φ-maps on Hilbert C^{*}-mosules, φ-module domains and ternary domains

Maria Joița

This is a joint work with M.B. Asadi and R. Behmani.
International Workshop on Hilbert C^{*}-modules online weekend in memory of William L.Paschke (1946-2019)

December 5-6, 2020, Moscow, Russia

Completely positive linear maps

Let A and B be two C^{*}-algebras. For each positive integer $n, M_{n}(A)$ denotes the C^{*}-algebra of all $n \times n$ matrices with elements in A.

Definition

Let $\varphi: A \rightarrow B$ be a linear map.

- φ is positive if $\varphi\left(a^{*} a\right) \geq 0$ for all $a \in A$.
- $\varphi: A \rightarrow B$ is a cp map (completely positive linear map) if for each positive integer n, the linear map

$$
\varphi_{n}: M_{n}(A) \rightarrow M_{n}(B), \varphi_{n}\left(\left[a_{i j}\right]_{i, j=1}^{n}\right)=\left[\varphi\left(a_{i j}\right)\right]_{i, j=1}^{n}
$$

is positive.

- A cp map $\varphi: A \rightarrow B$ is continuous, and it is contractive if $\|\varphi\| \leq 1$.
- Any C^{*}-morphism is a cp map.
- Not all cp maps are C^{*}-morphisms.

Multiplicative domains for completely positive linear maps

Theorem (M.D. Choi, 1974)

Let $\varphi: A \rightarrow B$ be a cp map and
$M_{\varphi}=\{a \in A: \varphi(a b)=\varphi(a) \varphi(b)$ and $\varphi(b a)=\varphi(b) \varphi(a),(\forall)$
$b \in A\}$.
(1) The set M_{φ} is a C^{*}-subalgebra of A and $\left.\varphi\right|_{M_{\varphi}}$ (the restriction of φ to M_{φ}) is a C^{*}-morphism.
(2) If φ is a contractive $c p$ map, then
$M_{\varphi}=\left\{a \in A: \varphi\left(a a^{*}\right)=\varphi(a) \varphi(a)^{*}\right.$ and $\left.\varphi\left(a^{*} a\right)=\varphi(a)^{*} \varphi(a)\right\}$
and M_{φ} is the largest C^{*}-subalgebra C of A such that the map
$\left.\varphi\right|_{C}$ (the restriction of φ to C) is a C^{*}-morphism.

Definition

M_{φ} is called the multiplicative domain of φ.
If φ is unital, then 1_{A}, the unit of A, is an element in M_{φ}.

Hilbert C*-modules

Definition

A Hilbert C^{*}-module X over a C^{*}-algebra A is a linear space X that is a right A-module, together with an A-valued inner product $\langle\cdot, \cdot\rangle$ that is A-linear in the second variable, with the following properties:
(1) $\langle x, x\rangle \geq 0$ and $\langle x, x\rangle=0$ if and only if $x=0$;
(2) $\langle x, y\rangle^{*}=\langle y, x\rangle$ for all $x, y \in X$
such that X is a Banach space with the norm induced by the inner product, $\|x\|=\|\langle x, x\rangle\|^{\frac{1}{2}}$.

- $L(\mathcal{H}, \mathcal{K})$, the vector space of all bounded linear operators from a Hilbert space \mathcal{H} to another Hilbert space \mathcal{K}, has a canonical structure of Hilbert C^{*}-module over $L(\mathcal{H})$ with:
- $(T, S) \in L(\mathcal{H}, \mathcal{K}) \times L(\mathcal{H}) \rightarrow T S \in L(\mathcal{H}, \mathcal{K})$
- $\left(T_{1}, T_{2}\right) \in L(\mathcal{H}, \mathcal{K}) \times L(\mathcal{H}, \mathcal{K}) \rightarrow\left\langle T_{1}, T_{2}\right\rangle=T_{1}^{*} T_{2} \in L(\mathcal{H})$.
- A is a Hilbert C^{*}-module over A with the inner product given by $\langle a, b\rangle=a^{*} b$.

