# Representations of *-Algebras on Hilbert $C^{*}$-Modules 

Konrad Schmüdgen (University of Leipzig)

December 5, 2020

## Contents

1. *-Representations of $*$-algebras on Hilbert space
2. $\mathfrak{B}$-Operators
3. *-Representations on Hilbert $C^{*}$-modules
4. Examples
5. Induced representations

Throughout this talk:

- A is a complex unital $*$-algebra with involution $a \mapsto a^{+}$,
- $\mathfrak{A}$ denotes a $C^{*}$-algebra,
- $\mathcal{X}$ is a Hilbert $\mathfrak{A}$-module.

The talk is based on Section 14.6 and Chapter 12 of the recent book
K. Schmüdgen, An Invitation to Representations of $*$-Algebras on Hilbert Space, Graduate Texts in Mathematics 285, Springer-Verlag, 2020.

Other references are
K. Schmüdgen, On well-behaved unbounded representations of *-algebras, J. Operator Theory 48(2002), 487-502.
Y. Savchuk and K. Schmüdgen, Unbounded induced representations of *-algebras, Algebras Represent. Theory 16(2013), 309-376.
R. Meyer, Representations by unbounded operators, Doc. Math. 22(2017), 1375-1466.

## *-Representations on Hilbert space

Suppose $(\mathcal{D},\langle\cdot, \cdot\rangle)$ is a complex inner product space.

## Definition 1:

A *-representation of $A$ on $\mathcal{D}$ is an algebra homomorphism $\pi$ of $A$ into $L(\mathcal{D})$ such that $\langle\pi(a) \varphi, \psi\rangle=\left\langle\varphi, \pi\left(a^{+}\right) \psi\right\rangle$ for $a \in A, \varphi, \psi \in \mathcal{D}$.

## Another Definition:

$\mathcal{L}^{+}(\mathcal{D}):=\{a \in L(\mathcal{D}): \exists b \in L(\mathcal{D})$ s.t. $\langle a \varphi, \psi\rangle=\langle\varphi, b \psi\rangle, \varphi, \psi \in \mathcal{D}\}$. $b$ is uniquely determined by $a$, denoted $a^{+}$, and $\mathcal{L}^{+}(\mathcal{D})$ is a $*$-algebra with involution $a \mapsto a^{+}$.
Then a $*$-representation is a $*$-homomorphism of A into $\mathcal{L}^{+}(\mathcal{D})$.
$\mathcal{L}^{+}(\mathcal{D})$ is the counter-part of $\mathbf{B}(\mathcal{H})$.
An Example: Schrödinger representation of the Weyl algebra
Let $A$ be the Weyl algebra, i.e. $A$ is the unital *-algebra with generators $p, q$ s. t. $p q-q p=-i$. There is a $*$-representation $\pi$ of $A$ on $\mathcal{D}:=\mathcal{S}(\mathbb{R})$ such that $\pi(q)=t$ and $\pi(p)=-i \frac{d}{d t}$.

Unbounded *-representations may have pathological properties!

## Example: $\mathrm{A}=\mathbb{C}[x, y]$

Let $\pi$ be a $*$-representation of $A$. It may happen that:

- $\overline{\pi(x)}$ and $\overline{\pi(y)}$ are self-adjoint, but their spectral projections do not commute.
- $\pi(p)$ is not positive even if the polynomial $p$ is positive on $\mathbb{R}^{2}$.

To avoid such pathologies one has to select classes of "well-behaved" representations. For the Weyl algebra, there is only one irreducible well-behaved representation: the Schrödinger representation.
Fundamental problem in unbounded representation theory:
Describe and characterize "well-behaved" representations of A.
One possible approach:
One takes an appropriate $*$-representation of A on a Hilbert $\mathfrak{A}$-module. Any representation of the $C^{*}$-algebra $\mathfrak{A}$ induces a $*$-representation of $A$. These induced representations are considered as "well-behaved" representations of $A$.
We will discuss this briefly in Section 4.

## $\mathcal{B}$-Operators

Suppose $\mathfrak{B}$ is a $*$-subalgebra of $\mathfrak{A}$.

## Definition 2: $\mathfrak{B}$-Operators

A $\mathfrak{B}$-operator on $\mathcal{X}$ is a $\mathbb{C}$-linear and $\mathfrak{B}$-linear map $t$ of a $\mathfrak{B}$-submodule $\mathcal{D}(t)$ of $\mathcal{X}$, called the domain of $t$, into $\mathcal{X}$, that is,
$t(\lambda x)=\lambda t(x) \quad$ and $\quad t(x \cdot b)=t(x) \cdot b \quad$ for $\quad x \in \mathcal{D}(t), \lambda \in \mathbb{C}, b \in \mathfrak{B}$.

