An Open Problem—or Two ...

Michael Skeide

Dipartimento di Economia
Università degli Studi del Molise
Hilbert C*-Modules Online Weekend
December 5-6, 2020

We will:

- Discuss the statement and report ...

We will:

- Discuss the statement and report ...
- ... extra hypotheses under which it is true;

We will:

- Discuss the statement and report ...
- ... extra hypotheses under which it is true;
- ... some of its consequences
(valuable, when true,
and allowing, when false, to disprove the statement);

We will:

- Discuss the statement and report ...
- ... extra hypotheses under which it is true;
- ... some of its consequences
(valuable, when true,
and allowing, when false, to disprove the statement);
- ... other interesting statements that, when true, prove it.

We will:

- Discuss the statement and report ...
- ... extra hypotheses under which it is true;
- ... some of its consequences
(valuable, when true, and allowing, when false, to disprove the statement);
- ... other interesting statements that, when true, prove it.
- Mention another suspect statement that, first, I thought was related, but that, now, I think is unrelated.

Problem (Is the statement true?)

Problem (Is the statement true?)

- E a Hilbert \mathcal{B}-module.

Problem (Is the statement true?)

- E a Hilbert \mathcal{B}-module.
- $\Phi: E \rightarrow \mathcal{B}$ bounded and right linear.

Problem (Is the statement true?)

- E a Hilbert \mathcal{B}-module.
- $\Phi: E \rightarrow \mathcal{B}$ bounded and right linear.
- $S \subset E$ such that $S^{\perp}=\{0\}$.

Problem (Is the statement true?)

- E a Hilbert \mathcal{B}-module.
- $\Phi: E \rightarrow \mathcal{B}$ bounded and right linear.
- $S \subset E$ such that $S^{\perp}=\{0\}$.

$$
\text { Does } \Phi(S)=\{0\} \text { imply } \Phi=0 \text { ? }
$$

Problem (Is the statement true?)

- E a Hilbert \mathcal{B}-module.
- $\Phi: E \rightarrow \mathcal{B}$ bounded and right linear.
- $S \subset E$ such that $S^{\perp}=\{0\} . \quad\left(S^{\perp}:=\{x \in E:\langle S, x\rangle=\{0\}\}\right)$

Does $\Phi(S)=\{0\}$ imply $\Phi=0$?

Problem (Is the statement true?)

- E a Hilbert \mathcal{B}-module.
- $\Phi: E \rightarrow \mathcal{B}$ bounded and right linear.
- $S \subset E$ such that $S^{\perp}=\{0\}$.

$$
\left(S^{\perp}:=\{x \in E:\langle S, x\rangle=\{0\}\}\right)
$$

$$
\text { Does } \Phi(S)=\{0\} \text { imply } \Phi=0 \text { ? }
$$

(Equivalent: Is ker $a=$ ker $a^{\perp \perp} \quad$ for each $a \in \mathcal{B}^{r}\left(E, E^{\prime}\right)$?)

Problem (Is the statement true?)

- E a Hilbert \mathcal{B}-module.
- $\Phi: E \rightarrow \mathcal{B}$ bounded and right linear.
- $S \subset E$ such that $S^{\perp}=\{0\} . \quad\left(S^{\perp}:=\{x \in E:\langle S, x\rangle=\{0\}\}\right)$

$$
\text { Does } \Phi(S)=\{0\} \text { imply } \Phi=0 \text { ? }
$$

(Equivalent: Is $\quad \operatorname{ker} a=\operatorname{ker} a^{\perp \perp} \quad$ for each $\quad a \in \mathcal{B}^{r}\left(E, E^{\prime}\right)$?)

- $F:=\overline{\text { span }} S \mathcal{B}$,

Problem (Is the statement true?)

- E a Hilbert \mathcal{B}-module.
- $\Phi: E \rightarrow \mathcal{B}$ bounded and right linear.
- $S \subset E$ such that $S^{\perp}=\{0\} . \quad\left(S^{\perp}:=\{x \in E:\langle S, x\rangle=\{0\}\}\right)$

$$
\text { Does } \Phi(S)=\{0\} \text { imply } \Phi=0 \text { ? }
$$

(Equivalent: Is ker $a=$ ker $a^{\perp \perp} \quad$ for each $a \in \mathcal{B}^{r}\left(E, E^{\prime}\right)$?)

- $F:=\overline{\mathrm{span}} S \mathcal{B}$, then $\Phi(S)=\{0\}$ implies $\Phi(F)=\{0\}$.

Problem (Is the statement true?)

- E a Hilbert \mathcal{B}-module.
- $\Phi: E \rightarrow \mathcal{B}$ bounded and right linear.
- $S \subset E$ such that $S^{\perp}=\{0\} . \quad\left(S^{\perp}:=\{x \in E:\langle S, x\rangle=\{0\}\}\right)$

$$
\text { Does } \Phi(S)=\{0\} \text { imply } \Phi=0 \text { ? }
$$

(Equivalent: Is ker $a=$ ker $a^{\perp \perp} \quad$ for each $a \in \mathcal{B}^{r}\left(E, E^{\prime}\right)$?)

- $F:=\overline{\text { span }} S \mathcal{B}$, then $\Phi(S)=\{0\}$ implies $\Phi(F)=\{0\}$.
- E a Hilbert space: $\overline{\text { span }} S=S^{\perp \perp}=\{0\}^{\perp}=E \leadsto \Phi=0$.

Problem (Is the statement true?)

- E a Hilbert \mathcal{B}-module.
- $\Phi: E \rightarrow \mathcal{B}$ bounded and right linear.
- $S \subset E$ such that $S^{\perp}=\{0\}$.

$$
\left(S^{\perp}:=\{x \in E:\langle S, x\rangle=\{0\}\}\right)
$$

$$
\text { Does } \Phi(S)=\{0\} \text { imply } \Phi=0 \text { ? }
$$

(Equivalent: Is ker $a=$ ker $a^{\perp \perp} \quad$ for each $a \in \mathcal{B}^{r}\left(E, E^{\prime}\right)$?)

- $F:=\overline{\text { span }} S \mathcal{B}$, then $\Phi(S)=\{0\}$ implies $\Phi(F)=\{0\}$.
- E a Hilbert space: $\overline{\text { span }} S=S^{\perp \perp}=\{0\}^{\perp}=E \leadsto \Phi=0$.
- Likewise, E a von Neumann (or W^{*}) module.

Problem (Is the statement true?)

- E a Hilbert \mathcal{B}-module.
- $\Phi: E \rightarrow \mathcal{B}$ bounded and right linear.
- $S \subset E$ such that $S^{\perp}=\{0\} . \quad\left(S^{\perp}:=\{x \in E:\langle S, x\rangle=\{0\}\}\right)$

$$
\text { Does } \Phi(S)=\{0\} \text { imply } \Phi=0 \text { ? }
$$

(Equivalent: Is ker $a=$ ker $a^{\perp \perp} \quad$ for each $a \in \mathcal{B}^{r}\left(E, E^{\prime}\right)$?)

- $F:=\overline{\text { span }} S \mathcal{B}$, then $\Phi(S)=\{0\}$ implies $\Phi(F)=\{0\}$.
- E a Hilbert space: $\overline{\text { span }} S=S^{\perp \perp}=\{0\}^{\perp}=E \sim \Phi=0$.
- Likewise, E a von Neumann (or W^{*}) module.

So, why not embed E into a $v N$-module (such as $E^{\prime \prime}$)?

Problem (Is the statement true?)

- E a Hilbert \mathcal{B}-module.
- $\Phi: E \rightarrow \mathcal{B}$ bounded and right linear.
- $S \subset E$ such that $S^{\perp}=\{0\} . \quad\left(S^{\perp}:=\{x \in E:\langle S, x\rangle=\{0\}\}\right)$

$$
\text { Does } \Phi(S)=\{0\} \text { imply } \Phi=0 \text { ? }
$$

(Equivalent: Is ker $a=$ ker $a^{\perp \perp} \quad$ for each $a \in \mathcal{B}^{r}\left(E, E^{\prime}\right)$?)

- $F:=\overline{\text { span }} S \mathcal{B}$, then $\Phi(S)=\{0\}$ implies $\Phi(F)=\{0\}$.
- E a Hilbert space: $\overline{\text { span }} S=S^{\perp \perp}=\{0\}^{\perp}=E \sim \Phi=0$.
- Likewise, E a von Neumann (or W^{*}) module.

