# A closer look at the $B$-spline interpolation problem in the setting of Hilbert $C^{*}$-modules 

M. S. Moslehian

(Joint work with R. Eskandari, M. Frank, and V. M. Manuilov)

$$
\text { Russia - } 2020
$$

Let $(\mathscr{H},\langle\cdot, \cdot\rangle)$ be a real Hilbert space, let $\Lambda$ be a family of continuous linear forms over $\mathscr{H}$, and let $B(x, y)$ be a bounded bilinear form on $\mathscr{H} \times \mathscr{H}$ such that

$$
B(x, x) \geqslant 0 \text { for all } x \in N(\Lambda)=\{x \in \mathscr{H}: \lambda(x)=0 \text { for all } \lambda \in \Lambda\} .
$$

Let $(\mathscr{H},\langle\cdot, \cdot\rangle)$ be a real Hilbert space, let $\Lambda$ be a family of continuous linear forms over $\mathscr{H}$, and let $B(x, y)$ be a bounded bilinear form on $\mathscr{H} \times \mathscr{H}$ such that

$$
B(x, x) \geqslant 0 \text { for all } x \in N(\Lambda)=\{x \in \mathscr{H}: \lambda(x)=0 \text { for all } \lambda \in \Lambda\} .
$$

A vector $s \in \mathscr{H}$ is called a $B$-spline if $B(s, y)=0$ for all $y \in N(\Lambda)$.

Let $(\mathscr{H},\langle\cdot, \cdot\rangle)$ be a real Hilbert space, let $\Lambda$ be a family of continuous linear forms over $\mathscr{H}$, and let $B(x, y)$ be a bounded bilinear form on $\mathscr{H} \times \mathscr{H}$ such that

$$
B(x, x) \geqslant 0 \text { for all } x \in N(\Lambda)=\{x \in \mathscr{H}: \lambda(x)=0 \text { for all } \lambda \in \Lambda\} .
$$

A vector $s \in \mathscr{H}$ is called a $B$-spline if $B(s, y)=0$ for all $y \in N(\Lambda)$.

The closed linear space of all $B$-splines is denoted by $\operatorname{Sp}(B, \Lambda)$.

Let $(\mathscr{H},\langle\cdot, \cdot\rangle)$ be a real Hilbert space, let $\Lambda$ be a family of continuous linear forms over $\mathscr{H}$, and let $B(x, y)$ be a bounded bilinear form on $\mathscr{H} \times \mathscr{H}$ such that

$$
B(x, x) \geqslant 0 \text { for all } x \in N(\Lambda)=\{x \in \mathscr{H}: \lambda(x)=0 \text { for all } \lambda \in \Lambda\} .
$$

A vector $s \in \mathscr{H}$ is called a $B$-spline if $B(s, y)=0$ for all $y \in N(\Lambda)$.

The closed linear space of all $B$-splines is denoted by $\operatorname{Sp}(B, \Lambda)$. For $x \in \mathscr{H}$, an element $s \in \mathscr{H}$ is said to be a $\operatorname{Sp}(B, \Lambda)$-interpolate of $x$ if $s$ is a $B$-spline and $s-x \in N(\Lambda)$.

Lucas ${ }^{1}$ gives conditions that insure the existence of a $\operatorname{Sp}(B, \Lambda)$-interpolate of any element in $\mathscr{H}$.

[^0]M. S. Moslehian

Lucas ${ }^{1}$ gives conditions that insure the existence of a $\operatorname{Sp}(B, \Lambda)$-interpolate of any element in $\mathscr{H}$.

One of the conditions is that the system $(\mathscr{H}, \Lambda, B, N(\Lambda))$ is well-posed in the sense that if $N_{1}:=\{x \in N(\Lambda): B(x, x)=0\}$, then $B(x, y)=0$ for all $x \in \mathscr{H}$ and all $y \in N_{1}$.
${ }^{1}$ T. R. Lucas, M-splines, J. Approximation Theory 5 (1972), 1-14. (see also R. Arcangéli, M. C. López de Silanes, and J. C. Torrens, Multidimensional minimizing splines. Theory and applications, Grenoble Sciences. Kluwer Academic Publishers, Boston, MA, 2004.)

Lucas ${ }^{1}$ gives conditions that insure the existence of a $\operatorname{Sp}(B, \Lambda)$-interpolate of any element in $\mathscr{H}$.

One of the conditions is that the system $(\mathscr{H}, \Lambda, B, N(\Lambda))$ is well-posed in the sense that if $N_{1}:=\{x \in N(\Lambda): B(x, x)=0\}$, then $B(x, y)=0$ for all $x \in \mathscr{H}$ and all $y \in N_{1}$.

Moreover, if $N_{2}$ is the orthogonal complement of $N_{1}$ in $N(\Lambda)$, then $B$ is definite on $N_{2}$, that is, $B(x, x) \geqslant c\|x\|^{2}$ for some $c>0$ and all $x \in N_{2}$.

[^1]M. S. Moslehian

# Inspired by the theory of $B$-splines in the setting of Hilbert spaces, we investigate the $B$-spline interpolation problem in the framework of Hilbert modules over $C^{*}$-algebras and $W^{*}$-algebras. This talk is based on a recent paper. ${ }^{2}$ 

[^2]The notion of a pre-Hilbert $C^{*}$-module $(\mathscr{X},\langle\cdot, \cdot\rangle)$ is a natural generalization of that of an inner product space in which we allow the inner product to take its values in a $C^{*}$-algebra $\mathscr{A}$ instead of the field of complex numbers.

The notion of a pre-Hilbert $C^{*}$-module $(\mathscr{X},\langle\cdot, \cdot\rangle)$ is a natural generalization of that of an inner product space in which we allow the inner product to take its values in a $C^{*}$-algebra $\mathscr{A}$ instead of the field of complex numbers.

If $\mathscr{X}$ together with the norm $\|x\|=\|\langle x, x\rangle\|^{\frac{1}{2}}$ is complete, then it is called an $\mathscr{A}$-Hilbert $C^{*}$-module. The positive square root of $\langle x, x\rangle$ is denoted by $|x|$ for $x \in \mathscr{X}$. We say that a closed submodule $\mathscr{Y}$ of a Hilbert $C^{*}$-module $\mathscr{X}$ is orthogonally complemented if $\mathscr{X}=\mathscr{Y} \oplus \mathscr{Y}^{\perp}$, where

$$
\mathscr{Y}^{\perp}=\{x \in \mathscr{X}:\langle x, y\rangle=0 \text { for all } y \in \mathscr{Y}\} .
$$

The notion of a pre-Hilbert $C^{*}$-module $(\mathscr{X},\langle\cdot, \cdot\rangle)$ is a natural generalization of that of an inner product space in which we allow the inner product to take its values in a $C^{*}$-algebra $\mathscr{A}$ instead of the field of complex numbers.

