On the orthogonal complementarity of closed submodules of Hilbert C^* -modules

Qingxiang Xu (Dept. of Math., Shanghai Normal Univ., China)

"Hilbert C^* -Modules Online Weekend" organized by Michael Frank, Vladimir Manuilov, Evgenij Troitsky

December 5-6, 2020

Qingxiang Xu On the orthogonal complementarity of closed submodules of Hilb

Table of Contents

- 1 The generalized Douglas theorem
- 2 The polar decomposition
- The generalized parallel sum
- 4 Halmos' two projections theorem

5 References

The Douglas theorem

Theorem (Range inclusion-Factorization-Majorization)

Let *H* be a Hilbert space, and $A, B \in \mathbb{B}(H)$. Then the following statements are equivalent:

(i)
$$\mathcal{R}(A) \subseteq \mathcal{R}(B)$$
;

(ii)
$$A = BC$$
 for some $C \in \mathbb{B}(H)$;

(iii)
$$AA^* \leq k^2 BB^*$$
 (or equivalently $||A^*|| \leq k ||B^*||$) for some $k \geq 0$.

Moreover, if (i)–(iii) are valid, then there exists a unique operator $C \in \mathbb{B}(H)$ (known as the reduced solution) so that

(a)
$$||C||^2 = \inf \{ \mu | AA^* \le \mu BB^* \};$$

(b)
$$\mathcal{N}(A) = \mathcal{N}(C);$$

(c) $\mathcal{R}(C) \subseteq \overline{\mathcal{R}(B^*)}$.

The orthogonal complementarity

Let \mathfrak{A} be a C^* -algebra, H and K be (right) Hilbert \mathfrak{A} -modules. The set of adjointable operators from H into K is denoted by $\mathcal{L}(H, K)$.

For every $T \in \mathcal{L}(H, K)$, let $\mathcal{R}(T)$ and $\mathcal{N}(T)$ denote the range and the null space of T, respectively.

A closed submodule M of H is said to be orthogonally complemented in H if $H = M \dotplus M^{\perp}$, where

$$M^{\perp} = \left\{ x \in H : \langle x, y \rangle = 0, \forall y \in M \right\}.$$

In this case, the projection from H onto M is denoted by P_M .

An observation

Proposition

Let M and N be closed submodules of H such that $N \subseteq M$ and M is orthogonally complemented in H. Then the following statements are equivalent:

- (i) N is orthogonally complemented in H;
- (ii) N is orthogonally complemented in M.

Proof.

(i) \Longrightarrow (ii): Let P_N denote the projection from H onto N. Since $N \subseteq M$, $P_M - P_N$ is a projection. Therefore, M can be decomposed orthogonally as $M = N \dotplus \mathcal{R}(P_M - P_N)$. (ii) \Longrightarrow (i): Let X denote the orthogonal part of N in M. Then clearly, $H = N \dotplus N^{\perp}$, where $N^{\perp} = X \dotplus M^{\perp}$.

- 4 同 6 4 日 6 4 日 6

An asymmetry

Let H and K be Hilbert \mathfrak{A} -modules, and $T \in \mathcal{L}(H, K)$. It is known that $\mathcal{R}(T)$ is closed if and only if $\mathcal{R}(T^*)$ is closed.

Problem

Suppose that $\overline{\mathcal{R}(T)}$ is orthogonally complemented. Whether $\overline{\mathcal{R}(T^*)}$ is also orthogonally complemented?

The answer can be negative.

Proposition (Xu-Fang, 2017)

There exist C^* -algebra \mathfrak{A} , Hilbert C^* -modules H and K overt \mathfrak{A} , and an operator $T \in \mathcal{L}(H, K)$ such that $\overline{\mathcal{R}(T^*)}$ is orthogonally complemented in H, whereas $\overline{\mathcal{R}(T)}$ fails to be orthogonally complemented in K.

> < 同 > < 回 > < 回 >

A classical majorization result

A well-known result reads as follows.

Proposition

Let A and B be bounded linear operators on a Hilbert space H. If $AA^* \leq BB^*$, then $\mathcal{R}(A) \subseteq \mathcal{R}(B)$.

Proof.

For every $x \in H$, $||A^*x|| \le ||B^*x||$. So there exists an operator $V: \overline{\mathcal{R}(B^*)} \to \overline{\mathcal{R}(A^*)}$ such that $VB^* = A^*$. An extension of V can be given naturally as $U = VP_{\overline{\mathcal{R}(B^*)}}$. Then $U \in \mathbb{B}(H)$ satisfying $UB^* = A^*$, hence $A = BU^*$, which gives $\mathcal{R}(A) \subseteq \mathcal{R}(B)$.