So, why not embed E into a $v N$-module (such as $E^{\prime \prime}$)?
Well:

- E a pre-Hilbert space \sim in general false!

Problem (Is the statement true?)

- E a Hilbert \mathcal{B}-module.
- $\Phi: E \rightarrow \mathcal{B}$ bounded and right linear.
- $S \subset E$ such that $S^{\perp}=\{0\} . \quad\left(S^{\perp}:=\{x \in E:\langle S, x\rangle=\{0\}\}\right)$

$$
\text { Does } \Phi(S)=\{0\} \text { imply } \Phi=0 \text { ? }
$$

(Equivalent: Is ker $a=$ ker $a^{\perp \perp} \quad$ for each $a \in \mathcal{B}^{r}\left(E, E^{\prime}\right)$?)

- $F:=\overline{\text { span }} S \mathcal{B}$, then $\Phi(S)=\{0\}$ implies $\Phi(F)=\{0\}$.
- E a Hilbert space: $\overline{\text { span }} S=S^{\perp \perp}=\{0\}^{\perp}=E \sim \Phi=0$.
- Likewise, E a von Neumann (or W^{*}) module.

So, why not embed E into a $v N$-module (such as $E^{\prime \prime}$)?
Well:

- E a pre-Hilbert space \sim in general false!

Example (Shalit): $E=\operatorname{span}\left\{e_{n}\right\}, \quad S=\left\{e_{n}-2 e_{n+1}\right\}$.

Problem (Is the statement true?)

- E a Hilbert \mathcal{B}-module.
- $\Phi: E \rightarrow \mathcal{B}$ bounded and right linear.
- $S \subset E$ such that $S^{\perp}=\{0\} . \quad\left(S^{\perp}:=\{x \in E:\langle S, x\rangle=\{0\}\}\right)$

$$
\text { Does } \Phi(S)=\{0\} \text { imply } \Phi=0 \text { ? }
$$

(Equivalent: Is ker $a=$ ker $a^{\perp \perp} \quad$ for each $a \in \mathcal{B}^{r}\left(E, E^{\prime}\right)$?)

- $F:=\overline{\text { span }} S \mathcal{B}$, then $\Phi(S)=\{0\}$ implies $\Phi(F)=\{0\}$.
- E a Hilbert space: $\overline{\text { span }} S=S^{\perp \perp}=\{0\}^{\perp}=E \sim \Phi=0$.
- Likewise, E a von Neumann (or W^{*}) module.

So, why not embed E into a $v N$-module (such as $E^{\prime \prime}$)?
Well:

- E a pre-Hilbert space \sim in general false!

Example (Shalit): $E=\operatorname{span}\left\{e_{n}\right\}, \quad S=\left\{e_{n}-2 e_{n+1}\right\}$.
Under the passage $E \sim \bar{E}, \quad S$ loses the property $S^{\perp}=\{0\}$.

The statement is true, provided

The statement is true, provided

- ... Φ is adjointable. Indeed:

The statement is true, provided

- ... Φ is adjointable. Indeed:

For every $a \in \mathcal{B}^{a}\left(E, E^{\prime}\right)$ we have ker $a=\left(a^{*} E^{\prime}\right)^{\perp}$,

The statement is true, provided

- ... Φ is adjointable. Indeed:

For every $a \in \mathcal{B}^{a}\left(E, E^{\prime}\right)$ we have ker $a=\left(a^{*} E^{\prime}\right)^{\perp}$, so $\operatorname{ker} a^{\perp \perp}=\operatorname{ker} a$,

The statement is true, provided

- ... Φ is adjointable. Indeed:

For every $a \in \mathcal{B}^{a}\left(E, E^{\prime}\right)$ we have ker $a=\left(a^{*} E^{\prime}\right)^{\perp}$, so $\operatorname{ker} a^{\perp \perp}=\operatorname{ker} a$, hence, $F^{\perp \perp} \subset$ ker $a^{\perp \perp}=$ ker a.

The statement is true, provided

- ... Φ is adjointable. Indeed:

For every $a \in \mathcal{B}^{a}\left(E, E^{\prime}\right)$ we have ker $a=\left(a^{*} E^{\prime}\right)^{\perp}$, so $\operatorname{ker} a^{\perp \perp}=\operatorname{ker} a$, hence, $F^{\perp \perp} \subset$ ker $a^{\perp \perp}=$ ker a.

- ... $F=\overline{\text { span }} S \mathcal{B}$ is a closed ternary ideal, that is, if $E\langle F, E\rangle \subset F$.

The statement is true, provided ...

- ... Φ is adjointable. Indeed:

For every $a \in \mathcal{B}^{a}\left(E, E^{\prime}\right)$ we have ker $a=\left(a^{*} E^{\prime}\right)^{\perp}$,
so $\operatorname{ker} a^{\perp \perp}=\operatorname{ker} a$,
hence, $F^{\perp \perp} \subset$ ker $a^{\perp \perp}=$ ker a.

- ... $F=\overline{\text { span }} S \mathcal{B}$ is a closed ternary ideal, that is, if
$E\langle F, E\rangle \subset F$.
Equivalently, if $F=\overline{\text { span }} E I$ for some ideal I, that is, if F is an ideal submodule; see ms 2018.

The statement is true, provided ...

- ... Φ is adjointable. Indeed:

For every $a \in \mathcal{B}^{a}\left(E, E^{\prime}\right)$ we have ker $a=\left(a^{*} E^{\prime}\right)^{\perp}$, so $\operatorname{ker} a^{\perp \perp}=\operatorname{ker} a$, hence, $F^{\perp \perp} \subset$ ker $a^{\perp \perp}=$ ker a.

- ... $F=\overline{\text { span }} S \mathcal{B}$ is a closed ternary ideal, that is, if
$E\langle F, E\rangle \subset F$.
Equivalently, if $F=\overline{\text { span }} E I$ for some ideal I, that is, if F is an
ideal submodule; see ms 2018. Indeed:
$F=\overline{\operatorname{span}} E I \Rightarrow F^{\perp}=\overline{\operatorname{span}} E\left(I^{\perp}\right)$

The statement is true, provided ...

- ... Φ is adjointable. Indeed:

For every $a \in \mathcal{B}^{a}\left(E, E^{\prime}\right)$ we have ker $a=\left(a^{*} E^{\prime}\right)^{\perp}$, so $\operatorname{ker} a^{\perp \perp}=\operatorname{ker} a$, hence, $F^{\perp \perp} \subset$ ker $a^{\perp \perp}=$ ker a.

- ... $F=\overline{\text { span }} S \mathcal{B}$ is a closed ternary ideal, that is, if
$E\langle F, E\rangle \subset F$.
Equivalently, if $F=\overline{\text { span }} E I$ for some ideal I, that is, if F is an
ideal submodule; see ms 2018. Indeed:
$F=\overline{\operatorname{span}} E I \Rightarrow F^{\perp}=\overline{\operatorname{span}} E\left(I^{\perp}\right) \Rightarrow F^{\perp \perp}=\overline{\operatorname{span}} E\left(I^{\perp \perp}\right)$.

The statement is true, provided ...

- ... Φ is adjointable. Indeed:

For every $a \in \mathcal{B}^{a}\left(E, E^{\prime}\right)$ we have ker $a=\left(a^{*} E^{\prime}\right)^{\perp}$,
so $\operatorname{ker} a^{\perp \perp}=\operatorname{ker} a$, hence, $F^{\perp \perp} \subset$ ker $a^{\perp \perp}=$ ker a.

- $\ldots F=\overline{\text { span }} S \mathcal{B}$ is a closed ternary ideal, that is, if
$E\langle F, E\rangle \subset F$.
Equivalently, if $F=\overline{\text { span }} E I$ for some ideal I, that is, if F is an
ideal submodule; see ms 2018. Indeed:
$F=\overline{\mathrm{span}} E I \Rightarrow F^{\perp}=\overline{\mathrm{span}} E\left(I^{\perp}\right) \Rightarrow F^{\perp \perp}=\overline{\mathrm{span}} E\left(I^{\perp \perp}\right)$.
If, for $a \in \mathcal{B}^{r}\left(E, E^{\prime}\right)$ and $x I \in E\left(I^{\perp \perp}\right)$ we have $a(x I) \neq 0$, so
$0 \neq|a(x \mid)|^{2} \in I^{\perp \perp}$.

The statement is true, provided ...