If $\mathscr{X}$ together with the norm $\|x\|=\|\langle x, x\rangle\|^{\frac{1}{2}}$ is complete, then it is called an $\mathscr{A}$-Hilbert $C^{*}$-module. The positive square root of $\langle x, x\rangle$ is denoted by $|x|$ for $x \in \mathscr{X}$. We say that a closed submodule $\mathscr{Y}$ of a Hilbert $C^{*}$-module $\mathscr{X}$ is orthogonally complemented if $\mathscr{X}=\mathscr{Y} \oplus \mathscr{Y}^{\perp}$, where

$$
\mathscr{Y}^{\perp}=\{x \in \mathscr{X}:\langle x, y\rangle=0 \text { for all } y \in \mathscr{Y}\} .
$$

STANDING NOTATION: Throughout this talk, let $\mathscr{A}$ be a $C^{*}$-algebra ( $W^{*}$-algebra if we explicitly state it) whose pure state space is denoted by $\mathcal{P S}(\mathscr{A})$, and let $\mathscr{X}$ denote a Hilbert $\mathscr{A}$-module.

If $\mathscr{X}^{\prime}$ denotes the set of all bounded $\mathscr{A}$-linear maps from $\mathscr{X}$ into $\mathscr{A}$, named as the dual of $\mathscr{X}$, then $\mathscr{X}^{\prime}$ becomes a right $\mathscr{A}$-module equipped with the following actions:

$$
(\rho+\lambda \tau)(x)=\rho(x)+\bar{\lambda} \tau(x) \quad \text { and } \quad(\tau b)(x)=b^{*} \tau(x)
$$

for $\rho, \tau \in \mathscr{X}^{\prime}, b \in \mathscr{A}, \lambda \in \mathbb{C}$ and $x \in \mathscr{X}$.

If $\mathscr{X}^{\prime}$ denotes the set of all bounded $\mathscr{A}$-linear maps from $\mathscr{X}$ into $\mathscr{A}$, named as the dual of $\mathscr{X}$, then $\mathscr{X}^{\prime}$ becomes a right $\mathscr{A}$-module equipped with the following actions:

$$
(\rho+\lambda \tau)(x)=\rho(x)+\bar{\lambda} \tau(x) \quad \text { and } \quad(\tau b)(x)=b^{*} \tau(x)
$$

for $\rho, \tau \in \mathscr{X}^{\prime}, b \in \mathscr{A}, \lambda \in \mathbb{C}$ and $x \in \mathscr{X}$.
Trivially, to every bounded $\mathscr{A}$-linear map $T: \mathscr{X} \rightarrow \mathscr{Y}$ one can associate a bounded $\mathscr{A}$-linear map $T: \mathscr{Y}^{\prime} \rightarrow \mathscr{X}^{\prime}$ defined by

$$
T^{\prime}(g)(x)=g(T(x)) \quad g \in \mathscr{Y}^{\prime} .
$$

For each $x \in \mathscr{X}$, one can define the map $\hat{x} \in \mathscr{X}^{\prime}$ by

$$
\hat{x}(y)=\langle x, y\rangle, \quad y \in \mathscr{X} .
$$

For each $x \in \mathscr{X}$, one can define the map $\hat{x} \in \mathscr{X}^{\prime}$ by

$$
\widehat{x}(y)=\langle x, y\rangle, \quad y \in \mathscr{X} .
$$

It is easy to verify that the map $x \mapsto \hat{x}$ is isometric and $\mathscr{A}$-linear.
Hence one can identify $\mathscr{X}$ with

$$
\widehat{\mathscr{X}}:=\{\hat{x}: x \in \mathscr{X}\}
$$

as a closed submodule of $\mathscr{X}^{\prime}$.

For each $x \in \mathscr{X}$, one can define the map $\hat{x} \in \mathscr{X}^{\prime}$ by

$$
\widehat{x}(y)=\langle x, y\rangle, \quad y \in \mathscr{X} .
$$

It is easy to verify that the map $x \mapsto \hat{x}$ is isometric and $\mathscr{A}$-linear.
Hence one can identify $\mathscr{X}$ with

$$
\widehat{\mathscr{X}}:=\{\hat{x}: x \in \mathscr{X}\}
$$

as a closed submodule of $\mathscr{X}^{\prime}$.
A module $\mathscr{X}$ is called self-dual if $\widehat{\mathscr{X}}=\mathscr{X}^{\prime}$. For example, a unital $C^{*}$-algebra $\mathscr{A}$ is self-dual as a Hilbert $\mathscr{A}$-module via $\langle a, b\rangle=a^{*} b$.

Given $x \in \mathscr{X}$, one can define

$$
\dot{x} \in \mathscr{X}^{\prime \prime}
$$

by

$$
\dot{x}(f)=f(x)^{*}\left(f \in \mathscr{X}^{\prime}\right) .
$$

Then $x \mapsto \dot{x}$ gives rise to an isometric $\mathscr{A}$-linear map.

Given $x \in \mathscr{X}$, one can define

$$
\dot{x} \in \mathscr{X}^{\prime \prime}
$$

by

$$
\dot{x}(f)=f(x)^{*}\left(f \in \mathscr{X}^{\prime}\right) .
$$

Then $x \mapsto \dot{x}$ gives rise to an isometric $\mathscr{A}$-linear map.
We say that $\mathscr{X}$ is reflexive if this map is surjective.

Given $x \in \mathscr{X}$, one can define

$$
\dot{x} \in \mathscr{X}^{\prime \prime}
$$

by

$$
\dot{x}(f)=f(x)^{*}\left(f \in \mathscr{X}^{\prime}\right) .
$$

Then $x \mapsto \dot{x}$ gives rise to an isometric $\mathscr{A}$-linear map.
We say that $\mathscr{X}$ is reflexive if this map is surjective.
There is an $\mathscr{A}$-valued inner product on the second dual $\mathscr{X}^{\prime \prime}$ defined by

$$
\langle F, G\rangle=F(\dot{G}), \text { where } \dot{G}(x):=G(\hat{x})(x \in \mathscr{X})
$$

It is an extension of the inner product on $\mathscr{X}$. In addition, the map $F \mapsto \dot{F}$ is an isometric inclusion, and $\dot{\dot{x}}=\hat{x}$ because of

$$
\dot{\dot{x}}(y)=\dot{x}(\hat{y})=\hat{y}(x)^{*}=\langle x, y\rangle=\hat{x}(y) .
$$

