=\inf \left\{\|\alpha\| \mid \alpha \in \mathcal{A}, F-\alpha I \notin\left(\mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right) \cup \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right)\right)\right\} \\
m s_{+}(F)=\inf \left\{\|\alpha\| \mid \alpha \in \mathcal{A}, F-\alpha I \notin \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right)\right\} \\
m s_{-}(F)=\inf \left\{\|\alpha\| \mid \alpha \in \mathcal{A}, F-\alpha I \notin \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right)\right\}
\end{gathered}
$$

It follows that $m s_{\Phi}(F)=\max \left\{\epsilon \geq 0|\|\alpha\|<\epsilon \Rightarrow F-\alpha| \in \mathcal{M} \Phi\left(H_{\mathcal{A}}\right)\right\}$,

$$
\begin{aligned}
& m s_{+}(F)=\max \left\{\epsilon \geq 0 \mid\|\alpha\|<\epsilon \Rightarrow F-\alpha I \in \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right)\right\} \\
& m s_{-}(F)=\max \left\{\epsilon \geq 0 \mid\|\alpha\|<\epsilon \Rightarrow F-\alpha I \in \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right)\right\}
\end{aligned}
$$

$$
m s(F)=\max \left\{\epsilon \geq 0 \mid\|\alpha\|<\epsilon \Rightarrow F-\alpha I \in\left(\mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right) \cup \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right)\right)\right\}
$$

it follows that $m s_{\Phi}(F)>0 \Leftrightarrow F \in \mathcal{M} \Phi\left(H_{\mathcal{A}}\right)$,

$$
\begin{gathered}
m s_{+}(F)>0 \Leftrightarrow F \in \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right), m s_{-}(F)>0 \Leftrightarrow F \in \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right) \\
m s(F)>0 \Leftrightarrow F \in\left(\mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right) \cup \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right)\right), \text { it follows that } \\
m s_{+}(F)=m s_{-}\left(F^{*}\right), m s_{\Phi}(F)=m s_{\Phi}\left(F^{*}\right), m s(F)=m s\left(F^{*}\right)
\end{gathered}
$$

Lemma

Let $F \in B\left(H_{\mathcal{A}}\right)$. If $m s_{+}(F)>0$ and $m s_{-}(F)>0$, then $m s_{+}(F)=m s_{-}(F)$.

Lemma
Let $F \in B\left(H_{\mathcal{A}}\right)$. Then

1) $m s_{\Phi}(F)=\min \left\{m s_{+}(F), m s_{-}(F)\right\}$
2) $m s(F)=\max \left\{m s_{+}(F), m s_{-}(F)\right\}$.

Lemma

Let $F \in B\left(H_{\mathcal{A}}\right)$, where \mathcal{A} be a W^{*}-algebra and suppose that $K(\mathcal{A})$ satisfies the cancellation property. Then

$$
\sigma^{\mathcal{A}}(F)=\sigma_{e w}^{\mathcal{A}}(F) \cup \sigma_{p}^{\mathcal{A}}(F) \cup \sigma_{c l}^{\mathcal{A}}(F)
$$

Lemma

Let now \mathcal{A} be an arbitrary C^{*}-algebra. For $F \in B^{a}\left(H_{\mathcal{A}}\right)$ set $\sigma_{\text {ewgc }}^{\mathcal{A}}(F)=\left\{\alpha \in \mathcal{A} \mid(F-\alpha I) \notin \mathcal{M} \Phi_{0}^{g c}\left(H_{\mathcal{A}}\right)\right\}$. Then
$\sigma^{\mathcal{A}}(F)=\sigma_{\text {ewgc }}^{\mathcal{A}}(F) \cup \sigma_{p}^{\mathcal{A}}(F)$.

Lemma

Let $F \in B^{a}\left(H_{\mathcal{A}}\right)$ and supppose $K(\mathcal{A})$ satisfies the cancellation property. Then $\sigma^{\mathcal{A}}(F)=\sigma_{\text {ew }}^{\mathcal{A}}(F) \cup \sigma_{p}^{\mathcal{A}}(F) \cup \sigma_{c l}^{\mathcal{A}}(F)$.

Proposition
If $F \in B^{a}\left(H_{\mathcal{A}}\right)$ then the components of $\mathcal{A} \backslash\left(\sigma_{e \alpha}^{\mathcal{A}}(F) \cap \sigma_{e \beta}^{\mathcal{A}}(F)\right)$ are either completely contained in $\mathcal{M} \Phi_{+}(F) \backslash \mathcal{M} \Phi(F)$ or in $\mathcal{M} \Phi_{+}(F) \backslash \mathcal{M} \Phi(F)$ or index $(F-\alpha l)$ is constant on them.
Lemma
Let $F \in B^{a}\left(H_{\mathcal{A}}\right)$. If $\alpha \in \partial \sigma^{\mathcal{A}}(F) \backslash\left(\sigma_{e \alpha}^{\mathcal{A}}(F) \cap \sigma_{e \beta}^{\mathcal{A}}(F)\right)$, then $\alpha \in \mathcal{M} \Phi_{0}(F)$.

Let now $\mathcal{\mathcal { M }} \Phi_{0}\left(H_{\mathcal{A}}\right)$ be the set of all $\mathrm{F} \in B^{a}\left(H_{\mathcal{A}}\right)$ such that there exists a decomposition

$$
H_{\mathcal{A}}=M_{1} \tilde{\oplus} N_{1} \xrightarrow{\mathrm{~F}} M_{2} \tilde{\oplus} N_{2}=H_{\mathcal{A}}
$$

w.r.t. which F has the matrix $\left[\begin{array}{cc}\mathrm{F}_{1} & 0 \\ 0 & \mathrm{~F}_{4}\end{array}\right]$, where F_{1} is an isomorphism, N_{1}, N_{2} are finitely generated and

$$
N \tilde{\oplus} N_{1}=N \tilde{\oplus} N_{2}=H_{\mathcal{A}}
$$

for some closed submodule $N \subseteq H_{\mathcal{A}}$.
Notice that this implies that $\mathrm{F} \in \mathcal{M} \Phi\left(H_{\mathcal{A}}\right)$ and $N_{1} \cong N_{2}$, so that index $\mathrm{F}=\left[N_{1}\right]-\left[N_{2}\right]=0$. Hence $\tilde{\mathcal{M}} \Phi_{0}\left(H_{\mathcal{A}}\right) \subseteq \mathcal{M} \Phi_{0}\left(H_{\mathcal{A}}\right)$.
Let $\mathrm{P}\left(H_{\mathcal{A}}\right)=\left\{\mathrm{P} \in B\left(H_{\mathcal{A}}\right) \mid \mathrm{P}\right.$ is a projection and $\mathrm{N}(\mathrm{P})$ is finitely generated\}
and let

$$
\sigma_{e \mathrm{~W}}^{\mathcal{A}}(\mathrm{F})=\left\{\alpha \in Z(\mathcal{A}) \mid(\mathrm{F}-\alpha \mathrm{I}) \notin \tilde{\mathcal{M}} \Phi_{0}\left(H_{\mathcal{A}}\right)\right\}
$$

for $\mathrm{F} \in B^{a}\left(H_{\mathcal{A}}\right)$.

Theorem
Let $\mathrm{F} \in B^{a}\left(H_{\mathcal{A}}\right)$. Then

$$
\sigma_{e \mathrm{~W}}^{\mathcal{A}}(\mathrm{F})=\cap\left\{\sigma^{\mathcal{A}}\left(\mathrm{PF}_{\mathrm{I}_{\mathrm{R}(\mathrm{P})}}\right) \mid \mathrm{P} \in \mathrm{P}\left(H_{\mathcal{A}}\right)\right\}
$$

where
$\sigma^{\mathcal{A}}\left(\mathrm{PF}_{\left.\right|_{\mathrm{R}(\mathrm{P})}}\right)=\left\{\alpha \in Z(\mathcal{A}) \mid(\mathrm{PF}-\alpha \mathrm{I})_{\left.\right|_{\mathrm{R}(\mathrm{P})}}\right.$ is not invertible in $\left.B(\mathrm{R}(\mathrm{P}))\right\}$.
Lemma
$\tilde{\mathcal{M}} \Phi_{0}\left(H_{\mathcal{A}}\right)$ is open in $B^{a}\left(H_{\mathcal{A}}\right)$.
\left. We let now ${\widehat{\mathcal{M}} \Phi_{+}^{-}}_{-} H_{\mathcal{A}}\right)$ be the space of all $\mathrm{F} \in B^{a}\left(H_{\mathcal{A}}\right)$ such that there exists a decomposition

$$
H_{\mathcal{A}}=M_{1} \tilde{\oplus} N_{1} \xrightarrow{\mathrm{~F}} M_{2} \tilde{\oplus} N_{2}=H_{\mathcal{A}},
$$

w.r.t. which F has the matrix $\left[\begin{array}{cc}\mathrm{F}_{1} & 0 \\ 0 & \mathrm{~F}_{4}\end{array}\right]$, where F_{1} is an isomorphism, N_{1} is finitely generated and such that there exist closed submodules N_{2}^{\prime}, N where $N_{2}^{\prime} \subseteq N_{2}, N_{2}^{\prime} \cong N_{1}$,
$H_{\mathcal{A}}=N \tilde{\oplus} N_{1}=N \tilde{\oplus} N_{2}^{\prime}$ and the projection onto N along N_{2}^{\prime} is adjointable.
Then we set

Theorem
Let $\mathrm{F} \in B^{a}\left(H_{\mathcal{A}}\right)$. Then $\sigma_{e \tilde{a}}^{\mathcal{A}}(\mathrm{F})=\cap\left\{\sigma_{a}^{\mathcal{A}}\left(\mathrm{PF}_{\left.\right|_{\mathrm{R}(\mathrm{P})}}\right) \mid \mathrm{P} \in \mathrm{P}^{a}\left(H_{\mathcal{A}}\right)\right\}$ where $\sigma_{a}^{\mathcal{A}}\left(\mathrm{PF}_{\left.\left.\right|_{\mathrm{R}(\mathrm{P})}\right)}\right)$ is the set of all $\alpha \in Z(\mathcal{A})$ s.t. $(\mathrm{PF}-\alpha \mathrm{I})_{\left.\right|_{\mathrm{R}(\mathrm{P})}}$ is not bounded below on $\mathrm{R}(\mathrm{P})$ and $\mathrm{P}^{\mathrm{a}}\left(H_{\mathcal{A}}\right)=\mathrm{P}\left(H_{\mathcal{A}}\right) \cap B^{\mathrm{a}}\left(H_{\mathcal{A}}\right)$.

