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Introduction

In this presentation we let A be a unital C∗-algebra, HA be the standard
module over A ( this is HA = l2(A) ) and Ba(HA) be the set of all
A-linear, bounded adjointable operators on HA.
We wish to solve the equations of the form Fx = y , where F ∈ Ba(HA)
and x , y ∈ HA. Even if F is not invertible, we can still handle this
equation if F is regular i.e. if F admits generalized inverse. This happens
if ImF is closed and in this case F has the matrix

[
F1 0
0 0

]
, w.r.t. the

decomposition

HA = ker F⊥ ⊕ ker F F−→ ImF ⊕ ImF⊥ = HA,

where F1 is an isomorphism and the generalized inverse of F has the
matrix

[
F−1

1 0
0 0

]
w.r.t. the decomposition

HA = ImF ⊕ ImF⊥ −→ ker F⊥ ⊕ ker F = HA.



If in addition ImF⊥ is finitely generated, then it is easy to check whether
the equation Fx = y has a solution. On the other hand, if F is regular
and in addition ker F is finitely generated, then we have an explicit
formula for the solutions of the equation Fx = y in the case when the
solution exists. This motivates to study the following classes of operators
on HA.



Semi-A-Fredholm operators on HA

Inspired by definition of A-Fredholm operator given in [MF], we give now
the following definition.
Definition
Let F ∈ Ba(HA). We say that F is an upper semi-A-Fredholm operator if
there exists a decomposition

HA = M1⊕̃N1
F−→ M2⊕̃N2 = HA

with respect to which F has the matrix[
F1 0
0 F4

]
,

where F1 is an isomorphism M1,M2,N1,N2 are closed submodules of HA
and N1 is finitely generated. Similarly, we say that F is a lower
semi-A-Fredholm operator if all the above conditions hold except that in
this case we assume that N2 ( and not N1 ) is finitely generated.



Set

MΦ+(HA) = {F ∈ Ba(HA) | F is upper semi-A-Fredholm },

MΦ−(HA) = {F ∈ Ba(HA) | F is lower semi-A-Fredholm },

MΦ(HA) = {F ∈ Ba(HA) | F is A-Fredholm operator on HA}. Then
obviouslyMΦ(HA) ⊆MΦ+(HA) ∩MΦ−(HA) . We are going to show
later in this section that actually "=" holds.
Notice that if M,N are two arbitrary Hilbert modules C∗-modules, the
definition above could be generalized to the classesMΦ+(M,N) and
MΦ−(M,N).



We let now K∗(HA) denote the closed, two sided ideal of adjointable
compact operators in Ba(HA), see [MT].
Theorem
Let F ∈ Ba(HA). The following statements are equivalent
1) F ∈MΦ+(HA)
2) There exists D ∈ Ba(HA) such that DF = I + K for some
K ∈ K∗(HA)

Theorem
Let D ∈ Ba(HA). Then the following statements are equivalent:
1) D ∈MΦ−(HA)
2) There exist F ∈ Ba(HA),K ∈ K∗(HA) s.t. DF = I + K



Corollary
MΦ(HA) =MΦ+(HA) ∩MΦ−(HA)

Corollary
MΦ+(HA) andMΦ−(HA) are semigroups under multiplication.

Corollary
Let F ∈ Ba(M,N). Then F ∈MΦ+(M,N) if and only if
F ∗ ∈MΦ−(N,M). Moreover, if F ∈MΦ(HA), then F ∗ ∈MΦ(HA)
and indexF = −indexF ∗.



Lemma
Let M be a closed submodule of HA s.t. HA = M⊕̃N for some finitely
generated submodule N. Let F ∈ Ba(HA) , JM be the inclusion map
from M into HA and suppose that FJM ∈MΦ+(M,HA). Then
F ∈MΦ+(HA).

Lemma
Suppose that D,F ∈ Ba(HA) DF ∈MΦ+(HA) and ImF is closed. Then
DJImF ∈MΦ+(ImF ,HA).



Lemma
Let F ∈MΦ(HA) and suppose that there are two decompositions

HA = M1⊕̃N1
F−→ M2⊕̃N2 = HA

HA = M ′1⊕̃N ′1
F−→ M ′2⊕̃N ′2 = HA

with respect to which F has matrices[
F1 0
0 F4

]
,

[
F ′1 0
0 F ′4

]
,

respectively, where F1,F1
′ are isomorphisms, N1,N1

′,N2 are closed,
finitely generated and N2

′ is just closed. Then N2
′ is finitely generated

also.



Lemma
Let F ∈MΦ(HA) and let

HA = M1⊕̃N1
F−→ M2⊕̃N2 = HA

be a decomposition with respect to which F has the matrix[
F1 0
0 F4

]
,

where F1 is an isomorphism, N2 is finitely generated and N1 is just
closed. Then N1 is finitely generated.



Lemma
Let F ∈MΦ+(HA) and suppose that ImF is closed. If

HA = M1⊕̃N1
F−→ M2⊕̃N2 = HA

HA = M ′1⊕̃N ′1
F−→ M ′2⊕̃N ′2 = HA

are twoMΦ+ decomposition for F then F (N1),F (N ′1) are closed finitely
generated projective modules and

[N1]− [F (N1)] = [N ′1]− [F (N ′1)]

in K (A).



Lemma
Let F ∈MΦ+(HA). Then there is no sequence of unit vectors {xn} in
HA such that ϕ(xn)→ 0 in A for all ϕ ∈ H ′A and limn→∞ ‖ Fxn ‖= 0.



Generalized Schechter characterization of MΦ+ operators on HA

Lemma
Let F ∈ Ba(M,N) Then F ∈MΦ+(M,N) if and only if there exists a
closed, orthogonally complementable submodule M ′ ⊆ M such that F|M′
is bounded below and M ′⊥ is finitely generated.

Lemma
Let F ∈ Ba(HA) \MΦ+(HA). Then there exists a sequence {xk} ⊆ HA
and an increasing sequence {nk} ⊆ N s.t.

xk ∈ Lnk \ Lnk−1 for all k ∈ N, ‖ xk ‖≤ 1 for all k ∈ N

and
‖ Fxk ‖≤ 21−2k for all k ∈ N.



Openness of the set of semi-A-Fredholm operators on HA

Theorem
The setsMΦ+(HA) \MΦ(HA) andMΦ−(HA) \MΦ(HA) are open in
Ba(HA), where Ba(HA) is equipped with the norm topology.

Corollary
If F ∈ Ba(HA) belongs to the boundary ofMΦ(HA) in Ba(HA) then
F /∈MΦ±(HA).

Corollary
Let f : [0, 1]→ Ba(HA) be continuous and assume that
f ([0, 1]) ⊆MΦ±(HA). Then the following statments hold:
1) If f (0) ∈MΦ+(HA) \MΦ(HA), then f (1) ∈MΦ+(HA) \MΦ(HA)
2) If f (0) ∈MΦ−(HA) \MΦ(HA), then f (1) ∈MΦ−(HA) \MΦ(HA)
3) If f (0) ∈MΦ(HA), then f (1) ∈MΦ(HA) and
indexf (0) = indexf (1).



MΦ−+ and MΦ+
− operators on HA

Definition
Let F ∈MΦ(HA). We say that F ∈ M̃Φ−+(HA) if there exists a
decomposition

HA = M1⊕̃N1
F−→ M2⊕̃N2 = HA

with respect to which F has the matrix[
F1 0
0 F4

]
,

where F1 is an isomorphism, N1,N2 are closed, finitely generated and
N1 � N2, that is N1 is isomorphic to a closed submodule of N2. We
define similarly the class M̃Φ+

−(HA), the only difference in this case is
that N2 � N1. Then we set

MΦ−+(HA) = (M̃Φ−+(HA)) ∪ (MΦ+(HA) \MΦ(HA))

and
MΦ+

−(HA) = (M̃Φ+
−(HA)) ∪ (MΦ−(HA) \MΦ(HA))



Further, we defineMΦ0(HA) to be the set of all F ∈MΦ(HA) for
which there exists anMΦ-decomposition

HA = M1⊕̃N1
F−→ M2⊕̃N2 = HA,

where N1 ∼= N2.

Lemma
Suppose that K (A) satisfies "the cancellation property". If
F ∈ M̃Φ−+(HA), then for any decomposition

HA = M ′1⊕̃N ′1
F−→ M ′2⊕̃N ′2 = HA

with respect to which F has the matrix[
F ′1 0
0 F ′4

]
,

where F ′1 is an isomorphism, N ′1,N ′2 are finitely generated, we have
N ′1 � N ′2. Similarly N ′1 � N ′2 if F ∈ M̃Φ+

−(HA).



Proposition
Let K ∈ K∗(HA) and T ∈ Ba(HA). Suppose that T is invertible and
that K (A) satisfies the cancellation property.Then the equation
(T + K )x = y has a solution for every y ∈ HA if and only if T + K is
bounded below. In this case the solution of the equation above is unique.
Lemma
M̃Φ−+(HA) and M̃Φ+

−(HA) are semigroups under multiplication.

Lemma
MΦ−+(HA) andMΦ+

−(HA) are semigroups under multiplication.

Lemma
M̃Φ−+(HA) and M̃Φ+

−(HA) are open.



Definition
Let F ∈MΦ+(HA). We say that F ∈MΦ−+

′(HA) if there exists a
decomposition

HA = M1⊕̃N1
F−→ M2⊕̃N2 = HA

with respect to which

F =
[

F1 0
0 F4

]
,

where F1 is an isomorphism, N1 is closed, finitely generated and
N1 � N2. Similarly, we define the classMΦ+

−
′(HA), only in this case

F ∈MΦ−(HA), N2 is finitely generated and N2 � N1.