Hilbert C＊－modules

Definition

Let X be a Hilbert C^{*}－module over A and $\varphi: A \rightarrow L(\mathcal{H})$ a linear map．A $\operatorname{map} \Phi: X \rightarrow L(\mathcal{H}, \mathcal{K})$ is called a φ－map if

$$
\Phi(x)^{*} \Phi(y)=\varphi(\langle x, y\rangle) \text { for all } x, y \in X
$$

－If φ is a $*$－representation of A on the Hilbert space \mathcal{H} ，we say that Φ is a φ－representation of X on the Hilbert spaces \mathcal{H} and \mathcal{K} ．
－If φ is a cp map，we say that Φ is a cp φ－map．

Remark

（1）If Φ is a φ－map，then Φ is linear．
（2）If Φ is a φ－completely positive map，then Φ is continuous．
（3）If Φ is a φ－representation，then Φ is a φ－module map， $\Phi(x a)=\Phi(x) \varphi(a)$ for all $x \in X$ and $a \in A$ ．

Ternary maps

Definition

The ternary product on a Hilbert C^{*}-module X is the map
$[\because, \cdot, \cdot]: X \times X \times X \rightarrow X$ defined by

$$
[x, y, z]=x\langle y, z\rangle \text { for all } x, y, z \in X
$$

A map between two Hilbert C^{*}-modules is called a ternary map, if it preserves the ternary product.

A Hilbert C^{*}-module X over A is full if A coincides with the closed two-sided $*$-ideal $\langle X, X\rangle$ generated by $\{\langle x, y\rangle: x, y \in X\}$.

Theorem (M. Skeide, K. Sumesh, 2014)

Let $\Phi: X \rightarrow L(\mathcal{H}, \mathcal{K})$ a map. Then:
(1) If Φ is a φ-representation, then Φ is a linear ternary map.
(2) If X is full and $\Phi: X \rightarrow L(\mathcal{H}, \mathcal{K})$ is a linear ternary map, then there is a $*$-homomorphism $\varphi: A \rightarrow L(\mathcal{H})$ such that Φ is a φ-map.

Module domains for cp maps on Hilbert C*-modules

Theorem

Let X be a Hilbert A-module, $\varphi: A \rightarrow L(\mathcal{H})$ a cp map, $\Phi: X \rightarrow L(\mathcal{H}, \mathcal{K})$ be a φ-map and

$$
X_{\Phi}=\{x \in X: \Phi(x b)=\Phi(x) \varphi(b),(\forall) b \in A\}
$$

Then:
(1) X_{Φ} is a Hilbert C^{*}-module over M_{φ};
(2) $\left.\Phi\right|_{X_{\Phi}}: X_{\Phi} \rightarrow L(\mathcal{H}, \mathcal{K})$ is a $\left.\varphi\right|_{M_{\varphi}}$-representation.

Definition

For a a φ-map, $\Phi: X \rightarrow L(\mathcal{H}, \mathcal{K})$,

$$
X_{\Phi}=\{x \in X: \Phi(x b)=\Phi(x) \varphi(b),(\forall) b \in A\}
$$

is called the φ-module domain of Φ.

Example

Example

The map $\Phi: M_{2}(\mathbb{C}) \rightarrow L\left(\mathbb{C}^{2}, \mathbb{C}^{2}\right)$ defined by

$$
\Phi\left(\left[\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right]\right)(\xi, \eta)=\left(x_{11} \xi, x_{21} \xi\right) ;(\xi, \eta) \in \mathbb{C}^{2}
$$

is a cp φ-map, where $\varphi: M_{2}(\mathbb{C}) \rightarrow L\left(\mathbb{C}^{2}\right)$ is given by

$$
\varphi\left(\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\right)(\xi, \eta)=\left(a_{11} \xi, 0\right) ;(\xi, \eta) \in \mathbb{C}^{2}
$$

It is easy to check that φ ia a cp map,
$M_{\varphi}=\left\{\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]: a, b \in \mathbb{C}\right\}$ and $X_{\Phi}=\left\{\left[\begin{array}{ll}x & 0 \\ y & 0\end{array}\right]: x, y \in \mathbb{C}\right\}$.

