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We will:
I Discuss the statement and report ...

I ... extra hypotheses under which it is true;

I ... some of its consequences
(valuable, when true,
and allowing, when false, to disprove the statement);

I ... other interesting statements that, when true, prove it.

I Mention another suspect statement that, first, I thought was
related, but that, now, I think is unrelated.
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Problem (Is the statement true?)

I E a Hilbert B–module.
I Φ: E → B bounded and right linear.
I S ⊂ E such that S⊥ = {0}.

(S⊥ :=
{
x ∈ E : 〈S, x〉 = {0}

}
)

Does Φ(S) = {0} imply Φ = 0?

(Equivalent: Is ker a = ker a⊥⊥ for each a ∈ Br(E,E′) ?)

I F := span SB,

then Φ(S) = {0} implies Φ(F) = {0}.

I E a Hilbert space: span S = S⊥⊥ = {0}⊥ = E ; Φ = 0.
I Likewise, E a von Neumann (or W∗) module.

So, why not embed E into a vN-module (such as E′′)? Well:
I E a pre-Hilbert space ; in general false!

Example (Shalit): E = span{en}, S = {en − 2en+1}.
Under the passage E ; E, S loses the property S⊥ = {0}.
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The statement is true, provided ...

I ... Φ is adjointable. Indeed:

For every a ∈ Ba(E,E′) we have ker a = (a∗E′)⊥,

so ker a⊥⊥ = ker a,
hence, F⊥⊥ ⊂ ker a⊥⊥ = ker a.

I ... F = span SB is a closed ternary ideal, that is, if
E〈F ,E〉 ⊂ F .

Equivalently, if F = span EI for some ideal I, that is, if F is an
ideal submodule; see ms 2018. Indeed:

F = span EI ⇒ F⊥ = span E(I⊥)

⇒ F⊥⊥ = span E(I⊥⊥).
If, for a ∈ Br (E,E′) and xI ∈ E(I⊥⊥) we have a(xI) , 0, so
0 , |a(xI)|2 ∈ I⊥⊥.
Since I is essential in I⊥⊥, there is i ∈ I such that
a(xI)i = a(xIi) , 0.
Since xIi ∈ F , we have F ( ker a.
So, F ⊂ ker a ⇒ F⊥⊥ ⊂ ker a.

I (Guljas’s talk: Essential ideal F ⊂ E. Then Br(E) ⊂ Br(F).
If a ∈ Br(E) is in Ba(F), then ker a⊥⊥ = ker a.)
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If the statement is true, then the following statements are true, too.
(See Footnotes 1-3 in Bhat-ms 2015.)

I If for closed submodules F ⊂ G of E we have F⊥ ∩ G = {0},

then G⊥ = F⊥, hence F⊥⊥ ⊃ G.

I If 〈F ,G〉 = {0} and (F

+⊕

G)⊥ = {0},

then for all F ′ ⊃ F ,G′ ⊃ G
still satisfying 〈F ′,G′〉 = {0}, we have F ′ ⊂ F⊥⊥,G′ ⊂ G⊥⊥.
So, while in general 〈F⊥⊥,G⊥⊥〉 = {0}, so that F⊥⊥ ⊕ G⊥⊥ is a
decomposition “containing” F ⊕ G, if the statement is true we
have F⊥⊥ ⊕ G⊥⊥ ⊃ F ′ ⊕ G′ ⊃ F ⊕ G.

I Suppose v is an isometry on E, so that Eu :=
⋂

n∈N0 vnE is
the unique maximal invariant submodule on which v restricts
to a unitary.

If the statement is true, then also E⊥⊥u is
invariant for v.
(Note: By maximality of Eu, if E⊥⊥u , Eu, then the restriction of
v to E⊥⊥u cannot be a unitary.)
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Footnote 7 in ms 2018:

I E is a Hilbert B–module, F a closed non-complemented
submodule.

I Then E/F is a Banach B–module.
I Is E/F a Hilbert module?
I Meaning, is there a (unique!) B–valued inner product on E/F

inducing its norm?
I More generally, is there any B–valued inner product on the
B–module E/F turning it into a Banach module?

I Answer, no, if F is a closed ideal in E. (Theorem 3.3 in ms
2018.)

I For general (non-complemented!) F and bounded canonical
map η : E → E/F (for instance, for the quotient norm), the
answer would be no, provided the statement was true:

I Assume F⊥ = {0}. (Otherwise, restrict to F⊥⊥.)
I Since η(F) = {0}, so would be η(F⊥⊥) = η(E).

