φ -maps on Hilbert C^* -mosules, φ -module domains and ternary domains

Maria Joița

This is a joint work with M.B. Asadi and R. Behmani.

International Workshop on Hilbert C*-modules online weekend in memory of William L.Paschke (1946-2019)

December 5 - 6, 2020, Moscow, Russia

Completely positive linear maps

Let A and B be two C^* -algebras. For each positive integer n, $M_n(A)$ denotes the C^* -algebra of all $n \times n$ matrices with elements in A.

Definition

Let $\varphi: A \to B$ be a linear map.

- φ is positive if $\varphi(a^*a) \ge 0$ for all $a \in A$.
- $\varphi: A \to B$ is a cp map (completely positive linear map) if for each positive integer n, the linear map

$$\varphi_n: M_n(A) \to M_n(B), \varphi_n\left(\left[a_{ij}\right]_{i,j=1}^n\right) = \left[\varphi\left(a_{ij}\right)\right]_{i,j=1}^n$$

is positive.

- $\bullet \ \ {\rm A \ cp \ map} \ \varphi: A \to B \ {\rm is \ continuous, \ and \ it \ is \ contractive \ if} \ \|\varphi\| \le 1.$
- Any C*-morphism is a cp map.
- Not all cp maps are C*-morphisms.

Multiplicative domains for completely positive linear maps

Theorem (M.D. Choi, 1974)

Let $\varphi: A \to B$ be a cp map and $M_{\varphi} = \{ a \in A : \varphi(ab) = \varphi(a) \varphi(b) \text{ and } \varphi(ba) = \varphi(b) \varphi(a), (\forall) b \in A \}.$

- The set M_{φ} is a C^* -subalgebra of A and $\varphi|_{M_{\varphi}}$ (the restriction of φ to M_{φ}) is a C^* -morphism.
- ② If φ is a contractive cp map, then $M_{\varphi} = \{a \in A : \varphi(aa^*) = \varphi(a) \varphi(a)^* \text{ and } \varphi(a^*a) = \varphi(a)^* \varphi(a)\}$ and M_{φ} is the largest C^* -subalgebra C of A such that the map $\varphi|_{C}$ (the restriction of φ to C) is a C^* -morphism.

Definition

 M_{φ} is called the multiplicative domain of φ .

If φ is unital, then 1_A , the unit of A, is an element in M_{φ} .

Hilbert C*-modules

Definition

A Hilbert C^* -module X over a C^* -algebra A is a linear space X that is a right A-module, together with an A-valued inner product $\langle \cdot, \cdot \rangle$ that is A-linear in the second variable, with the following properties:

- ② $\langle x,y \rangle^* = \langle y,x \rangle$ for all $x,y \in X$ such that X is a Banach space with the norm induced by the inner product, $\|x\| = \|\langle x,x \rangle\|^{\frac{1}{2}}$.
- $L(\mathcal{H}, \mathcal{K})$, the vector space of all bounded linear operators from a Hilbert space \mathcal{H} to another Hilbert space \mathcal{K} , has a canonical structure of Hilbert C^* -module over $L(\mathcal{H})$ with:
 - $(T, S) \in L(\mathcal{H}, \mathcal{K}) \times L(\mathcal{H}) \to TS \in L(\mathcal{H}, \mathcal{K})$
 - $(T_1, T_2) \in L(\mathcal{H}, \mathcal{K}) \times L(\mathcal{H}, \mathcal{K}) \rightarrow \langle T_1, T_2 \rangle = T_1^* T_2 \in L(\mathcal{H}).$
- A is a Hilbert C^* -module over A with the inner product given by

Hilbert C*-modules

Definition

Let X be a Hilbert C^* -module over A and $\varphi: A \to L(\mathcal{H})$ a linear map. A map $\Phi: X \to L(\mathcal{H}, \mathcal{K})$ is called a φ -map if $\Phi(x)^* \Phi(y) = \varphi(\langle x, y \rangle) \text{ for all } x, y \in X.$

- If φ is a *-representation of A on the Hilbert space \mathcal{H} , we say that Φ is a φ -representation of X on the Hilbert spaces \mathcal{H} and \mathcal{K} .
- If φ is a cp map, we say that Φ is a cp φ -map.