Proposition

M̃Φ−+(HA) =MΦ−+
′(HA)∩MΦ(HA),M̃Φ+

−(HA) =MΦ+
−
′(HA)∩MΦ(HA).



Lemma
The setsMΦ+

−
′(HA) andMΦ−+

′(HA) are open. Moreover, if
F ∈MΦ−+

′(HA) and K ∈ K∗(HA), then

(F + K ) ∈MΦ−+
′(HA).

If F ∈MΦ+
−
′(HA) and K ∈ K∗(HA), then

(F + K ) ∈MΦ+
−
′(HA).

Lemma
The setsMΦ+(HA) \MΦ−′+ (HA),MΦ−(HA) \MΦ+′

− (HA) and
MΦ(HA) \MΦ0(HA) are open.



Theorem
Let F ∈ Ba(HA). The following statements are equivalent
1) F ∈MΦ−+

′(HA)
2) There exist D ∈ Ba(HA),K ∈ K∗(HA) such that D is bounded below
and F = D + K

Proposition
1)F ∈MΦ−+

′(HA)⇔ F ∗ ∈MΦ+
−
′(HA)

2) F ∈ M̃Φ−+(HA)⇔ F ∗ ∈ M̃Φ+
−(HA)

3) F ∈MΦ−+(HA)⇔ F ∗ ∈MΦ+
−(HA)

Definition
We set Ma(HA) = {F ∈ Ba(HA) | F is bounded below} and
Qa(HA) = {D ∈ Ba(HA) | D is surjective }.



Lemma
Let Ba(HA). Then F ∈ Ma(HA) if and only if F ∗ ∈ Qa(HA).

Corollary
Let D ∈ Ba(HA). The following statements are equivalent:
1) D ∈MΦ+

−
′(HA)

2) There exist Q ∈ Qa(HA),K ∈ K∗(HA) s.t. D = Q + K .

Theorem
Let Ba(HA). Then the following statements are equivalent:
1) F ∈MΦ0(HA)
2) There exist an invertible D ∈ Ba(HA) and K ∈ K∗(HA) such that
F = D + K .



On non-adjointable semi-Fredholm operators over a C∗-algebra

Non adjointable semi-A-Fredholm operators on HA

Definition
Let F ∈ B(HA), where B(HA) is the set of all bounded, ( not necessarily
adjointable ) A-linear operators on HA. We say that F is an upper
semi-A-Fredholm operator if there exists a decomposition

HA = M1⊕̃N1
F−→ M2⊕̃N2 = HA

with respect to which F has the matrix[
F1 0
0 F4

]
,

where F1 is an isomorphism M1,M2,N1,N2 are closed submodules of HA
and N1 is finitely generated. Similarly, we say that F is a lower
semi-A-Fredholm operator if all the above conditions hold except that in
this case we assume that N2 ( and not N1 ) is finitely generated.



Set

M̂Φl (HA) = {F ∈ B(HA) | F is upper semi-A-Fredholm },

M̂Φr (HA) = {F ∈ B(HA) | F is lower semi-A-Fredholm },

M̂Φ(HA) = {F ∈ B(HA) | F is A-Fredholm operator on HA}.
Then, by definition we have

MΦ+(HA) = M̂Φl (HA) ∩ Ba(HA),

MΦ−(HA) = M̂Φr (HA) ∩ Ba(HA)
and

MΦ(HA) = M̂Φ(HA) ∩ Ba(HA).



Definition
[IM] An A-operator K : HA → HA is called a finitely generated
A-operator if it can be represented as a composition of bounded
A-operators f1 and f2:

K : HA f1−→ M f2−→ HA,

where M is a finitely generated Hilbert C∗-module. The set
FG(A) ⊂ B(HA) of all finitely generated A-operators forms a two sided
ideal. By definition, an A-operator K is called compact if it belongs to
the closure

K (HA) = FG(A) ⊂ B(HA),
which also forms two sided ideal.



Clearly, any operator F ∈ M̂Φl (HA) is also left invertible in
B(HA)/K (HA), whereas any operator G ∈ M̂Φr (HA) is right invertible
B(HA)/K (HA). The converse also holds:

Proposition
If F is left invertible in B(HA)/K (HA), then F ∈ M̂Φl (HA) . If F is
right invertible in B(HA)/K (HA), then F ∈ M̂Φr (HA).
Corollary
The sets M̂Φl (HA) and M̂Φr (HA) are closed under multiplication.



Inspired by definition of externel (Noether) decomposition given in [IM],
we give the following definition.
Definition
We say that F has an upper external (Noether) decomposition if there
exist two closed C∗-modules X1,X2 and two bounded A-operators E2,E3,
where X2 finitely generated, the operator F0 given by the operator matrix(
F E2
E3 0

)
with respect to the decomposition HA ⊕ X1

F0−→ HA ⊕ X2 is
invertible and ImE2 is complementable in HA. Similarly, we say that F
has a lower external (Noether) decomposition if the above decomposition
exists and F0 is invertible, only in this case we assume that X1 is finitely
generated and that ker E3 is complementable in HA.

Proposition
A bounded A-linear operator F : HA −→ HA belongs to M̂Φl (HA) if
and only if it admits an upper external (Noether) decomposition.
Similarly, F belongs to M̂Φr (HA) if and only if F admits a lower
external (Noether) decomposition.



Lemma
Let F ,G ∈ B(HA) and suppose that GF ∈ M̂Φ(HA). Then there exist
decompositions

HA = M1 ⊕ N1
F−→ HA = M3 ⊕ N3

G−→ HA = M2 ⊕ N2

with respect to which F ,G have matrices
(
F1 0
0 F4

)
,

(
G1 G2
0 G4

)
,

respectively, where F1,G1 are isomorphisms and N1,N2 are finitely
generated.

Lemma
Let V be a finitely generated Hilbert submodule of HA, F ∈ B(HA) and
suppose that PV⊥F ∈ M̂Φ(HA,V⊥), where PV⊥ denotes the orthogonal
projection onto V⊥ along V. Then F ∈ M̂Φr (HA).
Lemma
Let G ,F ∈ B(HA), suppose that ImG is closed. Assume in addition that
kerG and ImG are complementable in HA. If GF ∈ M̂Φr (HA), then

uF ∈ M̂Φr (HA,N),

where kerG⊕̃N = HA and u denotes the projection onto N along kerG .



Lemma
Let F ∈ M̂Φ(HA) and suppose that

HA = M ′1⊕̃N1
′ F−→ M ′2⊕̃N ′2 = HA

is a decomposition with respect to which F has the matrix
[

F ′1 0
0 F ′4

]
,

where F ′1 is an isomorphism, N ′2 is finitely generated and N ′1 is just
closed. Then N ′1 is finitely generated.

Lemma
Let F ∈ B(HA). Then F admits an upper external (Noether)
decomposition with the property that X2 � X1 if and only if
F ∈MΦ−′+ (HA). Similarly, F admits a lower external (Noether)
decomposition with the property that X1 � X2 if and only if
F ∈MΦ−′+ (HA).



Recall now the definition of the clossesMΦ−+
′(HA) andMΦ+

−
′(HA). We

are going to keep this notion in the next results, but without assuming
the adjointability of operators.
Lemma
Let F ∈MΦ+′

− (HA). Then F + K ∈MΦ+′
− (HA) for all K ∈ K (HA).

Lemma
Let F ∈ B(HA) and suppose that

HA = M1⊕̃N1
F−→ M2⊕̃N2 = HA

is a decomposition w.r.t. which F has the matrix
[

F1 0
0 F4

]
, where F1

is an isomorphism. Then N1 = F−1(N2).

Lemma
Let F ∈MΦ−+

′(HA) and K ∈ K (HA). Then F + K ∈MΦ−+
′(HA).



Semi-Fredholm operators over W ∗-algebras

Proposition
Let F ∈ M̂Φl (HA) or F ∈MΦ+(HA). Then there exists a
decomposition.

HA = M0⊕̃M ′1⊕̃ ker F F−→ N0⊕̃N ′1⊕̃N ′1
′ = HA

w.r.t. which F has the matrix F0 0 0
0 F1 0
0 0 0


where F0 is an isomorphism, M ′1 and ker F are finitely generated.
Moreover M ′1 ∼= N ′1 If F ∈ M̂Φl (HA) and ImF is closed, then ImF is
complementable in HA.



In this case F has the matrix
[

F1 0
0 0

]
, w.r.t. the decomposition

HA = ker F 0⊕̃ ker F F−→ ImF ⊕̃ImF 0 = HA

where F1 is an isomorphism and ker F 0, ImF 0 denote the complements of
ker F , ImF respectively.

Proposition
If D ∈ M̂Φr (HA) and ImD is closed and complementable in HA, then
the decomposition given above exists for the operator D. In this case,
instead of kerD, we have that N ′′1 is finitely generated and N ′′1 is the
complement of ImD.



Lemma
If F ∈ M̂Φr (HA) \ M̂Φ(HA), ImF is closed and complementable, then
the complement of ImF is not finitely generated.