Given $x \in \mathscr{X}$, one can define

$$
\dot{x} \in \mathscr{X}^{\prime \prime}
$$

by

$$
\dot{x}(f)=f(x)^{*}\left(f \in \mathscr{X}^{\prime}\right) .
$$

Then $x \mapsto \dot{x}$ gives rise to an isometric $\mathscr{A}$-linear map.
We say that $\mathscr{X}$ is reflexive if this map is surjective.
There is an $\mathscr{A}$-valued inner product on the second dual $\mathscr{X}^{\prime \prime}$ defined by

$$
\langle F, G\rangle=F(\dot{G}), \text { where } \dot{G}(x):=G(\hat{x})(x \in \mathscr{X})
$$

It is an extension of the inner product on $\mathscr{X}$. In addition, the map $F \mapsto \dot{F}$ is an isometric inclusion, and $\dot{\dot{x}}=\hat{x}$ because of

$$
\dot{\dot{x}}(y)=\dot{x}(\hat{y})=\hat{y}(x)^{*}=\langle x, y\rangle=\hat{x}(y) .
$$

Thus we have the chain of inclusions as $\mathscr{X} \subseteq \mathscr{X}^{\prime \prime} \subseteq \mathscr{X}^{\prime}$, and


A comprehensive result of Paschke reads as follows. ${ }^{3}$
${ }^{3}$ W. L. Paschke, Inner product modules over $B^{*}$-algebras, Trans. Amer. Math. Soc. 182 (1972), 443-468.

A comprehensive result of Paschke reads as follows. ${ }^{3}$

## Theorem

Let $\mathscr{X}$ be a pre-Hilbert $C^{*}$-module over a $W^{*}$-algebra $\mathscr{A}$. The $\mathscr{A}$-valued inner product on $\mathscr{X} \times \mathscr{X}$ can be extended to $\mathscr{X}^{\prime} \times \mathscr{X}^{\prime}$ in such a way as to make $\mathscr{X}^{\prime}$ into a self-dual Hilbert $\mathscr{A}$-module.

[^3]By an $\mathscr{A}$-sesquilinear form on a Hilbert $\mathscr{A}$-module $\mathscr{X}$ we mean a bounded map $B: \mathscr{X} \times \mathscr{X} \rightarrow \mathscr{A}$ such that it is anti- $\mathscr{A}$-linear in the first variable and $\mathscr{A}$-linear in the second one. We say that it is positive on a set $\mathscr{Y}$ if $B(y, y) \geqslant 0$ for all $y \in \mathscr{Y}$.

By an $\mathscr{A}$-sesquilinear form on a Hilbert $\mathscr{A}$-module $\mathscr{X}$ we mean a bounded map $B: \mathscr{X} \times \mathscr{X} \rightarrow \mathscr{A}$ such that it is anti- $\mathscr{A}$-linear in the first variable and $\mathscr{A}$-linear in the second one. We say that it is positive on a set $\mathscr{Y}$ if $B(y, y) \geqslant 0$ for all $y \in \mathscr{Y}$.

It is elliptic on a set $\mathscr{Y}$ if $B(y, y) \geqslant c\langle y, y\rangle$ for any $y \in \mathscr{Y}$ and some positive real constant $c$.

Let $\mathscr{Y}$ be a closed submodule of $\mathscr{X}$. Let $B: \mathscr{X} \times \mathscr{X} \rightarrow \mathscr{A}$ be an $\mathscr{A}$-sesquilinear form.

Let $\mathscr{Y}$ be a closed submodule of $\mathscr{X}$. Let $B: \mathscr{X} \times \mathscr{X} \rightarrow \mathscr{A}$ be an $\mathscr{A}$-sesquilinear form.

An element $s \in \mathscr{X}$ is said to be a $B$-spline if

$$
B(s, y)=0
$$

for all $y \in \mathscr{Y}$.

Let $\mathscr{Y}$ be a closed submodule of $\mathscr{X}$. Let $B: \mathscr{X} \times \mathscr{X} \rightarrow \mathscr{A}$ be an $\mathscr{A}$-sesquilinear form.

An element $s \in \mathscr{X}$ is said to be a $B$-spline if

$$
B(s, y)=0
$$

for all $y \in \mathscr{Y}$.

The $B$-spline interpolation problem asks whether for each $x \in \mathscr{X}$ there exists a $B$-spline element $s$ in the coset $x+\mathscr{Y}$.

## Example

Suppose that $P$ is a non-trivial projection on a Hilbert $C^{*}$-module $\mathscr{X}$ and set

$$
B(x, y):=\langle P(x), y\rangle, x, y \in \mathscr{X} .
$$

## Example

Suppose that $P$ is a non－trivial projection on a Hilbert $C^{*}$－module $\mathscr{X}$ and set

$$
B(x, y):=\langle P(x), y\rangle, x, y \in \mathscr{X} .
$$

Then there is an orthogonal decomposition $\mathscr{X}=\operatorname{ran}(P) \oplus \operatorname{ker}(P)$ ． Let $\mathscr{Z} \subseteq \operatorname{ker}(P)$ be a closed submodule and set $\mathscr{Y}:=\operatorname{ran}(P) \oplus \mathscr{Z} \subseteq \mathscr{X}$ ．Given $x \in \mathscr{X}$ the element $s \in x+\mathscr{Y}$ can be selected as $s=(1-P)(x)$ ，i．e．the $B$－spline interpolation has a solution．

## Example

Suppose that $P$ is a non-trivial projection on a Hilbert $C^{*}$-module $\mathscr{X}$ and set

$$
B(x, y):=\langle P(x), y\rangle, x, y \in \mathscr{X} .
$$

Then there is an orthogonal decomposition $\mathscr{X}=\operatorname{ran}(P) \oplus \operatorname{ker}(P)$. Let $\mathscr{Z} \subseteq \operatorname{ker}(P)$ be a closed submodule and set $\mathscr{Y}:=\operatorname{ran}(P) \oplus \mathscr{Z} \subseteq \mathscr{X}$. Given $x \in \mathscr{X}$ the element $s \in x+\mathscr{Y}$ can be selected as $s=(1-P)(x)$, i.e. the $B$-spline interpolation has a solution.

It might be not unique when $\mathscr{Z} \neq\{0\}$. Indeed, let $z \in \mathscr{Z}$, and let $s=(1-P)(x)+z$. Then $s-x=-P(x)+z \in \mathscr{Y}$ and $B(s, y)=0$ for any $y \in \mathscr{X}$.

