A closer look at the B-spline interpolation problem in the setting of Hilbert C^* -modules

M. S. Moslehian

(Joint work with R. Eskandari, M. Frank, and V. M. Manuilov)

Russia - 2020

$$B(x,x)\geqslant 0 \text{ for all } x\in N(\Lambda)=\{x\in \mathscr{H}: \lambda(x)=0 \text{ for all } \lambda\in\Lambda\}.$$

$$B(x,x)\geqslant 0 \ \text{ for all } x\in N(\Lambda)=\{x\in \mathscr{H}: \lambda(x)=0 \ \text{for all } \lambda\in\Lambda\}.$$

A vector $s \in \mathcal{H}$ is called a *B*-spline if B(s, y) = 0 for all $y \in N(\Lambda)$.

$$B(x,x)\geqslant 0 \text{ for all } x\in N(\Lambda)=\{x\in \mathscr{H}: \lambda(x)=0 \text{ for all } \lambda\in\Lambda\}.$$

A vector $s \in \mathcal{H}$ is called a *B*-spline if B(s, y) = 0 for all $y \in N(\Lambda)$.

The closed linear space of all *B*-splines is denoted by $Sp(B, \Lambda)$.

$$B(x,x)\geqslant 0 \ \text{ for all } x\in N(\Lambda)=\{x\in \mathscr{H}: \lambda(x)=0 \ \text{for all } \lambda\in\Lambda\}.$$

A vector $s \in \mathcal{H}$ is called a *B*-spline if B(s, y) = 0 for all $y \in N(\Lambda)$.

The closed linear space of all *B*-splines is denoted by $Sp(B, \Lambda)$. For $x \in \mathcal{H}$, an element $s \in \mathcal{H}$ is said to be a $Sp(B, \Lambda)$ -interpolate of x if s is a B-spline and $s - x \in N(\Lambda)$. Lucas 1 gives conditions that insure the existence of a $Sp(B,\Lambda)$ -interpolate of any element in \mathscr{H} .

¹T. R. Lucas, *M-splines*, J. Approximation Theory **5** (1972), 1–14. (see also R. Arcangéli, M. C. López de Silanes, and J. C. Torrens, *Multidimensional minimizing splines. Theory and applications*, Grenoble Sciences. Kluwer Academic Publishers, Boston, MA, 2004.)

Lucas 1 gives conditions that insure the existence of a $Sp(B,\Lambda)$ -interpolate of any element in \mathscr{H} .

One of the conditions is that the system $(\mathcal{H}, \Lambda, B, N(\Lambda))$ is well-posed in the sense that if $N_1 := \{x \in N(\Lambda) : B(x, x) = 0\}$, then B(x, y) = 0 for all $x \in \mathcal{H}$ and all $y \in N_1$.

¹T. R. Lucas, *M-splines*, J. Approximation Theory **5** (1972), 1–14. (see also R. Arcangéli, M. C. López de Silanes, and J. C. Torrens, *Multidimensional minimizing splines. Theory and applications*, Grenoble Sciences. Kluwer Academic Publishers, Boston, MA, 2004.)

Lucas 1 gives conditions that insure the existence of a $Sp(B,\Lambda)$ -interpolate of any element in \mathscr{H} .

One of the conditions is that the system $(\mathcal{H}, \Lambda, B, N(\Lambda))$ is well-posed in the sense that if $N_1 := \{x \in N(\Lambda) : B(x, x) = 0\}$, then B(x, y) = 0 for all $x \in \mathcal{H}$ and all $y \in N_1$.

Moreover, if N_2 is the orthogonal complement of N_1 in $N(\Lambda)$, then B is definite on N_2 , that is, $B(x,x) \ge c \|x\|^2$ for some c > 0 and all $x \in N_2$.

¹T. R. Lucas, *M-splines*, J. Approximation Theory **5** (1972), 1–14. (see also R. Arcangéli, M. C. López de Silanes, and J. C. Torrens, *Multidimensional minimizing splines. Theory and applications*, Grenoble Sciences. Kluwer Academic Publishers, Boston, MA, 2004.)

Inspired by the theory of B-splines in the setting of Hilbert spaces, we investigate the B-spline interpolation problem in the framework of Hilbert modules over C^* -algebras and W^* -algebras. This talk is based on a recent paper. ²

²M. Frank, V. Manuilov, and M. S. Moslehian, *B-spline interpolation* problem in Hilbert C*-modules, J. Oper. Theory (2021), arXiv:2004.01444.

The notion of a pre-Hilbert C^* -module $(\mathscr{X}, \langle \cdot, \cdot \rangle)$ is a natural generalization of that of an inner product space in which we allow the inner product to take its values in a C^* -algebra $\mathscr A$ instead of the field of complex numbers.

The notion of a pre-Hilbert C^* -module $(\mathscr{X}, \langle \cdot, \cdot \rangle)$ is a natural generalization of that of an inner product space in which we allow the inner product to take its values in a C^* -algebra $\mathscr A$ instead of the field of complex numbers.

If $\mathscr X$ together with the norm $\|x\|=\|\langle x,x\rangle\|^{\frac12}$ is complete, then it is called an $\mathscr A$ -Hilbert C^* -module. The positive square root of $\langle x,x\rangle$ is denoted by |x| for $x\in\mathscr X$. We say that a closed submodule $\mathscr Y$ of a Hilbert C^* -module $\mathscr X$ is orthogonally complemented if $\mathscr X=\mathscr Y\oplus\mathscr Y^\perp$, where

$$\mathscr{Y}^{\perp} = \{ x \in \mathscr{X} : \langle x, y \rangle = 0 \text{ for all } y \in \mathscr{Y} \}.$$

The notion of a pre-Hilbert C^* -module $(\mathscr{X}, \langle \cdot, \cdot \rangle)$ is a natural generalization of that of an inner product space in which we allow the inner product to take its values in a C^* -algebra $\mathscr A$ instead of the field of complex numbers.

