
Problems

(1) Let A be a C∗-algebra, a ∈ A and let p, q ∈ A be orthogonal projections (i.e.
selfadjoint idempotents with pq = 0). Suppose that a is positive and pap = 0.
Show that paq = 0.

(2) Let A be a C∗-algebra, a ∈ A. Denote by aAa the set of all elements of the form
aba with b ∈ A and by aAa the closure of that set. Recall that a C∗-subalgebra
B ⊂ A is hereditary if the conditions 0 ≤ a ≤ b and b ∈ B imply a ∈ B.
(a) Check that aAa is a C∗-subalgebra for any a ∈ A.
(b) Let p ∈ A be a projection. Check that pAp is closed.
(c) Show that pAp is hereditary for any projection p.
(d) Show that aAa is hereditary for any positive a ∈ A.

(3) Let X ⊂ R be the set of points 1, 1/2, 1/3, . . . and 0. For the C∗-algebra M2 of
two-by-two matrices denote by C(X, M2) the set of all continuous functions on
X with values in M2. Put B1 = {f ∈ C(X, M2) : f(0) is diagonal}, B2 = {f ∈
C(X, M2) : f(0) has the form ( ∗ 0

0 0 )}.
(a) Show that C(X,M2), B1, B2 are C∗-algebras.
(b) Find all (two-sided closed) ideals of the C∗-algebras C(X), C(X, M2), B1, B2.

(4) Let A be a C∗-algebra, J ⊂ A an ideal, and let a ∈ A be selfadjoint. Show that
there exists j ∈ J such that ‖[a]‖ = ‖a− j‖, where [a] ∈ A/J is the class a + J of
a. Hint: decompose a − ‖[a]‖ · 1 = a+ − a− with positive a+, a− and show that
a+ ∈ J .

(5) Let A be a C∗-algebra, a ∈ A selfadjoint. Suppose that the spectrum σ(a) is an
infinite set. Show that A is infinitedimensional.

(6) Describe the GNS construction for the C∗-algebra C[0, 1] and for the positive linear
functional ϕ given by
(a) ϕ(f) = f(0),
(b) ϕ(f) = 1

2
(f(0) + f(1)),

(c) ϕ(f) =
∫ 1

0
f(x) dx,

where f ∈ C[0, 1].
(7) Describe the GNS construction for the C∗-algebra Mn of n×n complex matrices

and for the positive functional ϕ given by
(a) ϕ(A) = a11,
(b) ϕ(A) = tr(A),
where A = (aij)

n
i,j=1 ∈ Mn.

(8) Let π, σ be representations of a C∗-algebra A on Hilbert spaces Hπ and Hσ re-
spectively and let a partial isometry U : Hπ → Hσ satisfy σ(a)U = Uπ(a) for any
a ∈ A. Show that the range and domain subspaces for U are invariant subspaces
for σ(A) and π(A) respectively. (Recall that U is a partial isometry iff U∗U and
UU∗ both are projections and that the range subspace for U is the image of U in
Hσ and the domain subspace for U is the orthogonal complement to the kernel of
U in Hπ.)

(9) (a) Let Mn(A) denote the set of all n×n matrices with entries from a C∗-algebra
A. Show that there exists a norm on Mn(A) that makes it a C∗-algebra. Hint:
consider first the case A = B(H) and then use the Gelfand–Naimark theorem.
(b) Let A be a C∗-algebra with the norm ‖ · ‖ and let ‖ · ‖′ be another norm on A
(equivalent to the first norm). Show that if ‖ · ‖′ is a C∗-algebra norm on A then
the two norms coincide. Use that to show that there is a unique C∗-algebra norm
on Mn(A).
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(10) Let ϕ be a state on a C∗-algebra A. Suppose that for some selfadjoint element a ∈
A one has ϕ(a2) = ϕ(a)2. Show that this implies that ϕ(ab) = ϕ(ba) = ϕ(a)ϕ(b)
for any b ∈ A.

