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Let (42,(:,-)) be a real Hilbert space, let A be a family of
continuous linear forms over 7, and let B(x, y) be a bounded
bilinear form on ¢ x . such that

B(x,x) = 0 for allxe N(A) = {xe S : A\(x) = 0 for all A € A}.
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Let (42,(:,-)) be a real Hilbert space, let A be a family of
continuous linear forms over 7, and let B(x, y) be a bounded
bilinear form on ¢ x . such that

B(x,x) = 0 for allxe N(A) = {xe S : \(x) = 0 for all X € A}.

A vector s€ S is called a B-spline if B(s,y) = 0 for all y e N(A).

The closed linear space of all B-splines is denoted by Sp(B, ).
For xe 4, an element se€ JZ is said to be a Sp(B, A\)-interpolate
of x if sis a B-spline and s — x e N(A).
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Lucas ! gives conditions that insure the existence of a
Sp(B, N\)-interpolate of any element in J7.

!T. R. Lucas, M-splines, J. Approximation Theory 5 (1972), 1-14.
(see also R. ARCANGELI, M. C. LOPEZ DE SILANES, and J. C. TORRENS,
Multidimensional minimizing splines. Theory and applications, Grenoble
Sciences. Kluwer Academic Publishers, Boston, MA, 2004.)
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Lucas ! gives conditions that insure the existence of a
Sp(B, N\)-interpolate of any element in J7.

One of the conditions is that the system (2, A, B, N(\)) is
well-posed in the sense that if Nj := {xe N(A) : B(x, x) = 0}, then
B(x,y) = 0 for all xe # and all ye Nj.

!T. R. Lucas, M-splines, J. Approximation Theory 5 (1972), 1-14.
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Lucas ! gives conditions that insure the existence of a
Sp(B, N\)-interpolate of any element in J7.

One of the conditions is that the system (2, A, B, N(\)) is
well-posed in the sense that if Nj := {xe N(A) : B(x, x) = 0}, then
B(x,y) = 0 for all xe # and all ye Nj.

Moreover, if Ny is the orthogonal complement of Ny in N(A), then
B is definite on Nb, that is, B(x,x) = c||x|? for some ¢ > 0 and all
X € N2.

!T. R. Lucas, M-splines, J. Approximation Theory 5 (1972), 1-14.
(see also R. ARCANGELI, M. C. LOPEZ DE SILANES, and J. C. TORRENS,
Multidimensional minimizing splines. Theory and applications, Grenoble
Sciences. Kluwer Academic Publishers, Boston, MA, 2004.)
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2M. FRANK, V. MANUILOV, and M. S. MOSLEHIAN, B-spline interpolation
problem in Hilbert C*-modules, J. Oper. Theory (2021), arXiv:2004.01444.
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The notion of a pre-Hilbert C*-module (27, {:,-)) is a natural
generalization of that of an inner product space in which we allow
the inner product to take its values in a C*-algebra @7 instead of
the field of complex numbers.
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The notion of a pre-Hilbert C*-module (27, {:,-)) is a natural
generalization of that of an inner product space in which we allow
the inner product to take its values in a C*-algebra @7 instead of
the field of complex numbers.

If 2" together with the norm |x| = [(x, )| is complete, then it is
called an «7-Hilbert C*-module. The positive square root of {x, x)
is denoted by |x| for x€ :Z". We say that a closed submodule % of
a Hilbert C*-module £ is orthogonally complemented if

X = DXL, where

Wt ={xe X :(xy)=0forall ye #}.
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The notion of a pre-Hilbert C*-module (27, {:,-)) is a natural
generalization of that of an inner product space in which we allow
the inner product to take its values in a C*-algebra @7 instead of
the field of complex numbers.

If 2" together with the norm |x| = [(x, )| is complete, then it is
called an «7-Hilbert C*-module. The positive square root of {x, x)
is denoted by |x| for x€ :Z". We say that a closed submodule % of

a Hilbert C*-module £ is orthogonally complemented if
X = DXL, where

Wt ={xe X :(xy)=0forall ye #}.