## Example

Consider a Hilbert space $\mathscr{H}$ as a Hilbert $C^{*}$-module over the $C^{*}$-algebra $\mathbb{B}(\mathscr{H})$ of all bounded linear operators on $\mathscr{H}$ under the $C^{*}$-inner product

$$
[x, y]:=x \otimes y
$$

where $x \otimes y$ is defined by $(x \otimes y)(z)=\langle z, y\rangle x$, and the actions

$$
\lambda \cdot x=\bar{\lambda} x \text { and } x \cdot T=T^{*}(x) .
$$

## Example

Consider a Hilbert space $\mathscr{H}$ as a Hilbert $C^{*}$-module over the $C^{*}$-algebra $\mathbb{B}(\mathscr{H})$ of all bounded linear operators on $\mathscr{H}$ under the $C^{*}$-inner product

$$
[x, y]:=x \otimes y
$$

where $x \otimes y$ is defined by $(x \otimes y)(z)=\langle z, y\rangle x$, and the actions

$$
\lambda \cdot x=\bar{\lambda} x \text { and } x \cdot T=T^{*}(x) .
$$

Then the $B$-spline interpolation problem has no solution for any given nontrivial closed subspace $\mathscr{Y}$ of $\mathscr{X}$.

## Example

Let $\mathscr{H}$ be an infinite-dimensional Hilbert space, $\mathscr{A}=\mathbb{B}(\mathscr{H})$, and let $\mathbb{K}(\mathscr{H})$ be the norm-closed two-sided ideal of $\mathbb{B}(\mathscr{H})$ of all compact operators on $\mathscr{H}$. Let $\mathscr{X}$ be $\mathscr{A}$ with the Hilbert $\mathscr{A}$-module operations inherited from the algebraic operations in $\mathscr{A}$, in particular,

$$
\langle T, S\rangle=T^{*} S
$$

## Example

Let $\mathscr{H}$ be an infinite-dimensional Hilbert space, $\mathscr{A}=\mathbb{B}(\mathscr{H})$, and let $\mathbb{K}(\mathscr{H})$ be the norm-closed two-sided ideal of $\mathbb{B}(\mathscr{H})$ of all compact operators on $\mathscr{H}$. Let $\mathscr{X}$ be $\mathscr{A}$ with the Hilbert $\mathscr{A}$-module operations inherited from the algebraic operations in $\mathscr{A}$, in particular,

$$
\langle T, S\rangle=T^{*} S
$$

For

$$
B(\cdot, \cdot)=\langle\cdot, \cdot\rangle
$$

and $\mathscr{Y}=\mathbb{K}(\mathscr{H})$, the B -spline interpolation problem has no solution.

It is known that in the setting of Hilbert spaces if $\sigma$ is a bounded sesquilinear form on $\mathscr{H}$, then there is a unique bounded linear operator $U$ on $\mathscr{H}$ such that

$$
\sigma(x, y)=\langle U(x), y\rangle
$$

It is known that in the setting of Hilbert spaces if $\sigma$ is a bounded sesquilinear form on $\mathscr{H}$, then there is a unique bounded linear operator $U$ on $\mathscr{H}$ such that

$$
\sigma(x, y)=\langle U(x), y\rangle
$$

Next, we show that the above representation is valid in a self-dual Hilbert $C^{*}$-module. To achieve it we need a lemma.

It is known that in the setting of Hilbert spaces if $\sigma$ is a bounded sesquilinear form on $\mathscr{H}$, then there is a unique bounded linear operator $U$ on $\mathscr{H}$ such that

$$
\sigma(x, y)=\langle U(x), y\rangle
$$

Next, we show that the above representation is valid in a self-dual Hilbert $C^{*}$-module. To achieve it we need a lemma.

## Theorem

Let $\mathscr{X}$ be a self-dual Hilbert $\mathscr{A}$-module. Let $B: \mathscr{X} \times \mathscr{X} \rightarrow \mathscr{A}$ be an $\mathscr{A}$-sesquilinear form on $\mathscr{A}$. Then there is a unique operator $T \in \mathscr{L}(\mathscr{X})$ such that

$$
B(x, y)=\langle T(x), y\rangle \quad(x, y \in \mathscr{X})
$$

Let $B$ be an $\mathscr{A}$-sesquilinear form on a Hilbert $\mathscr{A}$-module $\mathscr{X}$. Let $\mathscr{Y}$ be a closed submodule of $\mathscr{X}$.

Let $B$ be an $\mathscr{A}$-sesquilinear form on a Hilbert $\mathscr{A}$-module $\mathscr{X}$. Let $\mathscr{Y}$ be a closed submodule of $\mathscr{X}$.

Set

$$
\begin{aligned}
& \widetilde{\mathscr{Y}}=\{\tilde{y} \in \mathscr{Y}: B(\widetilde{y}, y)=0 \text { for all } y \in \mathscr{Y}\}, \\
& \widetilde{\mathscr{Y}}=\{\tilde{y} \in \mathscr{Y}: B(y, \widetilde{y})=0 \text { for all } y \in \mathscr{Y}\},
\end{aligned}
$$

and

$$
\mathscr{Y}_{1}=\{y \in \mathscr{Y}: B(y, y)=0\} .
$$

Clearly, $\widetilde{\mathscr{Y}} \subseteq \mathscr{Y}_{1}$ and $\widetilde{\mathscr{Y}} \subseteq \mathscr{\mathscr { }}_{1}$.

Clearly, $\widetilde{\mathscr{Y}} \subseteq \mathscr{Y}_{1}$ and $\widetilde{\mathscr{Y}} \subseteq \mathscr{Y}_{1}$.

## Example

If $B(\cdot, \cdot)$ is skew-symmetric, i.e. $B(x, y)=-B(y, x)$ on $\mathscr{X}$, then always $\mathscr{Y}_{1}=\mathscr{Y}$, but the other two sets are most often smaller.

Clearly, $\widetilde{\mathscr{Y}} \subseteq \mathscr{Y}_{1}$ and $\widetilde{\mathscr{Y}} \subseteq \mathscr{Y}_{1}$.

## Example

If $B(\cdot, \cdot)$ is skew-symmetric, i.e. $B(x, y)=-B(y, x)$ on $\mathscr{X}$, then always $\mathscr{Y}_{1}=\mathscr{Y}$, but the other two sets are most often smaller. Moreover, for $\mathscr{A}$-sesquilinear forms both $\widetilde{\mathscr{Y}}$ and $\widetilde{\mathscr{Y}}$ are norm-complete $\mathscr{A}$-submodules of $\mathscr{Y}$.

## Theorem

Let $B$ be positive on $\mathscr{Y}$, i.e. $B(y, y) \geqslant 0$ for any $y \in \mathscr{Y}$. Then

$$
\widetilde{\mathscr{Y}}=\mathscr{Y}_{1}=\widetilde{\mathscr{Y}} .
$$

## Theorem

Let $\mathscr{Y}$ be a closed submodule of $\mathscr{X}$, and $B$ be an $\mathscr{A}$-sesquilinear form on $\mathscr{X}$. Suppose that the $B$-spline interpolation problem has a solution for $\mathscr{Y}$ for an element $x \in \mathscr{X}$.