Theorem
Let F ∈ Ba(HA). Then F ∈MΦ+(HA) if and only if ker(F − K ) is
finitely generated for all K ∈ K∗(HA).
Moreover, F ∈MΦ−(HA) if and only if Im(F −K )⊥ is finitely generated
for all K ∈ K∗(HA).
Definition
Let F ∈ B(HA). We say that F ∈ M̂Φ+(HA) if there exist a closed
submodule M and a finitely generated submodule N s.t. HA = M⊕̃N
and F|M is bounded below.



Lemma
Let F ∈ B(HA). Then F ∈ M̂Φ+(HA) iff ker(F − K ) is finitely
generated for all K ∈ K∗(HA).

Set M̂Φ−(HA) = {G ∈ B(HA | there exists closed submodules M,N,M ′
of HA s.t. HA = M⊕̃N, N is finitely generated and G|M′ , is an
isomorphism onto M}.

Proposition
Let G ∈ M̂Φ−(HA). Then for every K ∈ K (HA) there exists an inner
product equivalent to the initial one and such that the orthogonal
complement of Im(G + K ) w.r.t this new inner product is finitely
generated.
Lemma
MΦ+(HA) = M̂Φ+(HA) ∩ Ba(HA),
MΦ−(HA) = M̂Φ−(HA) ∩ Ba(HA).



Proposition
Let F ,G ∈ M̂Φl (HA) with closed images and suppose that ImGF is
closed. Then ImF , ImG and ImGF are complementable in HA. Moreover,
if ImF 0, ImG0, ImGF 0 denote the complements of ImF , ImG , ImGF ,
respectively, then

ImGF 0 � ImF 0 ⊕ ImG0,

kerGF � kerG ⊕ ker F .
If F ,G ∈ M̂Φr (HA) and ImF , ImG , ImGF are closed, then the statement
above holds under additional assumption that ImF , ImG , ImGF are
complementable in HA.

Lemma
Let F ,D ∈ Ba(HA) and suppose that ImF , ImD and ImDF are closed.
Then

ImDF⊥ � ImF⊥ ⊕ ImD⊥

kerDF � kerD ⊕ ker F



Lemma
Let F ∈MΦ(M) be such that ImF is closed, where M is a Hilbert
W ∗-module. Then there exists an ε > 0 such that for every D ∈ Ba(M)
with ‖ D ‖< ε, we have

ker(F + D) � ker F , Im(F + D)⊥ � ImF⊥.

Definition
Let M be a countably generated Hilbert W ∗- module. For F ∈MΦ(M),
we say that F satisfies the condition (*) if the following holds:
1) ImF n is closed for all n
2) F (

∞⋂
n=1

Im(F n)) =
∞⋂

n=1
Im(F n)

Theorem
Let F ∈MΦ(M̃) where M̃ is countably generated Hilbert A-module and
suppose that F satisfies (*). Then there exists an ε > 0 such that, if
α ∈ Z (A) ∩ G(A) and ‖ α ‖< ε, then [ker(F − αI)] + [N1] = [ker F ] and
[Im(F − αI)⊥] + [N1] = [Im(F )⊥] for some fixed, finitely generated
closed submodule N1.



Theorem
Let M̃ be a Hilbert module over a C∗-algebra A , α ∈ C and
F ∈ Ba(HA). Suppose that α ∈ iso σ(F ) and assume either that
R(F − αI) is closed or that R(P0) is self dual and that A is a
W ∗-algebra, where P0 denotes the spectral projection corresponding to α
of the operator F. Then the following conditions are equivalent:
a) (F − αI) ∈MΦ±(M̃)
b)There exist closed submodules M,N ⊆ M̃ such that. (F − αI) has the
matrix [

(F − αI)1 0
0 (F − αI)4

]
w.r.t. the decomposition M̃ = M⊕̃N F−αI−→ M⊕̃N = M̃, where (F − αI)1
is an isomorphism and N is finitely generated. Moreover, if (F − αI) is
not invertible in B(M̃), then N(F − αI) 6= {0}.



On generalized A-Fredholm and A-Weyl operators

Definition
Let F ∈ Ba(HA).
1) We say that F ∈MΦgc(HA) if ImF is closed and in addition ker F
and ImF⊥ are self-dual.
2) We say that F ∈MΦgc

0 (HA) if ImF is closed and kerF ∼= ImF⊥ (here
we do not require the self-duality of kerF , ImF⊥).

Proposition
Let F ,D ∈MΦgc

0 (HA) and suppose that ImDF is closed. Then
DF ∈MΦgc

0 (HA).



Definition
Let M1, ...,Mn be Hilbert submodules of HA. We say that the sequence
0→ M1 → M2 → ...→ Mn → 0 is exact if for each k ∈ {2, ..., n − 1}
there exist closed submodules M ′k and M ′′k such that the following holds:
1) Mk = M ′k⊕̃M ′′k for all k ∈ {2, ..., n − 1};
2) M ′2 ∼= M1 and M ′′n−1

∼= Mn;
3) M ′′k ∼= M ′k+1 for all k ∈ {2, ..., n − 2}.

Lemma
Let F ,D ∈ Ba(HA) and suppose that ImF , ImD, ImDF are closed. Then
the sequence

0→ ker F → kerDF → kerD → ImF⊥ → ImDF⊥ → ImD⊥ → 0

is exact.

Lemma
Let F ,D ∈MΦgc(HA) and suppose that ImDF is closed. Then
DF ∈MΦgc(HA).



Lemma
Let F ∈ Ba(HA). Then F ∈MΦgc(HA) if and only if F ∗ ∈MΦgc(HA).

Proposition
Let F ,D ∈ Ba(HA), suppose that ImF , ImD are closed and
DF ∈MΦgc(HA). Then the following statements hold:
a) D ∈MΦgc(HA)⇔ F ∈MΦgc(HA);
b) if kerD is self-dual, then F ,D ∈MΦgc(HA);
c) if ImF⊥ is self-dual, then F ,D ∈MΦgc(HA).
Lemma
Let F ∈ Ba(HA) and suppose that ImF is closed. Moreover, assume that
there exist operators D,D′ ∈ Ba(HA) with closed images such that
D′F ,FD ∈MΦgc(HA). Then F ∈MΦgc(HA).



Definition
Let X ,Y be Banach spaces and T ∈ B(X ,Y ). Then T is called a regular
operator if T (X ) is closed in Y and in addition T−1(0) and T (X ) are
complementable in X and Y , respectively.

Definition
[DDj2] Let X ,Y be Banach spaces and T ∈ B(X ,Y ). Then we say that
T is generalized Weyl, if T (X ) is closed in Y , and T−1(0) and Y /T (X)
are mutually isomorphic Banach spaces.

Proposition
Let X ,Y ,Z be Banach spaces and let T ∈ B(X ,Y ),S ∈ B(Y ,Z ).
Suppose that T ,S,ST are regular, that is T (X ),S(Y ),ST (X ) are closed
and T ,S,ST admit generalized inverse. If T and S are generalized Weyl
operators, then ST is a generalized Weyl operator.



Definition
Let X ,Y be Banach spaces and T ∈ B(X ,Y ) be a regular operator.
Then T is said to be a generalized upper semi-Weyl operator if
kerT � Y \ R(T ). Similarly T is said to be a generalized lower
semi-Weyl operator if Y \ R(T ) � kerT .

Lemma
Let T ∈ B(X ,Y ) S ∈ B(Y ,Z ) and suppose that S,T ,ST are regular. If
S and T are upper (or lower) generalized semi-Weyl operators, then ST
is an upper (or respectively lower) generalized semi-Weyl operator.

Definition
For two Hilbert C∗− modules M and M ′, We set M̃Φgc

0 (M,M ′) to be
the class of all closed range operators F ∈ Ba(M,M ′) such that there
exist finitely generated Hilbert submodules N, Ñ with the property that
N ⊕ ker F ∼= Ñ ⊕ ImF⊥.



Lemma
Let T ∈ M̃Φgc

0 (HA) and F ∈ Ba(HA) s.t. ImF is closed, finitely
generated. Suppose that Im(T + F ),T (ker F ),P(kerT ),P(ker(T + F ))
are closed, where P denotes the orthogonal projection onto ker F⊥. Then
T + F ∈ M̃Φgc

0 (HA).

Corollary
Let T ∈MΦgc

0 (HA) and suppose that kerT ∼= ImT⊥ ∼= HA. If
F ∈ Ba(HA) satisfies the assumptions of Lemma 64, then
ker(T + F ) ∼= Im(T + F )⊥ ∼= HA. In particular, T + F ∈MΦgc

0 (HA).

Lemma
Let F ∈ Ba(M) where M is a Hilbert C∗-module and suppose that ImF
is closed. Then the following statements hold:
a) F ∈MΦ+(M), if and only if ker F is finitely generated;
b) F ∈MΦ−(M), if and only if ImF⊥ is finitely generated.

Lemma
Let T ∈MΦ(HA) and suppose that ImT is closed. Then
T ∈ M̃Φgc

0 (HA).



On semi-A-B-Fredholm operators

Definition
Let F ∈ Ba(HA). Then F is said to be an upper semi-A-B-Fredhom
operator if there exists some n ∈ N such that ImFm is closed for all
m ≥ n and F|ImFn is an upper semi-A-Fredhom operator.

Similarly, F is said to be a lower semi-A-B-Fredholm operator if the
conditions above hold except that in this case we assume that F|ImFn is a
lower semi-A-Fredhom operator and not an upper semi-A-Fredhom
operator.