Definition

\left. We set ${\widehat{\mathcal{M}} \Phi_{-}^{+}}_{(} H_{\mathcal{A}}\right)$ to be the set of all $\mathrm{D} \in B^{a}\left(H_{\mathcal{A}}\right)$ such that there exists a decomposition

$$
H_{\mathcal{A}}=M_{1}^{\prime} \tilde{\oplus} N_{1}^{\prime} \xrightarrow{\mathrm{D}} M_{2}^{\prime} \tilde{\oplus} N_{2}^{\prime}=H_{\mathcal{A}}
$$

w.r.t. which D has the matrix $\left[\begin{array}{cc}D_{1} & 0 \\ 0 & D_{4}\end{array}\right]$, where D_{1} is an isomorphism, N_{2}^{\prime} is finitely generated and such that $H_{\mathcal{A}}=M_{1}^{\prime} \tilde{\oplus} N \tilde{\oplus} N_{2}^{\prime}$ for some closed submodule N, where the projection onto $M_{1}^{\prime} \tilde{\oplus} N$ along N_{2}^{\prime} is adjointable.
Then we set

$$
\sigma_{e \tilde{d}}^{\mathcal{A}}(\mathrm{D})=\{\alpha \in Z(\mathcal{A})) \mid(\mathrm{D}-\alpha \mathrm{I}) \notin{\left.\widehat{\mathcal{M}} \Phi_{-}^{+}\left(H_{\mathcal{A}}\right)\right\}, ~}_{\text {and }}
$$

and for $\mathrm{P} \in \mathrm{P}^{\mathrm{a}}\left(H_{\mathcal{A}}\right)$ we set

$$
\left.\sigma_{d}^{\mathcal{A}}\left(\mathrm{PD}_{\mathrm{l}_{\mathrm{R}(\mathrm{P})}}\right)=\{\alpha \in Z(\mathcal{A})) \mid(\mathrm{PD}-\alpha \mathrm{I})_{\left.\right|_{\mathrm{R}(\mathrm{P})}} \text { is not onto } \mathrm{R}(\mathrm{P})\right\} .
$$

Theorem
Let $\mathrm{D} \in B^{a}\left(H_{\mathcal{A}}\right)$. Then

$$
\sigma_{e \dot{d}}^{\mathcal{A}}(\mathrm{D})=\bigcap\left\{\sigma_{d}^{\mathcal{A}}\left(\mathrm{PD}_{\mid \mathrm{R}(\mathrm{P})}\right) \mid \mathrm{P} \in \mathrm{P}^{\mathrm{a}}\left(H_{\mathcal{A}}\right)\right\}
$$

Definition

We let $\widehat{\mathcal{M} \Phi}{ }_{+}\left(H_{\mathcal{A}}\right)$ be the set of all $F \in B\left(H_{\mathcal{A}}\right)$ such that there exists an $\mathcal{M} \Phi_{+}$-decomposition for F

$$
H_{\mathcal{A}}=M_{1} \tilde{\oplus} N_{1} \xrightarrow{F} M_{2} \tilde{\oplus} N_{2}=H_{\mathcal{A}},
$$

and closed submodules N, N_{2}^{\prime} with the property that N_{1} is isomorphic to $N_{2}^{\prime}, N_{2}^{\prime} \subseteq N_{2}$ and

$$
H_{\mathcal{A}}=N \tilde{\oplus} N_{1}=N \tilde{\oplus} N_{2}^{\prime} .
$$

Theorem

For $F \in B\left(H_{\mathcal{A}}\right)$ we have

$$
\sigma_{e \tilde{a} 0}^{\mathcal{A}}(F)=\cap\left\{\sigma_{a 0}^{\mathcal{A}}\left(P F_{\left.\right|_{R(P)}}\right) \mid P \in P\left(H_{\mathcal{A}}\right)\right\},
$$

where $\sigma_{a 0}^{\mathcal{A}}\left(P F_{\left.\right|_{R(P)}}\right)=\left\{\alpha \in Z(\mathcal{A}) \mid(P F-\alpha l)_{\mid R(P)}\right.$ is not bounded below on $R(P)$ or $R(P F-\alpha P)$ is not complementable in $R(P)\}$.

Definition

We set $\widehat{\widehat{\mathcal{M} \Phi}}_{-}^{+}\left(H_{\mathcal{A}}\right)$ to be the set of all $G \in B\left(H_{\mathcal{A}}\right)$ such that there exists an $\mathcal{M} \Phi \Phi_{-}$-decomposition for G

$$
H_{\mathcal{A}}=M_{1}^{\prime} \tilde{\oplus} N_{1}^{\prime} \xrightarrow{G} M_{2}^{\prime} \tilde{\oplus} N_{2}^{\prime}=H_{\mathcal{A}},
$$

and a closed submodule N with the property that $H_{\mathcal{A}}=M_{1}^{\prime} \tilde{\oplus} N \tilde{\oplus} N_{2}{ }^{\prime}$.
Theorem
For $\left.G \in B\left(H_{\mathcal{A}}\right)\right\}$ we have

$$
\sigma_{e d 0}^{\mathcal{A}}(G)=\cap\left\{\sigma_{d 0}^{\mathcal{A}}\left(P G_{\left.\right|_{R(P)}}\right) \mid P \in P\left(H_{\mathcal{A}}\right)\right\},
$$

where $\sigma_{d 0}^{\mathcal{A}}\left(P G_{\left.\right|_{R(P)}}\right)=\{\alpha \in Z(\mathcal{A}) \mid R(P)$ does not split into the decomposition $R(P)=\tilde{N} \tilde{\oplus} \tilde{N}$ with the property that $P G_{\left.\right|_{\tilde{N}}}$ is an isomorphism onto $R(P)\}$.

The boundary of several kinds of Fredholm spectra in \mathcal{A}

Theorem
Let $\mathrm{F} \in B^{a}\left(H_{\mathcal{A}}\right)$. Then the following inclusions hold:

$$
\partial \sigma_{e w}^{\mathcal{A}}(\mathrm{F}) \subseteq \partial \sigma_{e f}^{\mathcal{A}}(\mathrm{F}) \subseteq \begin{aligned}
& \partial \sigma_{e \mathcal{A}}^{\mathcal{A}}(\mathrm{F}) \\
& \partial \sigma_{e \alpha}^{\mathcal{A}}(\mathrm{F})
\end{aligned} \subseteq \partial \sigma_{e k}^{\mathcal{A}}(\mathrm{F}) .
$$

Theorem
Let $\mathrm{F} \in B^{a}\left(H_{\mathcal{A}}\right)$. Then

$$
\partial \sigma_{e w}^{\mathcal{A}}(\mathrm{F}) \subseteq \partial \sigma_{e \tilde{a}}^{\mathcal{A}}(\mathrm{F}) \subseteq \partial \sigma_{e a}^{\mathcal{A}}(\mathrm{F})
$$

Moreover, $\partial \sigma_{e a}^{\mathcal{A}}(\mathrm{F}) \subseteq \partial \sigma_{e \alpha}^{\mathcal{A}}(\mathrm{F})$ if $K(\mathcal{A})$ satisfies the cancellation property.

Perturbations of the generalized spectra in \mathcal{A}

Lemma
$\mathcal{M I}\left(H_{\mathcal{A}}\right)$ is a closed two sided ideal in $B^{a}\left(H_{\mathcal{A}}\right)$ and

$$
\begin{gathered}
\mathcal{M} I\left(H_{\mathcal{A}}\right)=\left\{D \in B^{a}\left(H_{\mathcal{A}}\right) \mid I+D F \in \mathcal{M} \Phi\left(H_{\mathcal{A}}\right) \forall F \in B^{a}\left(H_{\mathcal{A}}\right)\right\}= \\
=\left\{D \in B^{a}\left(H_{\mathcal{A}}\right) \mid I+D F \in \mathcal{M} \Phi\left(H_{\mathcal{A}}\right) \forall F \in \mathcal{M} \Phi\left(H_{\mathcal{A}}\right)\right\}= \\
=\left\{D \in B^{a}\left(H_{\mathcal{A}}\right) \mid I+F D \in \mathcal{M} \Phi\left(H_{\mathcal{A}}\right) \forall F \in B^{a}\left(H_{\mathcal{A}}\right)\right\}= \\
=\left\{D \in B^{a}\left(H_{\mathcal{A}}\right) \mid I+F D \in \mathcal{M} \Phi\left(H_{\mathcal{A}}\right) \forall F \in F \in \mathcal{M} \Phi\left(H_{\mathcal{A}}\right)\right\} .
\end{gathered}
$$

Lemma
a) If $F \in \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right) \backslash \mathcal{M} \Phi\left(H_{\mathcal{A}}\right)$ and $D \in P\left(\mathcal{M} \Phi\left(H_{\mathcal{A}}\right)\right)$, then $F+D \in \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right) \backslash \mathcal{M} \Phi\left(H_{\mathcal{A}}\right)$.
b) If $F \in \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right) \backslash \mathcal{M} \Phi\left(H_{\mathcal{A}}\right)$ and $D \in P\left(\mathcal{M} \Phi\left(H_{\mathcal{A}}\right)\right)$, then $F+D \in \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right) \backslash \mathcal{M} \Phi\left(H_{\mathcal{A}}\right)$.
c) If $\mathcal{M} \Phi\left(H_{\mathcal{A}}\right)$ and $D \in P\left(\mathcal{M} \Phi\left(H_{\mathcal{A}}\right)\right)$, then $D+F \in \mathcal{M} \Phi\left(H_{\mathcal{A}}\right)$ and index $D+F=$ index F.