If $\mathscr X$ together with the norm $\|x\|=\|\langle x,x\rangle\|^{\frac{1}{2}}$ is complete, then it is called an $\mathscr A$ -Hilbert C^* -module. The positive square root of $\langle x,x\rangle$ is denoted by |x| for $x\in\mathscr X$. We say that a closed submodule $\mathscr Y$ of a Hilbert C^* -module $\mathscr X$ is orthogonally complemented if $\mathscr X=\mathscr Y\oplus\mathscr Y^\perp$, where

$$\mathscr{Y}^{\perp} = \{ x \in \mathscr{X} : \langle x, y \rangle = 0 \text{ for all } y \in \mathscr{Y} \}.$$

STANDING NOTATION: Throughout this talk, let \mathscr{A} be a C^* -algebra (W^* -algebra if we explicitly state it) whose pure state space is denoted by $\mathcal{PS}(\mathscr{A})$, and let \mathscr{X} denote a Hilbert \mathscr{A} -module.

If \mathscr{X}' denotes the set of all bounded \mathscr{A} -linear maps from \mathscr{X} into \mathscr{A} , named as the dual of \mathscr{X} , then \mathscr{X}' becomes a right \mathscr{A} -module equipped with the following actions:

$$(\rho + \lambda \tau)(x) = \rho(x) + \overline{\lambda}\tau(x)$$
 and $(\tau b)(x) = b^*\tau(x)$

for $\rho, \tau \in \mathscr{X}', b \in \mathscr{A}, \lambda \in \mathbb{C}$ and $x \in \mathscr{X}$.

If \mathscr{X}' denotes the set of all bounded \mathscr{A} -linear maps from \mathscr{X} into \mathscr{A} , named as the dual of \mathscr{X} , then \mathscr{X}' becomes a right \mathscr{A} -module equipped with the following actions:

$$(\rho + \lambda \tau)(x) = \rho(x) + \overline{\lambda}\tau(x)$$
 and $(\tau b)(x) = b^*\tau(x)$

for $\rho, \tau \in \mathcal{X}', b \in \mathcal{A}, \lambda \in \mathbb{C}$ and $x \in \mathcal{X}$.

Trivially, to every bounded \mathscr{A} -linear map $T: \mathscr{X} \to \mathscr{Y}$ one can associate a bounded \mathscr{A} -linear map $T': \mathscr{Y}' \to \mathscr{X}'$ defined by

$$T'(g)(x) = g(T(x)) \quad g \in \mathscr{Y}'.$$

For each $x \in \mathscr{X}$, one can define the map $\widehat{x} \in \mathscr{X}'$ by

$$\widehat{x}(y) = \langle x, y \rangle, \quad y \in \mathscr{X}.$$

For each $x \in \mathcal{X}$, one can define the map $\hat{x} \in \mathcal{X}'$ by

$$\hat{x}(y) = \langle x, y \rangle, \quad y \in \mathscr{X}.$$

It is easy to verify that the map $x\mapsto \hat{x}$ is isometric and \mathscr{A} -linear. Hence one can identify \mathscr{X} with

$$\widehat{\mathcal{X}}:=\{\widehat{x}:x\in\mathcal{X}\}$$

as a closed submodule of \mathcal{X}' .

For each $x \in \mathcal{X}$, one can define the map $\hat{x} \in \mathcal{X}'$ by

$$\hat{x}(y) = \langle x, y \rangle, \quad y \in \mathcal{X}.$$

It is easy to verify that the map $x \mapsto \hat{x}$ is isometric and \mathscr{A} -linear. Hence one can identify \mathscr{X} with

$$\widehat{\mathscr{X}} := \{\widehat{\mathbf{x}} : \mathbf{x} \in \mathscr{X}\}$$

as a closed submodule of \mathscr{X}' .

A module $\mathscr X$ is called self-dual if $\widehat{\mathscr X}=\mathscr X'.$ For example, a unital C^* -algebra $\mathscr A$ is self-dual as a Hilbert $\mathscr A$ -module via $\langle a,b\rangle=a^*b.$

$$\dot{x} \in \mathscr{X}''$$

by

$$\dot{x}(f) = f(x)^* \ (f \in \mathscr{X}').$$

Then $x \mapsto \dot{x}$ gives rise to an isometric \mathscr{A} -linear map.

$$\dot{x} \in \mathscr{X}''$$

by

$$\dot{x}(f) = f(x)^* \ (f \in \mathscr{X}').$$

Then $x \mapsto \dot{x}$ gives rise to an isometric \mathscr{A} -linear map. We say that \mathscr{X} is reflexive if this map is surjective.

$$\dot{x} \in \mathscr{X}''$$

by

$$\dot{x}(f) = f(x)^* \ (f \in \mathscr{X}').$$

Then $x \mapsto \dot{x}$ gives rise to an isometric \mathscr{A} -linear map. We say that \mathscr{X} is reflexive if this map is surjective.