Module domains for cp maps on Hilbert C*-modules

Let $\Phi: A \rightarrow L(H, K)$ be a cp φ-map.

- $A_{\Phi} \subseteq\{a \in A ; \varphi(a b)=\varphi(a) \varphi(b)(\forall) b \in A\}$

For $\left(u_{i}\right)_{i \in I}$ - an approximate unit for A,

$$
\begin{gathered}
\varphi(a b)=\lim _{i} \varphi\left(u_{i} a b\right)=\lim _{i} \Phi\left(u_{i}\right)^{*} \Phi(a b)=\lim _{i} \Phi\left(u_{i}\right)^{*} \Phi(a) \varphi(b) \\
=\lim _{i} \varphi\left(u_{i} a\right) \varphi(b)=\varphi(a) \varphi(b),(\forall) b \in A .
\end{gathered}
$$

- If A is unital and $\Phi\left(1_{A}\right)$ is onto, then

$$
A_{\Phi}=\{a \in A ; \varphi(a b)=\varphi(a) \varphi(b)(\forall) b \in A\}
$$

If $\Phi\left(1_{A}\right)$ is onto, then $\Phi\left(1_{A}\right)^{*}$ has left inverse, S.
$(\forall) a \in A$ s.t. $\varphi(a b)=\varphi(a) \varphi(b)(\forall) b \in A$,

$$
\begin{aligned}
\Phi(a b) & -\Phi(a) \varphi(b)=S \Phi\left(1_{A}\right)^{*}(\Phi(a b)-\Phi(a) \varphi(b)) \\
& =S(\varphi(a b)-\varphi(a) \varphi(b))=0,(\forall) b \in A .
\end{aligned}
$$

- If A is unital and $\Phi\left(1_{A}\right)$ is a coisometry, then φ is a *-homomorphism and $A_{\Phi}=A$.
$\varphi(a b)=\Phi\left(a^{*}\right)^{*} \Phi\left(1_{A}\right) \Phi\left(1_{A}\right)^{*} \Phi(b)=\varphi(a) \varphi(b),(\forall) a, b \in A$.

Module domains for cp maps on Hilbert C*-modules

Theorem

Let X be a Hilbert A-module, $\varphi: A \rightarrow L(\mathcal{H})$ be a cp map, $\Phi: X \rightarrow L(\mathcal{H}, \mathcal{K})$ be a φ-map and $x_{0} \in X$. Then

$$
x_{0} \in X_{\Phi} \Leftrightarrow \Phi\left(x_{0}\langle y, z\rangle\right)=\Phi\left(x_{0}\right) \varphi(\langle y, z\rangle),(\forall) y, z \in X
$$

Proof.

$" \Rightarrow$ " It is clear.
$" \Leftarrow "$

Lemma

Let I be a closed two-sided *-ideal of A and $\varphi: A \rightarrow L(\mathcal{H})$ a cp map. Then $M_{\left.\varphi\right|_{I}} \subseteq M_{\varphi}$, where $\left.\varphi\right|_{\text {, }}$ is the restriction of φ to I.

Module domains for cp maps on Hilbert C*-modules

Proof.

$\Phi\left(x_{0}\langle y, z\rangle\right)=\Phi\left(x_{0}\right) \varphi(\langle y, z\rangle)(\forall) y, z \in X$
$\Rightarrow \varphi\left(\left\langle x_{0}, x_{0}\right\rangle\langle y, z\rangle\right)=\varphi\left(\left\langle x_{0}, x_{0}\right\rangle\right) \varphi(\langle y, z\rangle),(\forall) y, z \in X$
$\Rightarrow\left\langle x_{0}, x_{0}\right\rangle \in M_{\varphi \mid} \subseteq M_{\varphi}, I$ - the closed two sided $*$-ideal $\langle X, X\rangle$ of A.
$\Rightarrow \varphi\left(\langle y, z\rangle\left\langle x_{0}, x_{0}\right\rangle b\right)=\varphi(\langle y, z\rangle) \varphi\left(\left\langle x_{0}, x_{0}\right\rangle\right) \varphi(b),(\forall) y, z \in X, b \in$ A.
Let $b \in A$, and $\left(u_{\lambda}\right)_{\lambda \in \Lambda}$ an approximate unit for $\langle X, X\rangle$.

