Gabor duality theory for Morita equivalent C*-algebras

Franz Luef

NTNU Trondheim

7.12.2020

This is based on joint work with Are Austad and Mads S. Jakobsen.

- Gabor duality theory for Morita equivalent C*-algebras, International Journal of Mathematics, 2020.
- Duality theory of Gabor frames and Heisenberg modules, Journal of Noncommutative Geometry, accepted 2020.

Main theme

Study of equivalence bimodules between two C^* -algebras from the perspective of frame theory. Motivation comes from the duality principle for Gabor frames.

Equivalence bimodules

Morita equivalence

Let A and B be C^* -algebras. An A-B-equivalence bimodule between A and B is a Hilbert C^* -module E satisfying the following conditions:

- $\overline{\langle E, E \rangle} = A$ and $\overline{\langle E, E \rangle_{\bullet}} = B$, where $\overline{\langle E, E \rangle} = \operatorname{span}\{_{\bullet}\langle f, g \rangle \mid f, g \in E\}$ and likewise for $\langle E, E \rangle_{\bullet}$.
- For all $f, g \in E$, $a \in A$ and $b \in B$,

$$\langle \mathit{af}, \mathit{g} \, \rangle_{\bullet} = \langle \mathit{f}, \mathit{a}^* \mathit{g} \, \rangle_{\bullet} \text{ and } {}_{\bullet} \langle \mathit{fb}, \mathit{g} \rangle = {}_{\bullet} \langle \mathit{f}, \mathit{gb}^* \rangle.$$

• For all $f, g, h \in E$,

$$\bullet \langle f, g \rangle h = f \langle g, h \rangle_{\bullet}$$
.

Notation

 $\Theta_{f,g}$ denotes the **rank-one module operator** $\Theta_{f,g}: h \mapsto {}_{\bullet}\langle h, f \rangle g$ on E and $\mathbb{K}_A(E)$ denotes the C^* -algebra of compact module operators on E.

Observation

It is a well-known result that if E is an A-B-equivalence bimodule, then $B \cong \mathbb{K}_A(E)$ through the identification $\Theta_{f,g} \mapsto \langle f,g \rangle_{\bullet}$.

Fact

Let E be an A-B-equivalence bimodule. Then E is a finitely generated projective A-module if and only if B is unital.

Localization

Suppose ϕ is a faithful positive linear functional on a C^* -algebra B, and that E is a right Hilbert B-module. We define an inner product

$$\langle \cdot, \cdot \rangle_{\phi} : E \times E \to \mathbb{C}, \quad (f, g) \mapsto \phi(\langle g, f \rangle_B),$$

where $\langle \cdot, \cdot \rangle_B$ is the B-valued inner product and complete E with respect to $\langle \cdot, \cdot \rangle_{\phi}$, denoted by H_E , and called the **localization of** E in ϕ There is a natural map $\rho_{\phi}: E \to H_E$ which induces an injective *-homomorphism $\rho_{\phi}: \operatorname{End}_B(E) \to \mathbb{B}(H_E)$.

Localization of equivalence bimodules

For unital Morita equivalent C^* -algebras A and B a result by Rieffel says that there is a bijection between normalized finite traces on A and non-normalized finite traces on B under which to a trace tr_B on B there is an associated trace tr_A on A satisfying

$$\operatorname{tr}_{A}(\bullet\langle f, g \rangle) = \operatorname{tr}_{B}(\langle g, f \rangle_{\bullet})$$

for all f, g in the equivalence bimodule E.

Localization

Let E be an A-B-equivalence bimodule, tr_B a faithful finite trace on B.

i) There is a finite trace on A, denoted tr_A , for which $\operatorname{tr}_A({}_{\bullet}\!\langle f,g\rangle)=\operatorname{tr}_B(\langle g,f\rangle_{\!\!\bullet})$, for all $f,g\in E$. For $f,g\in E$ we set

$$\langle f, g \rangle_{\mathsf{tr}_A} = \mathsf{tr}_A({}_{ullet}\langle f, g \rangle), \quad \langle f, g \rangle_{\mathsf{tr}_B} = \mathsf{tr}_B(\langle g, f \rangle_{ullet}),$$

with $\langle f, g \rangle_{\mathsf{tr}_A} = \langle f, g \rangle_{\mathsf{tr}_B}$ for all $f, g \in E$.