## Example:

Consider the Hilbert $\mathfrak{A}$-module $\mathcal{X}:=\mathfrak{A}=C([0,1])$ and $\mathfrak{B}=\mathbb{C}[x]$. The multiplication operator $t$ by the variable $x$ with domain $\mathcal{D}(t)=\mathbb{C}[x]$ is a $\mathfrak{B}$-operator. $\mathcal{D}(t)$ is not an $\mathfrak{A}$-submodule and $t$ is not an $\mathfrak{A}$-operator. The closure of the operator $t$ is an $\mathfrak{A}$-operator.

## Adjoint Operator

## Definition 3: Adjoint Operator

Let $t$ be a $\mathfrak{B}$-operator s.t. $\mathcal{D}(t)$ is essential, i.e. $\mathcal{D}(t)^{\perp}=\{0\}$. Define

$$
\mathcal{D}\left(t^{*}\right)=\left\{y \in \mathcal{X}: \exists z \in \mathcal{X} \text { such that }\langle t x, y\rangle_{\mathcal{X}}=\langle x, z\rangle_{\mathcal{X}}, x \in \mathcal{D}(t)\right\} .
$$

Since $\mathcal{D}(t)$ is essential, $z$ is uniquely determined by $y$. Hence $t^{*} y:=z$ gives a well-defined map $t^{*}$ of $\mathcal{D}\left(t^{*}\right)$ into $\mathcal{X}$. It can be shown that $t^{*}$ is a $\mathfrak{B}$-operator, called the adjoint operator of $t$. By definition,

$$
\langle t x, y\rangle_{\mathcal{X}}=\left\langle x, t^{*} y\right\rangle_{\mathcal{X}} \quad \text { for } \quad x \in \mathcal{D}(t), y \in \mathcal{D}\left(t^{*}\right) .
$$

Note that the adjoint operator $t^{*}$ is already well defined if the domain $\mathcal{D}(t)$ is essential; it is not needed that $\mathcal{D}(t)$ is dense.

Suppose that $\mathcal{D}$ is a $\mathfrak{B}$-submodule of $\mathcal{X}$. The counter-part of the *-algebra $\mathcal{L}^{+}(\mathcal{D})$ is the following.

## Definition 4:

Let $\mathcal{L}_{\mathfrak{B}}^{+}(\mathcal{D})$ denote the set of maps $t: \mathcal{D} \mapsto \mathcal{D}$ for which there exists a map $s: \mathcal{D} \mapsto \mathcal{D}$ such that

$$
\begin{equation*}
\langle t x, y\rangle_{\mathcal{X}}=\langle x, s y\rangle_{\mathcal{X}} \text { for } x, y \in \mathcal{D} . \tag{1}
\end{equation*}
$$

If $t$ and $s$ are as in (1), then $t$ and $s$ are $\mathfrak{B}$-operators with domain $\mathcal{D}$. Further, $s$ is uniquely determined by $t$ and will be denoted by $t^{+}$.

## Lemma 1:

$\mathcal{L}_{\mathfrak{B}}^{+}(\mathcal{D})$ is a unital complex $*$-algebra with operator multiplication and involution $t \mapsto t^{+}$.

If $\mathcal{D}$ is essential, then $t^{+}$is the restriction to $\mathcal{D}$ of the adjoint operator $t^{*}$.

## Definition 5:

A *-representation of $A$ on a $\mathfrak{B}$-submodule $\mathcal{D}$ of $\mathcal{X}$ is a *-homomorphism $\pi$ of A in the $*$-algebra $\mathcal{L}_{\mathfrak{B}}^{+}(\mathcal{D})$. We write $\mathcal{D}(\pi):=\mathcal{D}$.

Many facts for Hilbert space representations carry to $*$-representations on $\mathfrak{B}$-submodules.