Remark

- If Φ is a φ -map, then Φ is linear.
- ② If Φ is a φ -completely positive map, then Φ is continuous.
- **3** If Φ is a φ -representation, then Φ is a φ -module map, $\Phi(xa) = \Phi(x) \varphi(a)$ for all $x \in X$ and $a \in A$.

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < C

Ternary maps

Definition

The ternary product on a Hilbert C^* -module X is the map $[\cdot, \cdot, \cdot]: X \times X \times X \to X$ defined by $[x, y, z] = x\langle y, z \rangle$ for all $x, y, z \in X$.

A map between two Hilbert C^* -modules is called a *ternary map*, if it preserves the ternary product.

A Hilbert C^* -module X over A is *full* if A coincides with the closed two-sided *-ideal $\langle X, X \rangle$ generated by $\{\langle x, y \rangle : x, y \in X\}$.

Theorem (M. Skeide, K. Sumesh, 2014)

Let $\Phi: X \to L(\mathcal{H}, \mathcal{K})$ a map. Then:

- **1** If Φ is a φ -representation, then Φ is a linear ternary map.
- ② If X is full and $\Phi: X \to L(\mathcal{H}, \mathcal{K})$ is a linear ternary map, then there is a *-homomorphism $\varphi: A \to L(\mathcal{H})$ such that Φ is a φ -map.

Theorem

Let X be a Hilbert A-module, $\varphi:A\to L(\mathcal{H})$ a cp map, $\Phi:X\to L(\mathcal{H},\mathcal{K})$ be a φ -map and

$$X_{\Phi} = \{x \in X : \Phi(xb) = \Phi(x) \varphi(b), (\forall) b \in A\}.$$

Then:

- **1** X_{Φ} is a Hilbert C^* -module over M_{φ} ;

Definition

For a a φ -map, $\Phi: X \to L(\mathcal{H}, \mathcal{K})$,

$$X_{\Phi} = \{x \in X : \Phi(xb) = \Phi(x) \varphi(b), (\forall) b \in A\}$$

is called the φ -module domain of Φ .

Example

Example

The map $\Phi: M_2(\mathbb{C}) \to L(\mathbb{C}^2, \mathbb{C}^2)$ defined by

$$\Phi\left(\left[\begin{array}{cc}x_{11} & x_{12}\\x_{21} & x_{22}\end{array}\right]\right)(\xi,\eta)=\left(x_{11}\xi,x_{21}\xi\right);\left(\xi,\eta\right)\in\mathbb{C}^2$$

is a cp φ -map, where $\varphi:M_2(\mathbb{C}) \to L(\mathbb{C}^2)$ is given by

$$\varphi\left(\left[\begin{array}{cc} \mathsf{a}_{11} & \mathsf{a}_{12} \\ \mathsf{a}_{21} & \mathsf{a}_{22} \end{array}\right]\right)(\xi,\eta) = \left(\mathsf{a}_{11}\xi,0\right); \left(\xi,\eta\right) \in \mathbb{C}^2.$$

It is easy to check that ϕ ia a cp map,

$$M_{\varphi}=\left\{\left[egin{array}{cc} a & 0 \\ 0 & b \end{array}
ight]:a,b\in\mathbb{C}
ight\} ext{ and } X_{\Phi}=\left\{\left[egin{array}{cc} x & 0 \\ y & 0 \end{array}
ight]:x,y\in\mathbb{C}
ight\}.$$

Let $\Phi: A \to L(H, K)$ be a cp φ -map.

•
$$A_{\Phi} \subseteq \{a \in A; \varphi(ab) = \varphi(a) \varphi(b) (\forall) b \in A\}$$

For $(u_i)_{i \in I}$ - an approximate unit for A,

$$\varphi(ab) = \lim_{i} \varphi(u_{i}ab) = \lim_{i} \Phi(u_{i})^{*} \Phi(ab) = \lim_{i} \Phi(u_{i})^{*} \Phi(a) \varphi(b)$$
$$= \lim_{i} \varphi(u_{i}a) \varphi(b) = \varphi(a) \varphi(b), (\forall) b \in A.$$

• If A is unital and $\Phi\left(1_{A}\right)$ is onto, then $A_{\Phi}=\left\{ a\in A; \varphi\left(ab\right)=\varphi\left(a\right)\varphi\left(b\right)\left(\forall\right)b\in A\right\}$

If $\Phi(1_A)$ is onto, then $\Phi(1_A)^*$ has left inverse, S.