$$
\begin{aligned}
&\left\langle\varphi\left(b^{*}\left\langle x_{0}, x_{0}\right\rangle b\right) \xi, \eta\right\rangle=\left\langle\lim _{\lambda} \varphi\left(u_{\lambda} b^{*} u_{\lambda}\left\langle x_{0}, x_{0}\right\rangle b\right) \xi, \eta\right\rangle \\
&=\lim _{\lambda}\left\langle\varphi\left(u_{\lambda} b^{*} u_{\lambda}\right) \varphi\left(\left\langle x_{0}, x_{0}\right\rangle\right) \varphi(b) \xi, \eta\right\rangle \\
&=\left\langle\varphi\left(b^{*}\right) \varphi\left(\left\langle x_{0}, x_{0}\right\rangle\right) \varphi(b) \xi, \eta\right\rangle,(\forall) \xi, \eta \in \mathcal{H} \\
& \Rightarrow \varphi\left(b^{*}\left\langle x_{0}, x_{0}\right\rangle b\right)=\varphi\left(b^{*}\right) \varphi\left(\left\langle x_{0}, x_{0}\right\rangle\right) \varphi(b) \\
& \Rightarrow\left(\Phi\left(x_{0} b\right)-\Phi\left(x_{0}\right) \varphi(b)\right)^{*}\left(\Phi\left(x_{0} b\right)-\Phi\left(x_{0}\right) \varphi(b)\right)=0 \\
& \Rightarrow \Phi\left(x_{0} b\right)=\Phi\left(x_{0}\right) \varphi(b) .
\end{aligned}
$$

Ternary domains for cp maps on Hilbert C*-modules

Remark

$\Phi: X \rightarrow L(\mathcal{H}, \mathcal{K})$ is a ternary map, if

$$
\Phi(x\langle y, z\rangle)=\Phi(x)\langle\Phi(y), \Phi(z)\rangle=\Phi(x) \Phi(y)^{*} \Phi(z) \text { for all }
$$

$x, y, z \in X$.

Definition

Let $\Phi: X \rightarrow L(\mathcal{H}, \mathcal{K})$ be a map. The set

$$
T_{\Phi}=\left\{y \in X: \Phi(x\langle y, z\rangle)=\Phi(x) \Phi(y)^{*} \Phi(z) \text { for all } x, z \in X\right\}
$$

is called the ternary domain of Φ.

Module domains and ternary domains for cp maps on

 Hilbert C*-modules
Proposition

Let X be a Hilbert A-module, $\varphi: A \rightarrow L(\mathcal{H})$ be a cp map, $\Phi: X \rightarrow L(\mathcal{H}, \mathcal{K})$ be a φ-map and $x_{0} \in X$. Then the following statements are equivalent:
(1) $x_{0} \in X_{\Phi}$;
(2) $\Phi\left(x_{0}\langle y, z\rangle\right)=\Phi\left(x_{0}\right) \Phi(y)^{*} \Phi(z) y, z \in X$;
(3) $\Phi\left(y\left\langle x_{0}, z\right\rangle\right)=\Phi(y) \Phi\left(x_{0}\right)^{*} \Phi(z) y, z \in X$;
(c) $x_{0} \in T_{\Phi}$.

Ternary domains for cp maps

Definition

Fie $\varphi: A \rightarrow L(\mathcal{H})$ be a cp map
$T_{\varphi}=\left\{a \in A ; \varphi\left(b a^{*} c\right)=\varphi\left(b a^{*}\right) \varphi(c)=\varphi(b) \varphi\left(a^{*} c\right)\right.$ $\left.=\varphi(b) \varphi\left(a^{*}\right) \varphi(c),(\forall) b, c \in A\right\}$
is called the ternary domain of φ.