There is an \mathscr{A} -valued inner product on the second dual \mathscr{X}'' defined by

$$\langle F, G \rangle = F(\dot{G}), \text{ where } \dot{G}(x) := G(\hat{x}) \ (x \in \mathcal{X}).$$

It is an extension of the inner product on \mathscr{X} . In addition, the map $F \mapsto \dot{F}$ is an isometric inclusion, and $\dot{\dot{x}} = \hat{x}$ because of

$$\dot{\hat{x}}(y) = \dot{x}(\hat{y}) = \hat{y}(x)^* = \langle x, y \rangle = \hat{x}(y).$$

$$\dot{x} \in \mathscr{X}''$$

by

$$\dot{x}(f) = f(x)^* \ (f \in \mathscr{X}').$$

Then $x \mapsto \dot{x}$ gives rise to an isometric \mathscr{A} -linear map. We say that \mathscr{X} is reflexive if this map is surjective.

There is an \mathscr{A} -valued inner product on the second dual \mathscr{X}'' defined by

$$\langle F, G \rangle = F(\dot{G}), \text{ where } \dot{G}(x) := G(\hat{x}) \ (x \in \mathcal{X}).$$

It is an extension of the inner product on \mathscr{X} . In addition, the map $F \mapsto \dot{F}$ is an isometric inclusion, and $\dot{\dot{x}} = \hat{x}$ because of

$$\dot{\dot{x}}(y) = \dot{x}(\hat{y}) = \hat{y}(x)^* = \langle x, y \rangle = \hat{x}(y).$$

Thus we have the chain of inclusions as $\mathscr{X} \subseteq \mathscr{X}'' \subseteq \mathscr{X}'$, and every self-dual Hilbert C^* -module is reflexive, too.

A comprehensive result of Paschke reads as follows.³

³W. L. PASCHKE, *Inner product modules over B*-algebras*, Trans. Amer. Math. Soc. **182** (1972), 443–468.

A comprehensive result of Paschke reads as follows.³

Theorem

Let $\mathscr X$ be a pre-Hilbert C^* -module over a W^* -algebra $\mathscr A$. The $\mathscr A$ -valued inner product on $\mathscr X \times \mathscr X$ can be extended to $\mathscr X' \times \mathscr X'$ in such a way as to make $\mathscr X'$ into a self-dual Hilbert $\mathscr A$ -module.

³W. L. Paschke, *Inner product modules over B*-algebras*, Trans. Amer. Math. Soc. **182** (1972), 443–468.

By an \mathscr{A} -sesquilinear form on a Hilbert \mathscr{A} -module \mathscr{X} we mean a bounded map $B: \mathscr{X} \times \mathscr{X} \to \mathscr{A}$ such that it is anti- \mathscr{A} -linear in the first variable and \mathscr{A} -linear in the second one. We say that it is positive on a set \mathscr{Y} if $B(y,y) \geqslant 0$ for all $y \in \mathscr{Y}$.

By an \mathscr{A} -sesquilinear form on a Hilbert \mathscr{A} -module \mathscr{X} we mean a bounded map $B: \mathscr{X} \times \mathscr{X} \to \mathscr{A}$ such that it is anti- \mathscr{A} -linear in the first variable and \mathscr{A} -linear in the second one. We say that it is positive on a set \mathscr{Y} if $B(y,y) \geqslant 0$ for all $y \in \mathscr{Y}$.

It is elliptic on a set \mathscr{Y} if $B(y,y) \geqslant c\langle y,y \rangle$ for any $y \in \mathscr{Y}$ and some positive real constant c.

Let $\mathscr Y$ be a closed submodule of $\mathscr X$. Let $B:\mathscr X\times\mathscr X\to\mathscr A$ be an $\mathscr A$ -sesquilinear form.

Let $\mathscr Y$ be a closed submodule of $\mathscr X$. Let $B:\mathscr X\times\mathscr X\to\mathscr A$ be an $\mathscr A$ -sesquilinear form.

An element $s \in \mathcal{X}$ is said to be a *B*-spline if

$$B(s,y)=0$$

for all $y \in \mathscr{Y}$.

Let $\mathscr Y$ be a closed submodule of $\mathscr X$. Let $B:\mathscr X\times\mathscr X\to\mathscr A$ be an $\mathscr A$ -sesquilinear form.

An element $s \in \mathcal{X}$ is said to be a *B*-spline if

$$B(s,y)=0$$

for all $y \in \mathscr{Y}$.

The *B*-spline interpolation problem asks whether for each $x \in \mathcal{X}$ there exists a *B*-spline element *s* in the coset $x + \mathcal{Y}$.

Suppose that P is a non-trivial projection on a Hilbert C^* -module ${\mathscr X}$ and set

$$B(x,y) := \langle P(x), y \rangle, \ x, y \in \mathscr{X}.$$

Suppose that P is a non-trivial projection on a Hilbert C^* -module ${\mathscr X}$ and set

$$B(x, y) := \langle P(x), y \rangle, \ x, y \in \mathscr{X}.$$

Then there is an orthogonal decomposition $\mathscr{X}=\operatorname{ran}(P)\oplus\ker(P)$. Let $\mathscr{Z}\subseteq\ker(P)$ be a closed submodule and set $\mathscr{Y}:=\operatorname{ran}(P)\oplus\mathscr{Z}\subseteq\mathscr{X}$. Given $x\in\mathscr{X}$ the element $s\in x+\mathscr{Y}$ can be selected as s=(1-P)(x), i.e. the *B*-spline interpolation has a solution.

Suppose that P is a non-trivial projection on a Hilbert C^* -module ${\mathscr X}$ and set

$$B(x,y) := \langle P(x), y \rangle, \ x, y \in \mathscr{X}.$$

Then there is an orthogonal decomposition $\mathscr{X}=\operatorname{ran}(P)\oplus\ker(P)$. Let $\mathscr{Z}\subseteq\ker(P)$ be a closed submodule and set $\mathscr{Y}:=\operatorname{ran}(P)\oplus\mathscr{Z}\subseteq\mathscr{X}$. Given $x\in\mathscr{X}$ the element $s\in x+\mathscr{Y}$ can be selected as s=(1-P)(x), i.e. the *B*-spline interpolation has a solution.