$$(\forall) \ a \in A \text{ s. t. } \varphi(ab) = \varphi(a) \varphi(b) (\forall) b \in A,$$

$$\Phi(ab) - \Phi(a) \varphi(b) = S\Phi(1_A)^* (\Phi(ab) - \Phi(a) \varphi(b))$$
$$= S(\varphi(ab) - \varphi(a) \varphi(b)) = 0, (\forall) b \in A.$$

• If A is unital and $\Phi\left(1_{A}\right)$ is a coisometry, then φ is a *-homomorphism and $A_{\Phi}=A$.

$$\varphi\left(ab
ight)=\Phi\left(a^{*}
ight)^{*}\Phi\left(1_{A}
ight)\Phi\left(1_{A}
ight)^{*}\Phi\left(b
ight)=arphi\left(a
ight)arphi\left(b
ight)$$
 , $\left(orall\right)$ a, $b\in A$.

Theorem

Let X be a Hilbert A-module, $\varphi:A\to L(\mathcal{H})$ be a cp map,

 $\Phi: X \to L(\mathcal{H}, \mathcal{K})$ be a φ -map and $x_0 \in X$. Then

$$x_{0} \in X_{\Phi} \Leftrightarrow \Phi\left(x_{0}\left\langle y, z\right\rangle\right) = \Phi\left(x_{0}\right) \varphi\left(\left\langle y, z\right\rangle\right), (\forall) y, z \in X.$$

Proof.

- " \Rightarrow " It is clear.
- " ⇐ "

Lemma

Let I be a closed two-sided *-ideal of A and $\varphi: A \to L(\mathcal{H})$ a cp map. Then $M_{\varphi|_I} \subseteq M_{\varphi}$, where $\varphi|_I$ is the restriction of φ to I.

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ■

Proof.

$$\begin{split} \Phi\left(x_{0}\left\langle y,z\right\rangle\right) &= \Phi\left(x_{0}\right) \varphi\left(\left\langle y,z\right\rangle\right) \left(\forall\right) y,z \in X \\ &\Rightarrow \varphi\left(\left\langle x_{0},x_{0}\right\rangle \left\langle y,z\right\rangle\right) = \varphi\left(\left\langle x_{0},x_{0}\right\rangle\right) \varphi\left(\left\langle y,z\right\rangle\right), \left(\forall\right) y,z \in X \\ &\Rightarrow \left\langle x_{0},x_{0}\right\rangle \in M_{\varphi|_{I}} \subseteq M_{\varphi},\ I \text{ - the closed two sided } *\text{-ideal } \left\langle X,X\right\rangle \text{ of } A. \\ &\Rightarrow \varphi\left(\left\langle y,z\right\rangle \left\langle x_{0},x_{0}\right\rangle b\right) = \varphi\left(\left\langle y,z\right\rangle\right) \varphi\left(\left\langle x_{0},x_{0}\right\rangle\right) \varphi\left(b\right), \left(\forall\right) y,z \in X,b \in A. \\ \text{Let } b \in A, \text{ and } \left(u_{\lambda}\right)_{\lambda \in \Lambda} \text{ an approximate unit for } \left\langle X,X\right\rangle. \\ &\left\langle \varphi\left(b^{*}\left\langle x_{0},x_{0}\right\rangle b\right)\xi,\eta\right\rangle = \left\langle \lim_{\lambda} \varphi\left(u_{\lambda}b^{*}u_{\lambda}\left\langle x_{0},x_{0}\right\rangle b\right)\xi,\eta\right\rangle \\ &= \lim_{\lambda} \left\langle \varphi\left(u_{\lambda}b^{*}u_{\lambda}\right) \varphi\left(\left\langle x_{0},x_{0}\right\rangle\right) \varphi\left(b\right)\xi,\eta\right\rangle \\ &= \left\langle \varphi\left(b^{*}\right) \varphi\left(\left\langle x_{0},x_{0}\right\rangle\right) \varphi\left(b\right)\xi,\eta\right\rangle, \left(\forall\right)\xi,\eta \in \mathcal{H} \\ &\Rightarrow \varphi\left(b^{*}\left\langle x_{0},x_{0}\right\rangle b\right) = \varphi\left(b^{*}\right) \varphi\left(\left\langle x_{0},x_{0}\right\rangle\right) \varphi\left(b\right) \\ &\Rightarrow \left(\Phi\left(x_{0}b\right) - \Phi\left(x_{0}\right) \varphi\left(b\right)\right)^{*} \left(\Phi\left(x_{0}b\right) - \Phi\left(x_{0}\right) \varphi\left(b\right)\right) = 0 \\ &\Rightarrow \Phi\left(x_{0}b\right) = \Phi\left(x_{0}\right) \varphi\left(b\right). \end{split}$$