Lemma

We have $P\left(\mathcal{M} \Phi_{0}\left(H_{\mathcal{A}}\right)\right)=P\left(\mathcal{M} \Phi\left(H_{\mathcal{A}}\right)\right)$.
Proposition
Let $F \in B^{a}\left(H_{\mathcal{A}}\right)$. Then

$$
\sigma_{e w}^{\mathcal{A}}(F)=\bigcap_{D \in K^{*}\left(H_{\mathcal{A}}\right)} \sigma^{\mathcal{A}}(F+D)=\bigcap_{D \in \mathcal{M} I\left(H_{\mathcal{A}}\right)} \sigma^{\mathcal{A}}(F+D)
$$

Theorem
The operator $D \in B^{a}\left(H_{\mathcal{A}}\right)$ satisfies the condition $\sigma_{e k}^{\mathcal{A}}(F+D)=\sigma_{e k}^{\mathcal{A}}(F)$ for every $F \in B^{a}\left(H_{\mathcal{A}}\right)$ if and only if
$D \in P\left(\mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right)\right) \cap P\left(\mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right)\right)=P\left(\mathcal{M} \Phi\left(H_{\mathcal{A}}\right)\right)$.

Lemma

The operator $D \in B^{a}\left(H_{\mathcal{A}}\right)$ satisfies the condition $\sigma_{e \alpha}^{\mathcal{A}}(F+D)=\sigma_{\text {e } \alpha}^{\mathcal{A}}(F)$ for every $F \in B^{a}\left(H_{\mathcal{A}}\right)$ if and only if $D \in P\left(\mathcal{M} \Phi\left(H_{\mathcal{A}}\right)\right)$.

Lemma
The operator $D \in B^{a}\left(H_{\mathcal{A}}\right)$ satisfies the condition $\sigma_{e \beta}^{\mathcal{A}}(F+D)=\sigma_{e \beta}^{\mathcal{A}}(F)$ for every $F \in B^{a}\left(H_{\mathcal{A}}\right)$ if and only if $D \in P\left(\mathcal{M} \Phi\left(H_{\mathcal{A}}\right)\right)$.

Lemma
The operator $D \in B^{a}\left(H_{\mathcal{A}}\right)$ satisfies the condition $\sigma_{\text {ef }}^{\mathcal{A}}(F+D)=\sigma_{\text {ef }}^{\mathcal{A}}(F)$ for every $F \in B^{a}\left(H_{\mathcal{A}}\right)$ if and only if $D \in P\left(\mathcal{M} \Phi\left(H_{\mathcal{A}}\right)\right)$.

Lemma
The operator $D \in B^{a}\left(H_{\mathcal{A}}\right)$ satisfies the condition $\sigma_{\text {ew }}^{\mathcal{A}}(F+D)=\sigma_{\text {ew }}^{\mathcal{A}}(F)$ for every $F \in B^{a}\left(H_{\mathcal{A}}\right)$ if and only if $D \in P\left(\mathcal{M} \Phi\left(H_{\mathcal{A}}\right)\right)$.

Definition

For $F \in B^{a}\left(H_{\mathcal{A}}\right)$ we set $\sigma_{e \alpha^{\prime}}^{\mathcal{A}}(F)=\left\{\alpha \in \mathcal{A} \mid F-\alpha \| \notin \mathcal{M} \Phi_{+}^{-1}\left(H_{\mathcal{A}}\right)\right.$ and $\sigma_{e \beta^{\prime}}^{\mathcal{A}}(F)=\left\{\alpha \in \mathcal{A}|F-\alpha| \notin \mathcal{M} \Phi_{-}^{+\prime}\left(H_{\mathcal{A}}\right)\right\}$.

Lemma

Let $F \in B^{a}\left(H_{\mathcal{A}}\right)$. Then

$$
\begin{aligned}
& \sigma_{e \alpha^{\prime}}^{\mathcal{A}}(F)=\bigcap_{D \in K^{*}\left(H_{\mathcal{A}}\right)} \sigma_{a}^{\mathcal{A}}(F+D)=\bigcap_{D \in P\left(\mathcal{M} \Phi_{+}^{-1}\left(H_{\mathcal{A}}\right)\right)} \sigma_{a}^{\mathcal{A}}(F+D), \\
& \sigma_{e \beta^{\prime}}^{\mathcal{A}}(F)=\bigcap_{D \in K^{*}\left(H_{\mathcal{A}}\right)} \sigma_{d}^{\mathcal{A}}(F+D)=\bigcap_{D \in P\left(\mathcal{M} \Phi_{-}^{+\prime}\left(H_{\mathcal{A}}\right)\right)} \sigma_{d}^{\mathcal{A}}(F+D),
\end{aligned}
$$

Lemma

Let $F \in B^{a}\left(H_{\mathcal{A}}\right)$. Then

1) We have $\sigma_{e \alpha^{\prime}}^{\mathcal{A}}(F+D)=\sigma_{e \alpha^{\prime}}^{\mathcal{A}}(D)$ for every $D \in B^{a}\left(H_{\mathcal{A}}\right)$ if and only if $F \in P\left(\mathcal{M} \Phi_{+}^{-\prime}\left(H_{\mathcal{A}}\right)\right)$.
2) We have $\sigma_{e \beta^{\prime}}^{\mathcal{A}}(D)=\sigma_{e \beta^{\prime}}^{\mathcal{A}}(F+D)$ for every $D \in B^{a}\left(H_{\mathcal{A}}\right)$ if and only $F \in P\left(\mathcal{M} \Phi_{-}^{+\prime}\left(H_{\mathcal{A}}\right)\right)$.

On operator 2×2 matrices over C^{*}-algebras

We will consider the operator $\mathrm{M}_{\mathrm{C}}^{\mathcal{A}}(\mathrm{F}, \mathrm{D}): H_{\mathcal{A}} \oplus H_{\mathcal{A}} \rightarrow H_{\mathcal{A}} \oplus H_{\mathcal{A}}$ given as 2×2 operator matrix

$$
\left[\begin{array}{cc}
\mathrm{F} & \mathrm{C} \\
0 & \mathrm{D}
\end{array}\right],
$$

where $\mathrm{F}, \mathrm{C}, \mathrm{D} \in B^{a}\left(H_{\mathcal{A}}\right)$.
To simplify notation we will only write $\mathbf{M}_{\mathrm{C}}^{\mathcal{A}}$ instead of $\mathbf{M}_{\mathrm{C}}^{\mathcal{A}}(\mathrm{F}, \mathrm{D})$ when $\mathrm{F}, \mathrm{D} \in B^{\mathrm{a}}\left(H_{\mathcal{A}}\right)$ are given.

Proposition
For given $\mathrm{F}, \mathrm{C}, \mathrm{D} \in B^{a}\left(H_{\mathcal{A}}\right)$, one has

$$
\sigma_{e}^{\mathcal{A}}\left(\mathbf{M}_{\mathrm{C}}^{\mathcal{A}}\right) \subset\left(\sigma_{e}^{\mathcal{A}}(\mathrm{F}) \cup \sigma_{e}^{\mathcal{A}}(\mathrm{D})\right)
$$

Theorem

Let $\mathrm{F}, \mathrm{D} \in B^{a}\left(H_{\mathcal{A}}\right)$. If $\mathrm{M}_{\mathrm{C}}^{\mathcal{A}} \in \mathcal{M} \Phi\left(H_{\mathcal{A}} \oplus H_{\mathcal{A}}\right)$ for some $\mathrm{C} \in B^{a}\left(H_{\mathcal{A}}\right)$, then $\mathrm{F} \in \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right), \mathrm{D} \in \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right)$ and for all decompositions

$$
\begin{aligned}
& H_{\mathcal{A}}=M_{1} \tilde{\oplus} N_{1} \xrightarrow{\mathrm{~F}} M_{2} \tilde{\oplus} N_{2}=H_{\mathcal{A}}, \\
& H_{\mathcal{A}}=M_{1}^{\prime} \tilde{\oplus} N_{1}^{\prime} \xrightarrow{\mathrm{D}} M_{2}^{\prime} \tilde{\oplus} N_{2}^{\prime}=H_{\mathcal{A}}
\end{aligned}
$$

w.r.t. which F , D have matrices $\left[\begin{array}{ll}\mathrm{F}_{1} & 0 \\ 0 & \mathrm{~F}_{4}\end{array}\right],\left[\begin{array}{ll}\mathrm{D}_{1} & 0 \\ 0 & \mathrm{D}_{4}\end{array}\right]$, respectively, where $\mathrm{F}_{1}, \mathrm{D}_{1}$ are isomorphisms, and N_{1}, N_{2}^{\prime} are finitely generated, there exist $\tilde{\tilde{N}}^{\text {closed submodules }}$
$\tilde{N}_{1}^{\prime}, \tilde{\tilde{N}}_{1}^{\prime}, \tilde{N}_{2}, \widetilde{\tilde{N}}_{2}$ such that $N_{2} \cong \tilde{N}_{2}, N_{1}^{\prime} \cong \tilde{N}_{1}^{\prime}, \tilde{\tilde{N}}_{2}$ and $\tilde{\tilde{N}}_{1}^{\prime}$ are finitely generated and

$$
\tilde{N}_{2} \tilde{\oplus} \tilde{\tilde{N}}_{2} \cong \tilde{N}_{1}^{\prime} \tilde{\oplus} \tilde{\tilde{N}}_{1}^{\prime}
$$

Proposition

Suppose that there exists some $\mathrm{C} \in B^{a}\left(H_{\mathcal{A}}\right)$ such that the inclusion $\sigma_{e}^{\mathcal{A}}\left(\mathbf{M}_{\mathrm{C}}^{\mathcal{A}}\right) \subset \sigma_{e}^{\mathcal{A}}(\mathrm{F}) \cup \sigma_{e}^{\mathcal{A}}(\mathrm{D})$ is proper. Then for any

$$
\alpha \in\left[\sigma_{e}^{\mathcal{A}}(\mathrm{F}) \cup \sigma_{e}^{\mathcal{A}}(\mathrm{D})\right] \backslash \sigma_{e}^{\mathcal{A}}\left(\mathbf{M}_{\mathrm{C}}^{\mathcal{A}}\right)
$$

we have

$$
\alpha \in \sigma_{e}^{\mathcal{A}}(\mathrm{F}) \cap \sigma_{e}^{\mathcal{A}}(\mathrm{D})
$$