It might be not unique when $\mathscr{Z} \neq \{0\}$. Indeed, let $z \in \mathscr{Z}$, and let s = (1 - P)(x) + z. Then $s - x = -P(x) + z \in \mathscr{Y}$ and B(s, y) = 0 for any $y \in \mathscr{X}$.

Consider a Hilbert space $\mathscr H$ as a Hilbert C^* -module over the C^* -algebra $\mathbb B(\mathscr H)$ of all bounded linear operators on $\mathscr H$ under the C^* -inner product

$$[x,y]:=x\otimes y,$$

where $x \otimes y$ is defined by $(x \otimes y)(z) = \langle z, y \rangle x$, and the actions

$$\lambda \cdot x = \bar{\lambda}x$$
 and $x \cdot T = T^*(x)$.

Consider a Hilbert space $\mathscr H$ as a Hilbert C^* -module over the C^* -algebra $\mathbb B(\mathscr H)$ of all bounded linear operators on $\mathscr H$ under the C^* -inner product

$$[x,y]:=x\otimes y,$$

where $x \otimes y$ is defined by $(x \otimes y)(z) = \langle z, y \rangle x$, and the actions

$$\lambda \cdot x = \bar{\lambda}x$$
 and $x \cdot T = T^*(x)$.

Then the *B*-spline interpolation problem has no solution for any given nontrivial closed subspace \mathscr{Y} of \mathscr{X} .

Let \mathscr{H} be an infinite-dimensional Hilbert space, $\mathscr{A}=\mathbb{B}(\mathscr{H})$, and let $\mathbb{K}(\mathscr{H})$ be the norm-closed two-sided ideal of $\mathbb{B}(\mathscr{H})$ of all compact operators on \mathscr{H} . Let \mathscr{X} be \mathscr{A} with the Hilbert \mathscr{A} -module operations inherited from the algebraic operations in \mathscr{A} , in particular,

$$\langle T, S \rangle = T^*S.$$

Let \mathscr{H} be an infinite-dimensional Hilbert space, $\mathscr{A}=\mathbb{B}(\mathscr{H})$, and let $\mathbb{K}(\mathscr{H})$ be the norm-closed two-sided ideal of $\mathbb{B}(\mathscr{H})$ of all compact operators on \mathscr{H} . Let \mathscr{X} be \mathscr{A} with the Hilbert \mathscr{A} -module operations inherited from the algebraic operations in \mathscr{A} , in particular,

$$\langle T, S \rangle = T^*S.$$

For

$$B(\cdot,\cdot) = \langle \cdot, \cdot \rangle$$

and $\mathscr{Y}=\mathbb{K}(\mathscr{H})$, the B-spline interpolation problem has no solution.

It is known that in the setting of Hilbert spaces if σ is a bounded sesquilinear form on $\mathscr H$, then there is a unique bounded linear operator U on $\mathscr H$ such that

$$\sigma(x,y)=\langle U(x),y\rangle.$$

It is known that in the setting of Hilbert spaces if σ is a bounded sesquilinear form on $\mathcal H$, then there is a unique bounded linear operator U on $\mathcal H$ such that

$$\sigma(x,y)=\langle U(x),y\rangle.$$

Next, we show that the above representation is valid in a self-dual Hilbert C^* -module. To achieve it we need a lemma.

It is known that in the setting of Hilbert spaces if σ is a bounded sesquilinear form on \mathcal{H} , then there is a unique bounded linear operator U on \mathcal{H} such that

$$\sigma(x,y)=\langle U(x),y\rangle.$$

Next, we show that the above representation is valid in a self-dual Hilbert C^* -module. To achieve it we need a lemma.

Theorem

Let $\mathscr X$ be a self-dual Hilbert $\mathscr A$ -module. Let $B:\mathscr X\times\mathscr X\to\mathscr A$ be an $\mathscr A$ -sesquilinear form on $\mathscr A$. Then there is a unique operator $T\in\mathscr L(\mathscr X)$ such that

$$B(x, y) = \langle T(x), y \rangle$$
 $(x, y \in \mathcal{X}).$

Let B be an \mathscr{A} -sesquilinear form on a Hilbert \mathscr{A} -module \mathscr{X} . Let \mathscr{Y} be a closed submodule of \mathscr{X} .

Let B be an \mathscr{A} -sesquilinear form on a Hilbert \mathscr{A} -module \mathscr{X} . Let \mathscr{Y} be a closed submodule of \mathscr{X} .

Set

$$\widetilde{\mathcal{Y}} = \{ \widecheck{y} \in \mathcal{Y} : B(\widecheck{y}, y) = 0 \text{ for all } y \in \mathcal{Y} \},$$

$$\widetilde{\mathcal{Y}} = \{ \widecheck{y} \in \mathcal{Y} : B(y, \widecheck{y}) = 0 \text{ for all } y \in \mathcal{Y} \},$$

and

$$\mathscr{Y}_1 = \{ y \in \mathscr{Y} : B(y, y) = 0 \}.$$

Clearly, $\widecheck{\mathscr{Y}}\subseteq\mathscr{Y}_1$ and $\widecheck{\mathscr{Y}}\subseteq\mathscr{Y}_1$.

Clearly, $\widecheck{\mathscr{Y}}\subseteq\mathscr{Y}_1$ and $\widecheck{\mathscr{Y}}\subseteq\mathscr{Y}_1.$

Example

If $B(\cdot,\cdot)$ is skew-symmetric, i.e. B(x,y)=-B(y,x) on \mathscr{X} , then always $\mathscr{Y}_1=\mathscr{Y}$, but the other two sets are most often smaller.