STANDING NOTATION: Throughout this talk, let 7 be a
C*-algebra (W*-algebra if we explicitly state it) whose pure state
space is denoted by PS(7), and let 2" denote a Hilbert
o/-module.
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If 27 denotes the set of all bounded .7-linear maps from 2 into
</, named as the dual of 27, then 2" becomes a right &/-module
equipped with the following actions:

(p+AT)(X) = p(x) + A\7(x) and  (7h)(x) = b*7(x)

for p,te 2/, be Z/ A€ C and xe 2.
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If 27 denotes the set of all bounded .7-linear maps from 2 into
</, named as the dual of 27, then 2" becomes a right &/-module
equipped with the following actions:

(p+AT)(X) = p(x) + A\7(x) and  (7h)(x) = b*7(x)

for p,te 2/, be Z/ A€ C and xe 2.

Trivially, to every bounded </-linear map T: 2" — % one can
associate a bounded .&7-linear map T : %" — 2"/ defined by

T(g)(x) = &(T(x) ge?.
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For each x€ 27, one can define the map xe 2"/ by

Q(y):<xay>7 yeZ.
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For each x€ 27, one can define the map xe 2"/ by

Q(y):<xay>7 yeZ.

It is easy to verify that the map x — X is isometric and .«7-linear.
Hence one can identify 2~ with

,ﬁr‘/f\::{?:xe%}

as a closed submodule of 2.
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For each x€ 27, one can define the map xe 2"/ by

Q(y):<xay>7 yeZ.

It is easy to verify that the map x — X is isometric and .«7-linear.
Hence one can identify 2~ with

Z = {x:xe 2}
as a closed submodule of 2.

A module 2 is called self-dual if 5?= 2. For example, a unital
C*-algebra &7 is self-dual as a Hilbert .«7-module via (a, by = a*b.
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Given x€ 2, one can define
xe X"
by
x(f) = fix)* (fe 27).

Then x — x gives rise to an isometric 27-linear map.
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Given x€ 2, one can define
xe 2"
by
x(f) = fix)* (fe 27).
Then x — x gives rise to an isometric 27-linear map.
We say that 2" is reflexive if this map is surjective.

There is an .«7-valued inner product on the second dual 2"
defined by

(F, Gy = F(G), where G(x) := G(X) (xe Z).

It is an extension of the inner product on 2". In addition, the map
F — Fis an isometric inclusion, and X = X because of

X(y) = X() = 70" = {xy) = X(y)-
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Given x€ 2, one can define
xe 2"
by
x(f) = fix)* (fe 27).
Then x — x gives rise to an isometric 27-linear map.
We say that 2" is reflexive if this map is surjective.

There is an .«7-valued inner product on the second dual 2"
defined by
(F, Gy = F(G), where G(x) := G(X) (xe Z).

It is an extension of the inner product on 2". In addition, the map
F — Fis an isometric inclusion, and X = X because of

x(y) = X(7) = Y(x)* = {x,y) = X(y).
Thus we have the chain of inclusions as & < 2" < £, and
every self-dual Hilbert C*-module is reflexive, too.
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A comprehensive result of Paschke reads as follows.3

3W. L. PASCHKE, Inner product modules over B*—a/gebras, Trans. Amer.
Math. Soc. 182 (1972), 443-468.
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A comprehensive result of Paschke reads as follows.3

Let " be a pre-Hilbert C*-module over a W*-algebra /. The
o -valued inner product on 2" x % can be extended to 2" x 2~
in such a way as to make 2" into a self~dual Hilbert ./ -module.