Suppose that H is a Hilbert space. Then

- Every closed subspace is orthogonally complemented in H;
- Every bounded linear operator on H is adjopintable.

「同 ト イ ヨ ト イ ヨ ト ― ヨ

Range inclusion \implies Factorization?

Proposition (Fang-Moslehian-Xu, 2018)

There exist $T \in \mathcal{L}(H, K)$ and $T' \in \mathcal{L}(K)$ such that $\mathcal{R}(T') \subsetneq \mathcal{R}(T)$, whereas $TX = T', X \in \mathcal{L}(K, H)$ has no solution.

Proof.

Let E be any countably infinite-dimensional Hilbert space, $\mathbb{B}(E)$ (resp. $\mathbb{K}(E)$) be the set of all bounded (resp. compact) linear operators on E. Let $\mathfrak{A} = \mathbb{B}(E)$, $H = \mathbb{B}(E)$ and $K = \mathbb{K}(E)$. Then H and K are Hilbert \mathfrak{A} -modules in the standard way.

Choose any element s in K_+ such that $\overline{s K} = K$. Let $T \in \mathcal{L}(H, K)$ be defined by

$$T(x) = sx$$
, for every $x \in H$.

Then such an operator T will meet the demanding.

Majorization \implies Factorization?

Let A and B be positive. Then clearly,

$$A^{\frac{1}{2}}(A^{\frac{1}{2}})^* \le (A+B)^{\frac{1}{2}} \left[(A+B)^{\frac{1}{2}} \right]^*$$

Proposition (Luo-Song-Xu, 2019)

There exist a Hilbert C^* -module H and $A, B \in \mathcal{L}(H)_+$ such that the operator equation $A^{1/2} = (A+B)^{1/2}X$ with $X \in \mathcal{L}(H)$ has no solution.

Note that neither A nor B constructed in [Luo-Song-Xu, 2019] is a projection, so it is interesting to solve the following problem:

Problem

Find a Hilbert C^* -module H and two projections $P, Q \in \mathcal{L}(H)$ such that the equation $P = (P+Q)^{1/2}X$ with $X \in \mathcal{L}(H)$ has no solution.

A solution

 V.M. Manuilov, M.S. Moslehian, Q. Xu. Proc. Amer. Math. Soc. 148 (2020), no. 3, 1139-1151.
 The construction of P and Q:

Let M_2 be the set of all 2×2 matrices. Set

$$\mathfrak{A} = \big\{ f \in C([0,1]; M_2) : f(0), f(1) \text{ are diagonal} \big\},$$
(1.1)

and put $H = \mathfrak{A}$. Then $\mathcal{L}(H) = \mathfrak{A}$, since \mathfrak{A} is unital.

Let $P,Q \in \mathcal{L}(H)$ be projections determined by

$$P(t) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad Q(t) = \begin{pmatrix} c_t^2 & c_t s_t \\ c_t s_t & s_t^2 \end{pmatrix},$$

where $c_t = \cos \frac{\pi}{2}t$ and $s_t = \sin \frac{\pi}{2}t$ for $t \in [0, 1]$.

Extremely discomplementable projections

Definition

Two projections P and Q are said to be extremely discomplementable if

$$\overline{\mathcal{R}(P+Q)}, \ \overline{\mathcal{R}(P+I-Q)}, \ \overline{\mathcal{R}(I-P+Q)}, \ \overline{\mathcal{R}(I-P+I-Q)}, \ \overline{\mathcal{R}(I-P+I-Q)}$$

are all not orthogonally complemented in H.

Based on the modification of (1.1) by deleting the term "f(0), f(1) are diagonal", two extremely discomplementable projections can then be constructed.

伺 ト く ヨ ト く ヨ ト

The reduced solution

Definition

Let E, H and K be Hilbert \mathfrak{A} -modules, and let $A \in \mathcal{L}(H, K)$ and $C \in \mathcal{L}(E, K)$. An operator $D \in \mathcal{L}(E, H)$ is said to be the reduced solution to the system

$$AX = C, \quad X \in \mathcal{L}(E, H), \tag{1.2}$$

if AD = C and $\mathcal{R}(D) \subseteq \overline{\mathcal{R}(A^*)}$.

Note that $\overline{\mathcal{R}(A^*)} \subseteq \mathcal{N}(A)^{\perp}$, so the reduced solution (if it exists) is unique.

伺 ト イ ヨ ト イ ヨ ト

The generalized Douglas theorem

Theorem (Fang-Moslehian-Xu, 2018)

For every $A \in \mathcal{L}(H, K)$, the following statements are equivalent:

(i) $\mathcal{R}(A^*)$ is orthogonally complemented in H;

(ii) Given every $C \in \mathcal{L}(E, K)$ with $\mathcal{R}(C) \subseteq \mathcal{R}(A)$, system (1.2) has the reduced solution.