## Theorem

Let $\mathscr{Y}$ be a closed submodule of $\mathscr{X}$, and $B$ be an $\mathscr{A}$-sesquilinear form on $\mathscr{X}$. Suppose that the $B$-spline interpolation problem has a solution for $\mathscr{Y}$ for an element $x \in \mathscr{X}$.

Then the following two conditions are equivalent:
(1) The solution of the $B$-spline problem for $x$ is unique.
(2) $\widetilde{\mathscr{Y}}=\{0\}$.

## Theorem

Let $T: \mathscr{X} \rightarrow \mathscr{X}$ be adjointable. Let $B_{1}: \mathscr{X} \times \mathscr{X} \rightarrow \mathscr{A}$ be the $\mathscr{A}$-sesquilinear form defined by

$$
B_{1}(x, y)=\langle T(x), y\rangle \quad(x, y \in \mathscr{X}) .
$$

## Theorem

Let $T: \mathscr{X} \rightarrow \mathscr{X}$ be adjointable. Let $B_{1}: \mathscr{X} \times \mathscr{X} \rightarrow \mathscr{A}$ be the $\mathscr{A}$-sesquilinear form defined by

$$
B_{1}(x, y)=\langle T(x), y\rangle \quad(x, y \in \mathscr{X}) .
$$

Let $B_{2}: \mathscr{X} \times \mathscr{X} \rightarrow \mathscr{A}$ be the $\mathscr{A}$-sesquilinear form defined by

$$
B_{2}(x, y)=\left\langle T^{*}(x), y\right\rangle \quad(x, y \in \mathscr{X})
$$

## Theorem

Let $T: \mathscr{X} \rightarrow \mathscr{X}$ be adjointable. Let $B_{1}: \mathscr{X} \times \mathscr{X} \rightarrow \mathscr{A}$ be the $\mathscr{A}$-sesquilinear form defined by

$$
B_{1}(x, y)=\langle T(x), y\rangle \quad(x, y \in \mathscr{X}) .
$$

Let $B_{2}: \mathscr{X} \times \mathscr{X} \rightarrow \mathscr{A}$ be the $\mathscr{A}$-sesquilinear form defined by

$$
B_{2}(x, y)=\left\langle T^{*}(x), y\right\rangle \quad(x, y \in \mathscr{X})
$$

Then $\widetilde{\mathscr{X}_{B_{1}}}=\widetilde{\mathscr{X}_{B_{2}}}$ and $\widetilde{\mathscr{X}_{B_{2}}}=\widetilde{\mathscr{X}_{B_{1}}}$.

## The following result is a generalization of a result of Arambašić and Rajić ${ }^{4}$.

${ }^{4}$ Lu. Arambašić and R. Rajıć, Operator version of the best approximation problem in Hilbert C*-modules, J. Math. Anal. Appl. 413 (2014), no. 1, 311-320.
M. S. Moslehian

The following result is a generalization of a result of Arambašić and Rajić ${ }^{4}$.

## Theorem

Let $\mathscr{Y}$ be a closed submodule of $\mathscr{X}$. Let $B$ be an $\mathscr{A}$-sesquilinear form on $\mathscr{X}$ and $T: \mathscr{X} \rightarrow \mathscr{Z}^{\prime}$ be such that

$$
B(x, z)=T(x)(z) \quad(x \in \mathscr{X}, z \in \mathscr{Z}) .
$$

and $\widetilde{\mathscr{Y}}=\{0\}$. Then $B$-spline interpolation problem has a solution for $\mathscr{Y}$ if and only if

$$
\left\{\left.T x\right|_{\mathscr{Y}}: x \in \mathscr{X}\right\} \subseteq\left\{\left.T y\right|_{\mathscr{Y}}: y \in \mathscr{Y}\right\} .
$$

[^4]
## The next result reads as follows.

The next result reads as follows.

## Theorem

Let $\mathscr{X}$ be a self-dual Hilbert $\mathscr{A}$-module. Let $\mathscr{Y}$ be an orthogonally complemented submodule of $\mathscr{X}$ and $P$ be the projection onto $\mathscr{Y}$. Let $B: \mathscr{X} \times \mathscr{X} \rightarrow \mathscr{A}$ be an $\mathscr{A}$-sesquilinear form and positive on $\mathscr{Y}$.

The next result reads as follows.

## Theorem

Let $\mathscr{X}$ be a self-dual Hilbert $\mathscr{A}$-module. Let $\mathscr{Y}$ be an orthogonally complemented submodule of $\mathscr{X}$ and $P$ be the projection onto $\mathscr{Y}$. Let $B: \mathscr{X} \times \mathscr{X} \rightarrow \mathscr{A}$ be an $\mathscr{A}$-sesquilinear form and positive on $\mathscr{Y}$.

Then a necessary condition for the $B$-spline interpolation problem for $\mathscr{Y}$ to have a solution is

$$
B(x, \check{y})=0 \text { for all } x \in \mathscr{X}, \check{y} \in \widetilde{\mathscr{Y}}
$$

The next two results give some properties inherited from a module to its second dual.

The next two results give some properties inherited from a module to its second dual.

## Theorem

Let $\mathscr{X}$ and $\mathscr{Z}$ be Hilbert $\mathscr{A}$-modules over a $C^{*}$-algebra $\mathscr{A}$. Let $B: \mathscr{X} \times \mathscr{Z} \rightarrow \mathscr{A}$ be an $\mathscr{A}$-sesquilinear form. Then $B$ is uniquely extended to an $\mathscr{A}$-sesquilinear form on $\mathscr{X}^{\prime \prime} \times \mathscr{Z}^{\prime \prime}$.

The next two results give some properties inherited from a module to its second dual.

## Theorem

Let $\mathscr{X}$ and $\mathscr{Z}$ be Hilbert $\mathscr{A}$-modules over a $C^{*}$-algebra $\mathscr{A}$. Let $B: \mathscr{X} \times \mathscr{Z} \rightarrow \mathscr{A}$ be an $\mathscr{A}$-sesquilinear form. Then $B$ is uniquely extended to an $\mathscr{A}$-sesquilinear form on $\mathscr{X}^{\prime \prime} \times \mathscr{Z}^{\prime \prime}$.

If $\mathscr{X}$ is a Hilbert $C^{*}$-module over a $W^{*}$-algebra, then $\mathscr{X}^{\prime}$ is self-dual, and so $\mathscr{X}^{\prime \prime}=\mathscr{X}^{\prime}$.

The next two results give some properties inherited from a module to its second dual.

## Theorem

Let $\mathscr{X}$ and $\mathscr{Z}$ be Hilbert $\mathscr{A}$-modules over a $C^{*}$-algebra $\mathscr{A}$. Let $B: \mathscr{X} \times \mathscr{Z} \rightarrow \mathscr{A}$ be an $\mathscr{A}$-sesquilinear form. Then $B$ is uniquely extended to an $\mathscr{A}$-sesquilinear form on $\mathscr{X}^{\prime \prime} \times \mathscr{Z}^{\prime \prime}$.