Next, we define the following classes of operators on $H_{\mathcal{A}}$:

$$
\begin{gathered}
\mathcal{M} S_{+}\left(H_{\mathcal{A}}\right)=\left\{\mathrm{F} \in B^{a}\left(H_{\mathcal{A}}\right) \mid(\mathrm{F}-\alpha 1) \in \mathcal{M} \Phi_{-}^{+}\left(H_{\mathcal{A}}\right)\right. \\
\text { whenever } \left.\alpha \in \mathcal{A} \text { and }(\mathrm{F}-\alpha 1) \in \mathcal{M} \Phi_{ \pm}\left(H_{\mathcal{A}}\right)\right\}, \\
\mathcal{M} S_{-}\left(H_{\mathcal{A}}\right)=\left\{\mathrm{F} \in B^{a}\left(H_{\mathcal{A}}\right) \mid(\mathrm{F}-\alpha 1) \in \mathcal{M} \Phi_{+}^{-}\left(H_{\mathcal{A}}\right)\right. \\
\text { whenever } \left.\alpha \in \mathcal{A} \text { and }(\mathrm{F}-\alpha 1) \in \mathcal{M} \Phi_{ \pm}\left(H_{\mathcal{A}}\right)\right\} .
\end{gathered}
$$

Proposition
If $\mathrm{F} \in \mathcal{M} S_{+}\left(H_{\mathcal{A}}\right)$ or $\mathrm{D} \in \mathcal{M} S_{-}\left(H_{\mathcal{A}}\right)$, then for all
$\mathrm{C} \in B^{a}\left(H_{\mathcal{A}}\right)$, we have

$$
\sigma_{e}^{\mathcal{A}}\left(\mathbf{M}_{\mathrm{C}}^{\mathcal{A}}\right)=\sigma_{e}^{\mathcal{A}}(\mathrm{F}) \cup \sigma_{e}^{\mathcal{A}}(\mathrm{D})
$$

Theorem
Let $\mathrm{F} \in \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right), \mathrm{D} \in \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right)$ and suppose that there exist decompositions

$$
\begin{aligned}
& H_{\mathcal{A}}=M_{1} \tilde{\oplus} N_{1} \xrightarrow{\mathrm{~F}} N_{2}^{\perp} \oplus N_{2}=H_{\mathcal{A}} \\
& H_{\mathcal{A}}=N_{1}^{\prime \perp} \oplus N_{1}^{\prime} \xrightarrow{\mathrm{D}} M_{2}^{\prime} \tilde{\oplus} N_{2}^{\prime}=H_{\mathcal{A}}
\end{aligned}
$$

w.r.t. which F, D have matrices

$$
\left[\begin{array}{ll}
\mathrm{F}_{1} & 0 \\
0 & \mathrm{~F}_{4}
\end{array}\right],\left[\begin{array}{ll}
\mathrm{D}_{1} & 0 \\
0 & \mathrm{D}_{4}
\end{array}\right]
$$

respectively, where $\mathrm{F}_{1}, \mathrm{D}_{1}$ are isomorphims, N_{1}, N_{2}^{\prime} are finitely generated and assume also that one of the following statements hold:
a) There exists some $\mathrm{J} \in B^{a}\left(N_{2}, N_{1}^{\prime}\right)$ such that $N_{2} \cong \operatorname{ImJ}$ and $\operatorname{ImJ}^{\perp}$ is finitely generated.
b) There exists some $\mathrm{J}^{\prime} \in B^{a}\left(N_{1}^{\prime}, N_{2}\right)$ such that $\left.N_{1}^{\prime} \cong \operatorname{ImJ} J^{\prime},(\operatorname{ImJ})^{\prime}\right)^{\perp}$ is finitely generated.
Then $\mathbf{M}_{\mathrm{C}}^{\mathcal{A}} \in \mathcal{M} \Phi\left(H_{\mathcal{A}} \oplus H_{\mathcal{A}}\right)$ for some $\mathrm{C} \in B^{a}\left(H_{\mathcal{A}}\right)$.

Theorem
Suppose $\mathbf{M}_{\mathrm{C}}^{\mathcal{A}} \in \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}} \oplus H_{\mathcal{A}}\right)$ for some $\mathrm{C} \in B^{a}\left(H_{\mathcal{A}}\right)$. Then
$\mathrm{D} \in \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right)$ and in addition the following statement holds:
Either $\mathrm{F} \in \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right)$ or there exists decompositions

$$
\begin{aligned}
& H_{\mathcal{A}} \oplus H_{\mathcal{A}}=M_{1} \tilde{\oplus} N_{1} \xrightarrow{\mathrm{~F}^{\prime}} M_{2} \tilde{\oplus} N_{2}=H_{\mathcal{A}} \oplus H_{\mathcal{A}} \\
& H_{\mathcal{A}} \oplus H_{\mathcal{A}}=M_{1}^{\prime} \tilde{\oplus} N_{1}^{\prime} \xrightarrow{\mathrm{D}^{\prime}} M_{2}^{\prime} \tilde{\oplus} N_{2}^{\prime}=H_{\mathcal{A}} \oplus H_{\mathcal{A}}
\end{aligned}
$$

w.r.t. which $\mathrm{F}^{\prime}, \mathrm{D}^{\prime}$ have the matrices $\left[\begin{array}{ll}\mathrm{F}_{1}^{\prime} & 0 \\ 0 & \mathrm{~F}_{4}^{\prime}\end{array}\right],\left[\begin{array}{ll}\mathrm{D}_{1}^{\prime} & 0 \\ 0 & \mathrm{D}_{4}^{\prime}\end{array}\right]$, where $\mathrm{F}_{1}^{\prime}, \mathrm{D}_{1}^{\prime}$ are isomorphisms, N_{2}^{\prime} is finitely generated, $N_{1}, N_{2}, N_{1}^{\prime}$ are closed, but not finitely generated, and $M_{2} \cong M_{1}^{\prime}, N_{2} \cong N_{1}^{\prime}$.

Theorem
Let $\mathrm{F}, \mathrm{D} \in B^{a}\left(H_{\mathcal{A}}\right)$ and suppose that $\mathrm{D} \in \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right)$ and either $\mathrm{F} \in \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right)$ or that there exist decompositions

$$
\begin{aligned}
& H_{\mathcal{A}}=M_{1} \tilde{\oplus} N_{1} \xrightarrow{\mathrm{~F}} N_{2}^{\perp} \tilde{\oplus} N_{2}=H_{\mathcal{A}} \\
& H_{\mathcal{A}}=N_{1}^{\prime \perp} \tilde{\oplus} N_{1}^{\prime} \xrightarrow{\mathrm{D}} M_{2}^{\prime} \tilde{\oplus} N_{2}^{\prime}=H_{\mathcal{A}}
\end{aligned}
$$

w.r.t. which F, D have the matrices $\left[\begin{array}{ll}\mathrm{F}_{1} & 0 \\ 0 & \mathrm{~F}_{4}\end{array}\right],\left[\begin{array}{ll}\mathrm{D}_{1} & 0 \\ 0 & \mathrm{D}_{4}\end{array}\right]$, respectively, where $\mathrm{F}_{1}, \mathrm{D}_{1}$ are isomorphisms N_{2}^{\prime}, is finitely generated and that there exists some
$\iota \in B^{a}\left(N_{2}, N_{1}^{\prime}\right)$ such that ι is an isomorphism onto its image in N_{1}^{\prime}.
Then $\mathbf{M}_{\mathrm{C}}^{\mathcal{A}} \in \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}} \oplus H_{\mathcal{A}}\right)$ for some $\mathrm{C} \in B^{a}\left(H_{\mathcal{A}}\right)$.

Theorem

Let $\mathbf{M}_{\mathrm{C}}^{\mathcal{A}} \in \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}} \oplus H_{\mathcal{A}}\right)$. Then $\mathrm{F}^{\prime} \in \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}} \oplus H_{\mathcal{A}}\right)$ and either $\mathrm{D} \in \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right)$ or there exist decompositions

$$
\begin{aligned}
& H_{\mathcal{A}} \oplus H_{\mathcal{A}}=M_{1} \tilde{\oplus} N_{1} \xrightarrow{\mathrm{~F}^{\prime}} M_{2} \tilde{\oplus} N_{2}=H_{\mathcal{A}} \oplus H_{\mathcal{A}}, \\
& H_{\mathcal{A}} \oplus H_{\mathcal{A}}=M_{1}^{\prime} \tilde{\oplus} N_{1}^{\prime} \xrightarrow{\mathrm{D}^{\prime}} M_{2}^{\prime} \tilde{\oplus} N_{2}^{\prime}=H_{\mathcal{A}} \oplus H_{\mathcal{A}},
\end{aligned}
$$

w.r.t. which $\mathrm{F}^{\prime}, \mathrm{D}^{\prime}$ have matrices $\left[\begin{array}{ll}\mathrm{F}_{1}^{\prime} & 0 \\ 0 & \mathrm{~F}_{4}^{\prime}\end{array}\right],\left[\begin{array}{ll}\mathrm{D}_{1}^{\prime} & 0 \\ 0 & \mathrm{D}_{4}^{\prime}\end{array}\right]$,
respectively, where $\mathrm{F}_{1}^{\prime}, \mathrm{D}_{1}^{\prime}$ are isomorphisms, $M_{2} \cong M_{1}^{\prime}$ and $N_{2} \cong N_{1}^{\prime}, N_{1}$ is finitely generated and N_{2}, N_{1}^{\prime} are closed, but not finitely generated.

Theorem

Let $\mathrm{F} \in \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right)$ and suppose that either $\mathrm{D} \in \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right)$ or that there exist decompositions

$$
\begin{aligned}
& H_{\mathcal{A}}=M_{1} \tilde{\oplus} N_{1} \xrightarrow{\mathrm{~F}} N_{2}^{\perp} \tilde{\oplus} N_{2}=H_{\mathcal{A}}, \\
& H_{\mathcal{A}}=N_{1}^{\prime \perp} \tilde{\oplus} N_{1}^{\prime} \xrightarrow{\mathrm{D}} M_{2}^{\prime} \tilde{\oplus} N_{2}^{\prime}=H_{\mathcal{A}}
\end{aligned}
$$

w.r.t. which F, D have matrices $\left[\begin{array}{ll}\mathrm{F}_{1} & 0 \\ 0 & \mathrm{~F}_{4}\end{array}\right],\left[\begin{array}{ll}\mathrm{D}_{1} & 0 \\ 0 & \mathrm{D}_{4}\end{array}\right]$, respectively, where $\mathrm{F}_{1}, \mathrm{D}_{1}$ are isomorphisms, N_{1}^{\prime} is finitely generated and in addition there exists some
$\iota \in B^{a}\left(N_{1}^{\prime}, N_{2}\right)$ such that ι is an isomorphism onto its image. Then

$$
\mathbf{M}_{\mathrm{C}}^{\mathcal{A}} \in \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}} \oplus H_{\mathcal{A}}\right)
$$

for some $\mathrm{C} \in B^{a}\left(H_{\mathcal{A}}\right)$.