Example

The map $\varphi: M_{2}(\mathbb{C}) \rightarrow L\left(\mathbb{C}^{2}\right)$ is given by

$$
\varphi\left(\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\right)(\xi, \eta)=\left(a_{11} \xi, 0\right) ;(\xi, \eta) \in \mathbb{C}^{2}
$$

is a cp map. It is easy to check that

$$
M_{\varphi}=\left\{\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]: a, b \in \mathbb{C}\right\} \text { and } T_{\varphi}=\left\{\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right]: a \in \mathbb{C}\right\}
$$

Ternary domains for cp maps

Proposition

Let $\varphi: A \rightarrow L(\mathcal{H})$ be a cp map. Then:
(1) $T_{\varphi}=\left\{a \in M_{\varphi}: \varphi\left(b a^{*} c\right)=\varphi(b) \varphi(a)^{*} \varphi(c)\right.$ for all $\left.b, c \in A\right\}$;
(2) T_{φ} is a closed two-sided $*$-ideal in M_{φ};
(3) $T_{\varphi} A T_{\varphi}=T_{\varphi}$;

If A and φ are unital, then:
(1) $T_{\varphi}=\left\{a \in A: \varphi\left(b a^{*} c\right)=\varphi(b) \varphi\left(a^{*}\right) \varphi(c),(\forall) b, c \in A\right\}$;
(6) $1_{A} \in T_{\varphi} \Leftrightarrow \varphi$ is a $*$-morphism.

Module domains for cp maps on Hilbert C*-modules

Proposition

Let X be a Hilbert A-module, $\varphi: A \rightarrow L(\mathcal{H})$ be a cp map, $\Phi: X \rightarrow L(\mathcal{H}, \mathcal{K})$ be a φ-map and $x_{0} \in X$. Then the following statements are equivalent:
(1) $x_{0} \in X_{\Phi}$;
(2) $\left\langle x_{0}, x_{0}\right\rangle \in M_{\varphi}$ and $\varphi\left(a\left\langle x_{0}, x_{0}\right\rangle b\right)=\varphi(a) \varphi\left(\left\langle x_{0}, x_{0}\right\rangle\right) \varphi(b),(\forall)$ $a, b \in A$;
(3) $\left\langle x_{0}, x_{0}\right\rangle \in T_{\varphi}$.

Module domains for cp maps on Hilbert C*-modules

Corollary

Let $\Phi: X \rightarrow L(\mathcal{H}, \mathcal{K})$ be a φ-map. Then:
(1) X_{Φ} is a Hilbert C^{*}-module over the C^{*}-algebra T_{φ};
(2) $X T_{\varphi}=X_{\Phi}$.

Corollary

If $\Phi_{1}: X \rightarrow L\left(\mathcal{H}, \mathcal{K}_{1}\right)$ and $\Phi_{2}: X \rightarrow L\left(\mathcal{H}, \mathcal{K}_{2}\right)$ are two cp φ-maps, then $X_{\Phi_{1}}=X_{\Phi_{2}}$.

Ternary domains of cp maps on Hilbert C*-modules

Theorem (Asadi, Behmani, Medghalchi, Nikpey, 2017)

Let X be a Hilbert A-module and $\varphi: A \rightarrow L(\mathcal{H})$ be a cp map. If $\left(\pi_{\varphi}, \mathcal{H}_{\varphi}, V_{\varphi}\right)$ is a minimal Stinespring representation associated to φ, then there two Hilbert spaces $\mathcal{K}_{\pi_{\varphi}}$ and \mathcal{K}_{φ}, a π_{φ}-representation $\Pi_{\pi_{\varphi}}: X \rightarrow L\left(\mathcal{H}_{\varphi}, \mathcal{K}_{\pi_{\varphi}}\right)$ of X on the Hilbert spaces \mathcal{H}_{φ} and $\mathcal{K}_{\pi_{\varphi}}$, and a unitary operator $W_{\varphi}: \mathcal{K}_{\varphi} \rightarrow \mathcal{K}_{\pi_{\varphi}}$ such that the map $\Phi_{\varphi, X}: X \rightarrow L\left(\mathcal{H}, \mathcal{K}_{\varphi}\right)$ given by