3W. L. PASCHKE, Inner product modules over B*—a/gebras, Trans. Amer.
Math. Soc. 182 (1972), 443-468.
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By an .@7-sesquilinear form on a Hilbert «/-module 2~ we mean a
bounded map B: 2 x Z — & such that it is anti-&7-linear in
the first variable and .@7-linear in the second one. We say that it is
positive on a set % if B(y,y) >0 for all ye #.
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By an .@7-sesquilinear form on a Hilbert «/-module 2~ we mean a
bounded map B: 2 x Z — & such that it is anti-&7-linear in
the first variable and .@7-linear in the second one. We say that it is
positive on a set % if B(y,y) >0 for all ye #.

It is elliptic on a set % if B(y,y) = «y, y) for any y € % and some
positive real constant c.
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Let % be a closed submodule of 2. Let B: 2 x 2 — & be an
&/ -sesquilinear form.
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Let % be a closed submodule of 2. Let B: 2 x 2 — & be an
&/ -sesquilinear form.

An element se 2 is said to be a B-spline if
B(s,y) =0

for all ye .
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Let % be a closed submodule of 2. Let B: 2 x 2 — & be an
&/ -sesquilinear form.

An element se 2 is said to be a B-spline if
B(s,y) =0
for all ye .

The B-spline interpolation problem asks whether for each xe 2
there exists a B-spline element s in the coset x+ %/

M. S. Moslehian
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Suppose that P is a non-trivial projection on a Hilbert C*-module
Z and set

B(Xay) = <’D<X)’y>7 xyeX.
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Example

Suppose that P is a non-trivial projection on a Hilbert C*-module
Z and set
B(x,y) :=(P(x),y), x,ye 2.

Then there is an orthogonal decomposition 2~ = ran(P) @ ker(P).
Let 2 < ker(P) be a closed submodule and set

% =ran(P)® Z < Z . Given x€ Z the element s€ x+ # can
be selected as s = (1 — P)(x), i.e. the B-spline interpolation has a
solution.

M. S. Moslehian
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Example

Suppose that P is a non-trivial projection on a Hilbert C*-module
Z and set
B(x,y) :=(P(x),y), x,ye 2.

Then there is an orthogonal decomposition 2~ = ran(P) @ ker(P).
Let 2 < ker(P) be a closed submodule and set

% =ran(P)® Z < Z . Given x€ Z the element s€ x+ # can
be selected as s = (1 — P)(x), i.e. the B-spline interpolation has a
solution.

It might be not unique when 2 # {0}. Indeed, let ze Z, and let
s=(1-P)(x)+z Thens—x=—P(x) +z€ ¥ and B(s,y) =0
for any ye 2.

M. S. Moslehian
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Example

Consider a Hilbert space 57 as a Hilbert C*-module over the

C*-algebra B(s¢) of all bounded linear operators on ¢ under the
C*-inner product

[xy] = x®y,
where x® y is defined by (x® y)(z) = {z, y)x, and the actions

A-x=Mx and x- T = T*(x).
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Example

Consider a Hilbert space 57 as a Hilbert C*-module over the
C*-algebra B(s¢) of all bounded linear operators on ¢ under the
C*-inner product

[xy] = x®y,
where x® y is defined by (x® y)(z) = {z, y)x, and the actions

A-x=Mx and x- T = T*(x).

Then the B-spline interpolation problem has no solution for any
given nontrivial closed subspace % of 2.

M. S. Moslehian
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Example

Let Z be an infinite-dimensional Hilbert space, &/ = B(J¢), and
let K(.#°) be the norm-closed two-sided ideal of B(.7#) of all
compact operators on 7. Let 2" be ./ with the Hilbert
&/-module operations inherited from the algebraic operations in

&7, in particular,
(T,S)=T*S.

M. S. Moslehian
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Example

Let Z be an infinite-dimensional Hilbert space, &/ = B(J¢), and
let K(.#°) be the norm-closed two-sided ideal of B(.7#) of all
compact operators on 7. Let 2" be ./ with the Hilbert
&/-module operations inherited from the algebraic operations in
&7, in particular,

(T,S)=T*S.
For
B(.).) = <,>

and % = K(J¢), the B-spline interpolation problem has no
solution.

