*-Representations on Hilbert space B-Operators *-Representations on Hilbert C*-modules Examples Induced Representations

Representations of *-Algebras on Hilbert C^* -Modules

Konrad Schmüdgen (University of Leipzig)

December 5, 2020

Contents

- $1. \ *\mbox{-Representations of } *\mbox{-algebras on Hilbert space}$
- 2. \mathfrak{B} -Operators
- 3. *-Representations on Hilbert C^* -modules
- 4. Examples
- 5. Induced representations

Throughout this talk:

• A is a complex unital *-algebra with involution $a \mapsto a^+$,

- \mathfrak{A} denotes a C^* -algebra,
- \mathcal{X} is a Hilbert \mathfrak{A} -module.

The talk is based on Section 14.6 and Chapter 12 of the recent book

K. Schmüdgen, An Invitation to Representations of *-Algebras on Hilbert Space, Graduate Texts in Mathematics **285**, Springer-Verlag, 2020.

Other references are

K. Schmüdgen, On well-behaved unbounded representations of *-algebras, J. Operator Theory **48**(2002), 487–502.

Y. Savchuk and K. Schmüdgen, Unbounded induced representations of *-algebras, Algebras Represent. Theory **16**(2013), 309–376.

R. Meyer, Representations by unbounded operators, Doc. Math. **22**(2017), 1375–1466.

*-Representations on Hilbert space

Suppose $(\mathcal{D}, \langle \cdot, \cdot \rangle)$ is a complex inner product space.

Definition 1:

A *-representation of A on \mathcal{D} is an algebra homomorphism π of A into $L(\mathcal{D})$ such that $\langle \pi(a)\varphi,\psi\rangle = \langle \varphi,\pi(a^+)\psi\rangle$ for $a \in A, \varphi,\psi \in \mathcal{D}$.

Another Definition:

 $\mathcal{L}^+(\mathcal{D}) := \{ \mathbf{a} \in \mathcal{L}(\mathcal{D}) : \exists \ \mathbf{b} \in \mathcal{L}(\mathcal{D}) \text{ s.t. } \langle \mathbf{a}\varphi, \psi \rangle = \langle \varphi, \mathbf{b}\psi \rangle, \ \varphi, \psi \in \mathcal{D} \}.$

b is uniquely determined by *a*, denoted a^+ , and $\mathcal{L}^+(\mathcal{D})$ is a *-algebra with involution $a \mapsto a^+$.

Then a *-representation is a *-homomorphism of A into $\mathcal{L}^+(\mathcal{D})$.

 $\mathcal{L}^+(\mathcal{D})$ is the counter-part of $\mathbf{B}(\mathcal{H})$.

An Example: Schrödinger representation of the Weyl algebra

Let A be the **Weyl algebra**, i.e. A is the unital *-algebra with generators p, q s. t. pq - qp = -i. There is a *-representation π of A on $\mathcal{D} := \mathcal{S}(\mathbb{R})$ such that $\pi(q) = t$ and $\pi(p) = -i\frac{d}{dt}$.

Unbounded *-representations may have pathological properties!

Example: $A = \mathbb{C}[x, y]$

Let π be a *-representation of A. It may happen that:

- $\overline{\pi(x)}$ and $\overline{\pi(y)}$ are self-adjoint, but their spectral projections do **not** commute.
- $\pi(p)$ is **not** positive even if the polynomial p is positive on \mathbb{R}^2 .

To avoid such pathologies one has to select classes of "well-behaved" representations. For the Weyl algebra, there is only one irreducible well-behaved representation: the Schrödinger representation.

Fundamental problem in unbounded representation theory: **Describe and characterize "well-behaved" representations of** A.

One possible approach:

One takes an appropriate *-representation of A on a Hilbert \mathfrak{A} -module. Any representation of the C^* -algebra \mathfrak{A} induces a *-representation of A. **These induced representations are considered as "well-behaved" representations of** A.

We will discuss this briefly in Section 4.

\mathcal{B} -Operators

Suppose \mathfrak{B} is a *-subalgebra of \mathfrak{A} .