Clearly, $\widecheck{\mathscr{Y}}\subseteq\mathscr{Y}_1$ and $\widecheck{\mathscr{Y}}\subseteq\mathscr{Y}_1.$

Example

If $B(\cdot,\cdot)$ is skew-symmetric, i.e. B(x,y)=-B(y,x) on \mathscr{X} , then always $\mathscr{Y}_1=\mathscr{Y}$, but the other two sets are most often smaller. Moreover, for \mathscr{A} -sesquilinear forms both $\widetilde{\mathscr{Y}}$ and $\widetilde{\mathscr{Y}}$ are norm-complete \mathscr{A} -submodules of \mathscr{Y} .

Let B be positive on \mathscr{Y} , i.e. $B(y,y)\geqslant 0$ for any $y\in \mathscr{Y}$. Then

$$\widetilde{\mathscr{Y}} = \mathscr{Y}_1 = \widetilde{\mathscr{Y}}.$$

Let $\mathscr Y$ be a closed submodule of $\mathscr X$, and B be an $\mathscr A$ -sesquilinear form on $\mathscr X$. Suppose that the B-spline interpolation problem has a solution for $\mathscr Y$ for an element $x\in \mathscr X$.

Let $\mathscr Y$ be a closed submodule of $\mathscr X$, and B be an $\mathscr A$ -sesquilinear form on $\mathscr X$. Suppose that the B-spline interpolation problem has a solution for $\mathscr Y$ for an element $x\in\mathscr X$.

Then the following two conditions are equivalent:

- The solution of the B-spline problem for x is unique.
- $\widetilde{\mathscr{Y}} = \{0\}.$

Let $T: \mathscr{X} \to \mathscr{X}$ be adjointable. Let $B_1: \mathscr{X} \times \mathscr{X} \to \mathscr{A}$ be the \mathscr{A} -sesquilinear form defined by

$$B_1(x,y) = \langle T(x), y \rangle \quad (x, y \in \mathscr{X}).$$

Let $T: \mathscr{X} \to \mathscr{X}$ be adjointable. Let $B_1: \mathscr{X} \times \mathscr{X} \to \mathscr{A}$ be the \mathscr{A} -sesquilinear form defined by

$$B_1(x,y) = \langle T(x), y \rangle \quad (x, y \in \mathscr{X}).$$

Let $B_2: \mathscr{X} \times \mathscr{X} \to \mathscr{A}$ be the \mathscr{A} -sesquilinear form defined by

$$B_2(x, y) = \langle T^*(x), y \rangle$$
 $(x, y \in \mathcal{X}).$

Let $T: \mathscr{X} \to \mathscr{X}$ be adjointable. Let $B_1: \mathscr{X} \times \mathscr{X} \to \mathscr{A}$ be the \mathscr{A} -sesquilinear form defined by

$$B_1(x, y) = \langle T(x), y \rangle \quad (x, y \in \mathscr{X}).$$

Let $B_2: \mathscr{X} \times \mathscr{X} \to \mathscr{A}$ be the \mathscr{A} -sesquilinear form defined by

$$B_2(x,y) = \langle T^*(x), y \rangle \qquad (x, y \in \mathscr{X}).$$

Then
$$\widetilde{\mathscr{X}_{B_1}} = \widecheck{\mathscr{X}_{B_2}}$$
 and $\widetilde{\mathscr{X}_{B_2}} = \widecheck{\mathscr{X}_{B_1}}.$

The following result is a generalization of a result of Arambašić and Rajić 4 .

⁴LJ. ARAMBAŠIĆ and R. RAJIĆ, Operator version of the best approximation problem in Hilbert C*-modules, J. Math. Anal. Appl. **413** (2014), no. 1, 311–320.

The following result is a generalization of a result of Arambašić and Rajić 4 .

Theorem

Let $\mathscr Y$ be a closed submodule of $\mathscr X$. Let B be an $\mathscr A$ -sesquilinear form on $\mathscr X$ and $T:\mathscr X\to\mathscr Z'$ be such that

$$B(x,z) = T(x)(z)$$
 $(x \in \mathcal{X}, z \in \mathcal{Z}).$

and $\widetilde{\mathscr{Y}}=\{0\}.$ Then B-spline interpolation problem has a solution for \mathscr{Y} if and only if

$$\{Tx|_{\mathscr{Y}}: x \in \mathscr{X}\} \subseteq \{Ty|_{\mathscr{Y}}: y \in \mathscr{Y}\}.$$

⁴LJ. ARAMBAŠIĆ and R. RAJIĆ, Operator version of the best approximation problem in Hilbert C*-modules, J. Math. Anal. Appl. **413** (2014), no. 1, 311–320.

The next result reads as follows.

The next result reads as follows.

Theorem

Let $\mathscr X$ be a self-dual Hilbert $\mathscr A$ -module. Let $\mathscr Y$ be an orthogonally complemented submodule of $\mathscr X$ and P be the projection onto $\mathscr Y$. Let $B:\mathscr X\times\mathscr X\to\mathscr A$ be an $\mathscr A$ -sesquilinear form and positive on $\mathscr Y$.

The next result reads as follows.

Theorem

Let \mathscr{X} be a self-dual Hilbert \mathscr{A} -module. Let \mathscr{Y} be an orthogonally complemented submodule of \mathscr{X} and P be the projection onto \mathscr{Y} . Let $B: \mathscr{X} \times \mathscr{X} \to \mathscr{A}$ be an \mathscr{A} -sesquilinear form and positive on \mathscr{Y} .