Frames for Hilbert C*-modules

Definitions

Let E be an A-B-equivalence bimodule. For $g \in E$ we define the **analysis** operator by

$$\Phi_g: E \to A$$

$$f \mapsto {}_{\bullet}\langle f, g \rangle ,$$

and the synthesis operator:

$$\Psi_g: A \to E$$
 $a \mapsto a \cdot g.$

Frames for Hilbert C*-modules

Remark

Since E is an A-B-bimodule, we also have defined the analysis operator and the synthesis operator with respect to the B-valued inner product. If we do so, then it will be indicated by writing Φ_{E}^{B} .

Definitions-ctd

Let E be an A-B-equivalence bimodule. We define the **frame-like** operator $\Theta_{g,h}$ to be

$$\Theta_{g,h}: E \to E$$

$$f \mapsto {}_{\bullet}\langle f, g \rangle \cdot h.$$

 $\Theta_{g,h} = \Psi_h \Phi_g = \Phi_h^* \Phi_g$. The **frame operator of** g is the operator $\Theta_g := \Theta_{g,g} = \Phi_g^* \Phi_g$.

Frames for Hilbert C*-modules

Module frames

Suppose we have $g_1, \ldots, g_k \in E$, such that $\sum_{i=1}^k \Theta_{g_i}$ is invertible E. Then we call $\{g_1, \ldots, g_k\}$ a **module frame** for E.

This is equivalent to existence of constants C, D > 0 such that

$$C_{\bullet}\langle f, f \rangle \leq \sum_{i=1}^{k} {}_{\bullet}\langle f, g_i \rangle {}_{\bullet}\langle g_i, f \rangle \leq D_{\bullet}\langle f, f \rangle$$

for all $f \in E$.

Frame condition

Let E be an A-B-equivalence bimodule. Then $f = \sum_{i=1}^k \Theta_{g_i,h_i} f$ for all $f \in E$ if and only if B is unital and $\sum_{i=1}^k \langle g_i, h_i \rangle_{\bullet} = 1_B$.

Lemma

Let E be an A-B-equivalence bimodule. Suppose $g,h\in E$ satisfy $_{ullet}\langle f,h\rangle\,g=f$ for all $f\in E$. Then

$$f = h \langle g, f \rangle_{\bullet}$$
 for all $f \in \overline{h \cdot B}$.

Definition

Let E be an A-B-equivalence bimodule. If $g \in E$ is such that Θ_g is invertible on E, then $h = \Theta_g^{-1}g$ is called the **canonical dual atom** of g.

Module Duality Principle

Theorem (Duality principle)

Let E be an A-B-equivalence bimodule, and let $g \in E$. The following are equivalent:

- **1** $\Theta_g: E \to E$ is invertible.

Density theorems

Let E be an A-B-equivalence bimodule where both A and B are unital.

- If $g \in E$ is such that $\Theta_g : E \to E$ is invertible, then $\operatorname{tr}_B(1_B) \le \operatorname{tr}_A(1_A)$.
- If $g \in E$ is such that $\Phi_g \Phi_g^* : A \to A$ is an isomorphism, then $\operatorname{tr}_B(1_B) \ge \operatorname{tr}_A(1_A)$.

Localization of module frames

Let E be an A-B-equivalence bimodule, where B is unital and equipped with a faithful finite trace tr_B and induced trace tr_A on A. We denote by H_E the localization of E in tr_A , and by $(-,-)_E$ its inner product, i.e. $(f_1,f_2)_E=\operatorname{tr}_A(\bullet\langle f_1,f_2\rangle)$ for all $f_1,f_2\in E$.

Proposition

For $g \in E$ there exists an $h \in E$ such that we have ${}_{\bullet}\langle f, g \rangle \, h = f$ for all $f \in E$ if and only if there exist constants C, D > 0 such that

$$C(f,f)_E \leq (f\langle g,g\rangle_{\bullet},f)_E \leq D(f,f)_E$$

for all $f \in H_E$.

Riesz sequences

Proposition

Let E be an A-B-equivalence bimodule where A is unital and equipped with a faithful finite trace tr_A . We localize E and A as described above. For $g \in E$ we have $\Phi_g \Phi_g^* : A \to A$ is an isomorphism if and only if there exist C, D > 0 such that for all $a \in A$:

$$C(a, a)_A \leq (ag, ag)_E \leq D(a, a)_A$$
.

We say g generates a **module Riesz sequence** for E with respect to A.