Violating any of the four statements will, thus, disprove the
statement.
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Given E ) F with F⊥ = {0},

it is not true (I think never) that F⊥ = {0} in the bidual E′′!
I Even if E = B and F = I an essential proper ideal

(where the statement is true).
I Akemann-Pedersen (see Section 3.11 in Pedersen’s

book): The formula

I = (pB′′) ∩ B

establishes a 1-1-correspondence between ideals I in B and
so-called open central projections p ∈ B′′.

I Obviously the complement (1 − p)B′′ of I in B′′ is not zero,
unless I = B.

(But (1 − p)B′′ ∩ B = {0}!)

I For B = B(H) and I = K(H), p is the projection on that part
of the universal representation of (the C∗–algebra!) B(H) that
is normal.

However, embedding E into a von Neumann (or W∗) module can
be done better, making that proof-idea work at least for ideals.
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E a (full) Hilbert B–module; I an essential in B; put F := span EI.

I π : B → B(G) a faithful representation.
I Put H := E �G and identify E ⊂ B(G,H) as E 3 x : g 7→ x �g.
I If span π(I)G = G, then span(EI)G = H.

; (EI)⊥ in the von Neumann π(B)
s
–module E

s
is {0}.

I Corollary: Φ ∈ Br(E,B) ⊂ B(H,G); Φ(F) = {0} ⇒ Φ = {0}.
I Such π exists. (Extend non-deg. faithful π : I → B(G) to B.)

Given arbitrary F with F⊥ = {0}, can we find suitable π?
Here are some simplifications:
I It suffices to prove the statement for full F , only. In fact:
I It suffices to prove it for E := spanAB and F = B,
B a hereditary subalgebra of A.

(; inner product 〈ab , a′b ′〉 := b∗a∗a′b ′ ∈ B.)

I [F = spanCE ; 1-1-corr. F ⊂ E ! her. C ⊂ K(E).

C = spanCK(E)C = K(F).
Translate hypotheses on E and F into those of
spanK(E)K(F) = K(F ,E) and K(F).]
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I Suppose for every A ⊃ B we can find a faithful representation
π of A such that π(B) alone acts already nondegenerately.
Then the statement is true.

(Then E � G = F � G = G.
Note that E � G carries the well-known (and unique)
representation of A induced from a representation of B. That
means we seek a non-deg. representation of B that extends
to a representation of A on the same representation space.)

I Frankly speaking, I don’t know if this has a chance.
I In the worst case, it is true only for ideals.

Recall, too: B = (pA′′p) ∩A
establishes a 1-1-correspondence between hereditary subalgebras
of A and open projections in A′′.
The hypothesis on B means exactly that a ∈ A′′, a(1 − p) ∈ A
implies a(1 − p) = 0.
IfA′′ acts on H and G = pH, then Φ ∈ B(H,G). I did not figure out
yet, if this helps.
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Another open problem. (Appendix C in Shalit-ms 2020.)
(Though, I did not really research for an existing answer.)
I Vector spaces: V ⊃ Vi ,W ⊃ Wi

(V1 ⊗W1) ∩ (V2 ⊗W2) = (V1 ∩ V2) ⊗ (W1 ∩W2).

(Elementary linear algebra of tensor products.)

I Hilbert spaces: G ⊃ Gi ,H ⊃ Hi

(G1 ⊗ H1) ∩ (G2 ⊗ H2) = (G1 ∩ G2) ⊗ (H1 ∩ H2).

(Quite different proof. Generalizes to von Neumann modules.)

Question: Is it true for C∗–correspondences E ⊃ Ei ,F ⊃ Fi that

(E1 � F1) ∩ (E2 � F2) = (E1 ∩ E2) � (F1 ∩ F2)?

Relevance: Is the intersection of two product subsystems a
product subsystem?

The obvious inclusion of RHS in LHS ; intersection of
superproduct subsystems is a superproduct subsystem.

For the intersection of subproduct subsystems we don’t know.



Thank you!



Bibliography I

B.V.R. Bhat and M. Skeide, Pure semigroups of isometries on
Hilbert C∗–modules, J. Funct. Anal. 269 (2015), 1539–1562,
electronically Jun 2015. Preprint, arXiv: 1408.2631.

M. Frank, On Hahn-Banach type theorems for Hilbert
C∗–modules, Int. J. Math. 13 (2002), 675–693.

G.K. Pedersen, C∗–algebras and their automorphism groups,
Academic Press, 1979.

M. Skeide, Ideal submodules versus ternary ideals versus
linking ideals, Preprint, arXiv: 1804.05233v3, 2018.