Problem

Whether 'the reduced solution" in item (ii) can be replaced with "a solution"?

Up to now, we have no answer.

Now we move to the second topic: the polar decomposition.

伺 と く ヨ と く ヨ と …

Hilbert space case

Let H, K be Hilbert spaces. An element $U \in \mathbb{B}(H, K)$ is called a partial isometry if U^*U is a projection. Let $|T| = (T^*T)^{\frac{1}{2}}$ and $|T^*| = (TT^*)^{\frac{1}{2}}$ for every $T \in \mathbb{B}(H)$.

It is well-known that every $T \in \mathbb{B}(H, K)$ can be decomposed as

$$T = U|T|$$
 with $\mathcal{N}(U) = \mathcal{N}(T)$, (2.1)

where U is a partial isometry. Such a decomposition is unique, and simultaneously T^{\ast} can be decomposed as

$$T^* = U^* |T^*| \quad \text{with} \quad \mathcal{N}(U^*) = \mathcal{N}(|T^*|).$$

• P. R. Halmos, A Hilbert Space Problem Book (2nd Edn). New York: Springer-Verlag, 1982

伺い イラト イラト

Hilbert C^* -module case

Theorem (Wegge-Olsen, Thm 15.3.7)

The following statements are equivalent for every $T \in \mathcal{L}(H)$:

(i) T has the polar decomposition T = U|T|, where $U \in \mathcal{L}(H)$ is a partial isometry for which $\mathcal{N}(U) = \mathcal{N}(T)$ and

$$\mathcal{N}(U^*) = \mathcal{N}(T^*), \ \mathcal{R}(U) = \overline{\mathcal{R}(T)}, \ \mathcal{R}(U^*) = \overline{\mathcal{R}(T^*)};$$

(ii)
$$H = \mathcal{N}(|T|) \dotplus \overline{\mathcal{R}(|T|)}$$
 and $H = \mathcal{N}(T^*) \dotplus \overline{\mathcal{R}(T)}$;

(iii) Both $\overline{\mathcal{R}(T)}$ and $\overline{\mathcal{R}(|T|)}$ are orthogonally complemented in H.

Remark

(1) For densely defined Hilbert C^* -module operators, see M. Frank and K. Sharifi, J. Operator Theory 64 (2) (2010), 377–386. (2) Conditions in item (i) can be simplified.

・ロン ・雪 と ・ ヨ と ・ ヨ と …

ъ

A simplified version

Theorem (Liu-Luo-Xu, 2018)

The following statements are equivalent for every $T \in \mathcal{L}(H, K)$:

- (i) $\overline{\mathcal{R}(T^*)}$ and $\overline{\mathcal{R}(T)}$ are both orthogonally complemented;
- (ii) There exists a (unique) $U \in \mathcal{L}(H, K)$ such that

$$T = U|T|$$
 with $U^*U = P_{\overline{\mathcal{R}}(T^*)}$. (2.2)

In each case,
$$T^* = U^*|T^*|$$
 with $UU^* = P_{\overline{\mathcal{R}(T)}}$.

Remark

In the Hilbert C^* -module case, condition (2.2) can be treated as the definition of the polar decomposition, which can not be simplified as (2.1).

(日) (同) (日) (日) (日)

-

The orthogonal complemented case

Proposition

Let $T \in \mathcal{L}(H, K)$ be such that $\mathcal{R}(T^*)$ is orthogonally complemented. Let $U \in \mathcal{L}(H, K)$ be a partial isometry satisfying

$$T = U|T|$$
 with $\mathcal{N}(T) \subseteq \mathcal{N}(U)$. (2.3)

Then T = U|T| is the polar decomposition of T.

Remark

In the Hilbert space case, $\overline{\mathcal{R}(T^*)}$ is always orthogonally complemented, so if a partial isometry U satisfies (2.3), then U|T| is exactly the polar decomposition of T.

- 4 同 2 4 日 2 4 日

An interesting example

Proposition

There exists a matrix $T \in M_3$ with the polar decomposition T = U|T| such that for each $n \in \mathbb{N}$, (i) $T^{2n-1} = U^{2n-1}|T^{2n-1}|$ is the polar decomposition of T^{2n-1} ; (ii) $T^{2n} \neq U^{2n}|T^{2n}|$.

Example

$$T = \left(\begin{array}{rrr} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array}\right).$$

n-centered operators

Definition

Suppose that $T \in \mathcal{L}(H)$ has the polar decomposition T = U|T|, and n is a natural number. Then T is said to be *n*-centered if for all $1 \leq i \leq n$,

$$T^k = U^k |T^k|$$

is the polar decomposition of T^k . If T is n-centered for every $n \in \mathbb{N}$, then T is said to be a centered operator.