M. S. Moslehian
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It is known that in the setting of Hilbert spaces if o is a bounded
sesquilinear form on 7, then there is a unique bounded linear
operator U on JZ such that

U(Xv y) = <U(X)7y>
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It is known that in the setting of Hilbert spaces if o is a bounded
sesquilinear form on 7, then there is a unique bounded linear
operator U on JZ such that

U(Xv y) = <U(X)7y>

Next, we show that the above representation is valid in a self-dual
Hilbert C*-module. To achieve it we need a lemma.
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It is known that in the setting of Hilbert spaces if o is a bounded
sesquilinear form on 7, then there is a unique bounded linear
operator U on JZ such that

U(Xv y) = <U(X)7y>

Next, we show that the above representation is valid in a self-dual
Hilbert C*-module. To achieve it we need a lemma.

Let Z be a self-dual Hilbert o7 -module. Let B: & x & — <f be
an </ -sesquilinear form on <. Then there is a unique operator

Te L(X) such that

Blxy) =<(T(x),y)  (xyeZ).

M. S. Moslehian
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Let B be an .@7-sesquilinear form on a Hilbert &/-module 2Z". Let
% be a closed submodule of 2.
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Let B be an .@7-sesquilinear form on a Hilbert &/-module 2Z". Let
% be a closed submodule of 2.

Set

Y ={ye¥ :B(y,y) =0 forall ye ¥},
U = {ye# :B(y,y) =0 forall ye #},

and
% ={ye ¥ :B(y,y) = 0}.

M. S. Moslehian
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Clearly, Y < 24 and = 2.
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Clearly, Y < 24 and = 2.

If B(-, ) is skew-symmetric, i.e. B(x,y) = —B(y,x) on 2", then
always %7 = %, but the other two sets are most often smaller.
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Clearly, Y < 24 and = 2.

If B(-, ) is skew-symmetric, i.e. B(x,y) = —B(y,x) on 2", then
always %7 = %, but the other two sets are most Qiten smaller.
Moreover, for o7-sesquilinear forms both % and % are
norm-complete 2/-submodules of %.

M. S. Moslehian
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Theorem

Let % be a closed submodule of 2", and B be an </ -sesquilinear

form on & . Suppose that the B-spline interpolation problem has a
solution for % for an element xe Z .
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Theorem

Let % be a closed submodule of 2", and B be an </ -sesquilinear

form on & . Suppose that the B-spline interpolation problem has a
solution for % for an element xe Z .

Then the following two conditions are equivalent:

@ The solution of the B-spline problem for x is unique.

Q ¥ ={0}.

M. S. Moslehian
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Let T: 2 — % be adjointable. Let By : & x & — & be the
</ -sesquilinear form defined by

Bl(va) = <T(X)a)/> (X,yE %)

M. S. Moslehian
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Theorem

Let T: 2 — % be adjointable. Let By : & x & — & be the
</ -sesquilinear form defined by

Bl(va) = <T(X)a)/> (X,yE %)

Let B, : & x & — «f be the o/ -sesquilinear form defined by

B2(Xay) :<T*(X)7Y> (X,yE ‘%)
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Theorem

Let T: 2 — % be adjointable. Let By : & x & — & be the
</ -sesquilinear form defined by

Bl(va) = <T(X)a)/> (X,yE %)

Let B, : & x & — «f be the o/ -sesquilinear form defined by

B2(Xay) :<T*(X)7Y> (X,yE ‘%)

Thenﬁz:%and%:%.

M. S. Moslehian
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The following result is a generalization of a result of Arambasi¢
and Raji¢ 4.

*LJ. ARAMBASIC and R. RAJIG, Operator version of the best
approximation problem in Hilbert C*-modules, J. Math. Anal. Appl. 413
(2014), no. 1, 311-320.
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The following result is a generalization of a result of Arambasi¢
and Raji¢ 4.