## Definition 6: The graph topology

Let $\pi$ be a $*$-representation of A on a $\mathfrak{B}$-submodule $\mathcal{D}$. The graph topology of $\pi$ is the $I$. c. topology on $\mathcal{D}$ defined by the seminorms

$$
\|x\|_{a}:=\|\pi(a) x\|_{\mathcal{X}}, \quad a \in \mathrm{~A}, x \in \mathcal{D}
$$

## Theorem 1:

Suppose $\mathfrak{B}$ is dense in $\mathfrak{A}$. Let $\pi$ be a $*$-representation of $A$ on a $\mathfrak{B}$-submodule $\mathcal{D}$. Each $\mathfrak{B}$-operator $\pi(a)$ on $\mathcal{X}$ is closable. The completion $\hat{\mathcal{D}}$ of $\mathcal{D}$ in the graph topology is a $\mathfrak{A}$-submodule s.t.

$$
\hat{\mathcal{D}}=\bigcap_{a \in \mathrm{~A}} \mathcal{D}(\overline{\pi(a)})
$$

Many examples can be derived from the following simple lemma.

## Lemma 2:

Let $\mathcal{X}$ be the Hilbert $\mathfrak{A}$-module $\mathfrak{A}$ with $\mathfrak{A}$-valued inner product $\langle x, y\rangle_{\mathcal{X}}=x^{+} y$ and let $\mathfrak{B}$ be a $*$-subalgebra of $\mathfrak{A}$.
Suppose $\mathfrak{B}$ is also a $*$-subalgebra of $\mathcal{L}^{+}(\mathcal{D})$ and there is a *-representation $\rho$ of A on the inner product space $\mathcal{D}$ s.t.

$$
\begin{equation*}
\rho(a) \cdot b \in \mathfrak{B} \quad \text { for } \quad a \in \mathbb{A}, b \in \mathfrak{B} . \tag{2}
\end{equation*}
$$

Then there is a $*$-representation $\pi$ of A on the $\mathfrak{B}$-submodule $\mathfrak{B}$ of $\mathcal{X}$ defined by $\pi(a) b:=\rho(a) \cdot b$ for $a \in \mathcal{A}, b \in \mathfrak{B}$.

The dot "." in (2) refers to the product of $\rho(a)$ and $b$ in $\mathcal{L}^{+}(\mathcal{D})$, while $\pi(a) b$ means the action of $a \in A$ on $b \in \mathfrak{B}$ by the representation $\pi$.

Crucial step of proof: Let $a \in A, b, c \in \mathfrak{B}$. By $*$-algebra properties, $\langle\pi(a) b, c\rangle_{\mathcal{X}}=(\rho(a) \cdot b)^{+} \cdot c=\left(b^{+} \cdot \rho(a)^{+}\right) \cdot c=b^{+} \cdot\left(\rho\left(a^{+}\right) \cdot c\right)=\left\langle b, \pi\left(a^{+}\right) c\right\rangle_{\mathcal{X}}$.
"Ordinary" Hilbert space representation are related a $*$-representation on the Hilbert $C^{*}$-module of compacts.

## Example 1: Hilbert space representations and $C^{*}$-algebras of compacts

Let $\rho$ be a $*$-representation of A on a Hilbert space $\mathcal{H}(\rho)$. Let $\mathfrak{A}$ be the $C^{*}$-algebra of compact operators on $\mathcal{H}(\rho)$ and $\mathcal{X}$ the $C^{*}$-module $\mathfrak{A}$. Then the $*$-subalgebra $\mathcal{F}$ of all finite rank operators of $\mathcal{L}^{+}(\mathcal{D}(\rho))$ is also a $*$-subalgebra of $\mathfrak{A}$. Clearly, $\rho(a) \cdot x \in \mathcal{F}$ for $a \in \mathrm{~A}, x \in \mathcal{F}$. By Lemma 2:
There is a $*$-representation $\pi$ of A on the $\mathcal{F}$-submodule $\mathcal{F}$ of $\mathcal{X}$ defined by $\pi(a) x=\rho(a) \cdot x$ for $a \in A, x \in \mathcal{F}$.
Each $*$-representation of $A$ on a Hilbert space arises in this manner.

## Example 2: Representations on $\mathfrak{A}=C_{0}\left(\mathbb{R}^{d}\right)$

Suppose $\mathfrak{A}$ is the $C^{*}$-algebra $C_{0}\left(\mathbb{R}^{d}\right)$ of continuous functions on $\mathbb{R}^{d}$ vanishing at infinity and $\mathcal{X}=\mathfrak{A}$.
There is a $*$-representation $\pi$ of $\mathrm{A}:=\mathbb{C}\left[x_{1}, \ldots, x_{d}\right]$ on the $\mathfrak{A}$-submodule $\mathcal{D}(\pi)$ of $\mathcal{X}$ given by

$$
\begin{equation*}
\pi(p) f:=p \cdot f, \quad \mathcal{D}(\pi):=\left\{f \in C_{0}\left(\mathbb{R}^{d}\right): p \cdot f \in C_{0}\left(\mathbb{R}^{d}\right), p \in \mathrm{~A}\right\} \tag{3}
\end{equation*}
$$

