ON A QUESTION RAISED BY MICHAEL SKEIDE

JENS KAAD

We choose a dense countable subset $Q=\{q(n) \mid n \in \mathbb{N}\} \subseteq[0,1]$ such that $q(n)>$ 0 for all $n \in \mathbb{N}$. For each $n \in \mathbb{N}$, we consider the indicator function $\chi_{[0, q(n))}:[0,1] \rightarrow$ $[0,1]$ for the half-open interval $[0, q(n))$ and we choose a sequence $\left\{\psi_{m}(n)\right\}_{m=1}^{\infty}$ of continuous functions $\psi_{m}(n):[0,1] \rightarrow[0,1]$ such that

$$
\begin{equation*}
\sum_{m=1}^{\infty} \psi_{m}(n)^{2}(t)=\chi_{[0, q(n))}(t) \tag{1}
\end{equation*}
$$

for all $t \in[0,1]$.
We let $\ell^{2}(\mathbb{N}, C([0,1]))$ denote the standard Hilbert C^{*}-module over the unital C^{*} algebra $C([0,1])$ (of continuous functions on the interval $[0,1]$). For each $m \in \mathbb{N}$, we let $e_{m} \in \ell^{2}(\mathbb{N}, C([0,1]))$ denote the sequence, which is constant equal to one in position $m \in \mathbb{N}$ and zero elsewhere.

For each $n \in \mathbb{N}$, we define the $C([0,1])$-linear bounded operator

$$
\Psi(n): \ell^{2}(\mathbb{N}, C([0,1])) \rightarrow C([0,1]) \quad \Psi(n)\left(e_{m}\right):=\psi_{m}(n)
$$

Lemma 0.1. Let $n \in \mathbb{N}$. The $C([0,1])$-linear bounded operator $\Psi(n)$: $\ell^{2}(\mathbb{N}, C([0,1])) \rightarrow C([0,1])$ is a non-adjointable contraction.
Proof. For each $m \in \mathbb{N}$, we let $P_{m}: \ell^{2}(\mathbb{N}, C([0,1])) \rightarrow \ell^{2}(\mathbb{N}, C([0,1]))$ denote the orthogonal projection onto the closed submodule $e_{m} \cdot C([0,1]) \subseteq \ell^{2}(\mathbb{N}, C([0,1]))$. For each $M \in \mathbb{N}$, we equip \mathbb{C}^{M} with the standard Hilbert space structure and the norm of $\Psi(n) \sum_{m=1}^{M} P_{m}: \ell^{2}(\mathbb{N}, C([0,1])) \rightarrow C([0,1])$ then agrees with the norm of the continuous map

$$
\left(\begin{array}{c}
\psi_{1}(n) \\
\psi_{2}(n) \\
\vdots \\
\psi_{M}(n)
\end{array}\right):[0,1] \rightarrow \mathbb{C}^{M}
$$

which in turn agrees with $\sup _{t \in[0,1]}\left\{\sqrt{\sum_{m=1}^{M} \psi_{m}(n)^{2}(t)}\right\}$. By (1) this norm is dominated by 1 and it follows that $\Psi(n): \ell^{2}(\mathbb{N}, C([0,1])) \rightarrow C([0,1])$ is a contraction.
Since the sum $\sum_{m=1}^{\infty} \psi_{m}(n)^{2}$ is only pointwise convergent and not convergent with respect to the C^{*}-algebra norm on $C([0,1])$ we see that $\Psi(n): \ell^{2}(\mathbb{N}, C([0,1])) \rightarrow$ $C([0,1])$ is not adjointable. Indeed, the sequence $\left\{\psi_{m}(n)\right\}_{m=1}^{\infty}$ does not belong to $\ell^{2}(\mathbb{N}, C([0,1]))$.

We let X denote the Hilbert C^{*}-module direct sum

$$
\begin{equation*}
X:=C([0,1]) \oplus\left(\oplus_{n=1}^{\infty} \ell^{2}(\mathbb{N}, C([0,1]))\right) \tag{2}
\end{equation*}
$$

For each $n \in \mathbb{N}$ we then have the adjointable isometric inclusion $\iota(n)$: $\ell^{2}(\mathbb{N}, C([0,1])) \rightarrow X$ of the Hilbert C^{*}-module $\ell^{2}(\mathbb{N}, C([0,1]))$ into the $n^{\text {th }}$ component of X and we also consider the adjointable isometric inclusion $\iota(0): C([0,1]) \rightarrow$ X of the Hilbert C^{*}-module $C([0,1])$ into the $0^{\text {th }}$ component of X.

