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Gysin sequences in K -theory (Sphere bundles)

Theorem (Karoubi?)

Let M be a compact Hausdorff space and let V → M be a
hermitian complex vector bundle of rank n.

Then there exists a six term exact sequence of K-groups:

K0

(
C (M)

)
−−−−→
χ(V )

K0

(
C (M)

)
−−−−→ K0

(
C (S(V ))

)
x y

K1

(
C (S(V ))

)
←−−−− K1

(
C (M)

) χ(V )←−−−− K1

(
C (M)

)
where S(V )→ M is the sphere bundle and

χ(V ) =
n∑

i=0

(−1)i
[
Γ(Λi (V ))

]
∈ KK0

(
C (M),C (M)

)
is the Euler characteristic.
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Gysin sequences in K -theory (Pimsner algebras)

Theorem (Pimsner)

Let X be a countably generated and full C ∗-correspondence from a
separable C ∗-algebra A to itself such that

the left action φ : A→ L(X ) is injective and φ(A) ⊆ K(X ).

Then there exists a six term exact sequence of K-groups:

K0(A) −−−−→
1−[X ]

K0(A) −−−−→ K0(OX )x y
K1(OX ) ←−−−− K1(A)

1−[X ]←−−−− K1(A)

where OX is the Cuntz-Pimsner algebra and

1− [X ] ∈ KK0(A,A)

is the Euler characteristic.
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Subproduct systems

Definition

A subproduct system is a sequence {X (m)}∞m=0 of
C ∗-correspondences from C ∗-algebra A to itself together with
adjointable isometries ιk,m : X (k + m)→ X (k)⊗̂AX (m) for all
k ,m ∈ N0 such that

all left actions are injective and non-degenerate;

X (0) = A;

the adjointable isometries satisfy unitality and associativity
constraints.
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Fock spaces and creation operators

Definition

Let (X , ι) be a subproduct system.

The Fock space is the Hilbert C ∗-module direct sum

F (X ) :=
∞⊕

m=0

X (m).

For each ξ ∈ X (k) the creation operator Tξ ∈ L
(
F (X )

)
is

defined by

Tξ(η) := ι∗k,m(ξ ⊗ η) η ∈ X (m).
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Toeplitz and Cuntz-Pimsner algebras

Definition

Let (X , ι) be a subproduct system.

The Toeplitz algebra TX ⊆ L
(
F (X )

)
is the smallest unital

C ∗-subalgebra containing all the creation operators.

The Cuntz-Pimsner algebra OX is the quotient of TX by
the ideal IX consisting of those Toeplitz operators that
“vanish at infinity”.
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Subproduct systems from representations of SU(2)

Definition

Let ρ : SU(2)→ U(H) be a non-trivial irreducible representation.
The determinant of ρ is the 1-dimensional subspace

det(ρ) :=
{
ξ ∈ H ⊗ H | ρ⊗2(g)(ξ) = ξ , ∀g ∈ SU(2)

}
⊆ H ⊗ H.

Lemma

For each m ≥ 2 define the subspaces

Kρ(m) :=
m−2∑
i=0

H⊗i ⊗ det(ρ)⊗ H⊗(m−2−i) ⊆ H⊗m and

Hρ(m) := Kρ(m)⊥ , Hρ(0) = C and Hρ(1) := H.

Then the sequence {Hρ(m)}∞m=0 and the inclusions
ιk,m : Hρ(k + m) ⊆ Hρ(k)⊗ Hρ(m) form a subproduct
system equipped with an SU(2)-action.
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Toeplitz and Cuntz-Pimsner algebras from SU(2)-actions

Definition

Let ρ : SU(2)→ U(H) be a non-trivial irreducible representation.

The Toeplitz algebra Tρ is the Toeplitz algebra coming from
the subproduct system (Hρ, ι).

The Cuntz-Pimsner algebra Oρ agrees with the quotient
C ∗-algebra Tρ/K

(
F (Hρ)

)
.

Remark

The Toeplitz algebra Tρ and the Cuntz-Pimsner algebra Oρ admit
a gauge action of SU(2) coming from the SU(2)-action on the
underlying subproduct system.
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Fusion rules

Theorem

Let ρ : SU(2)→ U(H) be a non-trivial irreducible representation.
For each k ,m ∈ N0 there exists an explicit SU(2)-equivariant
unitary isomorphism

Wk,m : Hρ(k)⊗ Hρ(m)

→ Hρ(k + m)⊕ Hρ(k + m − 2)⊕ . . .⊕ Hρ(|k −m|).

Remark

For dim(H) = 2 we recover the usual fusion rules for the
irreducible representations of SU(2). For dim(H) > 2 this is no
longer the case since Hρ(m) is not irreducible for m ≥ 2.
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KK -equivalences

Theorem (Arici and K.)

Let ρ : SU(2)→ U(H) be a non-trivial irreducible representation.

The Toeplitz algebra Tρ is KK -equivalent to C.

In particular, we have an isomorphism of K -groups:

K∗(Tρ) ∼= K∗(C).
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The Gysin sequence

Theorem (Arici and K.)

Let ρ : SU(2)→ U(H) be a non-trivial irreducible representation.
Then there exists a six term exact sequence of K-groups:

K0(C) −−−−−−−−−→
1−[H]+[det(ρ)]

K0(C) −−−−→ K0(Oρ)x y
K1(Oρ) ←−−−− K1(C)

1−[H]+[det(ρ)]←−−−−−−−−− K1(C)

Jens Kaad (joint work with Francesca Arici) Subproduct systems, Gysin sequences and SU(2)-symmetries



Computation of K -groups

Corollary (Arici and K.)

Let ρ : SU(2)→ U(H) be an irreducible representation with
dim(H) = n ≥ 2. Then

K0(Oρ) ∼= Z/(n−2)Z and K1(Oρ) ∼=
{

Z for n = 2
{0} for n > 2

.
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