Definition

Let \mathcal{X} be a Banach space. A sequence $\left(T_{n}\right)_{n \in \mathbb{N}_{0}}$ of operators in $B(\mathcal{X})$ is called topologically transitive if for each non-empty open subsets U, V of $\mathcal{X}, T_{n}(U) \cap V \neq \varnothing$ for some $n \in \mathbb{N}$. If $T_{n}(U) \cap V \neq \varnothing$ holds from some n onwards, then $\left(T_{n}\right)_{n \in \mathbb{N}_{0}}$ is called topologically mixing.

Definition

Let \mathcal{X} be a Banach space. A sequence $\left(T_{n}\right)_{n \in \mathbb{N}_{0}}$ of operators in $B(\mathcal{X})$ is called hypercyclic if there is an element $x \in \mathcal{X}$ (called hypercyclic vector) such that the orbit $\mathcal{O}_{x}:=\left\{T_{n} x: n \in \mathbb{N}_{0}\right\}$ is dense in \mathcal{X}. The set of all hypercyclic vectors of a sequence $\left(T_{n}\right)_{n \in \mathbb{N}_{0}}$ is denoted by $H C\left(\left(T_{n}\right)_{n \in \mathbb{N}_{0}}\right)$. If $H C\left(\left(T_{n}\right)_{n \in \mathbb{N}_{0}}\right)$ is dense in \mathcal{X}, the sequence $\left(T_{n}\right)_{n \in \mathbb{N}_{0}}$ is called densely hypercyclic. An operator $T \in B(\mathcal{X})$ is called hypercyclic if the sequence $\left(T^{n}\right)_{n \in \mathbb{N}_{0}}$ is hypercyclic.

Definition

Let \mathcal{X} be a Banach space, and $\left(T_{n}\right)_{n \in \mathbb{N}_{0}}$ be a sequence of operators in $B(\mathcal{X})$. A vector $x \in \mathcal{X}$ is called a periodic element of $\left(T_{n}\right)_{n \in \mathbb{N}_{0}}$ if there exists a constant $N \in \mathbb{N}$ such that for each $k \in \mathbb{N}, T_{k N} x=x$. The set of all periodic elements of $\left(T_{n}\right)_{n \in \mathbb{N}_{0}}$ is denoted by $\mathcal{P}\left(\left(T_{n}\right)_{n \in \mathbb{N}_{0}}\right)$. The sequence $\left(T_{n}\right)_{n \in \mathbb{N}_{0}}$ is called chaotic if $\left(T_{n}\right)_{n \in \mathbb{N}_{0}}$ is topologically transitive and $\mathcal{P}\left(\left(T_{n}\right)_{n \in \mathbb{N}_{0}}\right)$ is dense in \mathcal{X}. An operator $T \in B(\mathcal{X})$ is called chaotic if the sequence $\left\{T^{n}\right\}_{n \in \mathbb{N}_{0}}$ is chaotic.

Linear dynamics of Elementary Operators on $B_{0}(\mathcal{H})$ and $K\left(H_{\mathcal{A}}\right)$

Definition
Let $U, W \in B(\mathcal{H})$. We define the operator $T_{U, W}: B(\mathcal{H}) \rightarrow B(\mathcal{H})$ by

$$
\begin{equation*}
T_{U, W}(F):=W F U \tag{1}
\end{equation*}
$$

for all $F \in B(\mathcal{H})$.
Then the operator $T_{U, W}$ is invertible and its inverse is given by $T_{U^{*}, W-1}$, i.e. $\left(T_{U, W}\right)^{-1}=T_{U^{*}, W^{-1}}$.

We will denote this inverse by $S_{U, W}$ and for each $n \in \mathbb{N}$ we set

$$
C_{U, W}^{n}=\frac{1}{2}\left(T_{U, W}^{n}+S_{U, W}^{n}\right) .
$$

Theorem

Let \mathcal{H} be a separable Hilbert space. Let $W \in B(\mathcal{H})$ be invertible and $U \in B(\mathcal{H})$ be unitary such that for each $k \in \mathbb{N}$ there exists an $N_{k} \in \mathbb{N}$ with

$$
\begin{equation*}
U^{n}\left(L_{k}\right) \perp L_{k} \quad \text { for all } n \geq N_{k} . \tag{2}
\end{equation*}
$$

Then, the following statements are equivalent.
(i) $T_{U, W}$ is hypercyclic on $B_{0}(\mathcal{H})$, where $B_{0}(\mathcal{H})$ is equipped with the operator norm $\|\cdot\|$.
(ii) For each $m \in \mathbb{N}$ there exist a strictly increasing sequence $\left\{n_{k}\right\}$ in \mathbb{N} and the sequences $\left\{D_{k}\right\}$ and $\left\{G_{k}\right\}$ of operators in $B_{0}(\mathcal{H})$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|D_{k}-P_{m}\right\|=\lim _{k \rightarrow \infty}\left\|G_{k}-P_{m}\right\|=0 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|W^{n_{k}} G_{k}\right\|=\lim _{k \rightarrow \infty}\left\|W^{-n_{k}} D_{k}\right\|=0 \tag{4}
\end{equation*}
$$

where P_{m} denotes the orthogonal projection onto L_{m}.

Definition

Let \mathcal{X} be a Banach space, $a \in \mathcal{X}$, and $T \in B(\mathcal{X})$. We say that T is a-transitive if for each two non-empty open subsets \mathcal{O}_{1} and \mathcal{O}_{2} of \mathcal{X} with $a \in \mathcal{O}_{1}$, there are $m, n \in \mathbb{N}$ such that

$$
T^{n}\left(\mathcal{O}_{1}\right) \cap \mathcal{O}_{2} \neq \varnothing, \quad T^{m}\left(\mathcal{O}_{2}\right) \cap \mathcal{O}_{1} \neq \varnothing
$$

Theorem

Let $U, W \in B(\mathcal{H})$ such that W is invertible and U is unitary. Then, the following statements are equivalent.
(i) $T_{U, W}$ and $S_{U, W}$ are 0 -transitive on $B_{0}(\mathcal{H})$.
(ii) For every finite dimensional subspace K of \mathcal{H} there are strictly increasing sequences $\left\{n_{j}\right\}$ and $\left\{m_{j}\right\}$ in \mathbb{N} and sequences of operators $\left\{G_{j}\right\}$ and $\left\{D_{j}\right\}$ in $B_{0}(\mathcal{H})$ such that

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left\|G_{j}-P_{K}\right\|=\lim _{j \rightarrow \infty}\left\|D_{j}-P_{K}\right\|=0 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left\|W^{-m_{j}} G_{j}\right\|=\lim _{j \rightarrow \infty}\left\|W^{n_{j}} D_{j}\right\|=0 \tag{6}
\end{equation*}
$$

Theorem
Let $U, W \in B(\mathcal{H})$ such that W be invertible and U be unitary. If $T_{U, W}$ is hypercyclic on $B_{0}(\mathcal{H})$, then $m(W)<1<\|W\|$.

Theorem
Let $U, W \in B(\mathcal{H})$ such that W be invertible and U be unitary. Suppose that there is a finite dimensional subspace K of \mathcal{H} such that for a constant $N>0, U^{n}(K) \perp K$ for all $n \geq N$. Then, we have (i) \Rightarrow (ii):
(i) P_{K} belongs to the closure of $\mathcal{P}\left(\left\{S_{U, W}^{n}\right\}_{n \in \mathbb{N}_{0}}\right)$ in $B_{0}(\mathcal{H})$.
(ii) There exists an increasing sequence $\left(n_{k}\right)$ in \mathbb{N} such that $m\left(W^{-n_{k}}\right) \rightarrow 0$ as $k \rightarrow \infty$.

Theorem

Let \mathcal{H} be a separable Hilbert space and $U, W \in B(\mathcal{H})$ such that W be invertible and U be unitary. Then, we have (ii) \Rightarrow (i):
(i) the operators $T_{U, W}$ and $S_{U, W}$ are chaotic on $B_{0}(\mathcal{H})$.
(ii) For each $m \in \mathbb{N}$ there is a strictly increasing sequence $\left\{n_{k}\right\} \subseteq \mathbb{N}$ such that

$$
\lim _{k \rightarrow \infty} \sum_{l=1}^{\infty}\left\|W^{l n_{k}} P_{m}\right\|=\lim _{k \rightarrow \infty} \sum_{l=1}^{\infty}\left\|W^{-l n_{k}} P_{m}\right\|=0
$$

where the corresponding series are convergent for each k.

Cosine Operator Functions

Theorem

Suppose that $U, W \in B(\mathcal{H})$ such that W is invertible and U is unitary. Then, we have (ii) \Rightarrow (i):
(i) The sequence $\left(C_{U, W}^{(n)}\right)_{n \in \mathbb{N}_{0}}$ is topologically transitive on $B_{0}(\mathcal{H})$.
(ii) For each $m \in \mathbb{N}$, there are sequences $\left(E_{k}\right)$ and $\left(R_{k}\right)$ of subspaces of L_{m} and an strictly increasing sequence $\left(n_{k}\right)$ of positive integers such that $L_{m}=E_{k} \oplus R_{k}$ and

$$
\begin{gather*}
\lim _{k \rightarrow \infty}\left\|W^{n_{k}} P_{m}\right\|=\lim _{k \rightarrow \infty}\left\|W^{-n_{k}} P_{m}\right\|=0 \tag{7}\\
\lim _{k \rightarrow \infty}\left\|W^{2 n_{k}} P_{E_{k}}\right\|=\lim _{k \rightarrow \infty}\left\|W^{-2 n_{k}} P_{R_{k}}\right\|=0 \tag{8}
\end{gather*}
$$

Theorem

Suppose that $U, W \in B(\mathcal{H})$ such that W is invertible and U is unitary. Let there exist a closed subspace K of \mathcal{H} such that $U^{n}(K) \perp K$ for all $n \geq N$. Then, (i) \Rightarrow (ii).
(i) $\mathcal{P}\left(C_{U, W}^{(n)}\right)$ is dense in $B_{0}(\mathcal{H})$, and for each $F \in B_{0}(\mathcal{H})$, $\lim _{n \rightarrow \infty} S_{U, W}^{n}(F)=0$ in $B_{0}(\mathcal{H})$.
(ii) $m(W)<1$.