- ... Φ is adjointable. Indeed:

For every $a \in \mathcal{B}^{a}\left(E, E^{\prime}\right)$ we have ker $a=\left(a^{*} E^{\prime}\right)^{\perp}$,
so $\operatorname{ker} a^{\perp \perp}=\operatorname{ker} a$,
hence, $F^{\perp \perp} \subset$ ker $a^{\perp \perp}=$ ker a.

- $\ldots F=\overline{\text { span }} S \mathcal{B}$ is a closed ternary ideal, that is, if
$E\langle F, E\rangle \subset F$.
Equivalently, if $F=\overline{\text { span }} E I$ for some ideal I, that is, if F is an
ideal submodule; see ms 2018. Indeed:
$F=\overline{\mathrm{span}} E I \Rightarrow F^{\perp}=\overline{\mathrm{span}} E\left(I^{\perp}\right) \Rightarrow F^{\perp \perp}=\overline{\mathrm{span}} E\left(I^{\perp \perp}\right)$.
If, for $a \in \mathcal{B}^{r}\left(E, E^{\prime}\right)$ and $x I \in E\left(I^{\perp \perp}\right)$ we have $a(x I) \neq 0$, so
$0 \neq|a(x I)|^{2} \in I^{\perp \perp}$.
Since I is essential in $I^{\perp \perp}$, there is $i \in I$ such that $a(x l) i=a(x l i) \neq 0$.

The statement is true, provided ...

- ... Φ is adjointable. Indeed:

For every $a \in \mathcal{B}^{a}\left(E, E^{\prime}\right)$ we have ker $a=\left(a^{*} E^{\prime}\right)^{\perp}$,
so $\operatorname{ker} a^{\perp \perp}=\operatorname{ker} a$,
hence, $F^{\perp \perp} \subset$ ker $a^{\perp \perp}=$ ker a.

- ... $F=\overline{\text { span }} S \mathcal{B}$ is a closed ternary ideal, that is, if
$E\langle F, E\rangle \subset F$.
Equivalently, if $F=\overline{\text { span }} E I$ for some ideal I, that is, if F is an
ideal submodule; see ms 2018. Indeed:
$F=\overline{\mathrm{span}} E I \Rightarrow F^{\perp}=\overline{\mathrm{span}} E\left(I^{\perp}\right) \Rightarrow F^{\perp \perp}=\overline{\mathrm{span}} E\left(I^{\perp \perp}\right)$.
If, for $a \in \mathcal{B}^{r}\left(E, E^{\prime}\right)$ and $x I \in E\left(\mathcal{I}^{\perp \perp}\right)$ we have $a(x I) \neq 0$, so
$0 \neq|a(x I)|^{2} \in I^{\perp \perp}$.
Since I is essential in $I^{\perp \perp}$, there is $i \in I$ such that $a(x l) i=a(x l i) \neq 0$.
Since $x l i \in F$, we have $F \subsetneq$ ker a.

The statement is true, provided ...

- ... Φ is adjointable. Indeed:

For every $a \in \mathcal{B}^{a}\left(E, E^{\prime}\right)$ we have ker $a=\left(a^{*} E^{\prime}\right)^{\perp}$,
so $\operatorname{ker} a^{\perp \perp}=$ ker a,
hence, $F^{\perp \perp} \subset$ ker $a^{\perp \perp}=$ ker a.

- ... $F=\overline{\text { span }} S \mathcal{B}$ is a closed ternary ideal, that is, if
$E\langle F, E\rangle \subset F$.
Equivalently, if $F=\overline{\text { span }} E I$ for some ideal I, that is, if F is an
ideal submodule; see ms 2018. Indeed:
$F=\overline{\mathrm{span}} E I \Rightarrow F^{\perp}=\overline{\mathrm{span}} E\left(I^{\perp}\right) \Rightarrow F^{\perp \perp}=\overline{\mathrm{span}} E\left(I^{\perp \perp}\right)$.
If, for $a \in \mathcal{B}^{r}\left(E, E^{\prime}\right)$ and $x I \in E\left(\mathcal{I}^{\perp \perp}\right)$ we have $a(x I) \neq 0$, so
$0 \neq|a(x I)|^{2} \in I^{\perp \perp}$.
Since I is essential in $I^{\perp \perp}$, there is $i \in I$ such that $a(x l) i=a(x l i) \neq 0$.
Since $x l i \in F$, we have $F \subsetneq$ ker a.
So, $F \subset$ ker $a \Rightarrow F^{\perp \perp} \subset$ ker a.

The statement is true, provided ...

- ... Φ is adjointable. Indeed:

For every $a \in \mathcal{B}^{a}\left(E, E^{\prime}\right)$ we have ker $a=\left(a^{*} E^{\prime}\right)^{\perp}$,
so $\operatorname{ker} a^{\perp \perp}=\operatorname{ker} a$,
hence, $F^{\perp \perp} \subset$ ker $a^{\perp \perp}=$ ker a.

- ... $F=\overline{\text { span }} S \mathcal{B}$ is a closed ternary ideal, that is, if
$E\langle F, E\rangle \subset F$.
Equivalently, if $F=\overline{\text { span }} E I$ for some ideal I, that is, if F is an
ideal submodule; see ms 2018. Indeed:
$F=\overline{\mathrm{span}} E I \Rightarrow F^{\perp}=\overline{\mathrm{span}} E\left(I^{\perp}\right) \Rightarrow F^{\perp \perp}=\overline{\operatorname{span}} E\left(I^{\perp \perp}\right)$.
If, for $a \in \mathcal{B}^{r}\left(E, E^{\prime}\right)$ and $x I \in E\left(I^{\perp \perp}\right)$ we have $a(x I) \neq 0$, so
$0 \neq|a(x I)|^{2} \in I^{\perp \perp}$.
Since I is essential in $I^{\perp \perp}$, there is $i \in I$ such that $a(x l) i=a(x l i) \neq 0$.
Since $x l i \in F$, we have $F \subsetneq$ ker a.
So, $F \subset$ ker $a \Rightarrow F^{\perp \perp} \subset$ ker a.
- (Guljas's talk: Essential ideal $F \subset E$. Then $\mathcal{B}^{r}(E) \subset \mathcal{B}^{r}(F)$. If $a \in \mathcal{B}^{r}(E)$ is in $\mathcal{B}^{a}(F)$, then ker $a^{\perp \perp}=$ ker a.)

If the statement is true, then the following statements are true, too. (See Footnotes 1-3 in Bhat-ms 2015.)

If the statement is true, then the following statements are true, too. (See Footnotes 1-3 in Bhat-ms 2015.)

- If for closed submodules $F \subset G$ of E we have $F^{\perp} \cap G=\{0\}$,

If the statement is true, then the following statements are true, too. (See Footnotes 1-3 in Bhat-ms 2015.)

- If for closed submodules $F \subset G$ of E we have $F^{\perp} \cap G=\{0\}$, then $G^{\perp}=F^{\perp}$, hence $F^{\perp \perp} \supset G$.

If the statement is true, then the following statements are true, too. (See Footnotes 1-3 in Bhat-ms 2015.)

- If for closed submodules $F \subset G$ of E we have $F^{\perp} \cap G=\{0\}$, then $G^{\perp}=F^{\perp}$, hence $F^{\perp \perp} \supset G$.
- If $\langle F, G\rangle=\{0\}$ and $(F+G)^{\perp}=\{0\}$,

If the statement is true, then the following statements are true, too. (See Footnotes 1-3 in Bhat-ms 2015.)

- If for closed submodules $F \subset G$ of E we have $F^{\perp} \cap G=\{0\}$, then $G^{\perp}=F^{\perp}$, hence $F^{\perp \perp} \supset G$.
- If $\langle F, G\rangle=\{0\}$ and $(F \oplus G)^{\perp}=\{0\}$,

If the statement is true, then the following statements are true, too. (See Footnotes 1-3 in Bhat-ms 2015.)

- If for closed submodules $F \subset G$ of E we have $F^{\perp} \cap G=\{0\}$, then $G^{\perp}=F^{\perp}$, hence $F^{\perp \perp} \supset G$.
- If $\langle F, G\rangle=\{0\}$ and $(F \oplus G)^{\perp}=\{0\}$,
in general $\left\langle F^{\perp \perp}, G^{\perp \perp}\right\rangle=\{0\}$, so that $F^{\perp \perp} \oplus G^{\perp \perp}$ is a decomposition "containing" $F \oplus G$,

If the statement is true, then the following statements are true, too. (See Footnotes 1-3 in Bhat-ms 2015.)