If $\mathscr{X}$ is a Hilbert $C^{*}$-module over a $W^{*}$-algebra, then $\mathscr{X}^{\prime}$ is self-dual, and so $\mathscr{X}^{\prime \prime}=\mathscr{X}^{\prime}$.

## Corollary

Let $\mathscr{X}$ be a Hilbert $C^{*}$-module over a $W^{*}$-algebra $\mathscr{A}$. Let $B$ be an $\mathscr{A}$-sesquilinear form on $\mathscr{X}$. Then $B$ is uniquely extended to an $\mathscr{A}$-sesquilinear form on $\mathscr{X}^{\prime}$.

## Theorem

Let $\mathscr{Y}$ be an orthogonally complemented submodule of $\mathscr{X}$. Then $\mathscr{Y}^{\prime \prime}$ is an orthogonally complemented submodule of $\mathscr{X}^{\prime \prime}$.

## Theorem

Let $\mathscr{Y}$ be an orthogonally complemented submodule of $\mathscr{X}$. Then $\mathscr{Y}^{\prime \prime}$ is an orthogonally complemented submodule of $\mathscr{X}^{\prime \prime}$.

## Corollary

Let $\mathscr{X}$ be a Hilbert $C^{*}$-module over a $W^{*}$-algebra $\mathscr{A}$ and $\mathscr{Y}$ be an orthogonally complemented submodule of $\mathscr{X}$. Then $\mathscr{Y}^{\prime}$ is an orthogonally complemented submodule of $\mathscr{X}^{\prime}$.

We are ready to state our first main result.

## Theorem

Let $\mathscr{X}$ be a Hilbert $\mathscr{A}$-module and let $\mathscr{Y}$ be an orthogonally complemented submodule of $\mathscr{X}$.

We are ready to state our first main result.

## Theorem

Let $\mathscr{X}$ be a Hilbert $\mathscr{A}$-module and let $\mathscr{Y}$ be an orthogonally complemented submodule of $\mathscr{X}$.
Let $B: \mathscr{X} \times \mathscr{X} \rightarrow \mathscr{A}$ be an $\mathscr{A}$-sesquilinear form and positive on $\mathscr{Y}$. Assume there exists $c>0$ and $k>0$ such that for every $f \in \mathcal{P S}(\mathscr{A})$ and every $x \in \mathscr{Y} \backslash \mathscr{Y}$ there exists $y \in \mathscr{Y}$ with $\|y\|=1$ such that $f\left(|y|^{2}\right) \geqslant k$ and

$$
|f B(x, y)|^{2} \geqslant c f\left(|x|^{2}\right) f\left(|y|^{2}\right)
$$

We are ready to state our first main result.

## Theorem

Let $\mathscr{X}$ be a Hilbert $\mathscr{A}$-module and let $\mathscr{Y}$ be an orthogonally complemented submodule of $\mathscr{X}$.
Let $B: \mathscr{X} \times \mathscr{X} \rightarrow \mathscr{A}$ be an $\mathscr{A}$-sesquilinear form and positive on $\mathscr{Y}$. Assume there exists $c>0$ and $k>0$ such that for every $f \in \mathcal{P S}(\mathscr{A})$ and every $x \in \mathscr{Y} \backslash \mathscr{Y}$ there exists $y \in \mathscr{Y}$ with $\|y\|=1$ such that $f\left(|y|^{2}\right) \geqslant k$ and

$$
|f B(x, y)|^{2} \geqslant c f\left(|x|^{2}\right) f\left(|y|^{2}\right)
$$

Then a necessary condition for the $B$-spline interpolation problem for $\mathscr{Y}$ to have a solution is

$$
\begin{equation*}
B(x, \check{y})=0 \quad(x \in \mathscr{X}, \check{y} \in \widetilde{\mathscr{Y}}) \tag{1}
\end{equation*}
$$

We are ready to state our first main result.

## Theorem

Let $\mathscr{X}$ be a Hilbert $\mathscr{A}$-module and let $\mathscr{Y}$ be an orthogonally complemented submodule of $\mathscr{X}$.
Let $B: \mathscr{X} \times \mathscr{X} \rightarrow \mathscr{A}$ be an $\mathscr{A}$-sesquilinear form and positive on $\mathscr{Y}$. Assume there exists $c>0$ and $k>0$ such that for every $f \in \mathcal{P S}(\mathscr{A})$ and every $x \in \mathscr{Y} \backslash \mathscr{Y}$ there exists $y \in \mathscr{Y}$ with $\|y\|=1$ such that $f\left(|y|^{2}\right) \geqslant k$ and

$$
|f B(x, y)|^{2} \geqslant c f\left(|x|^{2}\right) f\left(|y|^{2}\right)
$$

Then a necessary condition for the $B$-spline interpolation problem for $\mathscr{Y}$ to have a solution is

$$
\begin{equation*}
B(x, \check{y})=0 \quad(x \in \mathscr{X}, \check{y} \in \widetilde{\mathscr{Y}}) \tag{1}
\end{equation*}
$$

If $\dot{\mathscr{Y}}$ is orthogonally complemented in $\mathscr{X}^{\prime \prime}$, then (1) is sufficient.

## Theorem

Let $\mathscr{X}$ be a Hilbert $\mathscr{A}$-module over a $W^{*}$-algebra $\mathscr{A}$ and $\mathscr{Y}$ be an orthogonally complemented submodule of $\mathscr{X}$. Let $B: \mathscr{X} \times \mathscr{X} \rightarrow \mathscr{A}$ be an $\mathscr{A}$-sesquilinear form on $\mathscr{X}$. Let $\widetilde{B}$ be the extension of $B$ on $\mathscr{X}^{\prime}$. If $B$ is positive on $\mathscr{Y}$, then $\widetilde{B}$ is positive on $\mathscr{Y}^{\prime}$

## Our second main result reads as follows.

[^5]M. S. Moslehian

Our second main result reads as follows. ${ }^{5}$

## Theorem

Let $\mathscr{X}$ be a Hilbert $\mathscr{A}$-module over a $W^{*}$-algebra $\mathscr{A}$ and $\mathscr{Y}$ be a nontrivial orthogonally complemented submodule of $\mathscr{X}$.