Theorem

Suppose that $U, W \in B(\mathcal{H})$ such that W is invertible and U is unitary. Assume that there exists a closed subspace K of \mathcal{H} such that $U^{n}(K) \perp K$ for all $n \geq N$. We have (i) \Rightarrow (ii).
(i) $\mathcal{P}\left(C_{U, W}^{(n)}\right)$ is dense in $B_{0}(\mathcal{H})$, and $\lim _{n \rightarrow \infty} T_{U, W}^{n} F=F$ for all $F \in B_{0}(\mathcal{H})$.
(ii) $m\left(W^{-1}\right)<1$.

Theorem
Let \mathcal{H} be a separable Hilbert space. We have (ii) \Rightarrow (i):
(i) The sequence $\left\{C_{U, W}^{(n)}\right\}$ is chaotic on $B_{0}(\mathcal{H})$.
(ii) For each $m \in \mathbb{N}$, there exists a strictly increasing sequence $\left\{n_{k}\right\} \subseteq \mathbb{N}$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \sum_{l=1}^{\infty}\left\|W^{l n_{k}} P_{m}\right\|=\lim _{k \rightarrow \infty} \sum_{l=1}^{\infty}\left\|W^{-l n_{k}} P_{m}\right\|=0 \tag{9}
\end{equation*}
$$

where the corresponding series are convergent for each k.

Remark

Our sufficient conditions for topological transitivity in the norm topology of $B_{0}(\mathcal{H})$ are also sufficient conditions for topological transitivity in the strong topology of $B(\mathcal{H})$. Indeed, since $\left\{e_{n}\right\}$ is an orthonormal basis for \mathcal{H}, it is easily seen that the set $\left\{P_{n} F: F \in B(\mathcal{H}), n \in \mathbb{N}\right\}$ is dense in $B(\mathcal{H})$ in the strong operator topology. Moreover, in this case the conditions (3)-(4) in Theorem 128 can even be relaxed by considering the strong limits instead of the limit in norm and by dropping the requirement that the sequences $\left\{D_{k}\right\}$ and $\left\{G_{k}\right\}$ should belong to $B_{0}(\mathcal{H})$. Hence, also in the case of strong operator topology on $B(\mathcal{H})$, the operator W in Example satisfies the sufficient conditions for topological transitivity of $T_{U, W}$ and $\left\{C_{U, W}^{(n)}\right\}_{n}$.

Remark

Except from the implication (i) \Rightarrow (ii) in Theorem 128, all our results about sufficient conditions for topological transitivity, easily generalize to the case where $B_{0}(\mathcal{H})$ is replaced by an arbitrary non-unital C^{*}-algebra \mathcal{A}, and the set of all finite rank orthogonal projections on \mathcal{H} is replaced by the canonical approximate unit in \mathcal{A}. Indeed, if \mathcal{A} is a non-unital C^{*}-algebra, then it can be isometrically embedded into a unital C^{*}-algebra \mathcal{A}_{1} such that \mathcal{A} becomes an ideal in \mathcal{A}_{1}. If u and w are invertible elements in \mathcal{A}_{1} and u is unitary (i.e. $u u^{*}=u^{*} u=1_{\mathcal{A}_{1}}$), then we can define the operator $T_{u, w}$ on \mathcal{A} by $T_{u, w}(a):=$ wau for all $a \in \mathcal{A}$. Therefore, all our results regarding the sufficient conditions for $T_{u, w}$ to be topologically transitive or chaotic can be generalized in this setting.

Moreover, if \mathcal{A} is a unital C^{*}-algebra and $H_{\mathcal{A}}$ denotes the standard Hilbert module over \mathcal{A}, then all our results so far can be transferred directly to the case where $B_{0}(\mathcal{H})$ and $B(\mathcal{H})$ are replaced by $K\left(H_{\mathcal{A}}\right)$ and $B\left(H_{\mathcal{A}}\right)$, respectively. Here, $K\left(H_{\mathcal{A}}\right)$ and $B\left(H_{\mathcal{A}}\right)$ stand for the set of all compact and all bounded \mathcal{A}-linear operators on $H_{\mathcal{A}}$, respectively.

Theorem

Let $w \in \mathcal{A}_{1}$ be invertible and u be a unitary element of \mathcal{A}_{1}. Suppose that there exist an element $a \in \mathcal{A}^{+}$and an $N \in \mathbb{N}$ such that $a u^{n} a=0$ for all $n \geq N$. Then, (i) \Rightarrow (ii).
(i) $\mathcal{P}\left(\left(C_{u, w}^{(n)}\right)_{n}\right)$ is dense in \mathcal{A}.
(ii) $m(\varphi(w))<1<\|\varphi(w)\|$, where (φ, \mathcal{H}) is the universal representation of \mathcal{A}_{1}.

Dynamics of the Adjoint Operator

Theorem

Suppose that for every $m \in \mathbb{N}$ there exist sequences $\left(E_{k}\right)$ and $\left(R_{k}\right)$ of subspaces of L_{m} and an increasing sequence $\left(n_{k}\right) \subseteq \mathbb{N}$ such that for each $k, L_{m}=E_{k} \oplus R_{k}$ and

$$
\begin{align*}
\lim _{k \rightarrow \infty}\left\|W^{n_{k}} P_{m}\right\| & =\lim _{k \rightarrow \infty}\left\|W^{-n_{k}} P_{m}\right\|=0 \tag{10}\\
\lim _{k \rightarrow \infty}\left\|W^{2 n_{k}} P_{E_{k}}\right\| & =\lim _{k \rightarrow \infty}\left\|W^{-2 n_{k}} P_{R_{k}}\right\|=0 \tag{11}
\end{align*}
$$

Then, $\left\{C_{U, W}^{*(n)}\right\}$ is topologically transitive on $B_{1}(\mathcal{H})$.

Theorem

Suppose that $U, W \in B(\mathcal{H})$ such that W is invertible and U is unitary. Assume that there exists a finite dimensional subspace K of \mathcal{H} such that $U^{n}(K) \perp K$ for all $n \geq N$. Then, (i) \Rightarrow (ii).
(i) $\mathcal{P}\left(C_{U, W}^{(n)^{*}}\right)$ is dense in $B_{1}(\mathcal{H})$, and for each $F \in B_{1}(\mathcal{H})$,
$\lim _{n \rightarrow \infty} S_{U, W}^{* n}(F)=0$ in $B(\mathcal{H})$.
(ii) $m(W)<1$.

Theorem

Let $U, W \in B(\mathcal{H})$ be invertible such that U is unitary. Suppose that there exists a finite dimensional subspace K of \mathcal{H} and $N \in \mathbb{N}$ such that $U^{n}(K) \perp K$ for all $n \geq N$. Then, (i) \Rightarrow (ii):
(i) $\mathcal{P}\left\{\left(C_{U, W}^{*}\right)^{n}\right\}$ is dense in $B(\mathcal{H})^{\prime}$ and $\lim _{n \rightarrow \infty}\left(S_{U, W}^{*}\right)^{n} \varphi=0$ for all $\varphi \in B(\mathcal{H})^{\prime}$.
(ii) $m(W)<1$.

Theorem
We have (ii) \Rightarrow (i):
(i) $\left(C_{U, W}^{(n) *}\right)$ is topologically transitive in $B(\mathcal{H})^{\prime}$.
(ii) For every $m \in \mathbb{N}$ there exist sequences $\left(E_{k}\right)$ and $\left(R_{k}\right)$ of subspaces of L_{m} and an increasing sequence $\left(n_{k}\right) \subseteq \mathbb{N}$ such that for each k, $L_{m}=E_{k} \oplus R_{k}$ and

$$
\begin{align*}
& \lim _{k \rightarrow \infty}\left\|P_{m} W^{n_{k}}\right\|=\lim _{k \rightarrow \infty}\left\|P_{m} W^{-n_{k}}\right\|=0 \tag{12}\\
& \lim _{k \rightarrow \infty}\left\|P_{E_{k}} W^{2 n_{k}}\right\|=\lim _{k \rightarrow \infty}\left\|P_{R_{k}} W^{-2 n_{k}}\right\|=0 \tag{13}
\end{align*}
$$

Theorem
We have (i) \Rightarrow (ii):
(i) $P\left(T_{U, W}^{*^{n}}\right)$ is dense in $B(\mathcal{H})^{\prime}$.
(ii) $m(W)<1$.

Theorem
We have (i) \Rightarrow (ii):
(i) $P\left(S_{U, W}^{* n}\right)$ is dense in $B(\mathcal{H})^{\prime}$.
(ii) $m\left(W^{-1}\right)=\|W\|^{-1}<1$, that is $\|W\|>1$.

Theorem

Let $B(\mathcal{H})$ be equipped with the strong topology, and $B(\mathcal{H})^{\prime}$ be equipped with the w^{*}-topology, where $B(\mathcal{H})^{\prime}$ is the dual of $B(\mathcal{H})$. Then we have (ii) \Rightarrow (i):
(i) $\left\{T_{U, W}^{* n}\right\}$ and $\left\{S_{U, W}^{*^{n}}\right\}$ are topologically transitive on $B(\mathcal{H})^{\prime}$.
(ii) for every $n \in \mathbb{N}$ there exist an increasing sequence $\left\{n_{k}\right\} \subseteq \mathbb{N}$ and sequences of operators $\left\{G_{k}\right\}$ and $\left\{D_{k}\right\}$ in $B(\mathcal{H})$ such that same as theorem 3.2 in the draft with

$$
\lim _{k \rightarrow \infty}\left\|G_{k} W^{n_{k}}\right\|=\lim _{k \rightarrow \infty}\left\|D_{k} W^{-n_{k}}\right\|=0
$$

and

$$
\mathrm{s}-\lim _{k \rightarrow \infty} G_{k}=\mathrm{s}-\lim _{k \rightarrow \infty} D_{k}=P_{n}
$$

where s -lim denotes the limit in the strong operator topology.