UPB (Institute) / 28

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ■

Ternary domains for cp maps on Hilbert C*-modules

Remark

$$\Phi: X \to L(\mathcal{H}, \mathcal{K})$$
 is a ternary map, if
$$\Phi(x\langle y, z \rangle) = \Phi(x) \langle \Phi(y), \Phi(z) \rangle = \Phi(x) \Phi(y)^* \Phi(z) \text{ for all } x, y, z \in X.$$

Definition

Let $\Phi: X \to L(\mathcal{H}, \mathcal{K})$ be a map. The set $T_{\Phi} = \{ y \in X : \Phi(x \langle y, z \rangle) = \Phi(x) \Phi(y)^* \Phi(z) \text{ for all } x, z \in X \}$ is called the *ternary domain* of Φ .

Module domains and ternary domains for cp maps on Hilbert C*-modules

Proposition

Let X be a Hilbert A-module, $\varphi:A\to L(\mathcal{H})$ be a cp map, $\Phi:X\to L(\mathcal{H},\mathcal{K})$ be a φ -map and $x_0\in X$. Then the following statements are equivalent:

- $\mathbf{0}$ $x_0 \in X_{\Phi}$;
- $\Phi\left(x_0\left\langle y,z\right\rangle\right) = \Phi\left(x_0\right)\Phi\left(y\right)^*\Phi\left(z\right)\,y,z\in X;$
- $x_0 \in T_{\Phi}.$

Ternary domains for cp maps

Definition

Fie $\varphi:A o L(\mathcal{H})$ be a cp map

$$T_{\varphi} = \{ a \in A; \varphi(ba^*c) = \varphi(ba^*)\varphi(c) = \varphi(b)\varphi(a^*c) \\ = \varphi(b)\varphi(a^*)\varphi(c), (\forall) \ b, c \in A \}$$

is called the ternary domain of φ .

Example

The map $\varphi:M_2(\mathbb{C}) \to L(\mathbb{C}^2)$ is given by

$$\varphi\left(\left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right]\right)(\xi,\eta) = (a_{11}\xi,0)\,; (\xi,\eta) \in \mathbb{C}^2.$$

is a cp map. It is easy to check that

$$M_{\varphi} = \left\{ \left[egin{array}{ccc} \mathbf{a} & \mathbf{0} \\ \mathbf{0} & \mathbf{b} \end{array} \right] : \mathbf{a}, \mathbf{b} \in \mathbb{C} \right\} \ \mathrm{and} \ \ T_{\varphi} = \left\{ \left[egin{array}{ccc} \mathbf{a} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{array} \right] : \mathbf{a} \in \mathbb{C} \right\}.$$

UPB (Institute) . . . / 28

Ternary domains for cp maps

Proposition

Let $\varphi: A \to L(\mathcal{H})$ be a cp map. Then:

- ② T_{φ} is a closed two-sided *-ideal in M_{φ} ;
- **1** $T_{\varphi}AT_{\varphi} = T_{\varphi};$ If A and φ are unital, then:
- **1** $1_A \in T_{\varphi} \Leftrightarrow \varphi$ is a * -morphism.

/ 28

Proposition

Let X be a Hilbert A-module, $\varphi: A \to L(\mathcal{H})$ be a cp map,

 $\Phi: X \to L(\mathcal{H}, \mathcal{K})$ be a φ -map and $x_0 \in X$. Then the following statements are equivalent:

- **①** x_0 ∈ X_{Φ} ;
- ② $\langle x_0, x_0 \rangle \in M_{\varphi}$ and $\varphi(a\langle x_0, x_0 \rangle b) = \varphi(a) \varphi(\langle x_0, x_0 \rangle) \varphi(b)$, (\forall) a, $b \in A$;

/ 28

Corollary

Let $\Phi: X \to L(\mathcal{H}, \mathcal{K})$ be a φ -map. Then:

- **1** X_{Φ} is a Hilbert C^* -module over the C^* -algebra T_{φ} ;
- $2 XT_{\varphi} = X_{\Phi}.$