[^6]M. S. Moslehian

Our second main result reads as follows. ${ }^{5}$

## Theorem

Let $\mathscr{X}$ be a Hilbert $\mathscr{A}$-module over a $W^{*}$-algebra $\mathscr{A}$ and $\mathscr{Y}$ be a nontrivial orthogonally complemented submodule of $\mathscr{X}$.
Let $B: \mathscr{X} \times \mathscr{X} \rightarrow \mathscr{A}$ be an $\mathscr{A}$-sesquilinear form on $\mathscr{X}$ and positive on $\mathscr{Y}$. Let $\widetilde{B}$ be the extension of $B$ on $\mathscr{X}^{\prime}$. Assume there exist $c>0$ and $k>0$ such that for every $f \in \mathcal{P S}(\mathscr{A})$ and for every $x \in \mathscr{Y} \backslash \widetilde{\mathscr{Y}}$ there exists a unit vector $y \in \mathscr{Y}$ such that $f\left(|y|^{2}\right) \geqslant k$ and

$$
\begin{equation*}
|f B(x, y)|^{2} \geqslant c f\left(|x|^{2}\right) f\left(|y|^{2}\right) \tag{2}
\end{equation*}
$$

[^7]Our second main result reads as follows.

## Theorem

Let $\mathscr{X}$ be a Hilbert $\mathscr{A}$-module over a $W^{*}$-algebra $\mathscr{A}$ and $\mathscr{Y}$ be a nontrivial orthogonally complemented submodule of $\mathscr{X}$.
Let $B: \mathscr{X} \times \mathscr{X} \rightarrow \mathscr{A}$ be an $\mathscr{A}$-sesquilinear form on $\mathscr{X}$ and positive on $\mathscr{Y}$. Let $\widetilde{B}$ be the extension of $B$ on $\mathscr{X}^{\prime}$. Assume there exist $c>0$ and $k>0$ such that for every $f \in \mathcal{P S}(\mathscr{A})$ and for every $x \in \mathscr{Y} \backslash \widetilde{\mathscr{Y}}$ there exists a unit vector $y \in \mathscr{Y}$ such that $f\left(|y|^{2}\right) \geqslant k$ and

$$
\begin{equation*}
|f B(x, y)|^{2} \geqslant c f\left(|x|^{2}\right) f\left(|y|^{2}\right) \tag{2}
\end{equation*}
$$

Then, the $\widetilde{B}$-spline interpolation problem has a solution for $\mathscr{Y}^{\prime}$ if and only if

$$
B(x, \check{y})=0 \quad(x \in \mathscr{X}, \check{y} \in \widetilde{\mathscr{Y}})
$$

[^8]Now we give an example in which the conditions of our second main Theorem simultaneously occur.

## Example

Let $\mathscr{B}$ be an abelian von Neumann algebra of operators acting on a Hilbert space $\mathscr{H}$. Let $\mathscr{A}=\mathscr{B} \oplus \mathscr{B}$ be the von Neumann algebra of all $u \in \mathbb{B}(\mathscr{H})$ having the representation

$$
u=\left[\begin{array}{cc}
u_{1} & 0  \tag{3}\\
0 & u_{2}
\end{array}\right] \quad\left(u_{1}, u_{2} \in \mathscr{B}\right) .
$$

Now we give an example in which the conditions of our second main Theorem simultaneously occur.

## Example

Let $\mathscr{B}$ be an abelian von Neumann algebra of operators acting on a Hilbert space $\mathscr{H}$. Let $\mathscr{A}=\mathscr{B} \oplus \mathscr{B}$ be the von Neumann algebra of all $u \in \mathbb{B}(\mathscr{H})$ having the representation

$$
u=\left[\begin{array}{cc}
u_{1} & 0  \tag{3}\\
0 & u_{2}
\end{array}\right] \quad\left(u_{1}, u_{2} \in \mathscr{B}\right) .
$$

Let $\mathscr{X}:=\mathscr{A}$ and $\mathscr{Y}:=\mathscr{B} \oplus 0$. Define $B: \mathscr{X} \times \mathscr{X} \rightarrow \mathscr{A}$ by

$$
B(u, v)=\left[\begin{array}{cc}
u_{1}^{*} v_{1} & 0 \\
0 & 0
\end{array}\right]
$$

where $u$ and $v$ have the representations as presented in (3).

## Example (continued from the previous slide)

Then $B$ is an $\mathscr{A}$-sesquilinear form on $\mathscr{X}$ and positive on $\mathscr{Y}$.

## Example (continued from the previous slide)

Then $B$ is an $\mathscr{A}$-sesquilinear form on $\mathscr{X}$ and positive on $\mathscr{Y}$. Clearly, $\mathscr{Y}=\{0\}$. In addition, any pure state of $\mathscr{A}$ is multiplicative on $\mathscr{A}$.

## Example (continued from the previous slide)

Then $B$ is an $\mathscr{A}$-sesquilinear form on $\mathscr{X}$ and positive on $\mathscr{Y}$. Clearly, $\mathscr{Y}=\{0\}$. In addition, any pure state of $\mathscr{A}$ is multiplicative on $\mathscr{A}$.
Hence,

$$
|f B(u, v)|^{2}=\left|f\left(\left[\begin{array}{cc}
u_{1}^{*} v_{1} & 0 \\
0 & 0
\end{array}\right]\right)\right|^{2}=f\left(|u|^{2}\right) f\left(|v|^{2}\right)
$$

for all $u, v \in \mathscr{Y}$. In addition, $\mathscr{X}$ is self-dual. Hence, our second main Theorem ensures that $B$-spline interpolation has a solution for $\mathscr{Y}$.

## Theorem

Let $\mathscr{X}$ be a Hilbert $\mathscr{A}$-module over a $W^{*}$-algebra and $\mathscr{Y}$ be an orthogonally complemented submodule of $\mathscr{X}$.

## Theorem

Let $\mathscr{X}$ be a Hilbert $\mathscr{A}$-module over a $W^{*}$-algebra and $\mathscr{Y}$ be an orthogonally complemented submodule of $\mathscr{X}$.
Let $B: \mathscr{X} \times \mathscr{X} \rightarrow \mathscr{A}$ be an $\mathscr{A}$-inner product on $\mathscr{X}$. Assume there exist $c>0$ and $k>0$ such that for every $f \in \mathcal{P S}(\mathscr{A})$ and for every $x \in \mathscr{Y}$ there exists a unit vector $y \in \mathscr{Y}$ such that $f\left(|y|^{2}\right) \geqslant k$ and

$$
|f B(x, y)|^{2} \geqslant c f\left(|x|^{2}\right) f\left(|y|^{2}\right)
$$

## Theorem

Let $\mathscr{X}$ be a Hilbert $\mathscr{A}$-module over a $W^{*}$-algebra and $\mathscr{Y}$ be an orthogonally complemented submodule of $\mathscr{X}$.
Let $B: \mathscr{X} \times \mathscr{X} \rightarrow \mathscr{A}$ be an $\mathscr{A}$-inner product on $\mathscr{X}$. Assume there exist $c>0$ and $k>0$ such that for every $f \in \mathcal{P S}(\mathscr{A})$ and for every $x \in \mathscr{Y}$ there exists a unit vector $y \in \mathscr{Y}$ such that $f\left(|y|^{2}\right) \geqslant k$ and

$$
|f B(x, y)|^{2} \geqslant c f\left(|x|^{2}\right) f\left(|y|^{2}\right)
$$

Then $\mathscr{Y}^{\prime}$ is an orthogonally complemented submodule of $\mathscr{X}^{\prime}$ with respect to the inner product $\widetilde{B}$.