Example

Let $\left\{e_{j}\right\}_{j \in \mathbb{N}}$ be an orthonormal basis for a Hilbert space \mathcal{H}. Define $W \in B(\mathcal{H})$ by

$$
W\left(e_{j}\right):= \begin{cases}\frac{1}{2} e_{j+2}, & \text { if } j \text { is odd }, \\ 2 e_{j-2}, & \text { if } j \text { is even and } j>2, \\ e_{1}, & \text { if } j=2 .\end{cases}
$$

Then, W is invertible and $\|W\|=2$. For each fixed $k \in \mathbb{N}$ it is easily checked that $\left\|W^{2 k-1+m} P_{2 k}\right\|=\frac{1}{2^{m}}$ for all $m \in \mathbb{N}$. Consequently, $\left\|W^{2 k-1+m} P_{2 k-1}\right\| \leq \frac{1}{2^{m}}$. Further, it is also easily verified that for each $k, m \in \mathbb{N}$ we have $\left\|W^{-2 k-m} P_{2 k+1}\right\|=\frac{1}{2^{m-1}}$, and this gives that $\left\|W^{-2 k-m} P_{2 k}\right\| \leq \frac{1}{2^{m-1}}$. As above, P_{n} denotes the orthogonal projection onto $\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}$.
It follows that

$$
\left\|P_{2 k}\left(W^{*}\right)^{2 k-1+m}\right\|=\frac{1}{2^{m}}, \quad\left\|P_{2 k+1}\left(W^{*}\right)^{-2 k-m}\right\|=\frac{1}{2^{m-1}}
$$

for all $k, m \in \mathbb{N}$.

Then W and W^{*} satisfy the sufficient condition in various results above on topological transitivity. If we instead of H consider $H_{\mathcal{A}}$ and let $\left\{e_{j}\right\}_{j \in \mathbb{N}}$ denote the standard basis, then the same arguments applies in this case also.

Example

Let $F\left(e_{k}\right)=e_{2 k}$ for all k.
Then $F \in \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right)$

Example

Let $D\left(e_{2 k-1}\right)=0, D\left(e_{2 k}\right)=e_{k}$.
Then $D \in \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right)$

Example

In general, let $\iota: \mathbb{N} \rightarrow \iota(\mathbb{N})$ be a bijection such that $\iota(\mathbb{N}) \subseteq \mathbb{N}$ and $\mathbb{N} \backslash \iota(\mathbb{N})$ infinite. Moreover we may define ι in a such way s.t. $\iota(1)<\iota(2)<\iota(3)<\ldots$. Then, if we define an \mathcal{A}-linear operator F as $F\left(e_{k}\right)=e_{\iota(k)}$ for all k, we get that $F \in \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right)$. Moreover, if we define an \mathcal{A}-linear operator D as
$D\left(e_{k}\right)= \begin{cases}e_{\iota^{-1}}(k), & \text { for } k \in \iota(\mathbb{N}), \\ 0, & \text { else }\end{cases}$
then $D \in \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right)$.

Those examples are also valid in the case when $\mathcal{A}=\mathbb{C}$, that is when $H_{\mathcal{A}}=H$ is a Hilbert space. We will now introduce examples where we use the structure of \mathcal{A} itself in the case when $\mathcal{A} \neq \mathbb{C}$:

Example

Let $\mathcal{A}=\left(L^{\infty}([0,1]), \mu\right)$, where μ is a Borel probability measure. Set

$$
F\left(f_{1}, f_{2}, f_{3}, \ldots\right)=\left(\mathcal{X}_{\left[0, \frac{1}{2}\right]} f_{1}, \mathcal{X}_{\left[\frac{1}{2}, 1\right]} f_{1}, \mathcal{X}_{\left[0, \frac{1}{2}\right]} f_{2}, \mathcal{X}_{\left[\frac{1}{2}, 1\right]} f_{2}, \ldots\right) .
$$

Then F is bounded \mathcal{A} - linear operator, $\operatorname{ker} F=\{0\}$,

$$
\operatorname{Im} F=\operatorname{Span}_{\mathcal{A}}\left\{\mathcal{X}_{\left[0, \frac{1}{2}\right]} e_{1}, \mathcal{X}_{\left[\frac{1}{2}, 1\right]} e_{2}, \mathcal{X}_{\left[0, \frac{1}{2}\right]} e_{3}, \mathcal{X}_{\left[\frac{1}{2}, 1\right]} e_{4}, \ldots\right\}
$$

and clearly $F \in \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right)$.

Example

Let again $\mathcal{A}=\left(L^{\infty}([0,1]), \mu\right)$. Set

$$
D\left(g_{1}, g_{2}, g_{3}, \ldots\right)=\left(\mathcal{X}_{\left[0, \frac{1}{2}\right]} g_{1}+\mathcal{X}_{\left[\frac{1}{2}, 1\right]} g_{2}, \mathcal{X}_{\left[0, \frac{1}{2}\right]} g_{3}+\mathcal{X}_{\left[\frac{1}{2}, 1\right]} g_{4}, \ldots\right)
$$

Then ker $D=\operatorname{Im} F, D$ is an \mathcal{A}-linear, bounded operator and $\operatorname{Im} D=H_{\mathcal{A}}$. Thus $D \in \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right)$. Indeed, $D=F^{*}$.

Example

Let $\mathcal{A}=B(H)$, where H is a Hilbert space and let P be an orthogonal projection on H. Set

$$
\begin{gathered}
F\left(T_{1}, T_{2}, \ldots\right)=\left(P T_{1},(I-P) T_{1}, P T_{2},(I-P) T_{2}, \ldots\right) \\
D\left(S_{1}, S_{2}, \ldots\right)=\left(P S_{1}+(I-P) S_{2}, P S_{3}+(I-P) S_{4}, \ldots\right)
\end{gathered}
$$

then by similar arguments $F \in \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right), D \in \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right)$.

Example

In general, supose that $\left\{p_{j}^{i}\right\}_{j, i \in \mathbb{N}}$ is a family of projections in \mathcal{A} s.t. $p_{j_{1}}^{i} p_{j_{2}}^{i}=0$ for all i, whenever $j_{1} \neq j_{2}$ and $\sum_{j=1}^{k} p_{j}^{i}=1$ for some $k \in \mathbb{N}$. Set

$$
\begin{gathered}
F^{\prime}\left(\alpha_{1}, \ldots, \alpha_{n}, \ldots\right)=\left(p_{1}^{1} \alpha_{1}, p_{2}^{1} \alpha_{1}, \ldots p_{k}^{1} \alpha_{1}, p_{2}^{1} \alpha_{2}, p_{2}^{2} \alpha_{2}, \ldots p_{k}^{2} \alpha_{2}, \ldots\right), \\
D^{\prime}\left(\beta_{1}, \ldots, \beta_{n}, \ldots\right)=\left(\sum_{i=1}^{k} p_{i}^{1} \beta_{i}, \sum_{i=1}^{k} p_{i}^{2} \beta_{i+k}, \ldots\right) .
\end{gathered}
$$

Then $F^{\prime} \in \mathcal{M} \Phi_{+}\left(H_{\mathcal{A}}\right), D^{\prime} \in \mathcal{M} \Phi_{-}\left(H_{\mathcal{A}}\right)$.
Recalling now that a composition of two $\mathcal{M} \Phi_{+}$operators is again an $\mathcal{M} \Phi_{+}$operator and that the same is true for $\mathcal{M} \Phi_{-}$operators, we may take suitable comprositions of operators from these examples in order to construct more $\mathcal{M} \Phi_{ \pm}$operators.
Even more $\mathcal{M} \Phi_{ \pm}$operators can be obtained by composing these operators with isomorphisms of $H_{\mathcal{A}}$. We will present here also some isomorphisms of $H_{\mathcal{A}}$.

Example

Let $j: \mathbb{N} \rightarrow \mathbb{N}$ be a bijection. Then the operator U given by $U\left(e_{k}\right)=e_{j(k)}$ for all k is an isomorphism of $H_{\mathcal{A}}$. This is a classical well known example of an isomorphism.

Example

Let $\left(\alpha_{1}, \ldots, \alpha_{n}, \ldots\right) \in \mathcal{A}^{\mathbb{N}}$ be a sequence of invertible elements in \mathcal{A} s.t. $\left\|\alpha_{k}\right\| \leq M$ for all $k \in \mathbb{N}$ and some $M>0$. If the operator V is given by $V\left(e_{k}\right)=e_{k} \cdot \alpha_{k}$ for all k, then V is an isomorphism of $H_{\mathcal{A}}$. Moreover, if $\left(\alpha_{1}, \cdots, \alpha_{n}, \cdots\right)$ is the sequence from above, we may let \tilde{V} be the operator on $H_{\mathcal{A}}$ given by $\tilde{V}\left(x_{1}, \cdots, x_{n}\right)=\left(\alpha_{1} x_{1}, \cdots, \alpha_{n} x_{n}, \cdots\right)$. Then \tilde{V} is also an isomorphism of $H_{\mathcal{A}}$.

Thank you for attention!

Stefan Ivković
stefan.iv10@outlook.com

The Mathematical Institute of the Serbian Academy of Sciences and Arts
[AH] T. Aghasizadeh, S. Hejazian, Maps preserving semi-Fredholm operators on Hilbert C*-modules, J. Math. Anal. Appl. 354(2009), 625-629.
(${ }^{-1}$ [BS] M. Berkani and M. Sarih, On semi B-Fredholm operators, Glasgow Mathematical Journal, Volume 43, Issue 3. May 2001, pp. 457-465, DOI: https://doi.org/10.1017/S0017089501030075
[BM] M. Berkani, Index of B-Fredholm Operators and Generalization of a Weyl Theorem, Proceedings of the American Mathematical Society, Volume 130, Number 6, Pages 1717-1723, S 0002-9939(01)06291-8, Article electronically published on October 17, 2001
[[BId] Richard Bouldin, The product of operators with closed range, Thoku Math. Journ. 25 (1973), 359-363.