Heisenberg modules

modulation operator and translation operator

$$E_{\beta}f(t)=e^{2\pi i\beta t}f(t),\ T_{\alpha}f(t)=f(t-\alpha),\ \alpha,\beta\in\mathbb{R}\setminus\{0\},\ f\in L^{2}(\mathbb{R}),$$

$$\mathcal{A} = \big\{ \mathsf{a} \in \mathsf{B}(L^2(\mathbb{R})) \, : \, \mathsf{a} = \sum_{m,n \in \mathbb{Z}} \mathsf{a}(m,n) \, \mathsf{E}_{m\beta} \, \mathsf{T}_{n\alpha} \,, \, \, \mathsf{a} \in \ell^1(\mathbb{Z}^2) \big\}.$$

 $\mathcal A$ is a faithful representation of the twisted group algebra $\ell^1(\alpha\mathbb Z imes \beta\mathbb Z,c)$:

$$a_1
atural a_2(m,n) = \sum_{m',n' \in \mathbb{Z}} a_1(m',n') a_2(m-m',n-n') e^{2\pi i \beta \alpha (m-m')n'}, \quad (1)$$

$$a^*(m,n) = e^{2\pi i \alpha \beta mn} \overline{a(-m,-n)}. \tag{2}$$

The enveloping C^* -algebra is the twisted group C^* -algebra $C^*(\mathbb{Z}^2,c)$

Heisenberg modules

The left-action that $a \in \mathcal{A}$ has on functions $f \in L^2(\mathbb{R})$ is given by $a \cdot f = \sum_{m,n \in \mathbb{Z}} a(m,n) E_{m\beta} T_{n\alpha} f$.

For functions in $\mathbf{S}_0(\mathbb{R})$ we define an \mathcal{A} -valued inner-product in the following way: ${}_{\bullet}\!\langle\,\cdot\,,\,\cdot\,\rangle:\mathbf{S}_0(\mathbb{R})\times\mathbf{S}_0(\mathbb{R})\to\mathcal{A}$,

$$_{\bullet}\langle f,g\rangle = \sum_{m,n\in\mathbb{Z}}\langle f,E_{m\beta}T_{n\alpha}g\rangle E_{m\beta}T_{n\alpha}.$$

Here $\mathbf{S}_0(\mathbb{R})$ is **Feichtinger's algebra**: a suitable Banach space of test-functions, which is widely used in time-frequency analysis. Let g be a Gaussian function. Then $f \in L^2(\mathbb{R})$ is in $\mathbf{S}_0(\mathbb{R})$ if and only if

$$||f||_{\mathbf{S}_0} = \iint_{\mathbb{R}^2} |\langle f, E_{\omega} T_{x} g \rangle| dx d\omega < \infty.$$

Let \mathcal{B} be the twisted group algebra $\ell^1(\frac{1}{\beta}\mathbb{Z}\times\frac{1}{\alpha}\mathbb{Z},\overline{c})$ and $C^*(\frac{1}{\beta}\mathbb{Z}\times\frac{1}{\alpha}\mathbb{Z},\overline{c})$ its enveloping C^* -algebra.

We define a \mathcal{B} -valued inner product $\langle \cdot, \cdot \rangle_{\bullet} : \mathbf{S}_{0}(\mathbb{R}) \times \mathbf{S}_{0}(\mathbb{R}) \to \mathcal{B} : \langle f, g \rangle_{\bullet} = \frac{1}{|\alpha\beta|} \sum_{m,n \in \mathbb{Z}} \langle g, \left(E_{m/\alpha} T_{n/\beta} \right)^{*} f \rangle \left(E_{m/\alpha} T_{n/\beta} \right)^{*}$ that has a right-action on functions $g \in L^{2}(\mathbb{R})$ given by

$$g \cdot b = \frac{1}{|\alpha\beta|} \sum_{m,n \in \mathbb{Z}} b(m,n) (E_{m/\alpha} T_{n/\beta})^* g.$$

Associativity condition:

$${}_{ullet}\langle f,g
angle \cdot h=f\cdot \langle g,h
angle_{ullet}$$
 for all $f,g,h\in \mathbf{S}_0(\mathbb{R}).$

The completion of $\mathbf{S}_0(\mathbb{R})$ with respect to $\|f\|_E = \|\bullet\langle f, f\rangle\|^{1/2}$ (or $\|\langle f, f\rangle_{\bullet}\|^{1/2}$) is the **Heisenberg module**, E.