Proposition (Liu-Luo-Xu, 2019)

For every $n \ge 2$, there exist a Hilbert space H and $T \in \mathcal{L}(H)$ such that T is n-centered, whereas T is not (n + 1)-centered.

Now we move to the third topic: the generalized parallel sum.

The case of positive semi-definite matrices

Let $A, B \in \mathbb{C}^{n \times n}$ be positive semi-definite matrices. The parallel sum of A and B is defined by

$$A: B = A(A+B)^{\dagger}B,$$

where $(A+B)^{\dagger}$ is the Moore-Penrose inverse of A+B. It is so named because of its origin in and application to the electrical network theory that

$$(r_1^{-1} + r_2^{-1})^{-1} = r_1(r_1 + r_2)^{-1}r_2$$

is the resistance arising from resistors r_1 and r_2 in parallel.

• W. N. Anderson, Jr. and R. J. Duffin, J. Math. Anal. Appl. 26 (1969), 576–594.

The parallel sum in other settings

- Nonsquare matrices under certain conditions of range inclusions [Mitra-Odell, 1986];
- Positive operators A and B on a Hilbert space such that the range of A + B is closed [Anderson-Schreiber, 1972];
- General positive operators on a Hilbert space without the range restrictions [Fillmore-Williams, 1971; Morley, 1989];
- Nonnegative forms [Hassi-Sebestyén-Snoo, 2009];
- Unbounded operators [Kosaki, 2017];
- States of a C*-algebra [Tarcsay, 2015];
- Linear relations [Arlinskiĭ, 2020];
- Adjointable operators A and B on a Hilbert C^* -module such that the range of A + B is closed [Luo-Song-Xu, 2019].

The background

Let H and K be Hilbert C^* -modules. Suppose that $T \in \mathcal{L}(H, K)$ is Moore-Penrose invertible, that is, $\mathcal{R}(T)$ is closed. Denote by

$$T\{1\} = \left\{ X \in \mathcal{L}(K,H) : TXT = T \right\}.$$

Each element T^- in $T\{1\}$ is called a $\{1\}$ -inverse of T.

Definition

Let $A, B \in \mathcal{L}(H)$ be such that A + B is Moore-Penrose invertible. Then A and B are said to be parallel summable if $A(A+B)^{-}B$ is invariant under any choice of $(A+B)^{-}$. In such case, the parallel sum of A and B is denoted by

$$A: B = A(A+B)^{\dagger}B.$$

Parallel summable condition

Proposition

Let $A, B \in \mathcal{L}(H)$ be such that A + B is Moore-Penrose invertible. Then A and B are parallel summable if and only if

$$\mathcal{R}(A) \subseteq \mathcal{R}(A+B), \quad \mathcal{R}(A^*) \subseteq \mathcal{R}[(A+B)^*].$$
 (3.1)

Remark

Suppose that $A, B \in \mathcal{L}(H)_+$ are such that A + B is Moore-Penrose invertible. Then $\mathcal{R}(A) \subseteq \mathcal{R}(A + B)$, and thus (3.1) is satisfied.

Proposition

Let $A, B \in \mathcal{L}(H)$ be such that |A + B| = |A| + |B| and A + B is Moore-Penrose invertible. Then A and B are parallel summable.

Fillmore-Williams's approach

Let H be a Hilbert space and $T \in \mathbb{B}(H)$. A direct application of the Douglas theorem (or the polar decomposition of T) gives

$$\mathcal{R}(T) = \mathcal{R}\left[(TT^*)^{\frac{1}{2}} \right]. \tag{3.2}$$

Now, given any $A, B \in \mathbb{B}(H)_+$, let

$$T = \left(\begin{array}{cc} 0 & 0 \\ A^{\frac{1}{2}} & B^{\frac{1}{2}} \end{array} \right) \in \mathbb{B}(H \oplus H).$$

Utilizing (3.2) one can obtain the following proposition.

Proposition

Let *H* be a Hilbert space and let $A, B \in \mathbb{B}(H)_+$. Then

$$\mathcal{R}(A^{\frac{1}{2}}) + \mathcal{R}(B^{\frac{1}{2}}) = \mathcal{R}\left[(A+B)^{\frac{1}{2}}\right].$$

・ 同 ト ・ ヨ ト ・ ヨ ト

New definition

Suppose that H is a Hilbert space and $A, B \in \mathbb{B}_+(H)$. Let C and D be the reduced solutions of

$$A^{\frac{1}{2}} = (A+B)^{\frac{1}{2}}X$$
 and $B^{\frac{1}{2}} = (A+B)^{\frac{1}{2}}Y$.