目 [DDJ] Dragan S. Djordjević, Perturbations of spectra of operator matrices, J. Operator Theory 48(2002), 467-486.
[[DDj2] Dragan S.Djordjević, On generalized Weyl operators, Proceedings of the American Mathematical Society, Volume 130, Number 1, Pages 81 II4, s ooo2-9939(01)0608r-6, April 26,2001

戈［FM］M．Frank and and E．V．Troitsky，Lefschetz numbers and geometry of oerators in W^{*}－modules，Funktsional Anal．i Priloshen． 30 （1996），no． 4 45－57
（R1）［MFT］M．Frank，Manuilov V．，Troitsky E．A reflexivity criterion for Hilbert C^{*}－modules over commutative C^{*}－algebras New York Journal of Mathematics 16 （2010），399＂408．
［［F］E．I．Fredholm，Sur une classe d＇equations fontionnelles，Acta Math． 27 （1903），365－390．
围［HLL］J．H．Han，H．Y．Lee，W．Y．Lee，Invertible completions of 2×2 upper triangular operator matrices，Proc．Amer．Math．Soc． 128 （2000），119－123．
：［H］R．E．Harte，The ghost of an index theorem，Proceedings of the American Mathematical Society 106 （1989）．1031－1033．MR 92j：47029
嗇［HA］S．Hejazian，T．Aghasizadeh，Equivalence classes of linear mappings on $B(M)$ ，Bull．Malays．Math．Sci．Soc．（2）3（2012），no． 3，627－632．
[HG] G. Hong, F. Gao, Moore-Penrose Inverses of Operators in Hilbert C*-modules, International Journal of Mathematical Analysis Vol. 11, 2017, no. 8, 389-396
嗇 [IM] Anwar A. Irmatov and Alexandr S. Mishchenko, On Compact and Fredholm Operators over C*-algebras and a New Topology in the Space of Compact Operators, J. K-Theory 2 (2008), 329-351, doi:10.1017/is008004001jkt034
[[IS1] S. Ivkovic, Semi-Fredholm theory on Hilbert C*-modules, Banach Journal of Mathematical Analysis, Vol. 13 no. 4 2019, 989-1016 doi:10.1215/17358787-2019-0022. https://projecteuclid.org/euclid.bjma/1570608171
[IS3] S. Ivkovic, On operators with closed range and semi-Fredholm operators over W*-algebras, Russ. J. Math. Phys. 27, 48-60 (2020) http://link.springer.com/article/10.1134/S1061920820010057
[囯 [IS4] S. Ivkovic, On compressions and generalized spectra of operators over C*-algebra, Annals of Functional Analysis 2020, https://doi.org/10.1007/s43034-019-00034-z
［IS5］S．Ivkovic，On various generalizations of semi－A－Fredholm operators，Complex Anal．Oper．Theory 14， 41 （2020）． https：／／doi．org／10．1007／s11785－020－00995－3
［IS6］S．Ivkovic，On upper triangular operator 2 by 2 matrices over C＊－algebras（to appear in Filomat，2020）， https：／／arxiv．org／abs／1906．05359
［iS7］S．Ivkovic，On semi－Weyl and semi－B－Fredholm operators over C＊－algebras https：／／arxiv．org／abs／2002．04905

䡒［JC］Conway，John B．，A Course in Functional Analysis，Graduate Texts in Mathematics，ISBN 978－1－4757－4383－8
國［JS］P．Sam Johnson，Multiplication Operators with Closed Range in Operator Algebras，Journal of Analysis and Number Theory，No． 1，1－5（2013）
围［KY］Kung Wei Yang，The generalized Fredholm operators， Transactions of the American Mathematical Society Vol． 216 （Feb．， 1976），pp．313－326
围［LAN］E．C．Lance，On nuclear C＊－algebras，J．Func．Anal． 12 （1973），157－176
［LAY］D．Lay，Spectral analysis using ascent，descent，nullity and defect，Math．Ann．184（1970），197－214．
雷［L］Z．Lazović，Compact and＂compact＂operators on standard Hilbert modules over C＊－algebras，Adv．Oper．Theory 3 （2018），no． 4，829－836．
［LIN］H．Lin，Injective Hilbert C＊－modules，Pacific J．Math． 154 （1992），133－164
嗇［LS］A．Lebow and M．Schechter，Semigroups of operators and measures of non－compactness，J．Funct．Anal．7（1971），1－26．
（inT］V．M．Manuilov，E．V．Troitsky，Hilbert C＊－modules，In： Translations of Mathematical Monographs．226，American Mathematical Society，Providence，RI， 2005.
嗇［MV］D．Miličić and K．Veselić，On the boundary of essential spectra， Glasnik Mat．tom 6 （26）No 1 （1971）．73â€＂788
固［M］A．S．Mishchenko，Banach algebras，pseudodifferential operators and their applications to K theory，Uspekhi Mat．Nauk，no．6，67－79， English transl．，Russian Math．Surveys 34 （1979），no．6，77－91．
[MF] A. S. Mishchenko, A.T. Fomenko, The index of eliptic operators over C^{*}-algebras, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 831-859; English transl., Math. USSR-Izv. 15 (1980) 87-112.
[MSFC] M. S. Moslehian, K. Sharifi, M. Forough and M. Chakoshi, Moore-Penrose inverses of Gram operator on Hilbert C*-modules, Studia Mathematica, 210 (2012), 189-196.
[[N] Gyokai Nikaido, Remarks on the Lower Bound of a linear Operator, Proc. Japan Acad. Ser. A Math. Sci., Volume 56, Number 7 (1980), 321-323.
[P] W. L. Paschke, Inner product modules over B^{*}-algebras, Trans. Amer. Math. Soc. 182 (1973), 443-468.
[[PO] A. Pokrzywa, A characterizations of the Weyl spectum, Proc. Am. math. Soc. 92. 215-218.
[囯 [S] M. O. Searcoid, The continuity of the semi-Fredholm index, IMS Bulletin 29 (1992), 13-18.
[S2] M. Schechter, Quantities related to strictly singular operators, Indiana Univ. Math. J., vol 21, No 11 (1972), 1061-1071.
[SC] M. Schechter, Quantities related to strictly singular operators, Indiana Univ. Math. J., vol. 21, No 11(1972), 1061-1071.
R [SE] M. O. Searooid, The continuity of the semi-Fredholm index, IMS Bulletin 29(1992), 13-18.
[SH3] K. Sharifi, The product of operators with closed range in Hilbert C*-modules, Linear Algebra App. 435 (2011), no. 5, 1122-1130
[T]E. V. Troitsky, Orthogonal complements and endomorphisms of Hilbert modules and C^{*}-elliptic complexes, Novikov Conjectures, Index Theorems and Rigidity, Vol 2 (S.C. Ferry, A. Ranicki, and J. Rosenberg. Eds.), London Math. Soc. Lecture Note Ser., vol. 227, Cambridge Univ. Press, (1995), pp. 309-331.
圊 [W] N. E. Wegge â€"Olsen, K-theory and C*-algebras, Oxford Univ. Press, Oxford, 1993.
圊 [ZE] J. Zemanek, Compressions and the Weyl-Browder spectra, Proc. Roy. Irish Acad. Sec. A 86 (1986), 57-62.
[ZZDH] S. Č. Živković-Zlatanović, D. S. Djordjević, R. E. Harte, Left-right Browder and left-right Fredholm operators, Integral Equations Operator Theory 69 (2011), 347-363.

目［ZZRD］S．Živković Zlatanović，V．Rakočević，D．S．Đorđević， Fredholm theory，University of Niš Faculty of Sciences and Mathematics，Niš，to appear（2019）．
［BMbook］F．Bayart and É．Matheron，Dynamics of Linear Operators，Cambridge Tracts in Math．179，Cambridge University Press，Cambridge， 2009.
（BG99］L．Bernal－González，On hypercyclic operators on Banach spaces，Proc．Amer．Math．Soc． 127 （1999）1003－1010．
囦［ChaChe］S－J．Chang and C－C．Chen，Topological mixing for cosine operator functions generated by shifts，Topol．Appl． 160 （2013） 382－386．
［Chen11］C－C．Chen，Chaotic weighted translations on groups，Arch． Math． 97 （2011）61－68．
［Chen141］C－C．Chen，Chaos for cosine operator functions generated by shifts，Int．J．Bifurcat．Chaos 24 （2014）Article ID 1450108， 7 pages．
國［Chen15］C－C．Chen，Topological transitivity for cosine operator functions on groups，Topol．Appl．191［］（2015）48－57．
[Ccot] C-C. Chen, K-Y. Chen, S. Öztop and S.M. Tabatabaie, Chaotic translations on weighted Orlicz spaces, Ann. Polon. Math. 122 (2019) 129-142.
[Cc11] C-C. Chen and C-H. Chu, Hypercyclic weighted translations on groups, Proc. Amer. Math. Soc. 139 (2011) 2839-2846.
國 [Cd18] C-C. Chen and W-S. Du, Some characterizations of disjoint topological transitivity on Orlicz spaces, J. Inequalities and Applications 2018 2018:88.
嗇 [Chta2] C-C. Chen and S.M. Tabatabaie, Chaotic operators on hypergroups, Oper. Matrices, 12(1) (2018) 143-156.
[Chta3] C-C. Chen and S.M. Tabatabaie, Chaotic and hypercyclic operators on solid Banach function spaces, Probl. Anal. Issues Anal., to appear.
R- [Conw] J.B. Conway, A Course in Functional Analysis, Springer-Verlag, New York, 1985.

- [Ge00] K-G. Grosse-Erdmann, Hypercyclic and chaotic weighted shifts, Studia Math. 139 (2000) 47-68.
[Gpbook] K-G. Grosse-Erdmann and A. Peris, Linear Chaos, Universitext, Springer, 2011.
图 [Kalmes10] T. Kalmes, Hypercyclicity and mixing for cosine operator functions generated by second order partial differential operators, J. Math. Anal. Appl. 365 (2010) 363-375.
䍰 [Kostic] M. Kostić, Hypercyclic and chaotic integrated C-cosine functions, Filomat 26 (2012) 1-44.
[Sha] S-Y. Shaw, Growth order and stability of semigroups and cosine operator functions, J. Math. Anal. Appl. 357 (2009) 340-348.

