ON A QUESTION RAISED BY MICHAEL SKEIDE

JENS KAAD

We choose a dense countable subset $Q = \{q(n) \mid n \in \mathbb{N}\} \subseteq [0, 1]$ such that q(n) > 0 for all $n \in \mathbb{N}$. For each $n \in \mathbb{N}$, we consider the indicator function $\chi_{[0,q(n))} : [0, 1] \rightarrow [0, 1]$ for the half-open interval [0, q(n)) and we choose a sequence $\{\psi_m(n)\}_{m=1}^{\infty}$ of continuous functions $\psi_m(n) : [0, 1] \rightarrow [0, 1]$ such that

$$\sum_{m=1}^{\infty} \psi_m(n)^2(t) = \chi_{[0,q(n))}(t) \tag{1}$$

for all $t \in [0, 1]$.

We let $\ell^2(\mathbb{N}, C([0, 1]))$ denote the standard Hilbert C^* -module over the unital C^* algebra C([0, 1]) (of continuous functions on the interval [0, 1]). For each $m \in \mathbb{N}$, we let $e_m \in \ell^2(\mathbb{N}, C([0, 1]))$ denote the sequence, which is constant equal to one in position $m \in \mathbb{N}$ and zero elsewhere.

For each $n \in \mathbb{N}$, we define the C([0, 1])-linear bounded operator

$$\Psi(n): \ell^2(\mathbb{N}, C([0,1])) \to C([0,1]) \quad \Psi(n)(e_m) := \psi_m(n).$$

Lemma 0.1. Let $n \in \mathbb{N}$. The C([0,1])-linear bounded operator $\Psi(n) : \ell^2(\mathbb{N}, C([0,1])) \to C([0,1])$ is a non-adjointable contraction.

Proof. For each $m \in \mathbb{N}$, we let $P_m : \ell^2(\mathbb{N}, C([0,1])) \to \ell^2(\mathbb{N}, C([0,1]))$ denote the orthogonal projection onto the closed submodule $e_m \cdot C([0,1]) \subseteq \ell^2(\mathbb{N}, C([0,1]))$. For each $M \in \mathbb{N}$, we equip \mathbb{C}^M with the standard Hilbert space structure and the norm of $\Psi(n) \sum_{m=1}^M P_m : \ell^2(\mathbb{N}, C([0,1])) \to C([0,1])$ then agrees with the norm of the continuous map

$$\begin{pmatrix} \psi_1(n) \\ \psi_2(n) \\ \vdots \\ \psi_M(n) \end{pmatrix} : [0,1] \to \mathbb{C}^M$$

which in turn agrees with $\sup_{t \in [0,1]} \left\{ \sqrt{\sum_{m=1}^{M} \psi_m(n)^2(t)} \right\}$. By (1) this norm is dominated by 1 and it follows that $\Psi(n) : \ell^2(\mathbb{N}, C([0,1])) \to C([0,1])$ is a contraction.

Since the sum $\sum_{m=1}^{\infty} \psi_m(n)^2$ is only pointwise convergent and not convergent with respect to the C^* -algebra norm on C([0,1]) we see that $\Psi(n) : \ell^2(\mathbb{N}, C([0,1])) \to C([0,1])$ is not adjointable. Indeed, the sequence $\{\psi_m(n)\}_{m=1}^{\infty}$ does not belong to $\ell^2(\mathbb{N}, C([0,1]))$.

We let X denote the Hilbert C^* -module direct sum

$$X := C([0,1]) \oplus \Big(\bigoplus_{n=1}^{\infty} \ell^2(\mathbb{N}, C([0,1])) \Big).$$

$$\tag{2}$$

For each $n \in \mathbb{N}$ we then have the adjointable isometric inclusion $\iota(n) : \ell^2(\mathbb{N}, C([0, 1])) \to X$ of the Hilbert C^* -module $\ell^2(\mathbb{N}, C([0, 1]))$ into the n^{th} component of X and we also consider the adjointable isometric inclusion $\iota(0) : C([0, 1]) \to X$ of the Hilbert C^* -module C([0, 1]) into the 0^{th} component of X.