Proposition
If F is an upper semi-A-B-Fredholm operator (respectively, a lower
semi-A-B-Fredholm operator) and n ∈ N is such that ImFm is closed for
all m ≥ n and F|ImFn is an upper semi-A-Fredholm operator (respectively,
a lower semi-A-Fredholm operator), then F|ImFm is an upper
semi-A-Fredholm operator (respectively, a lower semi-A-Fredholm
operator) for all m ≥ n. Moreover, if F is an A-B-Fredholm operator and
n ∈ N is such that ImF n ∼= HA, ImFm is closed for all m ≥ n and F|ImFn is
an A-Fredholm operator, then ImFm ∼= HA F|ImFm is an A Fredholm
operator and index F|ImFm = indexF|ImFn for all m ≥ n.



Lemma
Let F ∈MΦ(HA), let P ∈ B(HA) be a projection such that N(P) is
finitely generated. Then PF|R(P) ∈MΦ(R(P)) and indexPF|R(P) = indexF .

Theorem
Let T be an A-B-Fredholm operator on HA and suppose that m ∈ N is
such that T|ImTm is an A-Fredholm operator and ImT n is closed for all
n ≥ m. Let F be in the linear span of elementary operators and suppose
that Im(T +F )n is closed for all n ≥ m. Finally, assume that ImTm ∼= HA
and that Im(F̃ ),Tm(ker F̃ ) are closed, where F̃ = (T + F )m − Tm. Then
T + F is an A-B-Fredholm operator and indexT + F = indexT .

Proposition
Let F ∈ B(HA). If n ∈ N is s.t. ImF n closed, ImF n ∼= HA, F|ImFn is upper
semi-A-Fredholm and ImFm is closed for all m > n, then F|ImFm is upper
semi-A- Fredholm and ImFm ∼= HA for all m > n. If n ∈ N is s.t. ImF n is
closed, ImF n ∼= HA, ImFm is closed and complementable in ImF n for all
m > n and F|ImFn is lower semi-A-Fredholm, then F|ImFm is lower
semi-A-Fredholm for all m > n and ImFm ∼= HA for all m > n.



On closed range operators over C∗-algebras.

Lemma
Let F ,D ∈ Ba(HA) and suppose that ImF , ImD are closed. If
ImF + kerD is closed, then ImF + kerD is orthogonally complementable.

Corollary
Let F ,D ∈ Ba(HA) and suppose that ImF , ImD are closed. Then ImDF
is closed if and only if ImF + kerD is orthogonally complementable.

Definition
Given two closed submodules M,N of HA, we set

c0(M,N) = sup{‖< x , y >‖| x ∈ M, y ∈ N, ‖ x ‖, ‖ y ‖≤ 1}.

We say then that the Dixmier angle between M and N is positive if
c0(M,N) < 1.

Lemma
Let M,N be two closed, submodules of HA, assume that M orthogonally
complementable and suppose that M ∩N = {0}. Then M + N is closed if
the Dixmier angle between M and N is positive.



Corollary
Let F ,D ∈ Ba(HA) and suppose that ImF , ImD are closed. Set
M = ImF ∩ (kerD ∩ ImF )⊥, M ′ = kerD ∩ (kerD ∩ ImF )⊥. Assume that
kerD ∩ ImF is orthogonally complementable. Then ImDF is closed if the
Dixmier angle betwen M ′ and ImF , or equivalently the Dixmier angle
between M and kerD is positive.

Lemma
Let M and N be two closed submodules of HA. Suppose that M and N
are orthogonally complementable in HA and that M ∩ N = {0}. Then
M + N is closed if and only if P|N is bounded below, where P denotes the
orthogonal projection onto M⊥.



Corollary
Let F ,D ∈ Ba(HA) and suppose that ImF , ImD are closed. Then ImDF
is closed if and only if kerD ∩ ImF is orthogonally complementable and
P|ImF∩(ker D∩ImF )⊥

is bounded below, or equivalently Q|ker D∩(ker D∩ImF )⊥
is

bounded below, where P and Q denote the orthogonal projections onto
kerD⊥ and ImF⊥, respectively.

Lemma
Let F ,G ∈ M̂Φl (HA) and suppose that ImG and ImF are closed. Then
ImGF is closed if and only if ImF + kerG is closed and complementable.
If F ,G ∈ M̂Φr (HA) and ImG , ImF are closed, then the statment above
holds under additional assumtion that ImG , ImF are complementable.
Moreover, if F ,G ∈ M̂Φl (HA) and ImF , ImG are closed and if the
Dixmier angle between kerG and ImF ∩ (kerG ∩ ImF )0 is positive, or
equivalently the Dixmier angle berween ImF and kerG ∩ (kerG ∩ ImF )0

is positive, where (kerG ∩ ImF )0 denotes the complement of
kerG ∩ ImF , then ImGF is closed.



Proposition
Let F ∈ Ba(HA). Then the following statements are equivalent:
1) ImF is closed in HA
2) ImLF is closed in Ba(HA)
3) ImRF is closed in Ba(HA).
Lemma
Let F ∈ Ma(HA). If there exists a sequence {Fn} ⊆ MΦ(HA)) of
constant index such that Fn → F , then F ⊂MΦ(HA) and
indexF = indexFn for all n.

Lemma
Let F ∈ B(HA) and suppose that ImF is closed. Then F is a regular
operator with the property that ImF 0, ker F are finitely generated if and
only if F ∈ M̂Φ(HA).



Proposition
Let F ∈ B(HA) be bounded below and suppose that there exists a
sequence {Fn} ⊆ M̂Φ(HA) of constant index and such that Fn → F .
Suppose also that for each n there exists an M̂Φ− decomposition

HA = M(n)
1 ⊕̃N

(n)
1

Fn−→ M(n)
2 ⊕̃N

(n)
2 = HA

such that the sequence of projections {un} is uniformly bounded, where
un denotes the projection onto N(n)

2 along M(n)
2 for each n. Then

F ∈ M̂Φ(HA) and indexFn = indexF for all n.
Lemma
Let X ,Y be Banach spaces and F ∈ M(X ,Y ). Suppose that there exists
a sequence {Fn} of regular operators in B(X ,Y ) such that Fn → F .
Moreover, assume that there exists a sequence of projections {un} in
B(Y ) which is uniformly bounded in the norm and such that
Im(I − un) = ImFn for all n. Then, F is a regular operator, i.e. ImF is
complementable in Y .



On generalized spectra of operators over C∗-algebras

Question: If A is a C∗-algebra, then for α ∈ A could we define in a
suitable way the operator αI on HA and the generalized spectra in A of
operators in Ba(HA) by setting for every F ∈ Ba(HA)
σA(F ) = {α ∈ A | F − αI is not invertible inBa(HA)}?
Answer: For a ∈ A we may let αI be the operator on HA given by
αI(x1, x2, · · · ) = (αx1, αx2, · · · ). It is straightforward to check that αI is
an A-linear operator on HA. Moreover, αI is bounded and ‖ αI ‖=‖ α ‖ .
Finally, αI is adjointable and its adjoint is given by (αI)∗ = α∗I.
We introduce then the following notion:
σA(F ) = {α ∈ A | F − αI is not invertible inBa(HA)};
σAp (F ) = {α ∈ A | ker(F − αI) 6= {0}};
σArl (F ) = {α ∈ A | F − αI is bounded below, but not surjective on HA)};
σAcl (F ) = {α ∈ A | Im(F − αI) is not closed }. (where F ∈ Ba(HA))).



Proposition
Let A be a unital C∗-algebra, {ek}k∈N denote the standard orthonormal
basis of HA and S be the operator defined by Sek = ek+1, k ∈ N, that is
S is unilateral shift and S∗ek+1 = ek for all k ∈ N. If A = L∞((0, 1)) or
if A = C([0, 1]), then σA(S) = {α ∈ A | inf |α| ≤ 1}, (where in the case
when A = L∞((0, 1)), we set inf |α| = inf{C > 0 | µ(|α|−1[0,C ]) > 0} =
sup{K > 0 | |α| > K ) a.e. on (0, 1)}). Moreover, σAp (S) = ∅ in both
cases.
Corollary
Let A be a commutative unital C∗-algebra. Then
σA(S) = A \ G(A) ∪ {α ∈ G(A)|(α−1, α−2, · · · , α−k , · · · ) /∈ HA}.



Proposition
Let α ∈ A. We have
1. If αI − F is bounded below, and F ∈ Ba(HA) then α ∈ σArl (F ) if and
only if α∗ ∈ σAp (F ∗).
2. If F ,D ∈ Ba(HA) and D = U∗FU for some unitary operator U, then
σA(F ) = σA(D), σAp (F ) = σAp (D), σAcl (F ) = σAcl (D) and
σArl (F ) = σArl (D).

Proposition
Let U ∈ Ba(HA) be unitary. Then σA(U) ⊆ {α ∈ A |‖ α ‖≥ 1} and
σA(U) ∩ G(A) ⊆ {α ∈ G(A) |‖ α−1 ‖, ‖ α ‖≥ 1}.



Consider again the orthonormal basis {ek}k∈N for HA. We may
enumerate this basis by indexes in Z. Then we get orthonormal basis
{ej}j∈Z for HA and we can consider bilateral shift operator V w.r.t. this
basis i.e. Vek = ek+1 all k ∈ Z, which gives V ∗ek = ek−1 for all k ∈ Z.

Proposition
Let V be bilateral shift operator. Then the following holds
1) If A = C([0, 1]), then σA(V ) = {f ∈ A | |f |([0, 1]) ∩ {1} 6= ∅}
2) If A = L∞([0, 1]), then
σA(V ) = {f ∈ A | µ(|f |−1((1− ε, 1 + ε)) > 0 ∀ε > 0}. In both cases
σAp (V ) = ∅.