Since the domain $\mathcal{D}(\pi)$ contains $C_{c}\left(\mathbb{R}^{d}\right), \mathcal{D}(\pi)$ is dense in $\mathcal{X}$.
Now suppose $d=1$ and $K$ is a nonempty nowhere dense subset of $\mathbb{R}$. Let A be the $*$-algebra of rational functions with poles in $K$.
Then (3) defines also a $*$-representation of $A$ on $\mathcal{X}$.
Since the functions of $\mathcal{D}(\pi)$ vanish at $K, \mathcal{D}(\pi)$ is not dense in $\mathcal{X}$. But $\mathcal{D}(\pi)$ is essential in $\mathcal{X}$, because $K$ is nowhere dense.

## Example 3: Representations of enveloping algebras on group $C^{*}$-algebras

Let $G$ be a Lie group and $\mathrm{A}:=\mathcal{E}(\mathfrak{g})$ the enveloping algebra of the Lie algebra $\mathfrak{g}$ of $G$. Then $A$ is a $*$-algebra with involution determined by $x^{+}=-x$ for $x \in \mathfrak{g}$.
$\mathfrak{B}:=C_{0}^{\infty}(G)$ is a $*$-algebra with multiplication and involution:

$$
\begin{aligned}
\left(f_{1} * f_{2}\right)(g) & :=\int_{G} f_{1}(h) f_{2}\left(h^{-1} g\right) d \mu_{l}(h), \\
f^{+}(g) & :=\Delta_{G}(g)^{-1} \overline{f\left(g^{-1}\right)}, \quad g \in G .
\end{aligned}
$$

Here $\mu_{l}$ is a left Haar measure and $\Delta_{G}$ is the modular function of $G$. $\mathfrak{B}$ is a dense $*$-subalgebra of the group $C^{*}$-algebra $\mathfrak{A}:=C^{*}(G)$.

Each $a \in \mathrm{~A}=\mathcal{E}(\mathfrak{g})$ acts as a right-invariant differential operator $\tilde{a}$ on $G$. For $x \in \mathfrak{g}$ this action is given by

$$
(\tilde{x} f)(g)=\left.\frac{d}{d t} f(\exp (-t x) g)\right|_{t=0}, \quad f \in C_{0}^{\infty}(G)
$$

where $x \mapsto \exp x$ is the exponential map of $\mathfrak{g}$ into $G$.
There is a $*$-representation $\rho$ of A on the domain $\mathcal{D}:=C_{0}^{\infty}(G)$ of $L^{2}\left(G ; \mu_{l}\right)$ given by $\rho(a) \varphi:=\tilde{a} \varphi, \varphi \in C_{0}^{\infty}(G)$.
It can be shown that $\mathfrak{B}=C_{0}^{\infty}(G)$ is a $*$-subalgebra of $\mathcal{L}^{+}(\mathcal{D})$ and

$$
\begin{equation*}
\rho(a) \cdot f=\tilde{a} f \in \mathfrak{B} \quad \text { for } a \in \mathrm{~A}, f \in \mathfrak{B} . \tag{4}
\end{equation*}
$$

Hence Lemma 2 applies, so:
There is a $*$-representation $\pi$ of $A=\mathcal{E}(\mathfrak{g})$ on the $\mathfrak{B}$-submodule $\mathfrak{B}=C_{0}^{\infty}(G)$ of $\mathcal{X}=C^{*}(G)$ defined by $\pi(a) f=\rho(a) \cdot f, a \in \mathrm{~A}, f \in \mathfrak{B}$.

## Induced Representations

Suppose $\tau$ is a fixed $*$-representation of A on a Hilbert $\mathfrak{A}$-module $\mathcal{X}$.
Let $\pi$ be a $*$-representation of the $C^{*}$-algebra $\mathfrak{A}$ on a Hilbert space $\left(\mathcal{H},\langle\cdot, \cdot\rangle_{0}\right)$.
Let $\mathcal{X} \otimes_{\mathfrak{A}} \mathcal{H}$ is the quotient of the complex tensor product $\mathcal{X} \otimes \mathcal{H}$ by

$$
\mathcal{N}:=\operatorname{Lin}\{x \cdot b \otimes \varphi-x \otimes \pi(b) \varphi: x \in \mathcal{X}, \varphi \in \mathcal{H}, b \in \mathfrak{A}\}
$$