- If for closed submodules $F \subset G$ of E we have $F^{\perp} \cap G=\{0\}$, then $G^{\perp}=F^{\perp}$, hence $F^{\perp \perp} \supset G$.
- If $\langle F, G\rangle=\{0\}$ and $(F \oplus G)^{\perp}=\{0\}$, then for all $F^{\prime} \supset F, G^{\prime} \supset G$ still satisfying $\left\langle F^{\prime}, G^{\prime}\right\rangle=\{0\}$,
in general $\left\langle F^{\perp \perp}, G^{\perp \perp}\right\rangle=\{0\}$, so that $F^{\perp \perp} \oplus G^{\perp \perp}$ is a decomposition "containing" $F \oplus G$,

If the statement is true, then the following statements are true, too. (See Footnotes 1-3 in Bhat-ms 2015.)

- If for closed submodules $F \subset G$ of E we have $F^{\perp} \cap G=\{0\}$, then $G^{\perp}=F^{\perp}$, hence $F^{\perp \perp} \supset G$.
- If $\langle F, G\rangle=\{0\}$ and $(F \oplus G)^{\perp}=\{0\}$, then for all $F^{\prime} \supset F, G^{\prime} \supset G$ still satisfying $\left\langle F^{\prime}, G^{\prime}\right\rangle=\{0\}$, we have $F^{\prime} \subset F^{\perp \perp}, G^{\prime} \subset G^{\perp \perp}$. in general $\left\langle F^{\perp \perp}, G^{\perp \perp}\right\rangle=\{0\}$, so that $F^{\perp \perp} \oplus G^{\perp \perp}$ is a decomposition "containing" $F \oplus G$,

If the statement is true, then the following statements are true, too. (See Footnotes 1-3 in Bhat-ms 2015.)

- If for closed submodules $F \subset G$ of E we have $F^{\perp} \cap G=\{0\}$, then $G^{\perp}=F^{\perp}$, hence $F^{\perp \perp} \supset G$.
- If $\langle F, G\rangle=\{0\}$ and $(F \oplus G)^{\perp}=\{0\}$, then for all $F^{\prime} \supset F, G^{\prime} \supset G$ still satisfying $\left\langle F^{\prime}, G^{\prime}\right\rangle=\{0\}$, we have $F^{\prime} \subset F^{\perp \perp}, G^{\prime} \subset G^{\perp \perp}$. So, while in general $\left\langle F^{\perp \perp}, G^{\perp \perp}\right\rangle=\{0\}$, so that $F^{\perp \perp} \oplus G^{\perp \perp}$ is a decomposition "containing" $F \oplus G$, if the statement is true we have $F^{\perp \perp} \oplus G^{\perp \perp} \supset F^{\prime} \oplus G^{\prime} \supset F \oplus G$.

If the statement is true, then the following statements are true, too. (See Footnotes 1-3 in Bhat-ms 2015.)

- If for closed submodules $F \subset G$ of E we have $F^{\perp} \cap G=\{0\}$, then $G^{\perp}=F^{\perp}$, hence $F^{\perp \perp} \supset G$.
- If $\langle F, G\rangle=\{0\}$ and $(F \oplus G)^{\perp}=\{0\}$, then for all $F^{\prime} \supset F, G^{\prime} \supset G$ still satisfying $\left\langle F^{\prime}, G^{\prime}\right\rangle=\{0\}$, we have $F^{\prime} \subset F^{\perp \perp}, G^{\prime} \subset G^{\perp \perp}$. So, while in general $\left\langle F^{\perp \perp}, G^{\perp \perp}\right\rangle=\{0\}$, so that $F^{\perp \perp} \oplus G^{\perp \perp}$ is a decomposition "containing" $F \oplus G$, if the statement is true we have $F^{\perp \perp} \oplus G^{\perp \perp} \supset F^{\prime} \oplus G^{\prime} \supset F \oplus G$.
- Suppose v is an isometry on E, so that $E_{u}:=\bigcap_{n \in \mathbb{N}_{0}} v^{n} E$ is the unique maximal invariant submodule on which v restricts to a unitary.

If the statement is true, then the following statements are true, too.
(See Footnotes 1-3 in Bhat-ms 2015.)

- If for closed submodules $F \subset G$ of E we have $F^{\perp} \cap G=\{0\}$, then $G^{\perp}=F^{\perp}$, hence $F^{\perp \perp} \supset G$.
- If $\langle F, G\rangle=\{0\}$ and $(F \oplus G)^{\perp}=\{0\}$, then for all $F^{\prime} \supset F, G^{\prime} \supset G$ still satisfying $\left\langle F^{\prime}, G^{\prime}\right\rangle=\{0\}$, we have $F^{\prime} \subset F^{\perp \perp}, G^{\prime} \subset G^{\perp \perp}$. So, while in general $\left\langle F^{\perp \perp}, G^{\perp \perp}\right\rangle=\{0\}$, so that $F^{\perp \perp} \oplus G^{\perp \perp}$ is a decomposition "containing" $F \oplus G$, if the statement is true we have $F^{\perp \perp} \oplus G^{\perp \perp} \supset F^{\prime} \oplus G^{\prime} \supset F \oplus G$.
- Suppose v is an isometry on E, so that $E_{u}:=\bigcap_{n \in \mathbb{N}_{0}} v^{n} E$ is the unique maximal invariant submodule on which v restricts to a unitary. If the statement is true, then also $E_{u}^{\perp \perp}$ is invariant for v.

If the statement is true, then the following statements are true, too.
(See Footnotes 1-3 in Bhat-ms 2015.)

- If for closed submodules $F \subset G$ of E we have $F^{\perp} \cap G=\{0\}$, then $G^{\perp}=F^{\perp}$, hence $F^{\perp \perp} \supset G$.
- If $\langle F, G\rangle=\{0\}$ and $(F \oplus G)^{\perp}=\{0\}$, then for all $F^{\prime} \supset F, G^{\prime} \supset G$ still satisfying $\left\langle F^{\prime}, G^{\prime}\right\rangle=\{0\}$, we have $F^{\prime} \subset F^{\perp \perp}, G^{\prime} \subset G^{\perp \perp}$. So, while in general $\left\langle F^{\perp \perp}, G^{\perp \perp}\right\rangle=\{0\}$, so that $F^{\perp \perp} \oplus G^{\perp \perp}$ is a decomposition "containing" $F \oplus G$, if the statement is true we have $F^{\perp \perp} \oplus G^{\perp \perp} \supset F^{\prime} \oplus G^{\prime} \supset F \oplus G$.
- Suppose v is an isometry on E, so that $E_{u}:=\bigcap_{n \in \mathbb{N}_{0}} v^{n} E$ is the unique maximal invariant submodule on which v restricts to a unitary. If the statement is true, then also $E_{u}^{\perp \perp}$ is invariant for v.
(Note: By maximality of E_{u}, if $E_{u}^{\perp \perp} \neq E_{u}$, then the restriction of v to $E_{u}^{\perp \perp}$ cannot be a unitary.)

Footnote 7 in ms 2018:

Footnote 7 in ms 2018:

- E is a Hilbert \mathcal{B}-module, F a closed non-complemented submodule.

Footnote 7 in ms 2018:

- E is a Hilbert \mathcal{B}-module, F a closed non-complemented submodule.
- Then E / F is a Banach \mathcal{B}-module.

Footnote 7 in ms 2018:

- E is a Hilbert \mathcal{B}-module, F a closed non-complemented submodule.
- Then E / F is a Banach \mathcal{B}-module.
- Is E / F a Hilbert module?

Footnote 7 in ms 2018:

- E is a Hilbert \mathcal{B}-module, F a closed non-complemented submodule.
- Then E / F is a Banach \mathcal{B}-module.
- Is E / F a Hilbert module?
- Meaning, is there a (unique!) \mathcal{B}-valued inner product on E / F inducing its norm?

Footnote 7 in ms 2018:

- E is a Hilbert \mathcal{B}-module, F a closed non-complemented submodule.
- Then E / F is a Banach \mathcal{B}-module.
- Is E / F a Hilbert module?
- Meaning, is there a (unique!) \mathcal{B}-valued inner product on E / F inducing its norm?
- More generally, is there any \mathcal{B}-valued inner product on the \mathcal{B}-module E / F turning it into a Banach module?