(11) Let A = c be the C∗-algebra of converging sequences of complex numbers, c =
{(an)n∈N : an ∈ C; limn→∞ an exists}. Consider it as a C∗-subalgebra of the algebra
B(l2) of bounded operators on the Hilbert space l2 of square-summable sequences.
Find the first and the second commutant, A′ and A′′, of A and (independently)
the weak closure of A in B(l2).

(12) (a) Show that the weak topology is strictly weaker than the strong topology.
(b) Let P ⊂ B(H) denote the set of all projections. Show that the restrictions of
the weak and the strong topology on P give the same topology.
(c) Show that the strong limit of a sequence of projections (if it exists) must be a
projection.
Remark (not a part of the exercise): (c) is not true for weak limits: with respect
to the weak topology, the set P is dense in the set of positive elements of the unit
ball of B(H)

(13) Let Hn ⊂ H be a subspace of the Hilbert space H spanned by the first n vectors
of an orthonormal basis. In the set of all sequences (m1,m2, . . .), where mk ∈
B(Hn) ⊂ B(H), consider the subset A of all sequences such that
• supk ‖mk‖ is finite;
• sequences (m1,m2, . . .) and (m∗

1, m
∗
2, . . .) are convergent with respect to the

strong topology.
Show that A is a C∗-algebra. Show that the map (m1,m2, . . .) 7→ s− limk→∞ mk ∈
B(H) is a surjective ∗-homomorphism A → B(H).

(14) Let A be a commutative C∗-algebra and let π be an irreducible representation of
A on a Hilbert space H. Show that dim H = 1.

(15) Let A ⊂ B(H) be a von Neumann algebra and let p1 ≤ p2 ≤ p3 ≤ . . ., pk ∈ A,
k ∈ N, be an increasing sequence of projections. Let Hk ⊂ H be the range of the
projection pk. Show that the projection p onto the closure of the union ∪k∈NHk

lies in A. Hint: consider the von Neumann subalgebra generated by the given
projections.

(16) (Difficult) Let A ⊂ B(H) be a von Neumann algebra of infinite dimension. Show
that there exists an infinite sequence of mutually orthogonal non-zero projections
with sum 1.

(17) (a) Prove that the matrix algebra Mn(C) is simple.
(b) Show that if n doesn’t divide m (i.e. m = kn + r, 0 < r < n) then there is

no non-degenerate representation of Mn(C) on the Hilbert space of dimension m.
(18) Let {ei}∞i=1 be an orthonormal basis of a Hilbert space H and let operators a, b

be defined by aei = e2i; bei = e2i−1. Let E = C∗(a, b) + K(H) ⊂ B(H) be the
C∗-algebra generated by a, b and compact operators. Let also pn be the projection
onto the linear span of e1, . . . , en.

(a) Check that a, b are bounded operators and that they satisfy a∗a = b∗b = 1,
aa∗ + bb∗ = 1.

(b) Starting with {pn}∞n=1, construct a quasi-central approximate unit for the
pair K(H) ⊂ E.

(19) Find the multiplier C*-algebra M(A) for the following A:
(a) A is the algebra c0 of C-valued sequences converging to 0;
(b) A is the algebra of continuous C-valued functions on R vanishing at ±∞.

(20) (a) Let Y be a compact Hausdorff space and let X be a dense locally compact
subspace, X ⊂ Y . Show that C0(X) ⊂ C(Y )is an essential ideal.
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(b) For a C∗-algebra A let l∞(A) = {(an)∞n=1 : an ∈ A, supn ‖an‖ < ∞} and
c0(A) = {(an)∞n=1 : an ∈ A, limn→∞ ‖an‖ = 0}. Show that c0(K(H)) is an essential
ideal both in l∞(K(H)) and in l∞(B(H)).

(21) Let ϕ : A → B be a surjective ∗-homomorphism of separable C∗-algebras. Check
that if λ : A → A is a left centralizer then the formula ϕ̄(λ)(ϕ(a)) = ϕ(λ(a))
defines a left centralizer for B. Show that this gives rise to a ∗-homomorphism
ϕ̄ : M(A) → M(B), which is surjective.