We let $\Psi(0) := 1 : C([0,1]) \to C([0,1])$ denote the identity operator. We equip X with the C([0,1])-linear bounded operator

$$\Psi: X \to C([0,1]) \quad \Psi = \sum_{n=0}^{\infty} 2^{-n} \Psi(n) \iota(n)^*,$$

where the infinite sum converges absolutely in operator norm.

Now, for each $m, n \in \mathbb{N}$ we define the vector

$$\zeta_m(n) := \iota(0) \left(2^{-n} \psi_m(n) \right) - \iota(n)(e_m) \in X$$

and we define the subspace $S \subseteq X$ as the span of all these vectors, thus

 $S := \operatorname{span}_{\mathbb{C}} \{ \zeta_m(n) \mid m, n \in \mathbb{N} \}.$

Lemma 0.2. It holds that $\Psi(\zeta) = 0$ for all $\zeta \in S$.

Proof. This is immediate since

$$\Psi(\zeta_m(n)) = 2^{-n} \psi_m(n) - 2^{-n} \Psi(n)(e_m) = 0$$

for all $m, n \in \mathbb{N}$.

Lemma 0.3. It holds that $S^{\perp} = \{0\}$.

Ϋ́

Proof. Let $x = \{x(n)\}_{n=0}^{\infty} \in S^{\perp}$ be given. For each $n \in \mathbb{N}_0$ we have that $x(n) = \sum_{m=1}^{\infty} e_m x_m(n) \in \ell^2(\mathbb{N}, C([0, 1]))$ for some continuous functions $x_m(n), m \in \mathbb{N}$, whereas $x(0) \in C([0, 1])$. For each $n, m \in \mathbb{N}$ we compute that

$$2^{-n}\psi_m(n)x(0) - x_m(n) = 2^{-n}\psi_m(n)x(0) - \langle e_m, x(n) \rangle = \langle \zeta_m(n), x \rangle = 0$$

and hence that

$$x_m(n) = 2^{-n} \psi_m(n) \cdot x(0) \quad \text{for all } n, m \in \mathbb{N}.$$
(3)

Suppose now for contradiction that $x \neq 0$. By (3) we must have that $x(0)(t_0) \neq 0$ for some $t_0 \in [0,1]$ and then by continuity there exists an open set $U \subseteq [0,1]$ such that $x(0)(t) \neq 0$ for all $t \in U$. Since the countable set $Q \subseteq [0,1]$ is dense we may then find an $n_0 \in \mathbb{N}$ such that $q(n_0) \in U$. Since $x \in X$ we know that $\iota(n_0)^*(x) = x(n_0) \in \ell^2(\mathbb{N}, C([0,1]))$. However, from (3) we see that

$$x(n_0) = \sum_{m=1}^{\infty} e_m \cdot 2^{-n_0} \psi_m(n_0) \cdot x(0).$$

This is a contradiction since the sum

$$\sum_{m=1}^{\infty} 2^{-2n_0} \psi_m(n_0)^2 \cdot |x(0)|^2$$

does not converge in supremum norm. Indeed, by (1) the above sum converges pointwise to the function

$$2^{-2n_0}\chi_{[0,q(n_0))} \cdot |x(0)|^2 : [0,1] \to [0,\infty)$$

which has a discontinuity at the point $q(n_0) \in [0, 1]$. This proves the lemma.

We gather what we have obtained so far:

Proposition 0.1. Let $E = \ell^2(\mathbb{N}, C([0, 1]))$ denote the standard Hilbert C^{*}-module over the unital C^{*}-algebra C([0, 1]). Then there exists a non-trivial C([0, 1])-linear bounded operator $\Phi : E \to C([0, 1])$ and a subspace $S \subseteq E$ such that

$$\Phi(\zeta) = 0 \quad for \ all \ \zeta \in S \quad and \quad S^{\perp} = \{0\}.$$

Jens Kaad, Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark

E-mail address: kaad@imada.sdu.dk