Definition 2: **B**-Operators

A \mathfrak{B} -operator on \mathcal{X} is a \mathbb{C} -linear and \mathfrak{B} -linear map t of a \mathfrak{B} -submodule $\mathcal{D}(t)$ of \mathcal{X} , called the *domain* of t, into \mathcal{X} , that is,

 $t(\lambda x) = \lambda t(x)$ and $t(x \cdot b) = t(x) \cdot b$ for $x \in \mathcal{D}(t), \lambda \in \mathbb{C}, b \in \mathfrak{B}$.

Example:

Consider the Hilbert \mathfrak{A} -module $\mathcal{X} := \mathfrak{A} = C([0, 1])$ and $\mathfrak{B} = \mathbb{C}[x]$. The multiplication operator t by the variable x with domain $\mathcal{D}(t) = \mathbb{C}[x]$ is a \mathfrak{B} -operator. $\mathcal{D}(t)$ is not an \mathfrak{A} -submodule and t is not an \mathfrak{A} -operator. The closure of the operator t is an \mathfrak{A} -operator.

Adjoint Operator

Definition 3: Adjoint Operator

Let t be a \mathfrak{B} -operator s.t. $\mathcal{D}(t)$ is essential, i.e. $\mathcal{D}(t)^{\perp} = \{0\}$. Define

$$\mathcal{D}(t^*) = \big\{ y \in \mathcal{X} : \exists \ z \in \mathcal{X} \text{ such that } \langle tx, y \rangle_{\mathcal{X}} = \langle x, z \rangle_{\mathcal{X}}, \ x \in \mathcal{D}(t) \big\}.$$

Since $\mathcal{D}(t)$ is essential, z is uniquely determined by y. Hence $t^*y := z$ gives a well-defined map t^* of $\mathcal{D}(t^*)$ into \mathcal{X} . It can be shown that t^* is a \mathfrak{B} -operator, called the *adjoint operator* of t. By definition,

$$\langle tx,y \rangle_{\mathcal{X}} = \langle x,t^*y \rangle_{\mathcal{X}} \text{ for } x \in \mathcal{D}(t), y \in \mathcal{D}(t^*).$$

Note that the adjoint operator t^* is already well defined if the domain $\mathcal{D}(t)$ is essential; it is not needed that $\mathcal{D}(t)$ is dense.

Suppose that \mathcal{D} is a \mathfrak{B} -submodule of \mathcal{X} . The counter-part of the *-algebra $\mathcal{L}^+(\mathcal{D})$ is the following.

Definition 4:

Let $\mathcal{L}^+_{\mathfrak{B}}(\mathcal{D})$ denote the set of maps $t: \mathcal{D} \mapsto \mathcal{D}$ for which there exists a map $s: \mathcal{D} \mapsto \mathcal{D}$ such that

$$\langle tx, y \rangle_{\mathcal{X}} = \langle x, sy \rangle_{\mathcal{X}} \text{ for } x, y \in \mathcal{D}.$$
 (1)

If t and s are as in (1), then t and s are \mathfrak{B} -operators with domain \mathcal{D} . Further, s is uniquely determined by t and will be denoted by t^+ .

Lemma 1:

 $\mathcal{L}^+_{\mathfrak{B}}(\mathcal{D})$ is a unital complex *-algebra with operator multiplication and involution $t \mapsto t^+$.

If \mathcal{D} is essential, then t^+ is the restriction to \mathcal{D} of the adjoint operator t^* .

Definition 5:

A *-representation of A on a \mathfrak{B} -submodule \mathcal{D} of \mathcal{X} is a *-homomorphism π of A in the *-algebra $\mathcal{L}^+_{\mathfrak{B}}(\mathcal{D})$. We write $\mathcal{D}(\pi) := \mathcal{D}$.

Many facts for Hilbert space representations carry to *-representations on B-submodules.