Then a necessary condition for the B-spline interpolation problem for ${\mathscr Y}$ to have a solution is

$$B(x, \check{y}) = 0$$
 for all $x \in \mathcal{X}, \check{y} \in \widecheck{\mathcal{Y}}$

Theorem

Let \mathscr{X} and \mathscr{Z} be Hilbert \mathscr{A} -modules over a C^* -algebra \mathscr{A} . Let $B: \mathscr{X} \times \mathscr{Z} \to \mathscr{A}$ be an \mathscr{A} -sesquilinear form. Then B is uniquely extended to an \mathscr{A} -sesquilinear form on $\mathscr{X}'' \times \mathscr{Z}''$.

Theorem

Let \mathscr{X} and \mathscr{Z} be Hilbert \mathscr{A} -modules over a \mathbb{C}^* -algebra \mathscr{A} . Let $B: \mathscr{X} \times \mathscr{Z} \to \mathscr{A}$ be an \mathscr{A} -sesquilinear form. Then B is uniquely extended to an \mathscr{A} -sesquilinear form on $\mathscr{X}'' \times \mathscr{Z}''$.

If $\mathscr X$ is a Hilbert C^* -module over a W^* -algebra, then $\mathscr X'$ is self-dual, and so $\mathscr X''=\mathscr X'$.

Theorem

Let \mathscr{X} and \mathscr{Z} be Hilbert \mathscr{A} -modules over a \mathbb{C}^* -algebra \mathscr{A} . Let $B: \mathscr{X} \times \mathscr{Z} \to \mathscr{A}$ be an \mathscr{A} -sesquilinear form. Then B is uniquely extended to an \mathscr{A} -sesquilinear form on $\mathscr{X}'' \times \mathscr{Z}''$.

If $\mathscr X$ is a Hilbert C^* -module over a W^* -algebra, then $\mathscr X'$ is self-dual, and so $\mathscr X''=\mathscr X'$.

Corollary

Let $\mathscr X$ be a Hilbert C^* -module over a W^* -algebra $\mathscr A$. Let B be an $\mathscr A$ -sesquilinear form on $\mathscr X$. Then B is uniquely extended to an $\mathscr A$ -sesquilinear form on $\mathscr X'$.

Let $\mathscr Y$ be an orthogonally complemented submodule of $\mathscr X$. Then $\mathscr Y''$ is an orthogonally complemented submodule of $\mathscr X''$.

Let $\mathscr Y$ be an orthogonally complemented submodule of $\mathscr X$. Then $\mathscr Y''$ is an orthogonally complemented submodule of $\mathscr X''$.

Corollary

Let \mathscr{X} be a Hilbert C^* -module over a W^* -algebra \mathscr{A} and \mathscr{Y} be an orthogonally complemented submodule of \mathscr{X} . Then \mathscr{Y}' is an orthogonally complemented submodule of \mathscr{X}' .

Theorem

Let $\mathscr X$ be a Hilbert $\mathscr A$ -module and let $\mathscr Y$ be an orthogonally complemented submodule of $\mathscr X$.

Theorem

Let $\mathscr X$ be a Hilbert $\mathscr A$ -module and let $\mathscr Y$ be an orthogonally complemented submodule of $\mathscr X$.

Let $B:\mathscr{X}\times\mathscr{X}\to\mathscr{A}$ be an \mathscr{A} -sesquilinear form and positive on \mathscr{Y} . Assume there exists c>0 and k>0 such that for every $f\in\mathcal{PS}(\mathscr{A})$ and every $x\in\mathscr{Y}\backslash\widetilde{\mathscr{Y}}$ there exists $y\in\mathscr{Y}$ with $\|y\|=1$ such that $f(|y|^2)\geqslant k$ and

$$|fB(x,y)|^2 \ge cf(|x|^2)f(|y|^2).$$

Theorem

Let $\mathscr X$ be a Hilbert $\mathscr A$ -module and let $\mathscr Y$ be an orthogonally complemented submodule of $\mathscr X$.

Let $B:\mathscr{X}\times\mathscr{X}\to\mathscr{A}$ be an \mathscr{A} -sesquilinear form and positive on \mathscr{Y} . Assume there exists c>0 and k>0 such that for every $f\in\mathcal{PS}(\mathscr{A})$ and every $x\in\mathscr{Y}\backslash\widetilde{\mathscr{Y}}$ there exists $y\in\mathscr{Y}$ with $\|y\|=1$ such that $f(|y|^2)\geqslant k$ and

$$|fB(x,y)|^2 \ge cf(|x|^2)f(|y|^2).$$

Then a necessary condition for the B-spline interpolation problem for $\mathcal Y$ to have a solution is

$$B(x,\check{y}) = 0 \qquad (x \in \mathscr{X}, \check{y} \in \widecheck{\mathscr{Y}}). \tag{1}$$

Theorem

Let $\mathscr X$ be a Hilbert $\mathscr A$ -module and let $\mathscr Y$ be an orthogonally complemented submodule of $\mathscr X$.

Let $B: \mathscr{X} \times \mathscr{X} \to \mathscr{A}$ be an \mathscr{A} -sesquilinear form and positive on \mathscr{Y} . Assume there exists c>0 and k>0 such that for every $f \in \mathcal{PS}(\mathscr{A})$ and every $x \in \mathscr{Y} \backslash \widetilde{\mathscr{Y}}$ there exists $y \in \mathscr{Y}$ with $\|y\|=1$ such that $f(|y|^2) \geqslant k$ and

$$|fB(x,y)|^2 \ge cf(|x|^2)f(|y|^2).$$

Then a necessary condition for the B-spline interpolation problem for ${\mathscr Y}$ to have a solution is

$$B(x,\check{y}) = 0 \qquad (x \in \mathscr{X}, \check{y} \in \widecheck{\mathscr{Y}}). \tag{1}$$

If $\dot{\mathscr{Y}}$ is orthogonally complemented in \mathscr{X}'' , then (1) is sufficient.