Lemma
If F is a self-adjoint operator on HA, then σAp (F ) is a self-adjoint subset
of A, that is α ∈ σAp (F ) if and only if α∗ ∈ σAp (F ) in the case when A is
a commutative C∗-algebra.

Lemma
Let A be a commutative C∗-algebra. If F is a self-adjoint operator on HA
and α ∈ A \ σAp (F ), then R(F − αI)⊥ = {0}. Hence, if α ∈ A \ σAp (F )
and in addition F − αI is bounded below, then α ∈ A \ σA(F ).



Lemma
Let A be a commutative unital C∗-algebra and F be a normal operator
on HA, that is FF ∗ = F ∗F . If α1, α2 ∈ σAp (F ) and α1 − α2 is invertible
in A, then ker(F − α1I) ⊥ ker(F − α2I).

Lemma
Let A be a commutative C∗-algebra and F be a normal operator on HA.
Then σArl (F ) = ∅, hence σA(F ) = σAp (F ) ∪ σAcl (F ).

Lemma
Let F ∈ Ba(HA). Then the following statements are equivalent:
a) α ∈ A \ σa(F )
b) α ∈ A \ σl (F )
c) α∗ ∈ A \ σr (F ∗)
d) Im(α∗I − F ∗) = HA.



Next, for F ∈ Ba(HA), set σAa (F ) = {α ∈ A | F − αI is not bounded
below }.

Proposition
For F ∈ Ba(HA), we have that σAa (F ) is a closed subset of A in the
norm topology and σA(F ) = σAa (F ) ∪ σArl (F ).

Proposition
If F ∈ Ba(HA), then ∂σA(F ) ⊆ σAa (F ). Moreover, if M is a closed
submodule of HA and invariant with respect to F , and F0 = F|M , then we
have ∂σA(F0) ⊆ σAa (F ), σA(F0) ∩ σA(F ) = σArl (F0).



Definition
Let F ∈ Ba(HA). We set

σAew (F) = {α ∈ A | (F− αI) /∈MΦ0(HA)},

σAeα(F) = {α ∈ A | (F− αI) /∈MΦ+(HA)},
σAeβ(F) = {α ∈ A | (F− αI) /∈MΦ−(HA)},

σAek(F) = {α ∈ A | (F− αI) /∈MΦ+(HA) ∪MΦ−(HA)},
σAef (F) = {α ∈ A | (F− αI) /∈MΦ(HA)}.



Definition
We set msΦ(F ) = inf{‖ α ‖| α ∈ A,F − αI /∈MΦ(HA)},

ms(F ) = inf{‖ α ‖| α ∈ A,F − αI /∈ (MΦ+(HA) ∪MΦ−(HA))},

ms+(F ) = inf{‖ α ‖| α ∈ A,F − αI /∈MΦ+(HA)},
ms−(F ) = inf{‖ α ‖| α ∈ A,F − αI /∈MΦ−(HA)}.

It follows that msΦ(F ) = max{ε ≥ 0 |‖ α ‖< ε⇒ F − αI ∈MΦ(HA)},

ms+(F ) = max{ε ≥ 0 |‖ α ‖< ε⇒ F − αI ∈MΦ+(HA)},

ms−(F ) = max{ε ≥ 0 |‖ α ‖< ε⇒ F − αI ∈MΦ−(HA)},
ms(F ) = max{ε ≥ 0 |‖ α ‖< ε⇒ F − αI ∈ (MΦ+(HA) ∪MΦ−(HA))},
it follows that msΦ(F ) > 0⇔ F ∈MΦ(HA),

ms+(F ) > 0⇔ F ∈MΦ+(HA),ms−(F ) > 0⇔ F ∈MΦ−(HA),

ms(F ) > 0⇔ F ∈ (MΦ+(HA) ∪MΦ−(HA)), it follows that
ms+(F ) = ms−(F ∗),msΦ(F ) = msΦ(F ∗),ms(F ) = ms(F ∗).



Lemma
Let F ∈ B(HA). If ms+(F ) > 0 and ms−(F ) > 0, then
ms+(F ) = ms−(F ).

Lemma
Let F ∈ B(HA). Then
1) msΦ(F ) = min{ms+(F ),ms−(F )}
2) ms(F ) = max{ms+(F ),ms−(F )}.

Lemma
Let F ∈ B(HA), where A be a W ∗-algebra and suppose that K (A)
satisfies the cancellation property. Then
σA(F ) = σAew (F ) ∪ σAp (F ) ∪ σAcl (F ).



Lemma
Let now A be an arbitrary C∗-algebra. For F ∈ Ba(HA) set
σAewgc(F ) = {α ∈ A | (F − αI) /∈MΦgc

0 (HA)}. Then
σA(F ) = σAewgc(F ) ∪ σAp (F ).

Lemma
Let F ∈ Ba(HA) and supppose K (A) satisfies the cancellation property.
Then σA(F ) = σAew (F ) ∪ σAp (F ) ∪ σAcl (F ).

Proposition
If F ∈ Ba(HA) then the components of A \ (σAeα(F ) ∩ σAeβ(F )) are either
completely contained inMΦ+(F ) \MΦ(F ) or inMΦ+(F ) \MΦ(F ) or
index (F − αI) is constant on them.
Lemma
Let F ∈ Ba(HA). If α ∈ ∂σA(F )\ (σAeα(F )∩σAeβ(F )), then α ∈MΦ0(F ).



Let now M̃Φ0(HA) be the set of all F ∈ Ba(HA) such that there exists a
decomposition

HA = M1⊕̃N1
F−→ M2⊕̃N2 = HA

w.r.t. which F has the matrix
[

F1 0
0 F4

]
, where F1 is an isomorphism,

N1,N2 are finitely generated and

N⊕̃N1 = N⊕̃N2 = HA

for some closed submodule N ⊆ HA.
Notice that this implies that F ∈MΦ(HA) and N1 ∼= N2 , so that index
F = [N1]− [N2] = 0. Hence M̃Φ0(HA) ⊆MΦ0(HA).
Let P(HA) = {P ∈ B(HA) | P is a projection and N(P) is finitely
generated}
and let

σAeW(F) = {α ∈ Z (A) | (F− αI) /∈ M̃Φ0(HA)}
for F ∈ Ba(HA).



Theorem
Let F ∈ Ba(HA) . Then

σAeW(F) = ∩{σA(PF|R(P)
) | P ∈ P(HA)}

where
σA(PF|R(P)

) = {α ∈ Z (A) | (PF− αI)|R(P)
is not invertible in B(R(P))}.

Lemma
M̃Φ0(HA) is open in Ba(HA).



We let now M̂Φ
−
+(HA) be the space of all F ∈ Ba(HA) such that there

exists a decomposition

HA = M1⊕̃N1
F−→ M2⊕̃N2 = HA,

w.r.t. which F has the matrix
[

F1 0
0 F4

]
, where F1 is an isomorphism,

N1 is finitely generated and such that there exist closed submodules
N ′2,N where N ′2 ⊆ N2,N ′2 ∼= N1,
HA = N⊕̃N1 = N⊕̃N ′2 and the projection onto N along N ′2 is
adjointable.
Then we set

σAeã(F) := {α ∈ Z (A) | (F− αI) /∈ M̂Φ
−
+(HA)}.

Theorem
Let F ∈ Ba(HA). Then σAeã(F) = ∩{σAa (PF|R(P)

) | P ∈ Pa(HA)} where
σAa (PF|R(P)

) is the set of all α ∈ Z (A) s.t. (PF− αI)|R(P)
is not bounded

below on R(P) and Pa(HA) = P(HA) ∩ Ba(HA).



Definition
We set M̂Φ

+
−(HA) to be the set of all D ∈ Ba(HA) such that there

exists a decomposition

HA = M ′1⊕̃N ′1
D−→ M ′2⊕̃N ′2 = HA

w.r.t. which D has the matrix
[

D1 0
0 D4

]
, where D1 is an isomorphism,

N ′2 is finitely generated and such that HA = M ′1⊕̃N⊕̃N ′2 for some closed
submodule N, where the projection onto M ′1⊕̃N along N ′2 is adjointable.
Then we set

σAed̃ (D) = {α ∈ Z (A)) | (D− αI) /∈ M̂Φ
+
−(HA)}

and for P ∈ Pa(HA) we set
σAd (PD|R(P) ) = {α ∈ Z (A)) | (PD− αI)|R(P) is not onto R(P)}.

Theorem
Let D ∈ Ba(HA). Then

σAed̃ (D) =
⋂
{σAd (PD|R(P) ) | P ∈ Pa(HA)}



Definition
We let ̂̂MΦ

−

+(HA) be the set of all F ∈ B(HA) such that there exists an
MΦ+-decomposition for F

HA = M1⊕̃N1
F−→ M2⊕̃N2 = HA,

and closed submodules N,N ′2 with the property that N1 is isomorphic to
N ′2,N ′2 ⊆ N2 and

HA = N⊕̃N1 = N⊕̃N ′2.

Theorem
For F ∈ B(HA) we have

σAeã0(F ) = ∩{σAa0(PF|R(P) ) | P ∈ P(HA)},

where σAa0(PF|R(P) ) = {α ∈ Z (A) | (PF − αI)|R(P) is not bounded below
on R(P) or R(PF − αP) is not complementable in R(P)}.