Definition 6: The graph topology

Let π be a *-representation of A on a \mathfrak{B} -submodule \mathcal{D} . The graph **topology** of π is the l. c. topology on \mathcal{D} defined by the seminorms

 $\|x\|_a := \|\pi(a)x\|_{\mathcal{X}}, \quad a \in \mathsf{A}, \ x \in \mathcal{D}.$

Theorem 1:

Suppose \mathfrak{B} is dense in \mathfrak{A} . Let π be a *-representation of A on a \mathfrak{B} -submodule \mathcal{D} . Each \mathfrak{B} -operator $\pi(a)$ on \mathcal{X} is closable. The completion $\hat{\mathcal{D}}$ of \mathcal{D} in the graph topology is a \mathfrak{A} -submodule s.t.

$$\hat{\mathcal{D}} = \bigcap_{\mathbf{a} \in \mathsf{A}} \mathcal{D}\big(\,\overline{\pi(\mathbf{a})}\,\big).$$

Many examples can be derived from the following simple lemma.

Lemma 2:

Let \mathcal{X} be the Hilbert \mathfrak{A} -module \mathfrak{A} with \mathfrak{A} -valued inner product $\langle x, y \rangle_{\mathcal{X}} = x^+ y$ and let \mathfrak{B} be a *-subalgebra of \mathfrak{A} . Suppose \mathfrak{B} is also a *-subalgebra of $\mathcal{L}^+(\mathcal{D})$ and there is a *-representation ρ of A on the inner product space \mathcal{D} s.t.

$$\rho(\mathbf{a}) \cdot \mathbf{b} \in \mathfrak{B} \quad \text{for} \quad \mathbf{a} \in \mathsf{A}, \, \mathbf{b} \in \mathfrak{B}.$$
 (2)

Then there is a *-representation π of A on the \mathfrak{B} -submodule \mathfrak{B} of \mathcal{X} defined by $\pi(a)b := \rho(a) \cdot b$ for $a \in A, b \in \mathfrak{B}$.

The dot " \cdot " in (2) refers to the product of $\rho(a)$ and b in $\mathcal{L}^+(\mathcal{D})$, while $\pi(a)b$ means the action of $a \in A$ on $b \in \mathfrak{B}$ by the representation π .

Crucial step of proof: Let $a \in A$, $b, c \in \mathfrak{B}$. By *-algebra properties,

$$\langle \pi(\mathbf{a})\mathbf{b},\mathbf{c}\rangle_{\mathcal{X}} = (\rho(\mathbf{a})\cdot\mathbf{b})^+ \cdot \mathbf{c} = (\mathbf{b}^+ \cdot \rho(\mathbf{a})^+) \cdot \mathbf{c} = \mathbf{b}^+ \cdot (\rho(\mathbf{a}^+) \cdot \mathbf{c}) = \langle \mathbf{b}, \pi(\mathbf{a}^+)\mathbf{c}\rangle_{\mathcal{X}}.$$

"Ordinary" Hilbert space representation are related a *-representation on the Hilbert C^* -module of compacts.

Example 1: Hilbert space representations and C^* -algebras of compacts

Let ρ be a *-representation of A on a Hilbert space $\mathcal{H}(\rho)$. Let \mathfrak{A} be the C^* -algebra of compact operators on $\mathcal{H}(\rho)$ and \mathcal{X} the C^* -module \mathfrak{A} . Then the *-subalgebra \mathcal{F} of all finite rank operators of $\mathcal{L}^+(\mathcal{D}(\rho))$ is also a *-subalgebra of \mathfrak{A} . Clearly, $\rho(a) \cdot x \in \mathcal{F}$ for $a \in A, x \in \mathcal{F}$. By Lemma 2:

There is a *-representation π of A on the \mathcal{F} -submodule \mathcal{F} of \mathcal{X} defined by $\pi(a)x = \rho(a) \cdot x$ for $a \in A$, $x \in \mathcal{F}$.

Each *-representation of A on a Hilbert space arises in this manner.

Example 2: Representations on $\mathfrak{A} = C_0(\mathbb{R}^d)$

Suppose \mathfrak{A} is the C^* -algebra $C_0(\mathbb{R}^d)$ of continuous functions on \mathbb{R}^d vanishing at infinity and $\mathcal{X} = \mathfrak{A}$.