$$
\Phi_{\varphi, X}(x)=W_{\varphi}^{*} \Pi_{\pi_{\varphi}}(x) V_{\varphi}
$$

is a φ-map.
Moreover, if $\Phi: X \rightarrow L(\mathcal{H}, \mathcal{K})$ is a φ-map, then there is a unique isometry $S_{\Phi}: \mathcal{K}_{\varphi} \rightarrow \mathcal{K}$ such that

$$
\Phi(\cdot)=S_{\Phi} \Phi_{\varphi, X}(\cdot)
$$

Ternary domains of cp maps on Hilbert C*-modules

Definition

Let X be a Hilbert A-module and $\varphi: A \rightarrow L(\mathcal{H})$ a cp map. We denote the φ-module domain of each φ-map on X by X_{φ} and call it the ternary domain of φ on X.

Remark

(1) X_{φ} is a Hilbert C^{*}-module over the C^{*}-algebra T_{φ};
(2) If X is full, then X_{φ} is a full Hilbert C^{*}-module over the C^{*}-algebra $T_{\varphi} ;$
(3) Every cp φ-map $\Phi: X \rightarrow L(\mathcal{H}, \mathcal{K})$ is a ternary map on X_{φ}.
(9) $X_{\varphi}=\overline{\operatorname{span}}\left\{x \in X ;\langle x, x\rangle \in M_{\varphi}, \varphi(a\langle x, x\rangle b)=\varphi(a) \varphi(\langle x, x\rangle) \varphi(b)\right.$,
$=\overline{\operatorname{span}}\left\{x \in X ;\langle x, x\rangle \in M_{\varphi}, \varphi\left(b^{*}\langle x, x\rangle b\right)=\varphi(b)^{*} \varphi(\langle x, x\rangle) \varphi(b)\right.$,
$(\forall) b \in A\}$.

Linking algebra of a Hilbert C*-module

Let X and Y be two Hilbert C^{*}-modules over A.

- $K(X, Y)$ denotes the space of all 'compact' operators from X to Y.
- $K(X, Y)$ is generated by $\left\{\theta_{y, x}: x \in X, y \in Y\right\}$, where $\theta_{y, x}: X \rightarrow Y, \theta_{y, x}(z)=y\langle x, z\rangle$.
- The linking C^{*}-algebra $\mathcal{L}_{A}(X)$ of X is the C^{*}-algebra of all 'compact' operators on the Hilbert C^{*}-module $X \oplus A$ over A.

Linking algebra of a Hilbert C*-module

- The map $x \mapsto r_{x}$, where $r_{x}: A \rightarrow X, r_{x}(a)=x a\left(r_{x}^{*}=I_{x}\right)$, is an isometric linear isomorphism from X to $K(A, X)$, and we denote $K(A, X)$ by X and r_{x} by x.
- The map $y \mapsto I_{y}$, where $I_{y}: X \rightarrow A, I_{y}(z)=\langle y, z\rangle$, is an isometric conjugate linear isomorphism from X to $K(X, A)$, and we denote $K(X, A)$ by X^{*} and I_{x} by x^{*}.
- The map $a \mapsto T_{a}$, where $T_{a}: A \rightarrow A, T_{a}(b)=a b$, is an isometric linear *-isomorphism from A to $K(A)$, and we denote $K(A)$ by A and T_{a} by a.

$$
\begin{aligned}
\mathcal{L}_{A}(X) & =\left[\begin{array}{cc}
K(X) & K(A, X) \\
K(X, A) & K(A)
\end{array}\right]=\left[\begin{array}{cc}
K(X) & X \\
X^{*} & A
\end{array}\right] \\
& =\left\{\left[\begin{array}{cc}
T & x \\
y^{*} & a
\end{array}\right]: T \in K(X), x, y \in X, a \in A\right\} .
\end{aligned}
$$

Stinespring type theorem for cp on Hilbert C^{*}-modules

Theorem (Bhat, Ramesh,Sumesh, 2012)