Theorem

Let % be a closed submodule of 2 . Let B be an <7 -sesquilinear
formon 2 and T: 2 — %' be such that

B(x,z) = T(x)(z) (xe ', ze Z).

and ¥ = {0}. Then B-spline interpolation problem has a solution
for % if and only if

{TXlg : xe L}y S {Tylo 1 ye #}.

*LJ. ARAMBASIC and R. RAJIG, Operator version of the best
approximation problem in Hilbert C*-modules, J. Math. Anal. Appl. 413
(2014), no. 1, 311-320.
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The next result reads as follows.
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The next result reads as follows.

Theorem

Let 2 be a self-dual Hilbert </ -module. Let % be an
orthogonally complemented submodule of 2" and P be the
projection onto %'. Let B: % x % — & be an & -sesquilinear
form and positive on % .
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The next result reads as follows.

Theorem

Let 2 be a self-dual Hilbert </ -module. Let % be an
orthogonally complemented submodule of 2" and P be the
projection onto %'. Let B: % x % — & be an & -sesquilinear
form and positive on % .

Then a necessary condition for the B-spline interpolation problem
for % to have a solution is

B(x,y) =0 for all xe 5&”,)76?;7//

M. S. Moslehian
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The next two results give some properties inherited from a module
to its second dual.
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The next two results give some properties inherited from a module
to its second dual.

Let 2" and & be Hilbert of -modules over a C*-algebra 7. Let
B: Z x % — o be an </ -sesquilinear form. Then B is uniquely
extended to an </ -sesquilinear form on 2" x Z".

M. S. Moslehian
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The next two results give some properties inherited from a module
to its second dual.

Let 2" and & be Hilbert of -modules over a C*-algebra 7. Let
B: Z x % — o be an </ -sesquilinear form. Then B is uniquely
extended to an </ -sesquilinear form on 2" x Z".

If 2" is a Hilbert C*-module over a W*-algebra, then 2 is
self-dual, and so 27" = 2.

M. S. Moslehian
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The next two results give some properties inherited from a module
to its second dual.

Let & and & be Hilbert </ -modules over a C*-algebra <. Let
B: Z x % — o be an </ -sesquilinear form. Then B is uniquely
extended to an </ -sesquilinear form on 2" x Z".

If 2" is a Hilbert C*-module over a W*-algebra, then 2 is
self-dual, and so 27" = 2.

Let 2" be a Hilbert C*-module over a W*-algebra /. Let B be an
o/ -sesquilinear form on Z . Then B is uniquely extended to an
o -sesquilinear form on 2.

M. S. Moslehian
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Let % be an orthogonally complemented submodule of Z°. Then
%" is an orthogonally complemented submodule of 2.

M. S. Moslehian
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Let % be an orthogonally complemented submodule of Z°. Then
%" is an orthogonally complemented submodule of 2.

Let 2 be a Hilbert C*-module over a W*-algebra </ and % be an
orthogonally complemented submodule of 2. Then %' is an
orthogonally complemented submodule of 2.

M. S. Moslehian
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We are ready to state our first main result.
Theorem

Let Z be a Hilbert o/ -module and let % be an orthogonally
complemented submodule of % .

M. S. Moslehian
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We are ready to state our first main result.

Theorem

Let Z be a Hilbert o/ -module and let % be an orthogonally
complemented submodule of % .

Let B: & x & — o be an < -sesquilinear form and positive on
&'. Assume there exists ¢ > 0 and k > 0 such that for every

fe PS() and every xe W\ there exists y € % with |y| =1
such that f{|y|?) = k and

|fB(x, Y)I? = cf|x*)flyl?).

M. S. Moslehian
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We are ready to state our first main result.

Theorem

Let Z be a Hilbert o/ -module and let % be an orthogonally
complemented submodule of % .