Heisenberg modules

Bessel family

Denote by $B_{\alpha\beta}$ the subspace of $L^2(\mathbb{R})$ consisting of those $g\in L^2(\mathbb{R})$ such that

$$\sum_{k,l\in\mathbb{Z}} |\langle f, E_{\beta l} T_{\alpha k} g \rangle|^2 \leq \infty,$$

for all $f \in L^2(\mathbb{R})$. This is a Banach space with respect to

$$\|g\|_{\mathcal{B}_{\alpha\beta}} = \sup_{\|f\|_2=1} \Big(\sum_{k,l \in \mathbb{Z}} |\langle f, E_{\beta l} T_{\alpha k} g \rangle|^2 \Big)^{1/2}.$$

Gabor system $\{E_{\beta l}T_{\alpha k}g\}_{k,l\in\mathbb{Z}}$

$$f = {}_{\bullet}\langle f, g \rangle h = \sum_{m,n \in \mathbb{Z}} \langle f, E_{\beta n} T_{\alpha m} g \rangle E_{\beta n} T_{\alpha m} h$$

Austad-Enstad

- For $g \in \mathbf{S}_0(\mathbb{R})$ we have $\|g\|_{B_{\alpha\beta}} = \|g\|_E$, i.e. Heisenberg modules consists of the Bessel vectors of the Gabor system $\{E_{\beta l}T_{\alpha k}g\}_{k,l\in\mathbb{Z}}$.
- The set $\{g_1,...,g_k\}$ generates E as a left $C^*(\alpha\mathbb{Z}\times\beta\mathbb{Z},c)$ -module if and only if $\{E_{\beta n}T_{\alpha m}g_i: i=1,..,k\}_{m,n\in\mathbb{Z}}$ is a (multi-window) frame for $L^2(\mathbb{R})$, i.e. there exist constant A,B>0 such that

$$A\|f\|_2 \leq \sum_{i=1}^k \sum_{m,n\in\mathbb{Z}} |\langle f, E_{m\beta} T_{n\alpha} g_i \rangle|^2 \leq B\|f\|_2 \text{ for all } f \in L^2(\mathbb{R}).$$

Gabor duality principle

Definitions

(i) The Gabor system $\{E_{m\beta}T_{n\alpha}g\}_{m,n\in\mathbb{Z}}$ is a **frame** for $L^2(\mathbb{R})$, with bounds A,B>0, i.e.,

$$A \, \|f\|_2 \leq \sum_{m,n \in \mathbb{Z}} |\langle f, E_{m\beta} \, T_{n\alpha} g \rangle|^2 \leq B \, \|f\|_2 \ \text{ for all } \ f \in L^2(\mathbb{R}).$$

(ii) The Gabor system $\{(E_{m/\alpha}T_{n/\beta})^*g\}_{m,n\in\mathbb{Z}}$ is a **Riesz sequence** for $L^2(\mathbb{R})$ with bounds $|\alpha\beta|A, |\alpha\beta|B$, i.e.,

$$|\alpha\beta| A \|c\|_{2}^{2} \leq \left\| \sum_{m,n \in \mathbb{Z}} c(m,n) (E_{m\alpha^{-1}} T_{m\beta^{-1}})^{*} g \right\|_{2}^{2} \leq |\alpha\beta| B \|c\|_{2}^{2},$$

for all $c \in \ell^2(\mathbb{Z}^2)$.

Gabor duality principle

Theorem (Duality principle)

```
 \{E_{m\beta}T_{n\alpha}g\}_{m,n\in\mathbb{Z}} \text{ is a frame for } L^2(\mathbb{R}) \text{ if and only if } \\ \{(E_{m/\alpha}T_{n/\beta})^*g\}_{m,n\in\mathbb{Z}} \text{ is a Riesz sequence for } \overline{\operatorname{span}\{E_{m/\alpha}T_{n/\beta})^*g}_{m,n\in\mathbb{Z}}\}.
```

We have the standard trace on \mathcal{A} : $\operatorname{tr}_{\mathcal{A}}(a) = a(0,0)$. The localization of E is a subspace of $L^2(\mathbb{R})$.

Consequently, the module duality principle for the Heisenberg module *E* reduces to the Gabor duality principle.

Extensions

Multi-super Gabor frames or more generally matrix Gabor frames.