Definition
We set ̂̂MΦ

+

−(HA) to be the set of all G ∈ B(HA) such that there exists
anMΦ−-decomposition for G

HA = M ′1⊕̃N1
′ G−→ M ′2⊕̃N ′2 = HA,

and a closed submodule N with the property that HA = M ′1⊕̃N⊕̃N2
′.

Theorem
For G ∈ B(HA)} we have

σAed̃0(G) = ∩{σAd0(PG|R(P) ) | P ∈ P(HA)},

where σAd0(PG|R(P) ) = {α ∈ Z (A) | R(P) does not split into the
decomposition R(P) = Ñ⊕̃ ˜̃N with the property that PG|Ñ is an
isomorphism onto R(P)}.



The boundary of several kinds of Fredholm spectra in A

Theorem
Let F ∈ Ba(HA). Then the following inclusions hold:

∂σAew (F) ⊆ ∂σAef (F) ⊆ ∂σAeβ(F)
∂σAeα(F) ⊆ ∂σ

A
ek(F).

Theorem
Let F ∈ Ba(HA). Then

∂σAew (F) ⊆ ∂σAeã(F) ⊆ ∂σAea(F)

Moreover, ∂σAea(F) ⊆ ∂σAeα(F) if K (A) satisfies the cancellation property.



Perturbations of the generalized spectra in A

Lemma
MI(HA) is a closed two sided ideal in Ba(HA) and

MI(HA) = {D ∈ Ba(HA) | I + DF ∈MΦ(HA) ∀F ∈ Ba(HA)} =

= {D ∈ Ba(HA) | I + DF ∈MΦ(HA) ∀F ∈MΦ(HA)} =
= {D ∈ Ba(HA) | I + FD ∈MΦ(HA) ∀F ∈ Ba(HA)} =

= {D ∈ Ba(HA) | I + FD ∈MΦ(HA) ∀F ∈ F ∈MΦ(HA)}.

Lemma
a) If F ∈MΦ+(HA) \MΦ(HA) and D ∈ P(MΦ(HA)), then
F + D ∈MΦ+(HA) \MΦ(HA).
b) If F ∈MΦ−(HA) \MΦ(HA) and D ∈ P(MΦ(HA)), then
F + D ∈MΦ−(HA) \MΦ(HA).
c) IfMΦ(HA) and D ∈ P(MΦ(HA)), then D + F ∈MΦ(HA) and
index D + F = index F .



Lemma
We have P(MΦ0(HA)) = P(MΦ(HA)).

Proposition
Let F ∈ Ba(HA). Then

σAew (F ) =
⋂

D∈K∗(HA)

σA(F + D) =
⋂

D∈MI(HA)

σA(F + D).

Theorem
The operator D ∈ Ba(HA) satisfies the condition σAek(F + D) = σAek(F )
for every F ∈ Ba(HA) if and only if
D ∈ P(MΦ+(HA)) ∩ P(MΦ−(HA)) = P(MΦ(HA)).



Lemma
The operator D ∈ Ba(HA) satisfies the condition σAeα(F + D) = σAeα(F )
for every F ∈ Ba(HA) if and only if D ∈ P(MΦ(HA)).

Lemma
The operator D ∈ Ba(HA) satisfies the condition σAeβ(F + D) = σAeβ(F )
for every F ∈ Ba(HA) if and only if D ∈ P(MΦ(HA)).

Lemma
The operator D ∈ Ba(HA) satisfies the condition σAef (F + D) = σAef (F )
for every F ∈ Ba(HA) if and only if D ∈ P(MΦ(HA)).

Lemma
The operator D ∈ Ba(HA) satisfies the condition σAew (F + D) = σAew (F )
for every F ∈ Ba(HA) if and only if D ∈ P(MΦ(HA)).



Definition
For F ∈ Ba(HA) we set σAeα′(F ) = {α ∈ A | F − αI /∈MΦ−′+ (HA)
and σAeβ′(F ) = {α ∈ A | F − αI /∈MΦ+′

− (HA)}.

Lemma
Let F ∈ Ba(HA). Then

σAeα′(F ) =
⋂

D∈K∗(HA)

σAa (F + D) =
⋂

D∈P(MΦ−′+ (HA))

σAa (F + D),

σAeβ′(F ) =
⋂

D∈K∗(HA)

σAd (F + D) =
⋂

D∈P(MΦ+′
− (HA))

σAd (F + D),

Lemma
Let F ∈ Ba(HA). Then
1) We have σAeα′(F + D) = σAeα′(D) for every D ∈ Ba(HA) if and only if
F ∈ P(MΦ−′+ (HA)).
2) We have σAeβ′(D) = σAeβ′(F + D) for every D ∈ Ba(HA) if and only
F ∈ P(MΦ+′

− (HA)).



On operator 2× 2 matrices over C∗-algebras

We will consider the operator MAC (F,D) : HA ⊕ HA → HA ⊕ HA given
as 2× 2 operator matrix [

F C
0 D

]
,

where F,C,D ∈ Ba(HA).
To simplify notation we will only write MAC instead of MAC (F,D) when
F,D ∈ Ba(HA) are given.



Proposition
For given F,C,D ∈ Ba(HA), one has

σAe (MAC ) ⊂ (σAe (F) ∪ σAe (D)).

Theorem
Let F,D ∈ Ba(HA). If MAC ∈MΦ(HA ⊕ HA) for some
C ∈ Ba(HA), then F ∈MΦ+(HA),D ∈MΦ−(HA) and for all
decompositions

HA = M1⊕̃N1
F−→ M2⊕̃N2 = HA,

HA = M ′1⊕̃N ′1
D−→ M ′2⊕̃N ′2 = HA

w.r.t. which F,D have matrices
[

F1 0
0 F4

]
,

[
D1 0
0 D4

]
, respectively,

where F1,D1 are isomorphisms, and N1,N ′2 are finitely generated, there
exist closed submodules
Ñ ′1,

˜̃N ′1, Ñ2,
˜̃N2 such that N2 ∼= Ñ2,N ′1 ∼= Ñ ′1,

˜̃N2 and ˜̃N ′1 are finitely
generated and

Ñ2⊕̃ ˜̃N2 ∼= Ñ ′1⊕̃
˜̃N ′1.



Proposition
Suppose that there exists some C ∈ Ba(HA) such that the inclusion
σAe (MAC ) ⊂ σAe (F) ∪ σAe (D) is proper. Then for any

α ∈ [σAe (F) ∪ σAe (D)] \ σAe (MAC )

we have
α ∈ σAe (F) ∩ σAe (D).

Next, we define the following classes of operators on HA :

MS+(HA) = {F ∈ Ba(HA) | (F− α1) ∈MΦ+
−(HA)

whenever α ∈ A and (F− α1) ∈MΦ±(HA)},
MS−(HA) = {F ∈ Ba(HA) | (F− α1) ∈MΦ−+(HA)

whenever α ∈ A and (F− α1) ∈MΦ±(HA)}.

Proposition
If F ∈MS+(HA) or D ∈MS−(HA), then for all
C ∈ Ba(HA), we have

σAe (MAC ) = σAe (F) ∪ σAe (D)



Theorem
Let F ∈MΦ+(HA),D ∈MΦ−(HA) and suppose that there exist
decompositions

HA = M1⊕̃N1
F−→ N⊥2 ⊕ N2 = HA

HA = N ′1
⊥ ⊕ N ′1

D−→ M ′2⊕̃N ′2 = HA
w.r.t. which F,D have matrices[

F1 0
0 F4

]
,
[

D1 0
0 D4

]
,

respectively, where F1,D1 are isomorphims, N1,N ′2 are finitely generated
and assume also that one of the following statements hold:
a) There exists some J ∈ Ba(N2,N ′1) such that N2 ∼= ImJ and ImJ⊥ is
finitely generated.
b) There exists some J′ ∈ Ba(N ′1,N2) such that N ′1 ∼= ImJ′, (ImJ′)⊥ is
finitely generated.
Then MAC ∈MΦ(HA ⊕ HA) for some C ∈ Ba(HA).



Theorem
Suppose MAC ∈MΦ−(HA⊕HA) for some C ∈ Ba(HA). Then
D ∈MΦ−(HA) and in addition the following statement holds:
Either F ∈MΦ−(HA) or there exists decompositions

HA ⊕ HA = M1⊕̃N1
F′−→ M2⊕̃N2 = HA ⊕ HA,

HA ⊕ HA = M ′1⊕̃N ′1
D′−→ M ′2⊕̃N ′2 = HA ⊕ HA,

w.r.t. which F′,D′ have the matrices
[

F′1 0
0 F′4

]
,

[
D′1 0
0 D′4

]
, where

F′1,D′1 are isomorphisms, N ′2 is finitely generated, N1,N2,N ′1 are closed,
but not finitely generated, and M2 ∼= M ′1,N2 ∼= N ′1.



Theorem
Let F,D ∈ Ba(HA) and suppose that D ∈MΦ−(HA) and either
F ∈MΦ−(HA) or that there exist decompositions

HA = M1⊕̃N1
F−→ N⊥2 ⊕̃N2 = HA,

HA = N ′1
⊥⊕̃N ′1

D−→ M ′2⊕̃N ′2 = HA,

w.r.t. which F,D have the matrices
[

F1 0
0 F4

]
,

[
D1 0
0 D4

]
,

respectively, where F1,D1 are isomorphisms N ′2, is finitely generated and
that there exists some
ι ∈ Ba(N2,N ′1) such that ι is an isomorphism onto its image in N ′1 .
Then MAC ∈MΦ−(HA ⊕ HA) for some C ∈ Ba(HA).