011

Let $\mathscr X$ be a Hilbert $\mathscr A$ -module over a W^* -algebra $\mathscr A$ and $\mathscr Y$ be an orthogonally complemented submodule of $\mathscr X$. Let $B:\mathscr X\times\mathscr X\to\mathscr A$ be an $\mathscr A$ -sesquilinear form on $\mathscr X$. Let $\widetilde B$ be the extension of B on $\mathscr X'$. If B is positive on $\mathscr Y$, then $\widetilde B$ is positive on

 $^{^5\}mathrm{R.}$ Eskandari, M. Frank, V. Manuilov, and Speaker, *B-spline interpolation problem in Hilbert C*-modules*, J. Oper Theory (2021).

Theorem

Let $\mathscr X$ be a Hilbert $\mathscr A$ -module over a W^* -algebra $\mathscr A$ and $\mathscr Y$ be a nontrivial orthogonally complemented submodule of $\mathscr X$.

⁵R. ESKANDARI, M. FRANK, V. MANUILOV, and SPEAKER, *B-spline* interpolation problem in Hilbert C*-modules, J. Opera Theory (2021).

Theorem

Let \mathscr{X} be a Hilbert \mathscr{A} -module over a W^* -algebra \mathscr{A} and \mathscr{Y} be a nontrivial orthogonally complemented submodule of \mathscr{X} . Let $B: \mathscr{X} \times \mathscr{X} \to \mathscr{A}$ be an \mathscr{A} -sesquilinear form on \mathscr{X} and positive on \mathscr{Y} . Let B be the extension of B on \mathscr{X}' . Assume there exist c>0 and k>0 such that for every $f\in \mathcal{PS}(\mathscr{A})$ and for every $x\in \mathscr{Y}\backslash \mathscr{Y}$ there exists a unit vector $y\in \mathscr{Y}$ such that $f(|y|^2)\geqslant k$ and

$$|fB(x,y)|^2 \ge cf(|x|^2)f(|y|^2).$$
 (2)

⁵R. ESKANDARI, M. FRANK, V. MANUILOV, and SPEAKER, *B-spline* interpolation problem in Hilbert C*-modules, J. Oper. Theory (2021).

Theorem

Let \mathscr{X} be a Hilbert \mathscr{A} -module over a W^* -algebra \mathscr{A} and \mathscr{Y} be a nontrivial orthogonally complemented submodule of \mathscr{X} . Let $B: \mathscr{X} \times \mathscr{X} \to \mathscr{A}$ be an \mathscr{A} -sesquilinear form on \mathscr{X} and positive on \mathscr{Y} . Let B be the extension of B on \mathscr{X}' . Assume there exist c>0 and k>0 such that for every $f\in \mathcal{PS}(\mathscr{A})$ and for every $x\in \mathscr{Y}\backslash \widetilde{\mathscr{Y}}$ there exists a unit vector $y\in \mathscr{Y}$ such that $f(|y|^2)\geqslant k$ and

$$|fB(x,y)|^2 \ge cf(|x|^2)f(|y|^2).$$
 (2)

Then, the B-spline interpolation problem has a solution for \mathscr{Y}' if and only if

$$B(x,\check{y}) = 0$$
 $(x \in \mathscr{X}, \check{y} \in \widecheck{\mathscr{Y}}).$

⁵R. ESKANDARI, M. FRANK, V. MANUILOV, and SPEAKER, *B-spline* interpolation problem in Hilbert C*-modules, J. Oper. Theory (2021).

Now we give an example in which the conditions of our second main Theorem simultaneously occur.

Example

Let \mathscr{B} be an abelian von Neumann algebra of operators acting on a Hilbert space \mathscr{H} . Let $\mathscr{A}=\mathscr{B}\oplus\mathscr{B}$ be the von Neumann algebra of all $u\in\mathbb{B}(\mathscr{H})$ having the representation

$$u = \begin{bmatrix} u_1 & 0 \\ 0 & u_2 \end{bmatrix} \qquad (u_1, u_2 \in \mathcal{B}). \tag{3}$$

Now we give an example in which the conditions of our second main Theorem simultaneously occur.

Example

Let \mathscr{B} be an abelian von Neumann algebra of operators acting on a Hilbert space \mathscr{H} . Let $\mathscr{A}=\mathscr{B}\oplus\mathscr{B}$ be the von Neumann algebra of all $u\in\mathbb{B}(\mathscr{H})$ having the representation

$$u = \begin{bmatrix} u_1 & 0 \\ 0 & u_2 \end{bmatrix} \qquad (u_1, u_2 \in \mathscr{B}). \tag{3}$$

Let $\mathscr{X}:=\mathscr{A}$ and $\mathscr{Y}:=\mathscr{B}\oplus 0$. Define $B:\mathscr{X}\times\mathscr{X}\to\mathscr{A}$ by

$$B(u,v) = \begin{bmatrix} u_1^* v_1 & 0 \\ 0 & 0 \end{bmatrix},$$

where u and v have the representations as presented in (3).

Example (continued from the previous slide)

Then B is an \mathscr{A} -sesquilinear form on \mathscr{X} and positive on \mathscr{Y} .

Example (continued from the previous slide)

Then B is an \mathscr{A} -sesquilinear form on \mathscr{X} and positive on \mathscr{Y} . Clearly, $\mathscr{Y} = \{0\}$. In addition, any pure state of \mathscr{A} is multiplicative on \mathscr{A} .