There is a *-representation π of $A := \mathbb{C}[x_1, \ldots, x_d]$ on the \mathfrak{A} -submodule $\mathcal{D}(\pi)$ of \mathcal{X} given by

$$\pi(p)f := p \cdot f, \quad \mathcal{D}(\pi) := \left\{ f \in C_0(\mathbb{R}^d) : p \cdot f \in C_0(\mathbb{R}^d), \ p \in \mathsf{A} \right\}.$$
(3)

Since the domain $\mathcal{D}(\pi)$ contains $C_c(\mathbb{R}^d)$, $\mathcal{D}(\pi)$ is dense in \mathcal{X} .

Now suppose d = 1 and K is a nonempty nowhere dense subset of \mathbb{R} . Let A be the *-algebra of rational functions with poles in K.

Then (3) defines also a *-representation of A on \mathcal{X} .

Since the functions of $\mathcal{D}(\pi)$ vanish at K, $\mathcal{D}(\pi)$ is not dense in \mathcal{X} . But $\mathcal{D}(\pi)$ is essential in \mathcal{X} , because K is nowhere dense.

Example 3: Representations of enveloping algebras on group C^* -algebras

Let G be a Lie group and $A := \mathcal{E}(\mathfrak{g})$ the enveloping algebra of the Lie algebra \mathfrak{g} of G. Then A is a *-algebra with involution determined by $x^+ = -x$ for $x \in \mathfrak{g}$.

 $\mathfrak{B} := C_0^{\infty}(G)$ is a *-algebra with multiplication and involution:

$$egin{aligned} (f_1*f_2)(g) &:= \int_G f_1(h) f_2(h^{-1}g) \, d\mu_l(h), \ f^+(g) &:= \Delta_G(g)^{-1} \, \overline{f(g^{-1})}, \quad g \in G. \end{aligned}$$

Here μ_I is a left Haar measure and Δ_G is the modular function of G. \mathfrak{B} is a dense *-subalgebra of the **group** C^* -algebra $\mathfrak{A} := C^*(G)$. Each $a \in A = \mathcal{E}(\mathfrak{g})$ acts as a **right-invariant differential operator** \tilde{a} on G. For $x \in \mathfrak{g}$ this action is given by

$$(\tilde{x}f)(g) = rac{d}{dt}f(\exp(-tx)g)\mid_{t=0}, \ f \in C_0^\infty(G),$$

where $x \mapsto \exp x$ is the exponential map of \mathfrak{g} into G.

There is a *-representation ρ of A on the domain $\mathcal{D} := C_0^{\infty}(G)$ of $L^2(G; \mu_l)$ given by $\rho(a)\varphi := \tilde{a}\varphi, \ \varphi \in C_0^{\infty}(G)$.

It can be shown that $\mathfrak{B} = C_0^\infty(G)$ is a *-subalgebra of $\mathcal{L}^+(\mathcal{D})$ and

$$\rho(\mathbf{a}) \cdot \mathbf{f} = \tilde{\mathbf{a}} \mathbf{f} \in \mathfrak{B} \quad \text{for } \mathbf{a} \in \mathsf{A}, \mathbf{f} \in \mathfrak{B}. \tag{4}$$

Hence Lemma 2 applies, so:

There is a *-representation π of $A = \mathcal{E}(\mathfrak{g})$ on the \mathfrak{B} -submodule $\mathfrak{B} = C_0^{\infty}(G)$ of $\mathcal{X} = C^*(G)$ defined by $\pi(a)f = \rho(a) \cdot f$, $a \in A, f \in \mathfrak{B}$.