Theorem
Let MAC ∈MΦ+(HA ⊕ HA). Then F′ ∈MΦ+(HA ⊕ HA) and either
D ∈MΦ+(HA) or there exist decompositions

HA ⊕ HA = M1⊕̃N1
F′−→ M2⊕̃N2 = HA ⊕ HA,

HA ⊕ HA = M ′1⊕̃N ′1
D′−→ M ′2⊕̃N ′2 = HA ⊕ HA,

w.r.t. which F′,D′ have matrices
[

F′1 0
0 F′4

]
,

[
D′1 0
0 D′4

]
,

respectively, where F′1,D′1 are isomorphisms, M2 ∼= M ′1 and N2 ∼= N ′1, N1
is finitely generated and N2,N ′1 are closed, but not finitely generated.



Theorem
Let F ∈MΦ+(HA) and suppose that either D ∈MΦ+(HA) or that
there exist decompositions

HA = M1⊕̃N1
F−→ N⊥2 ⊕̃N2 = HA,

HA = N ′1
⊥⊕̃N ′1

D−→ M ′2⊕̃N ′2 = HA

w.r.t. which F,D have matrices
[

F1 0
0 F4

]
,

[
D1 0
0 D4

]
, respectively,

where F1,D1 are isomorphisms, N ′1 is finitely generated and in addition
there exists some
ι ∈ Ba(N ′1,N2) such that ι is an isomorphism onto its image. Then

MAC ∈MΦ+(HA ⊕ HA),

for some C ∈ Ba(HA).



Definition
Let X be a Banach space. A sequence (Tn)n∈N0 of operators in B(X ) is
called topologically transitive if for each non-empty open subsets U,V of
X , Tn(U) ∩ V 6= ∅ for some n ∈ N. If Tn(U) ∩ V 6= ∅ holds from some
n onwards, then (Tn)n∈N0 is called topologically mixing.

Definition
Let X be a Banach space. A sequence (Tn)n∈N0 of operators in B(X ) is
called hypercyclic if there is an element x ∈ X (called hypercyclic vector)
such that the orbit Ox := {Tnx : n ∈ N0} is dense in X . The set of all
hypercyclic vectors of a sequence (Tn)n∈N0 is denoted by HC((Tn)n∈N0 ).
If HC((Tn)n∈N0 ) is dense in X , the sequence (Tn)n∈N0 is called densely
hypercyclic. An operator T ∈ B(X ) is called hypercyclic if the sequence
(T n)n∈N0 is hypercyclic.



Definition
Let X be a Banach space, and (Tn)n∈N0 be a sequence of operators in
B(X ). A vector x ∈ X is called a periodic element of (Tn)n∈N0 if there
exists a constant N ∈ N such that for each k ∈ N, TkNx = x . The set of
all periodic elements of (Tn)n∈N0 is denoted by P((Tn)n∈N0 ). The
sequence (Tn)n∈N0 is called chaotic if (Tn)n∈N0 is topologically transitive
and P((Tn)n∈N0 ) is dense in X . An operator T ∈ B(X ) is called chaotic
if the sequence {T n}n∈N0 is chaotic.



Linear dynamics of Elementary Operators on B0(H) and K (HA)

Definition
Let U,W ∈ B(H). We define the operator TU,W : B(H)→ B(H) by

TU,W (F ) := WFU (1)

for all F ∈ B(H).
Then the operator TU,W is invertible and its inverse is given by TU∗,W−1 ,
i.e. (TU,W )−1 = TU∗,W−1 .
We will denote this inverse by SU,W and for each n ∈ N we set

Cn
U,W = 1

2(T n
U,W + Sn

U,W ).



Theorem
Let H be a separable Hilbert space. Let W ∈ B(H) be invertible and
U ∈ B(H) be unitary such that for each k ∈ N there exists an Nk ∈ N
with

Un(Lk) ⊥ Lk for all n ≥ Nk . (2)
Then, the following statements are equivalent.
(i) TU,W is hypercyclic on B0(H), where B0(H) is equipped with the

operator norm ‖ · ‖.
(ii) For each m ∈ N there exist a strictly increasing sequence {nk} in N

and the sequences {Dk} and {Gk} of operators in B0(H) such that

lim
k→∞

‖Dk − Pm‖ = lim
k→∞

‖Gk − Pm‖ = 0, (3)

and
lim

k→∞
‖W nkGk‖ = lim

k→∞

∥∥W−nkDk
∥∥ = 0, (4)

where Pm denotes the orthogonal projection onto Lm.



Definition
Let X be a Banach space, a ∈ X , and T ∈ B(X ). We say that T is
a-transitive if for each two non-empty open subsets O1 and O2 of X with
a ∈ O1, there are m, n ∈ N such that

T n(O1) ∩ O2 6= ∅, Tm(O2) ∩ O1 6= ∅.

Theorem
Let U,W ∈ B(H) such that W is invertible and U is unitary. Then, the
following statements are equivalent.
(i) TU,W and SU,W are 0-transitive on B0(H).
(ii) For every finite dimensional subspace K of H there are strictly

increasing sequences {nj} and {mj} in N and sequences of operators
{Gj} and {Dj} in B0(H) such that

lim
j→∞

‖Gj − PK‖ = lim
j→∞

‖Dj − PK‖ = 0, (5)

and
lim

j→∞
‖W−mjGj‖ = lim

j→∞
‖W njDj‖ = 0. (6)



Theorem
Let U,W ∈ B(H) such that W be invertible and U be unitary. If TU,W
is hypercyclic on B0(H), then m(W ) < 1 < ‖W ‖.

Theorem
Let U,W ∈ B(H) such that W be invertible and U be unitary. Suppose
that there is a finite dimensional subspace K of H such that for a
constant N > 0, Un(K ) ⊥ K for all n ≥ N. Then, we have (i)⇒ (ii):
(i) PK belongs to the closure of P({Sn

U,W }n∈N0 ) in B0(H).
(ii) There exists an increasing sequence (nk) in N such that

m(W−nk )→ 0 as k →∞.



Theorem
Let H be a separable Hilbert space and U,W ∈ B(H) such that W be
invertible and U be unitary. Then, we have (ii)⇒ (i):
(i) the operators TU,W and SU,W are chaotic on B0(H).
(ii) For each m ∈ N there is a strictly increasing sequence {nk} ⊆ N

such that

lim
k→∞

∞∑
l=1
‖W lnkPm‖ = lim

k→∞

∞∑
l=1
‖W−lnkPm‖ = 0,

where the corresponding series are convergent for each k.



Cosine Operator Functions

Theorem
Suppose that U,W ∈ B(H) such that W is invertible and U is unitary.
Then, we have (ii)⇒ (i):
(i) The sequence (C (n)

U,W )n∈N0 is topologically transitive on B0(H).
(ii) For each m ∈ N, there are sequences (Ek) and (Rk) of subspaces of

Lm and an strictly increasing sequence (nk) of positive integers such
that Lm = Ek ⊕ Rk and

lim
k→∞

‖W nkPm‖ = lim
k→∞

∥∥W−nkPm
∥∥ = 0, (7)

lim
k→∞

∥∥W 2nkPEk

∥∥ = lim
k→∞

∥∥W−2nkPRk

∥∥ = 0. (8)



Theorem
Suppose that U,W ∈ B(H) such that W is invertible and U is unitary.
Let there exist a closed subspace K of H such that Un(K ) ⊥ K for all
n ≥ N. Then, (i)⇒ (ii).
(i) P(C (n)

U,W ) is dense in B0(H), and for each F ∈ B0(H),
limn→∞ Sn

U,W (F ) = 0 in B0(H).
(ii) m(W ) < 1.

Theorem
Suppose that U,W ∈ B(H) such that W is invertible and U is unitary.
Assume that there exists a closed subspace K of H such that
Un(K ) ⊥ K for all n ≥ N. We have (i)⇒ (ii).
(i) P(C (n)

U,W ) is dense in B0(H), and limn→∞ T n
U,WF = F for all

F ∈ B0(H).
(ii) m(W−1) < 1.



Theorem
Let H be a separable Hilbert space. We have (ii)⇒ (i):
(i) The sequence {C (n)

U,W } is chaotic on B0(H).
(ii) For each m ∈ N, there exists a strictly increasing sequence {nk} ⊆ N

such that

lim
k→∞

∞∑
l=1
‖W lnkPm‖ = lim

k→∞

∞∑
l=1
‖W−lnkPm‖ = 0, (9)

where the corresponding series are convergent for each k.



Remark
Our sufficient conditions for topological transitivity in the norm topology
of B0(H) are also sufficient conditions for topological transitivity in the
strong topology of B(H). Indeed, since {en} is an orthonormal basis for
H, it is easily seen that the set {PnF : F ∈ B(H), n ∈ N} is dense in
B(H) in the strong operator topology. Moreover, in this case the
conditions (3)-(4) in Theorem 128 can even be relaxed by considering the
strong limits instead of the limit in norm and by dropping the
requirement that the sequences {Dk} and {Gk} should belong to B0(H).
Hence, also in the case of strong operator topology on B(H), the
operator W in Example satisfies the sufficient conditions for topological
transitivity of TU,W and {C (n)

U,W }n.