Then the parallel sum of A and B is defined by

$$A: B = A^{\frac{1}{2}}C^*DB^{\frac{1}{2}}.$$

In the special case that $\mathcal{R}(A+B)$ is closed, this parallel sum is exactly equal to $A(A+B)^{\dagger}B$.

• P. A. Fillmore and J. P. Williams, Adv. Math. 7 (1971), 254–281.

• • = • • = •

The idea

As is shown above, the main tool employed in [Fillmore-Williams] for the parallel sum is the Douglas theorem for bounded linear operators on Hilbert spaces. This tool is only conditionally applicable in the case of Hilbert C^* -module.

To deal with the parallel sum, some new phenomena may happen if

The tractable pair

Definition

Let $A \in \mathcal{L}(H, K)$ and let $B \in \mathcal{L}(K)$. Put

$$T_{A,B} := \begin{pmatrix} 0 & 0 \\ A & B \end{pmatrix} \in \mathcal{L}(H \oplus K).$$

The pair (A, B) is said to be tractable if $T_{A,B}$ has the polar decomposition.

Theorem (Fu-Moslehian-Xu-Zamani, 2020)

Let $S_{A,B} = (AA^* + BB^*)^{\frac{1}{2}}$ for $A \in \mathcal{L}(H, K)$ and $B \in \mathcal{L}(K)$. Then the pair (A, B) is tractable if and only if the following conditions are satisfied:

(i) $\overline{\mathcal{R}(S_{A,B})}$ is orthogonally complemented in K; (ii) $\mathcal{R}(A) \subseteq \mathcal{R}(S_{A,B})$ and $\mathcal{R}(B) \subseteq \mathcal{R}(S_{A,B})$.

The generalized parallel sum

Suppose that items (i) and (ii) are satisfied. By the (conditional) Douglas theorem, both of the systems

$$S_{A,B}X = A \left(X \in \mathcal{L}(H,K) \right), \quad S_{A,B}Y = B \left(Y \in \mathcal{L}(K) \right) \quad (3.3)$$

have the reduced solutions, which are denoted by ${\cal C}$ and ${\cal D},$ respectively.

Definition

Let $A \in \mathcal{L}(H, K)$, $B \in \mathcal{L}(K)$, and suppose that the pair (A, B) is tractable. The generalized parallel sum of A and B is defined by

$$A \circledast B = AC^*(BD^*)^*,$$

where C and D are the reduced solutions to the systems (3.3).

伺 ト イ ヨ ト イ ヨ ト

Some properties

Proposition

Let $A \in \mathcal{L}(H, K)$, $B \in \mathcal{L}(K)$, and suppose that the pair (A, B) is tractable. Then the following statements are valid: (i) $0 \leq A \circledast B = B \circledast A$. (ii) $A \circledast B < AA^*$ and $A \circledast B < BB^*$. (iii) $A \circledast B \leq \frac{1}{4}(AA^* + BB^*).$ (iv) $\mathcal{R}(AA^*) \cap \mathcal{R}(BB^*) \subseteq \mathcal{R}(A \circledast B) \subseteq \mathcal{R}(A) \cap \mathcal{R}(B).$ (v) $\overline{\mathcal{R}(A \circledast B)} = \overline{\mathcal{R}(A) \cap \mathcal{R}(B)}.$ (vi) If $A_n := (AA^* + \frac{1}{n}I)^{\frac{1}{2}}$ $(n \in \mathbb{N})$, then $\lim A_n \circledast B = A \circledast B$ in the strict topology.

・ 同 ト ・ ヨ ト ・ ヨ ト

The relationship

Proposition

Let $A \in \mathcal{L}(H, K)$, $B \in \mathcal{L}(K)$, and suppose that A and B have the polar decompositions. Then (A, B) is tractable if and only if $(|A^*|, |B^*|)$ is tractable. In this case,

$$A \circledast B = |A^*| \circledast |B^*| = AA^* : BB^*.$$

It leads a definition as follows:

Definition

If $A, B \in \mathcal{L}(H)_+$ are such that $(A^{\frac{1}{2}}, B^{\frac{1}{2}})$ is tractable. Then $A^{\frac{1}{2}} \circledast B^{\frac{1}{2}}$ and $2(A^{\frac{1}{2}} \circledast B^{\frac{1}{2}})$ are denoted by A : B and A!B, and are called the parallel sum and the harmonic mean of A and B.

A problem

Proposition

There exist Hilbert C^* -modules H and K, and some $A \in \mathcal{L}(H, K)$ and $B \in \mathcal{L}(K)$ such that $(|A^*|, |B^*|)$ is tractable, whereas (A, B)is not tractable.

Problem

Is it possible to find $A \in \mathcal{L}(H, K)$ and $B \in \mathcal{L}(K)$ for some Hilbert C^* -modules H and K such that (A, B) is tractable, whereas $(|A^*|, |B^*|)$ is not tractable?