Corollary

If $\Phi_1:X\to L(\mathcal{H},\mathcal{K}_1)$ and $\Phi_2:X\to L(\mathcal{H},\mathcal{K}_2)$ are two cp φ -maps, then $X_{\Phi_1}=X_{\Phi_2}.$

/ 28

Ternary domains of cp maps on Hilbert C*-modules

Theorem (Asadi, Behmani, Medghalchi, Nikpey, 2017)

Let X be a Hilbert A-module and $\varphi:A\to L(\mathcal{H})$ be a cp map. If $(\pi_{\varphi},\mathcal{H}_{\varphi},V_{\varphi})$ is a minimal Stinespring representation associated to φ , then there two Hilbert spaces $\mathcal{K}_{\pi_{\varphi}}$ and \mathcal{K}_{φ} , a π_{φ} -representation $\Pi_{\pi_{\varphi}}:X\to L(\mathcal{H}_{\varphi},\mathcal{K}_{\pi_{\varphi}})$ of X on the Hilbert spaces \mathcal{H}_{φ} and $\mathcal{K}_{\pi_{\varphi}}$, and a unitary operator $W_{\varphi}:\mathcal{K}_{\varphi}\to\mathcal{K}_{\pi_{\varphi}}$ such that the map $\Phi_{\varphi,X}:X\to L(\mathcal{H},\mathcal{K}_{\varphi})$ given by

$$\Phi_{\varphi,X}\left(x\right)=W_{\varphi}^{*}\Pi_{\pi_{\varphi}}\left(x\right)V_{\varphi}$$

is a φ-map.

Moreover, if $\Phi: X \to L(\mathcal{H}, \mathcal{K})$ is a φ -map, then there is a unique isometry $S_{\Phi}: \mathcal{K}_{\varphi} \to \mathcal{K}$ such that

$$\Phi\left(\cdot\right) = S_{\Phi}\Phi_{\varphi,X}\left(\cdot\right)$$

Ternary domains of cp maps on Hilbert C*-modules

Definition

Let X be a Hilbert A-module and $\varphi:A\to L(\mathcal{H})$ a cp map. We denote the φ -module domain of each φ -map on X by X_{φ} and call it the **ternary domain of** φ **on** X.

Remark

- **1** X_{φ} is a Hilbert C^* -module over the C^* -algebra T_{φ} ;
- ② If X is full, then X_{φ} is a full Hilbert C*-module over the C*-algebra T_{φ} ;
- **1** Every cp φ -map $\Phi: X \to L(\mathcal{H}, \mathcal{K})$ is a ternary map on X_{φ} .

$$=\overline{\mathit{span}}\{x\in X; \langle x,x\rangle\in \mathit{M}_{\varphi}, \ \varphi(\mathit{b}^*\langle x,x\rangle\mathit{b})=\varphi(\mathit{b})^*\varphi(\langle x,x\rangle)\varphi(\mathit{b}), \\ (\forall) \ \mathit{b}\in \mathit{A}\}.$$

Linking algebra of a Hilbert C*-module

Let X and Y be two Hilbert C^* -modules over A.

- ullet K(X,Y) denotes the space of all 'compact' operators from X to Y.
- K(X, Y) is generated by $\{\theta_{y,x} : x \in X, y \in Y\}$, where $\theta_{y,x} : X \to Y, \theta_{y,x}(z) = y \langle x, z \rangle$.
- The linking C^* -algebra $\mathcal{L}_A(X)$ of X is the C^* -algebra of all 'compact' operators on the Hilbert C^* -module $X \oplus A$ over A.

Linking algebra of a Hilbert C*-module

- The map $x \mapsto r_x$, where $r_x : A \to X$, $r_x(a) = xa$ $(r_x^* = l_x)$, is an isometric linear isomorphism from X to K(A, X), and we denote K(A, X) by X and r_x by x.
- The map $y \mapsto l_y$, where $l_y : X \to A$, $l_y(z) = \langle y, z \rangle$, is an isometric conjugate linear isomorphism from X to K(X, A), and we denote K(X, A) by X^* and l_x by x^* .
- The map $a \mapsto T_a$, where $T_a : A \to A$, $T_a(b) = ab$, is an isometric linear *-isomorphism from A to K(A), and we denote K(A) by A and T_a by a.

