Representations of *-Algebras on Hilbert C*-modules Konrad Schmüdgen Universität Leipzig

Let A be a complex *-algebra with involution $a \to a^+$. Let \mathcal{X} be a Hilbert \mathfrak{A} -module for a C^* -algebra \mathfrak{A} and \mathcal{D} a \mathfrak{B} -submodule of \mathcal{X} for some *-subalgebra \mathfrak{B} of \mathfrak{A} . A *-*representation* of A on \mathcal{D} is an algebra homomorphism π of A into the algebra of \mathfrak{B} -linear operators of \mathcal{D} such that $\langle \pi(a)x, y \rangle_{\mathcal{X}} = \langle x, \pi(a^+)y \rangle_{\mathcal{X}}$ for $a \in A, x, y \in \mathcal{X}$. An important special case is when $\mathfrak{B} = \mathfrak{A}$. Any Hilbert space *-representation of the C^* -algebra \mathfrak{A} induces a *-representation of A on some dense domain of the Hilbert space. This induction procedure is developed in detail. Various examples (Hermitean quantum plane, enveloping algebras) are discussed.