Up to now, we have no answer.

Now we move to the last topic: the Halmos' two projections theorem.

The Friedrichs angle

Objects: M and N are two closed subspaces of a Hilbert space H.

Notations:

$$\begin{split} \widetilde{M} &= M \cap (M \cap N)^{\perp}, \quad \widetilde{N} = N \cap (M \cap N)^{\perp}, \\ c(M,N) &= \sup \left\{ |\langle x, y \rangle| : x \in \widetilde{M}, y \in \widetilde{N}, \|x\| \leq 1, \|y\| \leq 1 \right\}. \end{split}$$

Definition

The Friedrichs angle [Friedrichs, 1937], denoted by $\alpha(M, N)$, is the unique angle in $[0, \frac{\pi}{2}]$ whose cosine is equal to c(M, N).

高 と く ヨ と く ヨ と

A natural question

For every closed subspaces M and N of a Hilbert space H, it is known [Deutsch, 1994] that

$$c(M,N) = \left\| P_M P_N \left(I - P_{M \cap N} \right) \right\|.$$

Hence

$$c(M^{\perp}, N^{\perp}) = \|P_{M^{\perp}} P_{N^{\perp}} (I - P_{M^{\perp} \cap N^{\perp}})\| \\= \|(I - P_M)(I - P_N) (I - P_{M^{\perp} \cap N^{\perp}})\|.$$

Natural question: Whether is it true that

$$c(M,N) = c(M^{\perp}, N^{\perp})?$$

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

Hilbert space case

A positive answer can be given based on the following norm equation:

$$\left\|PQ - P_{\mathcal{R}(P)\cap\mathcal{R}(Q)}\right\| = \left\|(I-P)(I-Q) - P_{\mathcal{N}(P)\cap\mathcal{N}(Q)}\right\|, \quad (4.1)$$

where P and Q are any projections on a Hilbert space H.

• F. Deutsch, The angle between subspaces of a Hilbert space, Approximation theory, wavelets and applications (Maratea, 1994), 107–130,

The proof of equation (4.1) given in [Deutsch, 1994] relies on the Pythagorean theorem, that is, for every projection P on H, and every element x in H, it has

$$||x||^2 = ||P(x)||^2 + ||(I - P)x||^2.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

The motivation

The Pythagorean theorem is no longer true for a general Hilbert C^* -module H, since in this case only an inequality can be obtained:

$$||x||^{2} = ||a^{2} + b^{2}|| \le ||a||^{2} + ||b||^{2} = ||P(x)||^{2} + ||(I - P)x||^{2},$$

in which $a = \langle Px, Px \rangle^{\frac{1}{2}}$ and $b = \langle (I - P)x, (I - P)x \rangle^{\frac{1}{2}}$.

Suppose that H is a Hilbert C^* -module, $P, Q \in \mathcal{L}(H)$ are two projections such that $\mathcal{R}(P) \cap \mathcal{R}(Q)$ and $\mathcal{N}(P) \cap \mathcal{N}(Q)$ are both orthogonally complemented. Is it always true that

$$||PQ - P_{\mathcal{R}(P)\cap\mathcal{R}(Q)}|| = ||(I-P)(I-Q) - P_{\mathcal{N}(P)\cap\mathcal{N}(Q)}||$$
? (4.2)

Remark

This leads us to study the validity of the above norm equation by constructing unitary operators based on the generalized Halmos' two projections theorem.

A space decomposition

Let K be a Hilbert space, $P, Q \in \mathbb{B}(K)$ be two projections. Put

$$K_1 = \mathcal{R}(P) \cap \mathcal{R}(Q), \quad K_2 = \mathcal{R}(P) \cap \mathcal{N}(Q),$$

$$K_3 = \mathcal{N}(P) \cap \mathcal{R}(Q), \quad K_4 = \mathcal{N}(P) \cap \mathcal{N}(Q),$$

and

$$K_5 = \mathcal{R}(P) - K_1 \oplus K_2, \quad K_6 = \mathcal{N}(P) - K_3 \oplus K_4.$$

With the notation as above, we have

$$P = \begin{pmatrix} I & & & \\ & I & & & \\ & & 0 & & \\ & & & 0 & \\ & & & I & \\ & & & & 0 \end{pmatrix}, \ Q = \begin{pmatrix} I & & & & \\ & 0 & & & \\ & & I & & \\ & & & 0 & \\ & & & & T \end{pmatrix}$$

.