Example (continued from the previous slide)

Then B is an \mathscr{A} -sesquilinear form on \mathscr{X} and positive on \mathscr{Y} . Clearly, $\mathscr{Y}=\{0\}$. In addition, any pure state of \mathscr{A} is multiplicative on \mathscr{A} .

Hence,

$$|fB(u,v)|^2 = \left|f\left(\begin{bmatrix} u_1^*v_1 & 0\\ 0 & 0\end{bmatrix}\right)\right|^2 = f(|u|^2)f(|v|^2)$$

for all $u, v \in \mathcal{Y}$. In addition, \mathcal{X} is self-dual. Hence, our second main Theorem ensures that B-spline interpolation has a solution for \mathcal{Y} .

Let $\mathscr X$ be a Hilbert $\mathscr A$ -module over a W^* -algebra and $\mathscr Y$ be an orthogonally complemented submodule of $\mathscr X$.

Let $\mathscr X$ be a Hilbert $\mathscr A$ -module over a W^* -algebra and $\mathscr Y$ be an orthogonally complemented submodule of $\mathscr X$.

Let $B: \mathscr{X} \times \mathscr{X} \to \mathscr{A}$ be an \mathscr{A} -inner product on \mathscr{X} . Assume there exist c>0 and k>0 such that for every $f\in \mathcal{PS}(\mathscr{A})$ and for every $x\in \mathscr{Y}$ there exists a unit vector $y\in \mathscr{Y}$ such that $f(|y|^2)\geqslant k$ and

$$|fB(x,y)|^2 \ge cf(|x|^2)f(|y|^2).$$

Let $\mathscr X$ be a Hilbert $\mathscr A$ -module over a W^* -algebra and $\mathscr Y$ be an orthogonally complemented submodule of $\mathscr X$.

Let $B: \mathscr{X} \times \mathscr{X} \to \mathscr{A}$ be an \mathscr{A} -inner product on \mathscr{X} . Assume there exist c>0 and k>0 such that for every $f\in \mathcal{PS}(\mathscr{A})$ and for every $x\in \mathscr{Y}$ there exists a unit vector $y\in \mathscr{Y}$ such that $f(|y|^2)\geqslant k$ and

$$|fB(x,y)|^2 \ge cf(|x|^2)f(|y|^2).$$

Then \mathscr{Y}' is an orthogonally complemented submodule of \mathscr{X}' with

respect to the inner product \widetilde{B} .

Corollary

Let $\mathscr X$ be a self-dual Hilbert $\mathscr A$ -module over a $\mathscr W^*$ -algebra and $\mathscr Y$ be an orthogonally complemented submodule of $\mathscr X$. Let B be a inner product on $\mathscr X$.

Corollary

Let $\mathscr X$ be a self-dual Hilbert $\mathscr A$ -module over a $\mathscr W^*$ -algebra and $\mathscr Y$ be an orthogonally complemented submodule of $\mathscr X$. Let B be a inner product on $\mathscr X$.

Assume there exist c>0 and k>0 such that for every $f\in\mathcal{PS}(\mathscr{A})$ and for every $x\in\mathscr{Y}$ there exists a unit vector $y\in\mathscr{Y}$ such that $f(|y|^2)\geqslant k$ and

$$|fB(x,y)|^2 \ge cf(|x|^2)f(|y|^2).$$

Corollary

Let $\mathscr X$ be a self-dual Hilbert $\mathscr A$ -module over a $\mathscr W^*$ -algebra and $\mathscr Y$ be an orthogonally complemented submodule of $\mathscr X$. Let B be a inner product on $\mathscr X$.

Assume there exist c>0 and k>0 such that for every $f\in\mathcal{PS}(\mathscr{A})$ and for every $x\in\mathscr{Y}$ there exists a unit vector $y\in\mathscr{Y}$ such that $f(|y|^2)\geqslant k$ and

$$|fB(x,y)|^2 \ge cf(|x|^2)f(|y|^2).$$

Then $\mathscr Y$ is an orthogonally complemented submodule of $\mathscr X$ with respect to the inner product B.

Thank you very much for your attention.

References.

- [1] V. ABRAHAM, On the existence and uniqueness of M-splines, J. Approx. Theory 43 (1985), 36-42.
- [2] LJ. Arambašić and R. Rajić, Operator version of the best approximation problem in Hilbert C*-modules, J. Math. Anal. Appl. 413 (2014), no. 1, 311–320.
- [3] D. Bakić and B. Guljaš, On a class of module maps of Hilbert C^* -modules, Math. Commun. 7 (2003), 177–192.
- [4] L. G. Brown, *When is every quasi-multiplier a multiplier?*, J. Operator Theory **74**(2015), 125–132.
- [5] R. ESKANDARI, M. FRANK, V. MANUILOV, and M. S. MOSLEHIAN, *Extensions of the Lax–Milgram theorem to Hilbert C*-modules*, Positivity (2019), arXiv:1905.00077
- [6] R. ESKANDARI, M. FRANK, V. MANUILOV, and M. S. MOSLEHIAN, *B-spline interpolation problem in Hilbert C*-modules*, J. Oper. Theory (2021), arXiv:2004.01444.
- [7] T. R. Lucas, M-splines, J. Approximation Theory 5 (1972), 1-14.
- [8] V. M. Manuilov and E. V. Troitsky, *Hilbert C*-modules*, In: Translations of Mathematical Monographs. 226, American Mathematical Society, Providence, RI, 2005.
- [9] W. L. PASCHKE, Inner product modules over B^* -algebras, Trans. Amer. Math. Soc. 182 (1972), 443–468.