$$\mathcal{L}_{A}(X) = \begin{bmatrix} K(X) & K(A,X) \\ K(X,A) & K(A) \end{bmatrix} = \begin{bmatrix} K(X) & X \\ X^{*} & A \end{bmatrix}$$

$$= \left\{ \begin{bmatrix} T & X \\ y^{*} & A \end{bmatrix} : T \in K(X), x, y \in X, a \in A \right\}.$$

•

•

Stinespring type theorem for cp on Hilbert C*-modules

Theorem (Bhat, Ramesh, Sumesh, 2012)

Let X be a Hilbert C*-module over the C*-algebra A, $\varphi: A \to L(\mathcal{H})$ a cp and $\Phi: X \to L(\mathcal{H}, \mathcal{K})$ a φ -map. Then there is a triple of pairs $((\Pi_{\Phi}, \pi_{\varphi}), (W_{\Phi}, V_{\varphi}), (\mathcal{H}_{\varphi}, \mathcal{K}_{\Phi}))$ consisting of the Hilbert spaces \mathcal{H}_{φ} and \mathcal{K}_{Φ} , a bounded linear operator $V_{\varphi}:\mathcal{H}\to\mathcal{H}_{\varphi}$, a coisometry $W_{\Phi}: \mathcal{K} \to \mathcal{K}_{\Phi}$, a *-representation $\pi_{\varphi}: A \to L(\mathcal{H}_{\varphi})$ and a π_{φ} -representation $\Pi_{\Phi}: X \to L(\mathcal{H}_{\varphi}, \mathcal{K}_{\Phi})$ such that $(\pi_{\varphi}, \mathcal{H}_{\varphi}, V_{\varphi})$ is a minimal Stinespring representation associated to φ and $\Phi\left(x
ight)=W_{\Phi}^{*}\Pi_{\Phi}\left(x
ight)V_{arphi}$ for all $x\in\mathcal{X}$. Moreover, $\left[\Pi_{\Phi}\left(X
ight)V_{arphi}\mathcal{H}
ight]=\mathcal{K}_{\Phi}.$

The triple of pairs $((\Pi_{\Phi}, \pi_{\varphi}), (W_{\Phi}, V_{\varphi}), (\mathcal{H}_{\varphi}, \mathcal{K}_{\Phi}))$ is called a minimal Stinespring representation associated to the cp φ - map Φ , which is unique up to unitary equivalence.

◆ロ > ← 個 > ← 差 > ← 差 > 一差 の へ ⊙ UPB (Institute)

Induced completely positive maps on the linking algebra of a Hilbert C*-module

Proposition

Let X be a Hilbert A-module, $\varphi:A\to L(\mathcal{H})$ a cp map and $\Phi:X\to L(\mathcal{H},\mathcal{K})$ a φ -map. Then there is a unique *-representation $\psi_{\Phi,\varphi}:K(X)\to L(\mathcal{K})$ such that

$$\widetilde{\varphi}_{\Phi} = egin{bmatrix} \psi_{\Phi, arphi} & \Phi \ \Phi^* & arphi \end{bmatrix} : \mathcal{L}_{A}(X)
ightarrow \mathcal{L}(\mathcal{K} \oplus \mathcal{H})$$

is a cp map and for every minimal Stinespring representation associated to the φ -map Φ such as $((\Pi,\pi),(W,V),(\mathcal{K}',\mathcal{H}'))$, there is a *-representation $\Gamma:K(X)\to L(\mathcal{K}')$ such that $\Gamma(\theta_{x,y})=\Pi(x)\Pi(y)^*$ for all $x,y\in X$ and

$$\widetilde{\varphi}_{\Phi} = \begin{bmatrix} \psi_{\Phi,\varphi} & \Phi \\ \Phi^* & \varphi \end{bmatrix} = \begin{bmatrix} W^* & 0 \\ 0 & V^* \end{bmatrix} \begin{bmatrix} \Gamma\left(\cdot\right) & \Pi\left(\cdot\right) \\ \Pi^*\left(\cdot\right) & \pi\left(\cdot\right) \end{bmatrix} \begin{bmatrix} W & 0 \\ 0 & V \end{bmatrix}.$$

Moreover, if φ is contractive, then $\widetilde{\varphi}_{\Phi}$ is contractive.