Let B: & x & — o be an < -sesquilinear form and positive on
&'. Assume there exists ¢ > 0 and k > 0 such that for every

fe PS() and every xe W\ there exists y € % with |y| =1
such that f{|y|?) = k and

|fB(x, Y)I? = cf|x*)flyl?).

Then a necessary condition for the B-spline interpolation problem
for % to have a solution is

B(x,)) =0 (xe Z,ye%¥). (1)
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We are ready to state our first main result.

Theorem

Let Z be a Hilbert o/ -module and let % be an orthogonally
complemented submodule of % .

Let B: & x & — o be an < -sesquilinear form and positive on
&'. Assume there exists ¢ > 0 and k > 0 such that for every

fe PS() and every xe W\ there exists y € % with |y| =1
such that f{|y|?) = k and

|fB(x, Y)I? = cf|x*)flyl?).

Then a necessary condition for the B-spline interpolation problem
for % to have a solution is

B(x,)) =0 (xe Z,ye%¥). (1)

If % is orthogonally complemented in 2", then (1) is sufficient.
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Theorem

Let Z be a Hilbert o7 -module over a W¥*-algebra o/ and % be an
orthogonally complemented submodule of 2 . Let N
B: Z x Z — o be an o/ -sesquilinear form on 2 . Let B be the

extension of B on 2. If B is positive on %, then Bis positive on
@/
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Our second main result reads as follows. °

5R. ESKANDARI, M. FRANK, V. MANUILOV, and SPEAKER, B-spline
interpolation problem in Hilbert C*-modules, J. Oper.. Theory (2021).
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Our second main result reads as follows. °

Theorem

Let & be a Hilbert o/ -module over a W*-algebra </ and % be a
nontrivial orthogonally complemented submodule of Z .

5R. ESKANDARI, M. FRANK, V. MANUILOV, and SPEAKER, B-spline
interpolation problem in Hilbert C*-modules, J. Oper.. Theory (2021).
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Our second main result reads as follows. °

Theorem

Let & be a Hilbert o/ -module over a W*-algebra </ and % be a
nontrivial orthogonally complemented submodule of Z .

Let B: 2 x & — & be an of -sesquilinear form on 2  and
positive on % . Let B be the extension of B on 2. Assume there
exist ¢ > 0 and k > 0 such that for every fe PS(</) and for every

XE€ @\@/ there exists a unit vector y € % such that f(|y|?) > k and

|fB(x, V) = cAllx*) Ayl ()

5R. ESKANDARI, M. FRANK, V. MANUILOV, and SPEAKER, B-spline
interpolation problem in Hilbert C*-modules, J. Oper.. Theory (2021).
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Our second main result reads as follows. °

Theorem

Let & be a Hilbert o/ -module over a W*-algebra </ and % be a
nontrivial orthogonally complemented submodule of Z .

Let B: 2 x & — & be an of -sesquilinear form on 2  and
positive on % . Let B be the extension of B on 2. Assume there
exist ¢ > 0 and k > 0 such that for every fe PS(</) and for every
XE€ @\@/ there exists a unit vector y € % such that f(|y|?) > k and

|fB(x, V) = cAllx*) Ayl ()

Then, the E—sp/ine interpolation problem has a solution for %" if
and only if

B(x,y) =0 (xe Z,ye%).

5R. ESKANDARI, M. FRANK, V. MANUILOV, and SPEAKER, B-spline
interpolation problem in Hilbert C*-modules, J. Oper.. Theory (2021).
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Now we give an example in which the conditions of our second
main Theorem simultaneously occur.

Example

Let Z# be an abelian von Neumann algebra of operators acting on
a Hilbert space 7. Let of = @ 2 be the von Neumann algebra
of all ue B(J) having the representation

e {“1 0] (11, 1> € B). (3)

M. S. Moslehian
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Now we give an example in which the conditions of our second
main Theorem simultaneously occur.