We let $\Psi(0):=1: C([0,1]) \rightarrow C([0,1])$ denote the identity operator. We equip X with the $C([0,1])$-linear bounded operator

$$
\Psi: X \rightarrow C([0,1]) \quad \Psi=\sum_{n=0}^{\infty} 2^{-n} \Psi(n) \iota(n)^{*}
$$

where the infinite sum converges absolutely in operator norm.
Now, for each $m, n \in \mathbb{N}$ we define the vector

$$
\zeta_{m}(n):=\iota(0)\left(2^{-n} \psi_{m}(n)\right)-\iota(n)\left(e_{m}\right) \in X
$$

and we define the subspace $S \subseteq X$ as the span of all these vectors, thus

$$
S:=\operatorname{span}_{\mathbb{C}}\left\{\zeta_{m}(n) \mid m, n \in \mathbb{N}\right\}
$$

Lemma 0.2. It holds that $\Psi(\zeta)=0$ for all $\zeta \in S$.
Proof. This is immediate since

$$
\Psi\left(\zeta_{m}(n)\right)=2^{-n} \psi_{m}(n)-2^{-n} \Psi(n)\left(e_{m}\right)=0
$$

for all $m, n \in \mathbb{N}$.
Lemma 0.3. It holds that $S^{\perp}=\{0\}$.
Proof. Let $x=\{x(n)\}_{n=0}^{\infty} \in S^{\perp}$ be given. For each $n \in \mathbb{N}_{0}$ we have that $x(n)=$ $\sum_{m=1}^{\infty} e_{m} x_{m}(n) \in \ell^{2}(\mathbb{N}, C([0,1]))$ for some continuous functions $x_{m}(n), m \in \mathbb{N}$, whereas $x(0) \in C([0,1])$. For each $n, m \in \mathbb{N}$ we compute that

$$
2^{-n} \psi_{m}(n) x(0)-x_{m}(n)=2^{-n} \psi_{m}(n) x(0)-\left\langle e_{m}, x(n)\right\rangle=\left\langle\zeta_{m}(n), x\right\rangle=0
$$

and hence that

$$
\begin{equation*}
x_{m}(n)=2^{-n} \psi_{m}(n) \cdot x(0) \quad \text { for all } n, m \in \mathbb{N} . \tag{3}
\end{equation*}
$$

Suppose now for contradiction that $x \neq 0$. By (3) we must have that $x(0)\left(t_{0}\right) \neq 0$ for some $t_{0} \in[0,1]$ and then by continuity there exists an open set $U \subseteq[0,1]$ such that $x(0)(t) \neq 0$ for all $t \in U$. Since the countable set $Q \subseteq[0,1]$ is dense we may then find an $n_{0} \in \mathbb{N}$ such that $q\left(n_{0}\right) \in U$. Since $x \in X$ we know that $\iota\left(n_{0}\right)^{*}(x)=x\left(n_{0}\right) \in \ell^{2}(\mathbb{N}, C([0,1]))$. However, from (3) we see that

$$
x\left(n_{0}\right)=\sum_{m=1}^{\infty} e_{m} \cdot 2^{-n_{0}} \psi_{m}\left(n_{0}\right) \cdot x(0) .
$$

This is a contradiction since the sum

$$
\sum_{m=1}^{\infty} 2^{-2 n_{0}} \psi_{m}\left(n_{0}\right)^{2} \cdot|x(0)|^{2}
$$

does not converge in supremum norm. Indeed, by (1) the above sum converges pointwise to the function

$$
2^{-2 n_{0}} \chi_{\left[0, q\left(n_{0}\right)\right)} \cdot|x(0)|^{2}:[0,1] \rightarrow[0, \infty)
$$

which has a discontinuity at the point $q\left(n_{0}\right) \in[0,1]$. This proves the lemma.
We gather what we have obtained so far:

Proposition 0.1. Let $E=\ell^{2}(\mathbb{N}, C([0,1]))$ denote the standard Hilbert C^{*}-module over the unital C^{*}-algebra $C([0,1])$. Then there exists a non-trivial $C([0,1])$-linear bounded operator $\Phi: E \rightarrow C([0,1])$ and a subspace $S \subseteq E$ such that

$$
\Phi(\zeta)=0 \quad \text { for all } \zeta \in S \quad \text { and } \quad S^{\perp}=\{0\} .
$$

Jens Kaad, Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark

E-mail address: kaad@imada.sdu.dk