Footnote 7 in ms 2018:

- E is a Hilbert \mathcal{B}-module, F a closed non-complemented submodule.
- Then E / F is a Banach \mathcal{B}-module.
- Is E / F a Hilbert module?
- Meaning, is there a (unique!) \mathcal{B}-valued inner product on E / F inducing its norm?
- More generally, is there any \mathcal{B}-valued inner product on the \mathcal{B}-module E / F turning it into a Banach module?
- Answer, no, if F is a closed ideal in E. (Theorem 3.3 in ms 2018.)

Footnote 7 in ms 2018:

- E is a Hilbert \mathcal{B}-module, F a closed non-complemented submodule.
- Then E / F is a Banach \mathcal{B}-module.
- Is E / F a Hilbert module?
- Meaning, is there a (unique!) \mathcal{B}-valued inner product on E / F inducing its norm?
- More generally, is there any \mathcal{B}-valued inner product on the \mathcal{B}-module E / F turning it into a Banach module?
- Answer, no, if F is a closed ideal in E. (Theorem 3.3 in ms 2018.)
- For general (non-complemented!) F and bounded canonical map $\eta: E \rightarrow E / F$ (for instance, for the quotient norm), the answer would be no, provided the statement was true:

Footnote 7 in ms 2018:

- E is a Hilbert \mathcal{B}-module, F a closed non-complemented submodule.
- Then E / F is a Banach \mathcal{B}-module.
- Is E / F a Hilbert module?
- Meaning, is there a (unique!) \mathcal{B}-valued inner product on E / F inducing its norm?
- More generally, is there any \mathcal{B}-valued inner product on the \mathcal{B}-module E / F turning it into a Banach module?
- Answer, no, if F is a closed ideal in E. (Theorem 3.3 in ms 2018.)
- For general (non-complemented!) F and bounded canonical map $\eta: E \rightarrow E / F$ (for instance, for the quotient norm), the answer would be no, provided the statement was true:
- Assume $F^{\perp}=\{0\}$. (Otherwise, restrict to $F^{\perp \perp}$.)

Footnote 7 in ms 2018:

- E is a Hilbert \mathcal{B}-module, F a closed non-complemented submodule.
- Then E / F is a Banach \mathcal{B}-module.
- Is E / F a Hilbert module?
- Meaning, is there a (unique!) \mathcal{B}-valued inner product on E / F inducing its norm?
- More generally, is there any \mathcal{B}-valued inner product on the \mathcal{B}-module E / F turning it into a Banach module?
- Answer, no, if F is a closed ideal in E. (Theorem 3.3 in ms 2018.)
- For general (non-complemented!) F and bounded canonical map $\eta: E \rightarrow E / F$ (for instance, for the quotient norm), the answer would be no, provided the statement was true:
- Assume $F^{\perp}=\{0\}$. (Otherwise, restrict to $F^{\perp \perp}$.)
- Since $\eta(F)=\{0\}$, so would be $\eta\left(F^{\perp \perp}\right)=\eta(E)$.

Footnote 7 in ms 2018:

- E is a Hilbert \mathcal{B}-module, F a closed non-complemented submodule.
- Then E / F is a Banach \mathcal{B}-module.
- Is E / F a Hilbert module?
- Meaning, is there a (unique!) \mathcal{B}-valued inner product on E / F inducing its norm?
- More generally, is there any \mathcal{B}-valued inner product on the \mathcal{B}-module E / F turning it into a Banach module?
- Answer, no, if F is a closed ideal in E. (Theorem 3.3 in ms 2018.)
- For general (non-complemented!) F and bounded canonical map $\eta: E \rightarrow E / F$ (for instance, for the quotient norm), the answer would be no, provided the statement was true:
- Assume $F^{\perp}=\{0\}$. (Otherwise, restrict to $F^{\perp \perp}$.)
- Since $\eta(F)=\{0\}$, so would be $\eta\left(F^{\perp \perp}\right)=\eta(E)$.

Violating any of the four statements will, thus, disprove the statement.

Given $E \supsetneq F$ with $F^{\perp}=\{0\}$,

Given $E \supsetneq F$ with $F^{\perp}=\{0\}$, it is not true (I think never) that $F^{\perp}=\{0\}$ in the bidual $E^{\prime \prime}$!

Given $E \supsetneq F$ with $F^{\perp}=\{0\}$,
it is not true (1 think never) that $F^{\perp}=\{0\}$ in the bidual $E^{\prime \prime}$!

- Even if $E=\mathcal{B}$ and $F=\mathcal{I}$ an essential proper ideal (where the statement is true).

Given $E \supsetneq F$ with $F^{\perp}=\{0\}$,
it is not true (1 think never) that $F^{\perp}=\{0\}$ in the bidual $E^{\prime \prime}$!

- Even if $E=\mathcal{B}$ and $F=I$ an essential proper ideal (where the statement is true).
- Akemann-Pedersen (see Section 3.11 in Pedersen's book): The formula

$$
\mathcal{I}=\left(p \mathcal{B}^{\prime \prime}\right) \cap \mathcal{B}
$$

establishes a 1-1-correspondence between ideals \mathcal{I} in \mathcal{B} and so-called open central projections $p \in \mathcal{B}^{\prime \prime}$.

Given $E \supsetneq F$ with $F^{\perp}=\{0\}$,
it is not true (1 think never) that $F^{\perp}=\{0\}$ in the bidual $E^{\prime \prime}$!

- Even if $E=\mathcal{B}$ and $F=\mathcal{I}$ an essential proper ideal (where the statement is true).
- Akemann-Pedersen (see Section 3.11 in Pedersen's book): The formula

$$
\mathcal{I}=\left(p \mathcal{B}^{\prime \prime}\right) \cap \mathcal{B}
$$

establishes a 1-1-correspondence between ideals I in \mathcal{B} and so-called open central projections $p \in \mathcal{B}^{\prime \prime}$.

- Obviously the complement $(\mathbf{1}-p) \mathcal{B}^{\prime \prime}$ of I in $\mathcal{B}^{\prime \prime}$ is not zero, unless $\mathcal{I}=\mathcal{B}$.

Given $E \supsetneq F$ with $F^{\perp}=\{0\}$,
it is not true (I think never) that $F^{\perp}=\{0\}$ in the bidual $E^{\prime \prime}$!

- Even if $E=\mathcal{B}$ and $F=\mathcal{I}$ an essential proper ideal (where the statement is true).
- Akemann-Pedersen (see Section 3.11 in Pedersen's book): The formula

$$
\mathcal{I}=\left(p \mathcal{B}^{\prime \prime}\right) \cap \mathcal{B}
$$

establishes a 1-1-correspondence between ideals \mathcal{I} in \mathcal{B} and so-called open central projections $p \in \mathcal{B}^{\prime \prime}$.

- Obviously the complement $(\mathbf{1}-\mathrm{p}) \mathcal{B}^{\prime \prime}$ of I in $\mathcal{B}^{\prime \prime}$ is not zero, unless $\mathcal{I}=\mathcal{B}$.
(But $(1-p) \mathcal{B}^{\prime \prime} \cap \mathcal{B}=\{0\}!$)

Given $E \supsetneq F$ with $F^{\perp}=\{0\}$,
it is not true (1 think never) that $F^{\perp}=\{0\}$ in the bidual $E^{\prime \prime}$!

- Even if $E=\mathcal{B}$ and $F=\mathcal{I}$ an essential proper ideal (where the statement is true).
- Akemann-Pedersen (see Section 3.11 in Pedersen's book): The formula

$$
I=\left(p \mathcal{B}^{\prime \prime}\right) \cap \mathcal{B}
$$

establishes a 1-1-correspondence between ideals I in \mathcal{B} and so-called open central projections $p \in \mathcal{B}^{\prime \prime}$.

- Obviously the complement $(\mathbf{1}-p) \mathcal{B}^{\prime \prime}$ of I in $\mathcal{B}^{\prime \prime}$ is not zero, unless $\mathcal{I}=\mathcal{B}$.
(But $(1-p) \mathcal{B}^{\prime \prime} \cap \mathcal{B}=\{0\}!$)
- For $\mathcal{B}=\mathcal{B}(H)$ and $\mathcal{I}=\mathcal{K}(H), p$ is the projection on that part of the universal representation of (the C^{*}-algebra!) $\mathcal{B}(H)$ that is normal.