As a consequence, we show when an orthogonally complemented submodule of a self-dual Hilbert $W^{*}$-module $\mathscr{X}$ is orthogonally complemented with respect to another $C^{*}$-inner product on $\mathscr{X}$.

As a consequence, we show when an orthogonally complemented submodule of a self-dual Hilbert $W^{*}$-module $\mathscr{X}$ is orthogonally complemented with respect to another $C^{*}$-inner product on $\mathscr{X}$.

## Corollary

Let $\mathscr{X}$ be a self-dual Hilbert $\mathscr{A}$-module over a $W^{*}$-algebra and $\mathscr{Y}$ be an orthogonally complemented submodule of $\mathscr{X}$. Let $B$ be a inner product on $\mathscr{X}$.

As a consequence, we show when an orthogonally complemented submodule of a self-dual Hilbert $W^{*}$-module $\mathscr{X}$ is orthogonally complemented with respect to another $C^{*}$-inner product on $\mathscr{X}$.

## Corollary

Let $\mathscr{X}$ be a self-dual Hilbert $\mathscr{A}$-module over a $W^{*}$-algebra and $\mathscr{Y}$ be an orthogonally complemented submodule of $\mathscr{X}$. Let $B$ be a inner product on $\mathscr{X}$.
Assume there exist $c>0$ and $k>0$ such that for every $f \in \mathcal{P S}(\mathscr{A})$ and for every $x \in \mathscr{Y}$ there exists a unit vector $y \in \mathscr{Y}$ such that $f\left(|y|^{2}\right) \geqslant k$ and

$$
|f B(x, y)|^{2} \geqslant c f\left(|x|^{2}\right) f\left(|y|^{2}\right)
$$

As a consequence, we show when an orthogonally complemented submodule of a self-dual Hilbert $W^{*}$-module $\mathscr{X}$ is orthogonally complemented with respect to another $C^{*}$-inner product on $\mathscr{X}$.

## Corollary

Let $\mathscr{X}$ be a self-dual Hilbert $\mathscr{A}$-module over a $W^{*}$-algebra and $\mathscr{Y}$ be an orthogonally complemented submodule of $\mathscr{X}$. Let $B$ be a inner product on $\mathscr{X}$.
Assume there exist $c>0$ and $k>0$ such that for every $f \in \mathcal{P S}(\mathscr{A})$ and for every $x \in \mathscr{Y}$ there exists a unit vector $y \in \mathscr{Y}$ such that $f\left(|y|^{2}\right) \geqslant k$ and

$$
|f B(x, y)|^{2} \geqslant c f\left(|x|^{2}\right) f\left(|y|^{2}\right) .
$$

Then $\mathscr{Y}$ is an orthogonally complemented submodule of $\mathscr{X}$ with respect to the inner product $B$.

## Thank you very much for your attention.

## References.

[1] V. Abraham, On the existence and uniqueness of M-splines, J. Approx. Theory 43 (1985), 36-42.
[2] LJ. Arambašić and R. Rajić, Operator version of the best approximation problem in Hilbert C${ }^{*}$-modules, J. Math. Anal. Appl. 413 (2014), no. 1, 311-320.
[3] D. Bakić and B. Guljaš, On a class of module maps of Hilbert C*-modules, Math. Commun. 7 (2003), 177-192.
[4] L. G. Brown, When is every quasi-multiplier a multiplier?, J. Operator Theory 74(2015), 125-132.
[5] R. Eskandari, M. Frank, V. Manuilov, and M. S. Moslehian, Extensions of the Lax-Milgram theorem to Hilbert C*-modules, Positivity (2019), arXiv:1905.00077 [6] R. Eskandari, M. Frank, V. Manuilov, and M. S. Moslehian, B-spline interpolation problem in Hilbert $C^{*}$-modules, J. Oper. Theory (2021), arXiv:2004.01444.
[7] T. R. Lucas, M-splines, J. Approximation Theory 5 (1972), 1-14.
[8] V. M. Manuilov and E. V. Troitsky, Hilbert C*-modules, In: Translations of Mathematical Monographs. 226, American Mathematical Society, Providence, RI, 2005.
[9] W. L. Paschke, Inner product modules over $B^{*}$-algebras, Trans. Amer. Math. Soc. 182 (1972), 443-468.


[^0]:    ${ }^{1}$ T. R. Lucas, M-splines, J. Approximation Theory 5 (1972), 1-14. (see also R. Arcangéli, M. C. López de Silanes, and J. C. Torrens, Multidimensional minimizing splines. Theory and applications, Grenoble Sciences. Kluwer Academic Publishers, Boston, MA, 2004.)

[^1]:    ${ }^{1}$ T. R. Lucas, M-splines, J. Approximation Theory 5 (1972), 1-14. (see also R. Arcangéli, M. C. López de Silanes, and J. C. Torrens, Multidimensional minimizing splines. Theory and applications, Grenoble Sciences. Kluwer Academic Publishers, Boston, MA, 2004.)

[^2]:    ${ }^{2}$ M. Frank, V. Manuilov, and M. S. Moslehian, B-spline interpolation problem in Hilbert $C^{*}$-modules, J. Oper. Theory (2021), arXiv:2004.01444.

[^3]:    ${ }^{3}$ W. L. Paschke, Inner product modules over $B^{*}$-algebras, Trans. Amer. Math. Soc. 182 (1972), 443-468.

[^4]:    ${ }^{4}$ LJ. Arambašić and R. Rajić, Operator version of the best approximation problem in Hilbert $C^{*}$-modules, J. Math. Anal. Appl. 413 (2014), no. 1, 311-320.

[^5]:    ${ }^{5}$ R. Eskandari, M. Frank, V. Manuilov, and Speaker, B-spline interpolation problem in Hilbert $C^{*}$-modules, J. Oper. Theory (2021).

[^6]:    ${ }^{5}$ R. Eskandari, M. Frank, V. Manuilov, and Speaker, B-spline interpolation problem in Hilbert C*-modules, J. Oper. Theory (2021).

[^7]:    ${ }^{5}$ R. Eskandari, M. Frank, V. Manuilov, and Speaker, B-spline interpolation problem in Hilbert $C^{*}$-modules, J. Oper. Theory (2021.). छ

[^8]:    ${ }^{5}$ R. Eskandari, M. Frank, V. Manuilov, and Speaker, B-spline interpolation problem in Hilbert C*-modules, J. Oper. Theory (2021).