Halmos' two projections theorem

Theorem (Halmos, 1969)

Suppose that K is a Hilbert space and $P, Q \in \mathbb{B}(K)$ are projections. Then $K_5 = 0$ if and only if $K_6 = 0$. When $K_5 \neq 0$, the operator T can be written as

$$T = \begin{pmatrix} Q_0 & Q_0^{\frac{1}{2}} (I_{K_5} - Q_0)^{\frac{1}{2}} U_0 \\ U_0^* Q_0^{\frac{1}{2}} (I_{K_5} - Q_0)^{\frac{1}{2}} & U_0^* (I_{K_5} - Q_0) U_0 \end{pmatrix} \in \mathbb{B}(K_5 \oplus K_6),$$

where U_0 is a unitary operator from K_6 to K_5 , both Q_0 and $I_{K_5} - Q_0$ are positive, injective and contractive.

- P. Halmos, Two subspaces, Trans. Amer. Math. Soc., 1969
- C. Deng and H. Du, Acta Math. Sinica (Chinese Series), 2006
- A. Böttcher and I. M. Spitkovsky, Linear Algebra Appl., 2010

An application of Halmos' theorem

Proposition

Let K be a Hilbert space and $P, Q \in \mathbb{B}(K)$ be projections. If

$$\mathcal{R}(P) \cap \mathcal{R}(Q) = \{0\}$$
 and $\mathcal{N}(P) \cap \mathcal{N}(Q) = \{0\},$

then there exists a unitary operator $U \in \mathbb{B}(K)$ such that

$$(I - P)(I - Q) = U \cdot PQ \cdot U^*,$$

$$I - P + I - Q = U \cdot (P + Q) \cdot U^*.$$

Outline of the proof By assumption $K_1 = \{0\}$ and $K_4 = \{0\}$.

Case 1: $K_5 \neq \{0\}$; equivalently, $K_6 \neq \{0\}$. In this case,

$$P = I_{K_2} \oplus 0_{K_3} \oplus I_{K_5} \oplus 0_{K_6},$$
$$Q = 0_{K_2} \oplus I_{K_3} \oplus T.$$

伺 ト イ ヨ ト イ ヨ ト

It follows immediately that

$$PQ = 0 \oplus 0 \oplus T_1, (I - P)(I - Q) = 0 \oplus 0 \oplus T_2, P + Q = I_{K_2} \oplus I_{K_3} \oplus T_3, I - P + I - Q = I_{K_2} \oplus I_{K_3} \oplus T_4,$$

in which

$$\begin{split} T_1 &= \left(\begin{array}{cc} Q_0 & Q_0^{\frac{1}{2}} (I_{K_5} - Q_0)^{\frac{1}{2}} U_0 \\ 0 & 0 \end{array} \right), \\ T_2 &= \left(\begin{array}{cc} 0 & 0 \\ -U_0^* Q_0^{\frac{1}{2}} (I_{K_5} - Q_0)^{\frac{1}{2}} & U_0^* Q_0 U_0 \end{array} \right), \\ T_3 &= \left(\begin{array}{cc} I_{K_5} + Q_0 & Q_0^{\frac{1}{2}} (I_{K_5} - Q_0)^{\frac{1}{2}} U_0 \\ U_0^* Q_0^{\frac{1}{2}} (I_{K_5} - Q_0)^{\frac{1}{2}} & U_0^* (I_{K_5} - Q_0) U_0 \end{array} \right), \\ T_4 &= \left(\begin{array}{cc} I_{K_5} - Q_0 & -Q_0^{\frac{1}{2}} (I_{K_5} - Q_0)^{\frac{1}{2}} U_0 \\ -U_0^* Q_0^{\frac{1}{2}} (I_{K_5} - Q_0)^{\frac{1}{2}} & U_0^* (I_{K_5} + Q_0) U_0 \end{array} \right). \end{split}$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

æ

Then the operator U defined by

$$U = I_{K_2} \oplus I_{K_3} \oplus \widetilde{U} \in \mathbb{B}(K_2 \oplus K_3 \oplus K_5 \oplus K_6)$$

will meet the demanding, where

$$\widetilde{U} = \begin{pmatrix} 0 & -U_0 \\ U_0^* & 0 \end{pmatrix} \in \mathbb{B}(K_5 \oplus K_6).$$

Case 2: $K_5 = \{0\}$; equivalently, $K_6 = \{0\}$. In this case,

$$PQ = 0, (I - P)(I - Q) = 0,$$

$$P + Q = I_{K_2} \oplus I_{K_3} = I - P + I - Q.$$

The pair of harmonious projections

Definition

Two projections P and Q on a Hilbert C^* -module H are said to be harmonious if the four closures

$$\overline{\mathcal{R}(P+Q)}, \overline{\mathcal{R}(P+I-Q)}, \overline{\mathcal{R}(I-P+Q)}, \overline{\mathcal{R}(I-P+I-Q)}, \overline{\mathcal{R}(I-P+I-Q)}, \overline{\mathcal{R}(I-P+I-Q)}, \overline{\mathcal{R}(P+Q)}, \overline{\mathcal{R}(P+Q)}$$

are all orthogonally complemented in H.