Example

Let Z# be an abelian von Neumann algebra of operators acting on
a Hilbert space 7. Let of = @ 2 be the von Neumann algebra
of all ue B(J) having the representation

~—

0
u= |:L(l)1 u2] (ul, up € %) (3

Let 2 = and ¥ := BPO0. Define B: Z x & — o by

%
8w = |4 o
where u and v have the representations as presented in (3).

M. S. Moslehian
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Example (continued from the previous slide)

Then B is an .@7-sesquilinear form on 2" and positive on %.
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Example (continued from the previous slide)

Then B is an «/-sesquilinear form on 2" and positive on &%
Clearly, ' = {0}. In addition, any pure state of < is
multiplicative on &7
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Example (continued from the previous slide)

Then B is an «/-sesquilinear form on 2" and positive on &%
Clearly, ' = {0}. In addition, any pure state of < is
multiplicative on &7

Hence,
*
B, V) = ‘fq“low gD

for all u,ve & . In addition, Z  is self-dual. Hence, our second
main Theorem ensures that B-spline interpolation has a solution
for .

2

= ()|

M. S. Moslehian
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Let & be a Hilbert </ -module over a W*-algebra and % be an
orthogonally complemented submodule of Z .

M. S. Moslehian
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Theorem

Let & be a Hilbert </ -module over a W*-algebra and % be an
orthogonally complemented submodule of Z .

Let B: & x & — o be an < -inner product on % . Assume
there exist ¢ > 0 and k > 0 such that for every fe PS(</) and for
every xe % there exists a unit vector y € % such that f(|y|?) > k
and

|fB(x, y)I* = cf(x*)Ryl?).

M. S. Moslehian
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Theorem

Let & be a Hilbert </ -module over a W*-algebra and % be an
orthogonally complemented submodule of Z .

Let B: & x & — o be an < -inner product on % . Assume
there exist ¢ > 0 and k > 0 such that for every fe PS(</) and for
every xe % there exists a unit vector y € % such that f(|y|?) > k
and

|fB(x, y)I* = cf(x*)Ryl?).

Then %" is an orthogonally complemented submodule of 2" with

respect to the inner product B.
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As a consequence, we show when an orthogonally complemented
submodule of a self-dual Hilbert W*-module Z" is orthogonally
complemented with respect to another C*-inner product on 2.

M. S. Moslehian
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As a consequence, we show when an orthogonally complemented
submodule of a self-dual Hilbert W*-module Z" is orthogonally
complemented with respect to another C*-inner product on 2.

Corollary

Let & be a self-dual Hilbert o/ -module over a W*-algebra and %
be an orthogonally complemented submodule of 2. Let B be a
inner product on Z .
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As a consequence, we show when an orthogonally complemented
submodule of a self-dual Hilbert W*-module Z" is orthogonally
complemented with respect to another C*-inner product on 2.

Corollary

Let & be a self-dual Hilbert o/ -module over a W*-algebra and %
be an orthogonally complemented submodule of 2. Let B be a
inner product on Z .
Assume there exist ¢ > 0 and k > 0 such that for every fe PS()
and for every x e % there exists a unit vector y € % such that
f(ly|?) = k and

fB(x, Y)2 > cAIxR)AIVP).
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As a consequence, we show when an orthogonally complemented
submodule of a self-dual Hilbert W*-module Z" is orthogonally
complemented with respect to another C*-inner product on 2.

Corollary

Let & be a self-dual Hilbert o/ -module over a W*-algebra and %
be an orthogonally complemented submodule of 2. Let B be a
inner product on Z .

Assume there exist ¢ > 0 and k > 0 such that for every fe PS()
and for every x e % there exists a unit vector y € % such that
f(ly|?) = k and

|fB(x, Y)I? = cf[x*)fly?).

Then % is an orthogonally complemented submodule of 2 with
respect to the inner product B.
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Thank you very much for your
attention.

M. S. Moslehian
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