Let X be a Hilbert C^{*}-module over the C^{*}-algebra $A, \varphi: A \rightarrow L(\mathcal{H})$ a $c p$ and $\Phi: X \rightarrow L(\mathcal{H}, \mathcal{K})$ a φ-map. Then there is a triple of pairs $\left(\left(\Pi_{\Phi}, \pi_{\varphi}\right),\left(W_{\Phi}, V_{\varphi}\right),\left(\mathcal{H}_{\varphi}, \mathcal{K}_{\Phi}\right)\right)$ consisting of the Hilbert spaces \mathcal{H}_{φ} and \mathcal{K}_{Φ}, a bounded linear operator $V_{\varphi}: \mathcal{H} \rightarrow \mathcal{H}_{\varphi}$, a coisometry $W_{\Phi}: \mathcal{K} \rightarrow \mathcal{K}_{\Phi}, a *$-representation $\pi_{\varphi}: A \rightarrow L\left(\mathcal{H}_{\varphi}\right)$ and a π_{φ}-representation $\Pi_{\Phi}: X \rightarrow L\left(\mathcal{H}_{\varphi}, \mathcal{K}_{\Phi}\right)$ such that $\left(\pi_{\varphi}, \mathcal{H}_{\varphi}, V_{\varphi}\right)$ is a minimal Stinespring representation associated to φ and $\Phi(x)=W_{\Phi}^{*} \Pi_{\Phi}(x) V_{\varphi}$ for all $x \in X$. Moreover, $\left[\Pi_{\Phi}(X) V_{\varphi} \mathcal{H}\right]=\mathcal{K}_{\Phi}$.

The triple of pairs $\left(\left(\Pi_{\Phi}, \pi_{\varphi}\right),\left(W_{\Phi}, V_{\varphi}\right),\left(\mathcal{H}_{\varphi}, \mathcal{K}_{\Phi}\right)\right)$ is called a minimal Stinespring representation associated to the cp φ - map Φ, which is unique up to unitary equivalence.

Induced completely positive maps on the linking algebra of

 a Hilbert C*-module
Proposition

Let X be a Hilbert A-module, $\varphi: A \rightarrow L(\mathcal{H})$ a cp map and $\Phi: X \rightarrow L(\mathcal{H}, \mathcal{K})$ a φ-map. Then there is a unique $*$-representation $\psi_{\Phi, \varphi}: K(X) \rightarrow L(\mathcal{K})$ such that

$$
\widetilde{\varphi}_{\Phi}=\left[\begin{array}{cc}
\psi_{\Phi, \varphi} & \Phi \\
\Phi^{*} & \varphi
\end{array}\right]: \mathcal{L}_{A}(X) \rightarrow L(\mathcal{K} \oplus \mathcal{H})
$$

is a cp map and for every minimal Stinespring representation associated to the φ-map Φ such as $\left((\Pi, \pi),(W, V),\left(\mathcal{K}^{\prime}, \mathcal{H}^{\prime}\right)\right)$, there is a *-representation $\Gamma: K(X) \rightarrow L\left(\mathcal{K}^{\prime}\right)$ such that $\Gamma\left(\theta_{x, y}\right)=\Pi(x) \Pi(y)^{*}$ for all $x, y \in X$ and

$$
\widetilde{\varphi}_{\Phi}=\left[\begin{array}{cc}
\psi_{\Phi, \varphi} & \Phi \\
\Phi^{*} & \varphi
\end{array}\right]=\left[\begin{array}{cc}
W^{*} & 0 \\
0 & V^{*}
\end{array}\right]\left[\begin{array}{cc}
\Gamma(\cdot) & \Pi(\cdot) \\
\Pi^{*}(\cdot) & \pi(\cdot)
\end{array}\right]\left[\begin{array}{cc}
W & 0 \\
0 & V
\end{array}\right] .
$$

Moreover, if φ is contractive, then $\widetilde{\varphi}_{\Phi}$ is contractive.

Induced completely positive maps on the linking algebra of a Hilbert C*-module

Lemma

Let X be a Hilbert A-module, $\varphi: A \rightarrow L(\mathcal{H})$ a cp map and $\Phi: X \rightarrow L(\mathcal{H}, \mathcal{K})$ a φ-map. Then:
(1) $\Phi(T(z))=\psi_{\Phi, \varphi}(T) \Phi(z), \forall T \in K(X), \forall z \in X$;
(2) $K(X) X_{\varphi} \subseteq X_{\varphi}$.