Proposition

Two projections P and Q on a Hilbert C^* -module H are harmonious if and only if $\overline{\mathcal{R}[PQ(I-P)]}$ and $\overline{\mathcal{R}[(I-P)QP]}$ are both orthogonally complemented in H.

The generalized Halmos' two projections theorem

In the Hilbert C^* -module case, an additional condition of

$$\overline{\mathcal{R}\big[Q_0(I_{K_5}-Q_0)\big]}=K_5$$

has to be added, where Q_0 appears in the expression of T. This condition will be satisfied automatically in the Hilbert space case, since $\mathcal{N}[Q_0(I_{K_5} - Q_0)] = \{0\}$ and $\overline{\mathcal{R}[Q_0(I_{K_5} - Q_0)]}$ is always orthogonally complemented in H_5 .

Theorem (Luo-Moslehian-Xu, 2019; Xu-Yan, 2020)

Let P, Q be projections on a Hilbert C^* -module H. Then the Halmos' two projections theorem is valid if and only if P and Q are harmonious.

Remark

Based on the Halmos' two projections theorem, a positive answer can be given to the validity of the norm equation (4.2).

Concluding remark

It is known that a closed submodule of a Hilbert C*-module may fail to be orthogonally complemented. Due to this weakness, some new phenomena may happen compared with that in a Hilbert space.

In the framework of adjointable operators on Hilbert C*-modules, we have reported some of our recent joint works on the generalized Douglas theorem, the polar decomposition, the generalized parallel sum and the generalized Halmos' two projections theorem.

References

- X. Fang, M.S. Moslehian and Q. Xu, On majorization and range inclusion of operators on Hilbert *C**-modules, Linear Multilinear Algebra 66 (2018), no. 12, 2493–2500.
- R.G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert spaces, Proc. Amer. Math. Soc. 17 (1966), 413–415.
- V.M. Manuilov, M.S. Moslehian and Q. Xu, Solvability of the equation AX = C for operators on Hilbert C*-modules, Proc. Amer. Math. Soc. 148 (2020), no. 3, 1139–1151.
- M. Frank and K. Sharifi, Generalized inverses and polar decomposition of unbounded regular operators on Hilbert C*-modules, J. Operator Theory 64 (2010), no. 2, 377–386.
- N. Liu, W. Luo and Q. Xu, The polar decomposition for adjointable operators on Hilbert C*-modules and centered operators, Adv. Oper. Theory 3 (2018), no. 4, 855–867.

- N. Liu, W. Luo and Q. Xu, The polar decomposition for adjointable operators on Hilbert C*-modules and n-centered operators, Banach J. Math. Anal. 13 (2019), no. 3, 627–646.
- N.E. Wegge-Olsen, *K*-Theory and *C**-Algebras: A Friendly Approach, Oxford Univ. Press, Oxford, England, 1993.
- W.N. Anderson, Jr. and R.J. Duffin, Series and parallel addition of matrices, J. Math. Anal. Appl. 26 (1969), 576–594.
- P.A. Fillmore and J.P. Williams, On operator ranges, Adv. Math. 7 (1971), 254–281.
- C. Fu, M.S. Moslehian, Q. Xu and A. Zamani, Generalized parallel sum of adjointable operators on Hilbert C*-modules, Linear Multilinear Algebra, to appear
- W. Luo, C. Song and Q. Xu, The parallel sum for adjointable operators on Hilbert C*-modules, (Chinese) Acta Math. Sinica (Chin. Ser.) 62 (2019), no. 4, 541–552.

・ロト ・同ト ・ヨト ・ヨト

- A. Böttcher and I. M. Spitkovsky, A gentle guide to the basics of two projections theory, Linear Algebra Appl. 432 (2010), no. 6, 1412–1459.
- F. Deutsch, The angle between subspaces of a Hilbert space, Approximation theory, wavelets and applications (Maratea, 1994), 107–130, NATO Adv. Sci. Inst. Ser. Math. Phys. Sci., 454, Kluwer Acad. Publ., Dordrecht, 1995.
- P. Halmos, Two subspaces, Trans. Amer. Math. Soc. 144 (1969), 381–389.
- W. Luo, M.S. Moslehian and Q. Xu, Halmos' two projections theorem for Hilbert C*-module operators and the Friedrichs angle of two closed submodules, Linear Algebra Appl. 577 (2019), 134–158.
- Q. Xu and G. Yan, Harmonious projections and Halmos' two projections theorem for Hilbert C*-module operators, Linear Algebra Appl. 601 (2020), 265–284

Thank you for your attention

.⊒ . ►