Given $E \supsetneq F$ with $F^{\perp}=\{0\}$,
it is not true (I think never) that $F^{\perp}=\{0\}$ in the bidual $E^{\prime \prime}$!

- Even if $E=\mathcal{B}$ and $F=I$ an essential proper ideal (where the statement is true).
- Akemann-Pedersen (see Section 3.11 in Pedersen's book): The formula

$$
\mathcal{I}=\left(p \mathcal{B}^{\prime \prime}\right) \cap \mathcal{B}
$$

establishes a 1-1-correspondence between ideals \mathcal{I} in \mathcal{B} and so-called open central projections $p \in \mathcal{B}^{\prime \prime}$.

- Obviously the complement $(\mathbf{1}-p) \mathcal{B}^{\prime \prime}$ of I in $\mathcal{B}^{\prime \prime}$ is not zero, unless $I=\mathcal{B}$.
(But $(1-p) \mathcal{B}^{\prime \prime} \cap \mathcal{B}=\{0\}!$)
- For $\mathcal{B}=\mathcal{B}(H)$ and $\mathcal{I}=\mathcal{K}(H), p$ is the projection on that part of the universal representation of (the C^{*}-algebra!) $\mathcal{B}(H)$ that is normal.
However, embedding E into a von Neumann (or W^{*}) module can be done better, making that proof-idea work at least for ideals.
E a (full) Hilbert \mathcal{B}-module; \mathcal{I} an essential in \mathcal{B}; put $F:=\overline{\text { span } E I \text {. }}$
E a (full) Hilbert \mathcal{B}-module; \mathcal{I} an essential in \mathcal{B}; put $F:=\overline{\text { span } E I \text {. }}$
- $\pi: \mathcal{B} \rightarrow \mathcal{B}(G)$ a faithful representation.
E a (full) Hilbert \mathcal{B}-module; \mathcal{I} an essential in \mathcal{B}; put $F:=\overline{\text { span } E I \text {. }}$
- $\pi: \mathcal{B} \rightarrow \mathcal{B}(\mathrm{G})$ a faithful representation.
- Put $H:=E \odot G$ and identify $E \subset \mathcal{B}(G, H)$ as $E \ni x: g \mapsto x \odot g$.
E a (full) Hilbert \mathcal{B}-module; \mathcal{I} an essential in \mathcal{B}; put $F:=\overline{\text { span } E I \text {. }}$
- $\pi: \mathcal{B} \rightarrow \mathcal{B}(G)$ a faithful representation.
- Put $H:=E \odot G$ and identify $E \subset \mathcal{B}(G, H)$ as $E \ni x: g \mapsto x \odot g$.
- If $\overline{\operatorname{span}} \pi(I) G=G$, then $\overline{\operatorname{span}}(E I) G=H$.
E a (full) Hilbert \mathcal{B}-module; \mathcal{I} an essential in \mathcal{B}; put $F:=\overline{\text { span } E I \text {. }}$
- $\pi: \mathcal{B} \rightarrow \mathcal{B}(G)$ a faithful representation.
- Put $H:=E \odot G$ and identify $E \subset \mathcal{B}(G, H)$ as $E \ni x: g \mapsto x \odot g$.
- If $\overline{\operatorname{span}} \pi(I) G=G$, then $\overline{\operatorname{span}}(E I) G=H$.
$\leadsto(E I)^{\perp}$ in the von Neumann $\overline{\pi(\mathcal{B})}^{s}$-module \bar{E}^{s} is $\{0\}$.
E a (full) Hilbert \mathcal{B}-module; \mathcal{I} an essential in \mathcal{B}; put $F:=\overline{\text { span } E I \text {. }}$
- $\pi: \mathcal{B} \rightarrow \mathcal{B}(G)$ a faithful representation.
- Put $H:=E \odot G$ and identify $E \subset \mathcal{B}(G, H)$ as $E \ni x: g \mapsto x \odot g$.
- If $\overline{\operatorname{span}} \pi(I) G=G$, then $\overline{\operatorname{span}}(E I) G=H$.
$\sim(E I)^{\perp}$ in the von Neumann $\overline{\pi(\mathcal{B})}^{s}$-module \bar{E}^{s} is $\{0\}$.
- Corollary: $\Phi \in \mathcal{B}^{r}(E, \mathcal{B}) \subset \mathcal{B}(H, G) ; \Phi(F)=\{0\} \Rightarrow \Phi=\{0\}$.
E a (full) Hilbert \mathcal{B}-module; \mathcal{I} an essential in \mathcal{B}; put $F:=\overline{\text { span } E I \text {. }}$
- $\pi: \mathcal{B} \rightarrow \mathcal{B}(G)$ a faithful representation.
- Put $H:=E \odot G$ and identify $E \subset \mathcal{B}(G, H)$ as $E \ni x: g \mapsto x \odot g$.
- If $\overline{\operatorname{span}} \pi(I) G=G$, then $\overline{\operatorname{span}}(E I) G=H$.
$\sim(E I)^{\perp}$ in the von Neumann $\overline{\pi(\mathcal{B})}^{s}$-module \bar{E}^{s} is $\{0\}$.
- Corollary: $\Phi \in \mathcal{B}^{r}(E, \mathcal{B}) \subset \mathcal{B}(H, G) ; \Phi(F)=\{0\} \Rightarrow \Phi=\{0\}$.
- Such π exists. (Extend non-deg. faithful $\pi: \mathcal{I} \rightarrow \mathcal{B}(G)$ to \mathcal{B}.)
E a (full) Hilbert \mathcal{B}-module; \mathcal{I} an essential in \mathcal{B}; put $F:=\overline{\text { span } E I \text {. }}$
- $\pi: \mathcal{B} \rightarrow \mathcal{B}(G)$ a faithful representation.
- Put $H:=E \odot G$ and identify $E \subset \mathcal{B}(G, H)$ as $E \ni x: g \mapsto x \odot g$.
- If $\overline{\operatorname{span}} \pi(I) G=G$, then $\overline{\operatorname{span}}(E I) G=H$.
$\sim(E I)^{\perp}$ in the von Neumann $\overline{\pi(\mathcal{B})}^{s}$-module \bar{E}^{s} is $\{0\}$.
- Corollary: $\Phi \in \mathcal{B}^{r}(E, \mathcal{B}) \subset \mathcal{B}(H, G) ; \Phi(F)=\{0\} \Rightarrow \Phi=\{0\}$.
- Such π exists. (Extend non-deg. faithful $\pi: \mathcal{I} \rightarrow \mathcal{B}(G)$ to \mathcal{B}.)

Given arbitrary F with $F^{\perp}=\{0\}$, can we find suitable π ?
E a (full) Hilbert \mathcal{B}-module; \mathcal{I} an essential in \mathcal{B}; put $F:=\overline{\text { span } E I \text {. }}$

- $\pi: \mathcal{B} \rightarrow \mathcal{B}(G)$ a faithful representation.
- Put $H:=E \odot G$ and identify $E \subset \mathcal{B}(G, H)$ as $E \ni x: g \mapsto x \odot g$.
- If $\overline{\operatorname{span}} \pi(I) G=G$, then $\overline{\operatorname{span}}(E I) G=H$.
$\sim(E I)^{\perp}$ in the von Neumann $\overline{\pi(\mathcal{B})}^{s}$-module \bar{E}^{s} is $\{0\}$.
- Corollary: $\Phi \in \mathcal{B}^{r}(E, \mathcal{B}) \subset \mathcal{B}(H, G) ; \Phi(F)=\{0\} \Rightarrow \Phi=\{0\}$.
- Such π exists. (Extend non-deg. faithful $\pi: \mathcal{I} \rightarrow \mathcal{B}(G)$ to \mathcal{B}.)

Given arbitrary F with $F^{\perp}=\{0\}$, can we find suitable π ?
Here are some simplifications:
E a (full) Hilbert \mathcal{B}-module; \mathcal{I} an essential in \mathcal{B}; put $F:=\overline{\text { span } E I \text {. }}$

- $\pi: \mathcal{B} \rightarrow \mathcal{B}(G)$ a faithful representation.
- Put $H:=E \odot G$ and identify $E \subset \mathcal{B}(G, H)$ as $E \ni x: g \mapsto x \odot g$.
- If $\overline{\operatorname{span}} \pi(I) G=G$, then $\overline{\operatorname{span}}(E I) G=H$.
$\sim(E I)^{\perp}$ in the von Neumann $\overline{\pi(\mathcal{B})}^{s}$-module \bar{E}^{s} is $\{0\}$.
- Corollary: $\Phi \in \mathcal{B}^{r}(E, \mathcal{B}) \subset \mathcal{B}(H, G) ; \Phi(F)=\{0\} \Rightarrow \Phi=\{0\}$.
- Such π exists. (Extend non-deg. faithful $\pi: I \rightarrow \mathcal{B}(G)$ to \mathcal{B}.)