If φ is contractive, then:
(3) $x \in X_{\varphi} \Leftrightarrow \psi_{\Phi, \varphi}\left(\theta_{x, x}\right)=\Phi(x) \Phi(x)^{*}$;
(1) $x \in X_{\varphi} \Leftrightarrow \psi_{\Phi, \varphi}\left(\theta_{x, y}\right)=\Phi(x) \Phi(y)^{*},(\forall) y \in X$;
(5) $\psi_{\Phi, \varphi}\left(\theta_{x a, y}\right)=\Phi(x) \varphi(a) \Phi(y)^{*},(\forall) x, y \in X,(\forall) a \in T_{\varphi}$.

Multiplicative domains of the induced completely positive maps on the linking algebra

Theorem

Let X be a Hilbert A-module, $\varphi: A \rightarrow L(\mathcal{H})$ a contractive $c p$ linear map and $\Phi: X \rightarrow L(\mathcal{H}, \mathcal{K})$ a φ-map. If $\widetilde{\varphi}_{\Phi}: \mathcal{L}_{A}(X) \rightarrow L(\mathcal{K} \oplus \mathcal{H})$ is the $c p$ linear map on $\mathcal{L}_{A}(X)$ associated to the φ-map Φ, then:

$$
M_{\tilde{\varphi}_{\Phi}}=\left\{\left[\begin{array}{cc}
T & y \\
x^{*} & a
\end{array}\right]: T \in K(X), x, y \in X_{\varphi}, a \in M_{\varphi}\right\}
$$

and

$$
T_{\widetilde{\varphi}_{\Phi}}=\left\{\left[\begin{array}{cc}
T & y \\
x^{*} & a
\end{array}\right]: T \in K(X), x, y \in X_{\varphi}, a \in T_{\varphi}\right\}
$$

Remark

The above theorem remains valid for all completely positive linear map

Multiplicative domains of the induced completely positive maps on the linking algebra

Corollary

Let X be a Hilbert A-module, $\varphi: A \rightarrow L(\mathcal{H})$ a contractive $c p$ linear map and $\Phi: X \rightarrow L(\mathcal{H}, \mathcal{K})$ a φ-map. If $\widetilde{\varphi}_{\Phi}: \mathcal{L}_{A}(X) \rightarrow L(\mathcal{K} \oplus \mathcal{H})$ is the $c p$ linear map on $\mathcal{L}_{A}(X)$ associated to the φ-map Φ, then

$$
\mathcal{L}_{M_{\varphi}}\left(X_{\varphi}\right) \subseteq M_{\widetilde{\varphi}_{\Phi}} \text { and } \mathcal{L}_{T_{\varphi}}\left(X_{\varphi}\right) \subseteq T_{\widetilde{\varphi}_{\Phi}}
$$

Corollary

Let $\varphi: A \rightarrow L(\mathcal{H})$ be a completely positive linear map and Φ and Ψ be two operator-valued φ-maps on a Hilbert A-module X. Then

$$
M_{\tilde{\varphi}_{\Phi}}=M_{\tilde{\varphi}_{\Psi}} \text { and } T_{\widetilde{\varphi}_{\Phi}}=T_{\widetilde{\varphi}_{\Psi}}
$$

Multiplicative domains of the induced completely positive maps on the linking algebra

Example

If φ and Φ are as in the previous example, then

$$
M_{\tilde{\varphi}_{\Phi}}=\left\{\left[\begin{array}{llll}
a & b & x & 0 \\
c & d & y & 0 \\
u & v & s & 0 \\
0 & 0 & 0 & t
\end{array}\right] ; a, b, c, d, x, y, s, t \in \mathbb{C}\right\}
$$

and

$$
T_{\widetilde{\varphi}_{\Phi}}=\left\{\left[\begin{array}{cccc}
a & b & x & 0 \\
c & d & y & 0 \\
u & v & s & 0 \\
0 & 0 & 0 & 0
\end{array}\right] ; a, b, c, d, x, y, s \in \mathbb{C}\right\}
$$

Thank you for your attention!