Induced completely positive maps on the linking algebra of a Hilbert C*-module

Lemma

Let X be a Hilbert A-module, $\varphi: A \to L(\mathcal{H})$ a cp map and $\Phi: X \to L(\mathcal{H}, \mathcal{K})$ a φ -map. Then:

- $\Phi\left(T\left(z\right)\right) = \psi_{\Phi,\sigma}\left(T\right)\Phi\left(z\right), \forall T \in K(X), \forall z \in X;$
- ② $K(X)X_{\varphi} \subseteq X_{\varphi}$. If φ is contractive, then:
- $\bullet \; x \in X_{\varphi} \Leftrightarrow \psi_{\Phi, \varphi}\left(\theta_{x, y}\right) = \Phi\left(x\right) \Phi\left(y\right)^{*}, (\forall) \, y \in X;$
- $\mathbf{0} \ \ \psi_{\Phi, \varphi}\left(\theta_{\mathsf{Xa}, \mathsf{y}}\right) = \Phi\left(\mathsf{x}\right) \varphi\left(\mathsf{a}\right) \Phi\left(\mathsf{y}\right)^* \text{, } (\forall) \, \mathsf{x} \text{, } \mathsf{y} \in \mathsf{X} \text{, } (\forall) \, \mathsf{a} \in \mathcal{T}_{\varphi}.$

Multiplicative domains of the induced completely positive maps on the linking algebra

Theorem

Let X be a Hilbert A-module, $\varphi:A\to L(\mathcal{H})$ a contractive cp linear map and $\Phi:X\to L(\mathcal{H},\mathcal{K})$ a φ -map. If $\widetilde{\varphi}_\Phi:\mathcal{L}_A(X)\to L(\mathcal{K}\oplus\mathcal{H})$ is the cp linear map on $\mathcal{L}_A(X)$ associated to the φ -map Φ , then:

$$M_{\widetilde{\varphi}_{\Phi}} = \left\{ \begin{bmatrix} T & y \\ x^* & a \end{bmatrix} : T \in K(X), x, y \in X_{\varphi}, a \in M_{\varphi} \right\},$$

and

$$\mathcal{T}_{\widetilde{\varphi}_{\Phi}} = \left\{ \begin{bmatrix} \mathcal{T} & \mathcal{y} \\ \mathcal{X}^* & \mathbf{a} \end{bmatrix} : \mathcal{T} \in \mathcal{K}(X), x, y \in \mathcal{X}_{\varphi}, \mathbf{a} \in \mathcal{T}_{\varphi} \right\}.$$

Remark

The above theorem remains valid for all completely positive linear map

Multiplicative domains of the induced completely positive maps on the linking algebra

Corollary

Let X be a Hilbert A-module, $\varphi:A\to L(\mathcal{H})$ a contractive cp linear map and $\Phi:X\to L(\mathcal{H},\mathcal{K})$ a φ -map. If $\widetilde{\varphi}_\Phi:\mathcal{L}_A(X)\to L(\mathcal{K}\oplus\mathcal{H})$ is the cp linear map on $\mathcal{L}_A(X)$ associated to the φ -map Φ , then

$$\mathcal{L}_{M_{\varphi}}(X_{\varphi}) \subseteq M_{\widetilde{\varphi}_{\Phi}} \text{ and } \mathcal{L}_{T_{\varphi}}(X_{\varphi}) \subseteq T_{\widetilde{\varphi}_{\Phi}}.$$

Corollary

Let $\varphi:A\to L(\mathcal{H})$ be a completely positive linear map and Φ and Ψ be two operator-valued φ -maps on a Hilbert A-module X. Then

$$M_{\widetilde{arphi}_{\Phi}}=M_{\widetilde{arphi}_{\Psi}}$$
 and $T_{\widetilde{arphi}_{\Phi}}=T_{\widetilde{arphi}_{\Psi}}.$

Multiplicative domains of the induced completely positive maps on the linking algebra

Example

If φ and Φ are as in the previous example, then

$$M_{\widetilde{\varphi}_{\Phi}} = \left\{ \begin{bmatrix} a & b & x & 0 \\ c & d & y & 0 \\ u & v & s & 0 \\ 0 & 0 & 0 & t \end{bmatrix}; a, b, c, d, x, y, s, t \in \mathbb{C} \right\}$$

and

$$T_{\tilde{\varphi}_{\Phi}} = \left\{ \begin{bmatrix} a & b & x & 0 \\ c & d & y & 0 \\ u & v & s & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}; a, b, c, d, x, y, s \in \mathbb{C} \right\}.$$

Thank you for your attention!