Induced Representations

Suppose τ is a fixed *-representation of A on a Hilbert \mathfrak{A} -module \mathcal{X} . Let π be a *-representation of the C^* -algebra \mathfrak{A} on a Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle_0)$. Let $\mathcal{X} \otimes_{\mathfrak{A}} \mathcal{H}$ is the quotient of the complex tensor product $\mathcal{X} \otimes \mathcal{H}$ by

$$\mathcal{N} := \operatorname{Lin} \{ x \cdot b \otimes \varphi - x \otimes \pi(b) \varphi : x \in \mathcal{X}, \, \varphi \in \mathcal{H}, \, b \in \mathfrak{A} \}.$$

There is an inner product $\langle \cdot, \cdot \rangle$ on $\mathcal{X} \otimes_{\mathfrak{A}} \mathcal{H}$ defined by

$$\langle x \otimes \varphi, y \otimes \psi \rangle := \langle \pi([y, x]_{\mathcal{X}})\varphi, \psi \rangle_{0}, \quad x, y \in \mathcal{X}, \ \varphi, \psi \in \mathcal{H}.$$
(5)

For $a \in A$, there is a linear mapping $\rho(a)$ on $\mathcal{D} := \mathcal{D}(\tau) \otimes_{\mathfrak{A}} \mathcal{H}$ s.t.

$$\rho(\mathbf{a})(\mathbf{x}\otimes\varphi)=\tau(\mathbf{a})\mathbf{x}\otimes\varphi,\quad \mathbf{a}\in\mathsf{A},\ \varphi\in\mathcal{H}. \tag{6}$$

Then $a \mapsto \rho(a)$ is a *-representation of A on the inner product space \mathcal{D} . The closure of this *-representation is called the **induced representation** of π and denoted by $\operatorname{Ind}_{\mathcal{X}} \pi$.

Examples of Induced Representations

Example 1 revised: $A = \mathbb{C}[x_1, \ldots, x_d], \mathfrak{A} = C_0(\mathbb{R}^d)$

Recall that A acts on $\mathcal{X} = \mathfrak{A}$ by $\tau(a)f := a \cdot f$, $a \in A, f \in \mathcal{D}(\tau)$.

If π is a *-representation of the C*-algebra \mathfrak{A} on \mathcal{H} , then $\operatorname{Ind}_{\mathcal{X}}\pi$ acts on $\pi(\mathfrak{A})\mathcal{H} := \operatorname{Lin} \left\{ \pi(f)\varphi : f \in \mathfrak{A}, \varphi \in \mathcal{H} \right\}$ by

Ind $_{\mathcal{X}}\pi(a)(\pi(f)\varphi) = \pi(a \cdot f)\varphi, a \in A, f \in \mathfrak{A}, \varphi \in \mathcal{H}.$

These representations $\operatorname{Ind}_{\mathcal{X}}\pi$ are precisely the well-behaved representations of the commutative *-algebra $A = \mathbb{C}[x_1, \ldots, x_d]$.

Sac

Example 3 revised: $A = \mathcal{E}(\mathfrak{g}), \mathfrak{A} = C^*(G)$

There is a *-representation $\tau(a)f := \tilde{a}f$ of A on $\mathfrak{B} = C_0^{\infty}(G)$.

Let U be a strongly continuous unitary representation of G. Then there is a nondegenerate *-representation $f \mapsto U_f$ of $\mathfrak{B} = C_0^{\infty}(G)$, where

$$U_f:=\int U(g)f(g)\,d\mu_l(g).$$

Then $\operatorname{Ind}_{\mathcal{X}} U$ of A acts on $U(\mathfrak{B})\mathcal{H} := \operatorname{Lin} \left\{ U_f \varphi : f \in \mathfrak{B}, \varphi \in \mathcal{H} \right\}$ by

$$\operatorname{Ind}_{\mathcal{X}} U(a)(U_f \varphi) = U_{\tilde{a}f} \varphi, \ a \in \mathsf{A}, f \in \mathfrak{B}, \varphi \in \mathcal{H}.$$

Hence $U(\mathfrak{B})\mathcal{H}$ is the **Garding domain** and $\operatorname{Ind}_{\mathcal{X}} U$ is the **infinitesimal** representation dU of $\mathcal{E}(\mathfrak{g})$.

Again, the representations $\operatorname{Ind}_{\mathcal{X}} U = dU$ are precisely the well-behaved representations of the enveloping algebra $A = \mathcal{E}(\mathfrak{g})$.

There are many *-algebras (for instance, coordinate algebras of non-compact quantum spaces and groups) for which the method of induced representations via Hilbert C^* -modules works.