Remark
Except from the implication (i)⇒ (ii) in Theorem 128, all our results
about sufficient conditions for topological transitivity, easily generalize to
the case where B0(H) is replaced by an arbitrary non-unital C∗-algebra
A, and the set of all finite rank orthogonal projections on H is replaced
by the canonical approximate unit in A. Indeed, if A is a non-unital
C∗-algebra, then it can be isometrically embedded into a unital
C∗-algebra A1 such that A becomes an ideal in A1. If u and w are
invertible elements in A1 and u is unitary (i.e. uu∗ = u∗u = 1A1), then
we can define the operator Tu,w on A by Tu,w (a) := wau for all a ∈ A.
Therefore, all our results regarding the sufficient conditions for Tu,w to
be topologically transitive or chaotic can be generalized in this setting.

Moreover, if A is a unital C∗-algebra and HA denotes the standard
Hilbert module over A, then all our results so far can be transferred
directly to the case where B0(H) and B(H) are replaced by K (HA) and
B(HA), respectively. Here, K (HA) and B(HA) stand for the set of all
compact and all bounded A-linear operators on HA, respectively.



Theorem
Let w ∈ A1 be invertible and u be a unitary element of A1. Suppose
that there exist an element a ∈ A+ and an N ∈ N such that auna = 0 for
all n ≥ N. Then, (i)⇒ (ii).
(i) P((C (n)

u,w )n) is dense in A.
(ii) m(ϕ(w)) < 1 <‖ ϕ(w) ‖, where (ϕ,H) is the universal

representation of A1.



Dynamics of the Adjoint Operator

Theorem
Suppose that for every m ∈ N there exist sequences (Ek) and (Rk) of
subspaces of Lm and an increasing sequence (nk) ⊆ N such that for each
k, Lm = Ek ⊕ Rk and

lim
k→∞

‖W nk Pm‖ = lim
k→∞

∥∥W−nk Pm
∥∥ = 0, (10)

lim
k→∞

∥∥W 2nk PEk

∥∥ = lim
k→∞

∥∥W−2nk PRk

∥∥ = 0. (11)

Then, {C∗(n)
U,W } is topologically transitive on B1(H).

Theorem
Suppose that U,W ∈ B(H) such that W is invertible and U is unitary.
Assume that there exists a finite dimensional subspace K of H such that
Un(K ) ⊥ K for all n ≥ N. Then, (i)⇒ (ii).
(i) P(C (n)∗

U,W ) is dense in B1(H), and for each F ∈ B1(H),
limn→∞ S∗n

U,W (F ) = 0 in B(H).
(ii) m(W ) < 1.



Theorem
Let U,W ∈ B(H) be invertible such that U is unitary. Suppose that
there exists a finite dimensional subspace K of H and N ∈ N such that
Un(K ) ⊥ K for all n ≥ N. Then, (i)⇒ (ii):
(i) P{(C∗U,W )n} is dense in B(H)′ and limn→∞(S∗U,W )nϕ = 0 for all

ϕ ∈ B(H)′.
(ii) m(W ) < 1.

Theorem
We have (ii)⇒ (i):
(i) (C (n)∗

U,W ) is topologically transitive in B(H)′.
(ii) For every m ∈ N there exist sequences (Ek) and (Rk) of subspaces

of Lm and an increasing sequence (nk) ⊆ N such that for each k,
Lm = Ek ⊕ Rk and

lim
k→∞

‖Pm W nk‖ = lim
k→∞

∥∥Pm W−nk
∥∥ = 0, (12)

lim
k→∞

∥∥PEk W 2nk
∥∥ = lim

k→∞

∥∥PRk W−2nk
∥∥ = 0. (13)



Theorem
We have (i)⇒ (ii):
(i) P(T ∗n

U,W ) is dense in B(H)′.
(ii) m(W ) < 1.

Theorem
We have (i)⇒ (ii):
(i) P(S∗n

U,W ) is dense in B(H)′.
(ii) m(W−1) = ‖W ‖−1 < 1, that is ‖W ‖ > 1.



Theorem
Let B(H) be equipped with the strong topology, and B(H)′ be equipped
with the w∗-topology, where B(H)′ is the dual of B(H). Then we have
(ii)⇒ (i):
(i) {T ∗n

U,W } and {S∗
n

U,W } are topologically transitive on B(H)′.
(ii) for every n ∈ N there exist an increasing sequence {nk} ⊆ N and

sequences of operators {Gk} and {Dk} in B(H) such that same as
theorem 3.2 in the draft with

lim
k→∞

‖GkW nk‖ = lim
k→∞

‖DkW−nk‖ = 0,

and
s− lim

k→∞
Gk = s− lim

k→∞
Dk = Pn,

where s−lim denotes the limit in the strong operator topology.



Example
Let {ej}j∈N be an orthonormal basis for a Hilbert space H. Define
W ∈ B(H) by

W (ej) :=


1
2 ej+2, if j is odd,

2 ej−2, if j is even and j > 2,

e1, if j = 2.

Then, W is invertible and ‖W ‖ = 2. For each fixed k ∈ N it is easily
checked that ‖W 2k−1+mP2k‖ = 1

2m for all m ∈ N. Consequently,
‖W 2k−1+mP2k−1‖ ≤ 1

2m . Further, it is also easily verified that for each
k,m ∈ N we have ‖W−2k−mP2k+1‖ = 1

2m−1 , and this gives that
‖W−2k−mP2k‖ ≤ 1

2m−1 . As above, Pn denotes the orthogonal projection
onto span{e1, . . . , en}.
It follows that

‖P2k(W ∗)2k−1+m‖ = 1
2m , ‖P2k+1(W ∗)−2k−m‖ = 1

2m−1 ,

for all k,m ∈ N.



Then W and W ∗ satisfy the sufficient condition in various results above
on topological transitivity. If we instead of H consider HA and let
{ej}j∈N denote the standard basis, then the same arguments applies in
this case also.



Example
Let F (ek) = e2k for all k.
Then F ∈MΦ+(HA)

Example
Let D(e2k−1) = 0,D(e2k) = ek .
Then D ∈MΦ−(HA)

Example
In general, let ι : N→ ι(N) be a bijection such that ι(N) ⊆ N and
N \ ι(N) infinite. Moreover we may define ι in a such way s.t.
ι(1) < ι(2) < ι(3) < ... . Then, if we define an A-linear operator F as
F (ek) = eι(k) for all k, we get that F ∈MΦ+(HA). Moreover, if we
define an A-linear operator D as

D(ek) =
{
eι−1(k), for k ∈ ι(N),
0, else

then D ∈MΦ−(HA).



Those examples are also valid in the case when A = C, that is when
HA = H is a Hilbert space. We will now introduce examples where we
use the structure of A itself in the case when A 6= C :
Example
Let A = (L∞([0, 1]), µ), where µ is a Borel probability measure. Set

F (f1, f2, f3, ...) = (X[0, 1
2 ]f1,X[ 1

2 ,1]f1,X[0, 1
2 ]f2,X[ 1

2 ,1]f2, ...) .

Then F is bounded A− linear operator, ker F = {0},

ImF = SpanA{X[0, 1
2 ]e1,X[ 1

2 ,1]e2,X[0, 1
2 ]e3,X[ 1

2 ,1]e4, ...},

and clearly F ∈MΦ+(HA).

Example
Let again A = (L∞([0, 1]), µ). Set

D(g1, g2, g3, ...) = (X[0, 1
2 ]g1 + X[ 1

2 ,1]g2,X[0, 1
2 ]g3 + X[ 1

2 ,1]g4, ...) .

Then kerD = ImF , D is an A-linear, bounded operator and ImD = HA.
Thus D ∈MΦ−(HA). Indeed, D = F ∗.



Example
Let A = B(H), where H is a Hilbert space and let P be an orthogonal
projection on H. Set

F (T1,T2, ...) = (PT1, (I − P)T1,PT2, (I − P)T2, ...),

D(S1,S2, ...) = (PS1 + (I − P)S2,PS3 + (I − P)S4, ...),
then by similar arguments F ∈MΦ+(HA),D ∈MΦ−(HA).



Example
In general, supose that {pi

j}j,i∈N is a family of projections in A s.t.

pi
j1p

i
j2 = 0 for all i , whenever j1 6= j2 and

k∑
j=1

pi
j = 1 for some k ∈ N.

Set

F ′(α1, ..., αn, ...) = (p1
1α1, p1

2α1, ...p1
kα1, p1

2α2, p2
2α2, ...p2

kα2, ...),

D′(β1, ..., βn, ...) = (
k∑

i=1
p1

i βi ,

k∑
i=1

p2
i βi+k , ...).

Then F ′ ∈MΦ+(HA),D′ ∈MΦ−(HA).
Recalling now that a composition of twoMΦ+ operators is again an
MΦ+ operator and that the same is true forMΦ− operators, we may
take suitable comprositions of operators from these examples in order to
construct moreMΦ± operators.
Even moreMΦ± operators can be obtained by composing these
operators with isomorphisms of HA. We will present here also some
isomorphisms of HA.



Example
Let j : N→ N be a bijection. Then the operator U given by
U(ek) = ej(k) for all k is an isomorphism of HA. This is a classical well
known example of an isomorphism.

Example
Let (α1, ..., αn, ...) ∈ AN be a sequence of invertible elements in A s.t.
‖ αk ‖≤ M for all k ∈ N and some M > 0. If the operator V is given by
V (ek) = ek · αk for all k, then V is an isomorphism of HA. Moreover, if
(α1, · · · , αn, · · · ) is the sequence from above, we may let Ṽ be the
operator on HA given by Ṽ (x1, · · · , xn) = (α1x1, · · · , αnxn, · · · ). Then Ṽ
is also an isomorphism of HA.



Thank you for attention!
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