Given arbitrary F with $F^{\perp}=\{0\}$, can we find suitable π ?
Here are some simplifications:

- It suffices to prove the statement for full F, only. In fact:
E a (full) Hilbert \mathcal{B}-module; \mathcal{I} an essential in \mathcal{B}; put $F:=\overline{\text { span } E I \text {. }}$
- $\pi: \mathcal{B} \rightarrow \mathcal{B}(G)$ a faithful representation.
- Put $H:=E \odot G$ and identify $E \subset \mathcal{B}(G, H)$ as $E \ni x: g \mapsto x \odot g$.
- If $\overline{\operatorname{span}} \pi(I) G=G$, then $\overline{\operatorname{span}}(E I) G=H$.
$\sim(E I)^{\perp}$ in the von Neumann $\overline{\pi(\mathcal{B})}^{s}$-module \bar{E}^{s} is $\{0\}$.
- Corollary: $\Phi \in \mathcal{B}^{r}(E, \mathcal{B}) \subset \mathcal{B}(H, G) ; \Phi(F)=\{0\} \Rightarrow \Phi=\{0\}$.
- Such π exists. (Extend non-deg. faithful $\pi: \mathcal{I} \rightarrow \mathcal{B}(G)$ to \mathcal{B}.)

Given arbitrary F with $F^{\perp}=\{0\}$, can we find suitable π ?
Here are some simplifications:

- It suffices to prove the statement for full F, only. In fact:
- It suffices to prove it for $E:=\overline{\operatorname{span}} \mathcal{A B}$ and $F=\mathcal{B}$, \mathcal{B} a hereditary subalgebra of \mathcal{A}.
E a (full) Hilbert \mathcal{B}-module; \mathcal{I} an essential in \mathcal{B}; put $F:=\overline{\text { span } E I \text {. }}$
- $\pi: \mathcal{B} \rightarrow \mathcal{B}(G)$ a faithful representation.
- Put $H:=E \odot G$ and identify $E \subset \mathcal{B}(G, H)$ as $E \ni x: g \mapsto x \odot g$.
- If $\overline{\operatorname{span}} \pi(I) G=G$, then $\overline{\operatorname{span}}(E I) G=H$.
$\sim(E I)^{\perp}$ in the von Neumann $\overline{\pi(\mathcal{B})}^{s}$-module \bar{E}^{s} is $\{0\}$.
- Corollary: $\Phi \in \mathcal{B}^{r}(E, \mathcal{B}) \subset \mathcal{B}(H, G) ; \Phi(F)=\{0\} \Rightarrow \Phi=\{0\}$.
- Such π exists. (Extend non-deg. faithful $\pi: \mathcal{I} \rightarrow \mathcal{B}(G)$ to \mathcal{B}.)

Given arbitrary F with $F^{\perp}=\{0\}$, can we find suitable π ?
Here are some simplifications:

- It suffices to prove the statement for full F, only. In fact:
- It suffices to prove it for $E:=\overline{\operatorname{span}} \mathcal{A B}$ and $F=\mathcal{B}$, \mathcal{B} a hereditary subalgebra of \mathcal{A}.
$\left(\sim\right.$ inner product $\left.\left\langle a b, a^{\prime} b^{\prime}\right\rangle:=b^{*} a^{*} a^{\prime} b^{\prime} \in \mathcal{B}.\right)$
E a (full) Hilbert \mathcal{B}-module; \mathcal{I} an essential in \mathcal{B}; put $F:=\overline{\text { span } E I \text {. }}$
- $\pi: \mathcal{B} \rightarrow \mathcal{B}(G)$ a faithful representation.
- Put $H:=E \odot G$ and identify $E \subset \mathcal{B}(G, H)$ as $E \ni x: g \mapsto x \odot g$.
- If $\overline{\operatorname{span}} \pi(I) G=G$, then $\overline{\operatorname{span}}(E I) G=H$.
$\leadsto(E I)^{\perp}$ in the von Neumann $\overline{\pi(\mathcal{B})}^{s}$-module \bar{E}^{s} is $\{0\}$.
- Corollary: $\Phi \in \mathcal{B}^{r}(E, \mathcal{B}) \subset \mathcal{B}(H, G) ; \Phi(F)=\{0\} \Rightarrow \Phi=\{0\}$.
- Such π exists. (Extend non-deg. faithful $\pi: \mathcal{I} \rightarrow \mathcal{B}(G)$ to \mathcal{B}.)

Given arbitrary F with $F^{\perp}=\{0\}$, can we find suitable π ?
Here are some simplifications:

- It suffices to prove the statement for full F, only. In fact:
- It suffices to prove it for $E:=\overline{\operatorname{span}} \mathcal{A B}$ and $F=\mathcal{B}$,
\mathcal{B} a hereditary subalgebra of \mathcal{A}.
$\left(\sim\right.$ inner product $\left.\left\langle a b, a^{\prime} b^{\prime}\right\rangle:=b^{*} a^{*} a^{\prime} b^{\prime} \in \mathcal{B}.\right)$
- $[F=\overline{\operatorname{span}} C E \sim 1-1$-corr. $F \subset E \leadsto \rightarrow$ her. $C \subset \mathcal{K}(E)$.
E a (full) Hilbert \mathcal{B}-module; \mathcal{I} an essential in \mathcal{B}; put $F:=\overline{\text { span } E I \text {. }}$
- $\pi: \mathcal{B} \rightarrow \mathcal{B}(G)$ a faithful representation.
- Put $H:=E \odot G$ and identify $E \subset \mathcal{B}(G, H)$ as $E \ni x: g \mapsto x \odot g$.
- If $\overline{\operatorname{span}} \pi(I) G=G$, then $\overline{\operatorname{span}}(E I) G=H$.
$\leadsto(E I)^{\perp}$ in the von Neumann $\overline{\pi(\mathcal{B})}^{s}$-module \bar{E}^{s} is $\{0\}$.
- Corollary: $\Phi \in \mathcal{B}^{r}(E, \mathcal{B}) \subset \mathcal{B}(H, G) ; \Phi(F)=\{0\} \Rightarrow \Phi=\{0\}$.
- Such π exists. (Extend non-deg. faithful $\pi: \mathcal{I} \rightarrow \mathcal{B}(G)$ to \mathcal{B}.)

Given arbitrary F with $F^{\perp}=\{0\}$, can we find suitable π ? Here are some simplifications:

- It suffices to prove the statement for full F, only. In fact:
- It suffices to prove it for $E:=\overline{\operatorname{span}} \mathcal{A B}$ and $F=\mathcal{B}$, \mathcal{B} a hereditary subalgebra of \mathcal{A}.
$\left(\sim\right.$ inner product $\left.\left\langle a b, a^{\prime} b^{\prime}\right\rangle:=b^{*} a^{*} a^{\prime} b^{\prime} \in \mathcal{B}.\right)$
- $[F=\overline{\text { span }} C E \sim$ 1-1-corr. $\quad F \subset E \leftrightarrow$ her. $C \subset \mathcal{K}(E)$. $C=\overline{\operatorname{span}} C \mathcal{K}(E) C=\mathcal{K}(F)$.
E a (full) Hilbert \mathcal{B}-module; \mathcal{I} an essential in \mathcal{B}; put $F:=\overline{\text { span } E I \text {. }}$
- $\pi: \mathcal{B} \rightarrow \mathcal{B}(G)$ a faithful representation.
- Put $H:=E \odot G$ and identify $E \subset \mathcal{B}(G, H)$ as $E \ni x: g \mapsto x \odot g$.
- If $\overline{\operatorname{span}} \pi(I) G=G$, then $\overline{\operatorname{span}}(E I) G=H$.
$\leadsto(E I)^{\perp}$ in the von Neumann $\overline{\pi(\mathcal{B})}^{s}$-module \bar{E}^{s} is $\{0\}$.
- Corollary: $\Phi \in \mathcal{B}^{r}(E, \mathcal{B}) \subset \mathcal{B}(H, G) ; \Phi(F)=\{0\} \Rightarrow \Phi=\{0\}$.
- Such π exists. (Extend non-deg. faithful $\pi: \mathcal{I} \rightarrow \mathcal{B}(G)$ to \mathcal{B}.)