There is an inner product $\langle\cdot, \cdot\rangle$ on $\mathcal{X} \otimes_{\mathfrak{A}} \mathcal{H}$ defined by

$$
\begin{equation*}
\langle x \otimes \varphi, y \otimes \psi\rangle:=\left\langle\pi\left([y, x]_{\mathcal{X}}\right) \varphi, \psi\right\rangle_{0}, \quad x, y \in \mathcal{X}, \varphi, \psi \in \mathcal{H} \tag{5}
\end{equation*}
$$

For $a \in A$, there is a linear mapping $\rho(a)$ on $\mathcal{D}:=\mathcal{D}(\tau) \otimes_{\mathfrak{A}} \mathcal{H}$ s.t.

$$
\begin{equation*}
\rho(a)(x \otimes \varphi)=\tau(a) x \otimes \varphi, \quad a \in \mathrm{~A}, \varphi \in \mathcal{H} \tag{6}
\end{equation*}
$$

Then $a \mapsto \rho(a)$ is a $*$-representation of $A$ on the inner product space $\mathcal{D}$. The closure of this $*$-representation is called the induced representation of $\pi$ and denoted by $\operatorname{Ind}_{\mathcal{X}} \pi$.

## Examples of Induced Representations

Example 1 revised: $\mathrm{A}=\mathbb{C}\left[x_{1}, \ldots, x_{d}\right], \mathfrak{A}=C_{0}\left(\mathbb{R}^{d}\right)$
Recall that A acts on $\mathcal{X}=\mathfrak{A}$ by $\tau(a) f:=a \cdot f, \quad a \in \mathrm{~A}, f \in \mathcal{D}(\tau)$.
If $\pi$ is a $*$-representation of the $C^{*}$-algebra $\mathfrak{A}$ on $\mathcal{H}$, then $\operatorname{Ind}_{\mathcal{X}} \pi$ acts on $\pi(\mathfrak{A}) \mathcal{H}:=\operatorname{Lin}\{\pi(f) \varphi: f \in \mathfrak{A}, \varphi \in \mathcal{H}\}$ by

$$
\operatorname{Ind}_{\mathcal{X}} \pi(a)(\pi(f) \varphi)=\pi(a \cdot f) \varphi, \quad a \in \mathrm{~A}, f \in \mathfrak{A}, \varphi \in \mathcal{H}
$$

These representations $\operatorname{Ind}_{\mathcal{X}} \pi$ are precisely the well-behaved representations of the commutative $*$-algebra $\mathrm{A}=\mathbb{C}\left[x_{1}, \ldots, x_{d}\right]$.

## Example 3 revised: $\mathrm{A}=\mathcal{E}(\mathfrak{g}), \mathfrak{A}=C^{*}(G)$

There is a *-representation $\tau(a) f:=\tilde{a} f$ of A on $\mathfrak{B}=C_{0}^{\infty}(G)$.
Let $U$ be a strongly continuous unitary representation of $G$. Then there is a nondegenerate $*$-representation $f \mapsto U_{f}$ of $\mathfrak{B}=C_{0}^{\infty}(G)$, where

$$
U_{f}:=\int U(g) f(g) d \mu_{l}(g) .
$$

Then $\operatorname{Ind}_{\mathcal{X}} U$ of A acts on $U(\mathfrak{B}) \mathcal{H}:=\operatorname{Lin}\left\{U_{f} \varphi: f \in \mathfrak{B}, \varphi \in \mathcal{H}\right\}$ by

$$
\operatorname{Ind}_{\mathcal{X}} U(a)\left(U_{f} \varphi\right)=U_{\tilde{a} f} \varphi, \quad a \in \mathrm{~A}, f \in \mathfrak{B}, \varphi \in \mathcal{H} .
$$

Hence $U(\mathfrak{B}) \mathcal{H}$ is the Garding domain and $\operatorname{Ind}_{\mathcal{X}} U$ is the infinitesimal representation $d U$ of $\mathcal{E}(\mathfrak{g})$.

Again, the representations $\operatorname{Ind}_{\mathcal{X}} U=d U$ are precisely the well-behaved representations of the enveloping algebra $\mathrm{A}=\mathcal{E}(\mathfrak{g})$.
There are many $*$-algebras (for instance, coordinate algebras of non-compact quantum spaces and groups) for which the method of induced representations via Hilbert $C^{*}$-modules works.