Given arbitrary F with $F^{\perp}=\{0\}$, can we find suitable π ? Here are some simplifications:

- It suffices to prove the statement for full F, only. In fact:
- It suffices to prove it for $E:=\overline{\operatorname{span}} \mathcal{A B}$ and $F=\mathcal{B}$,
\mathcal{B} a hereditary subalgebra of \mathcal{A}.
$\left(\sim\right.$ inner product $\left.\left\langle a b, a^{\prime} b^{\prime}\right\rangle:=b^{*} a^{*} a^{\prime} b^{\prime} \in \mathcal{B}.\right)$
- $[F=\overline{\operatorname{span}} C E \leadsto$ 1-1-corr. $F \subset E \leadsto \leadsto \quad$ her. $C \subset \mathcal{K}(E)$. $C=\overline{\operatorname{span}} C \mathcal{K}(E) C=\mathcal{K}(F)$.
Translate hypotheses on E and F into those of $\overline{\operatorname{span}} \mathcal{K}(E) \mathcal{K}(F)=\mathcal{K}(F, E)$ and $\mathcal{K}(F)$.
- Suppose for every $\mathcal{A} \supset \mathcal{B}$ we can find a faithful representation π of \mathcal{A} such that $\pi(\mathcal{B})$ alone acts already nondegenerately. Then the statement is true.
- Suppose for every $\mathcal{A} \supset \mathcal{B}$ we can find a faithful representation π of \mathcal{A} such that $\pi(\mathcal{B})$ alone acts already nondegenerately. Then the statement is true.
(Then $E \odot G=F \odot G=G$.
Note that $E \odot G$ carries the well-known (and unique) representation of \mathcal{A} induced from a representation of \mathcal{B}. That means we seek a non-deg. representation of \mathcal{B} that extends to a representation of \mathcal{A} on the same representation space.)
- Suppose for every $\mathcal{A} \supset \mathcal{B}$ we can find a faithful representation π of \mathcal{A} such that $\pi(\mathcal{B})$ alone acts already nondegenerately. Then the statement is true.
(Then $E \odot G=F \odot G=G$.
Note that $E \odot G$ carries the well-known (and unique) representation of \mathcal{A} induced from a representation of \mathcal{B}. That means we seek a non-deg. representation of \mathcal{B} that extends to a representation of \mathcal{A} on the same representation space.)
- Frankly speaking, I don't know if this has a chance.
- Suppose for every $\mathcal{A} \supset \mathcal{B}$ we can find a faithful representation π of \mathcal{A} such that $\pi(\mathcal{B})$ alone acts already nondegenerately. Then the statement is true.
(Then $E \odot G=F \odot G=G$.
Note that $E \odot G$ carries the well-known (and unique) representation of \mathcal{A} induced from a representation of \mathcal{B}. That means we seek a non-deg. representation of \mathcal{B} that extends to a representation of \mathcal{A} on the same representation space.)
- Frankly speaking, I don't know if this has a chance.
- In the worst case, it is true only for ideals.
- Suppose for every $\mathcal{A} \supset \mathcal{B}$ we can find a faithful representation π of \mathcal{A} such that $\pi(\mathcal{B})$ alone acts already nondegenerately. Then the statement is true.
(Then $E \odot G=F \odot G=G$.
Note that $E \odot G$ carries the well-known (and unique) representation of \mathcal{A} induced from a representation of \mathcal{B}. That means we seek a non-deg. representation of \mathcal{B} that extends to a representation of \mathcal{A} on the same representation space.)
- Frankly speaking, I don't know if this has a chance.
- In the worst case, it is true only for ideals.

$$
\text { Recall, too: } \quad \mathcal{B}=\left(p \mathcal{A}^{\prime \prime} p\right) \cap \mathcal{A}
$$

establishes a 1-1-correspondence between hereditary subalgebras of \mathcal{A} and open projections in $\mathcal{A}^{\prime \prime}$.

- Suppose for every $\mathcal{A} \supset \mathcal{B}$ we can find a faithful representation π of \mathcal{A} such that $\pi(\mathcal{B})$ alone acts already nondegenerately. Then the statement is true.
(Then $E \odot G=F \odot G=G$.
Note that $E \odot G$ carries the well-known (and unique) representation of \mathcal{A} induced from a representation of \mathcal{B}. That means we seek a non-deg. representation of \mathcal{B} that extends to a representation of \mathcal{A} on the same representation space.)
- Frankly speaking, I don't know if this has a chance.
- In the worst case, it is true only for ideals.

Recall, too: $\quad \mathcal{B}=\left(p \mathcal{A}^{\prime \prime} p\right) \cap \mathcal{A}$

establishes a 1-1-correspondence between hereditary subalgebras of \mathcal{A} and open projections in $\mathcal{F}^{\prime \prime}$.
The hypothesis on \mathcal{B} means exactly that $a \in \mathcal{A}^{\prime \prime}, a(1-p) \in \mathcal{A}$ implies $a(1-p)=0$.

- Suppose for every $\mathcal{A} \supset \mathcal{B}$ we can find a faithful representation π of \mathcal{A} such that $\pi(\mathcal{B})$ alone acts already nondegenerately. Then the statement is true.
(Then $E \odot G=F \odot G=G$.
Note that $E \odot G$ carries the well-known (and unique) representation of \mathcal{A} induced from a representation of \mathcal{B}. That means we seek a non-deg. representation of \mathcal{B} that extends to a representation of \mathcal{A} on the same representation space.)
- Frankly speaking, I don't know if this has a chance.
- In the worst case, it is true only for ideals.

$$
\text { Recall, too: } \quad \mathcal{B}=\left(p \mathcal{A}^{\prime \prime} p\right) \cap \mathcal{A}
$$

establishes a 1-1-correspondence between hereditary subalgebras of \mathcal{A} and open projections in $\mathcal{F}^{\prime \prime}$.
The hypothesis on \mathcal{B} means exactly that $a \in \mathcal{A}^{\prime \prime}, a(1-p) \in \mathcal{A}$ implies $a(1-p)=0$.
If $\mathcal{A}^{\prime \prime}$ acts on H and $G=p H$, then $\Phi \in \mathcal{B}(H, G)$. I did not figure out yet, if this helps.

Another open problem. (Appendix C in Shalit-ms 2020.)
(Though, I did not really research for an existing answer.)

- Vector spaces: $V \supset V_{i}, W \supset W_{i}$

$$
\left(V_{1} \otimes W_{1}\right) \cap\left(V_{2} \otimes W_{2}\right)=\left(V_{1} \cap V_{2}\right) \otimes\left(W_{1} \cap W_{2}\right) .
$$

(Elementary linear algebra of tensor products.)

- Hilbert spaces: $G \supset G_{i}, H \supset H_{i}$

$$
\left(G_{1} \otimes H_{1}\right) \cap\left(G_{2} \otimes H_{2}\right)=\left(G_{1} \cap G_{2}\right) \otimes\left(H_{1} \cap H_{2}\right) .
$$

(Quite different proof. Generalizes to von Neumann modules.)
Question: Is it true for C^{*}-correspondences $E \supset E_{i}, F \supset F_{i}$ that

$$
\left(E_{1} \odot F_{1}\right) \cap\left(E_{2} \odot F_{2}\right)=\left(E_{1} \cap E_{2}\right) \odot\left(F_{1} \cap F_{2}\right) ?
$$

Relevance: Is the intersection of two product subsystems a product subsystem?
The obvious inclusion of RHS in LHS \leadsto intersection of superproduct subsystems is a superproduct subsystem.
For the intersection of subproduct subsystems we don't know.

Thank you!

Bibliography I

R.V.R. Bhat and M. Skeide, Pure semigroups of isometries on Hilbert C*-modules, J. Funct. Anal. 269 (2015), 1539-1562, electronically Jun 2015. Preprint, arXiv: 1408.2631.

击 M. Frank, On Hahn-Banach type theorems for Hilbert C*-modules, Int. J. Math. 13 (2002), 675-693.
囲 G.K. Pedersen, C^{*}-algebras and their automorphism groups, Academic Press, 1979.
(M. Skeide, Ideal submodules versus ternary ideals versus linking ideals, Preprint, arXiv: 1804.05233v3, 2018.