(22) Consider C[0, 1] as a C∗-subalgebra in B(H), where H = L2([0, 1], µ) with the
Lebesgue measure µ (continuous functions act on H by multiplication).
(a) Check that C[0, 1] ∩K(H) = 0;
(b) For a linear functional ϕ on C[0, 1] defined by ϕ(f) = f(0) find a sequence

of unit vectors {en}n∈N in H such that it is weakly convergent to 0 in H and
ϕ(f) = limn→∞〈fen, en〉 for any f ∈ C[0, 1].

(23) Let X be a compact Hausdorff space and B a C∗-algebra. A linear map (not neces-
sarily a ∗-homomorphism!) ϕ : C(X) → B gives rise to a linear map for matrices:
ϕn : Mn(C(X)) → Mn(B) (by applying ϕ to each matrix entry). Show that if ϕ is
a positive map (i.e. takes positive elements of C(X) to positive elements of B) then
ϕn is positive map too. Hint: identify Mn(C(X)) with Mn(C)-valued functions on
X; then check positivity for elements of the form g(x)T ∈ C(X; Mn(C)), where
g ∈ C(X), T ∈ Mn(C); finally show that linear combinations of such elements are
dense in C(X; Mn(C)).

(24) Operators a, b on a Hilbert space H are called compalent if there is a unitary
u ∈ B(H) such that u∗au − b ∈ K(H). Show that selfadjoint operators a, b are
compalent if and only if their essential spectra coincide.

(25) Let S be the right (unilateral) shift on l2 and let A be the unital C∗-algebra
generated by S (i.e. A is the closure of linear combinations of polynomials on two
non-commuting variables, S and S∗). Let α ∈ [0, 2π) and let ϕα : A → C be a
linear multiplicative map given by ϕ(Sn) = einα; ϕ((S∗)n) = e−inα.
(a) Check that this map is a ∗-homomorphism and that ϕα(a) = 0 if a ∈ K(l2);
(b) Find a sequence of unit vectors xn ∈ l2 weakly convergent to 0 such that

ϕα(S) = limn→∞〈Sxn, xn〉.
(c) Let α1, . . . , αk ∈ [0, 2π). For the homomorphism ϕ : A → Mk(C) given

by ϕ(a) = diag(ϕα1(a), . . . , ϕαk
(a)) and for any ε > 0, find an isometry

V : Ck → l2 such that ‖ϕ(S)− V ∗SV ‖ < ε.
(d) Let (αi)i∈N be a sequence of numbers in [0, 2π) and let (ei)i∈N be an or-

thonormal basis for a Hilbert space H. For a ∈ A, put ϕ(a)(ei) = ϕαi
(a)ei.

Then ϕ : A → B(H) is a ∗-homomorphism. For any ε > 0 find an isometry
V : H → l2 such that ϕ(S)− V ∗SV is compact and ‖ϕ(S)− V ∗SV ‖ < ε.

(26) Show that separability in Glimm’s Lemma is necessary:
Let D = l∞ be represented as diagonal operators on H = l2 and let τ be a
non-trivial state on D such that τ equals 0 for any sequence in D that converges
to 0. Show that there is no sequence xn ∈ H of unit vectors such that τ(d) =
limn→∞〈dxn, xn〉.

(27) Show that any AF C∗-algebra contains (if it is not unital) an approximate unit
consisting of an increasing sequence of projections.

(28) (a) Show that C[0, 1] is not AF. Hint: a finitedimensional C*-subalgebra of C[0, 1]
consists only of constant functions, hence is 1-dimensional.

(b) Show that C[0, 1] is a C*-subalgebra of the AF algebra C(K) of continuous
functions on a Kantor set K. Hint: one can construct a function f on K such
that it takes on K all rational values from [0, 1]. Its spectrum is the closure
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of this set, i.e. the whole interval [0, 1]. Thus, the unital C∗-subalgebra of
C(K) generated by f is isometrically ∗-isomorphic to C(Sp(f)) = C[0, 1].

(29) Let An = M2n(C) ⊕M2n(C) and let the embedding αn : An → An+1 be given by

αn :
(

a1 0
0 a2

) 7→



a1 0 | 0 0
0 a1 | 0 0
− − − − −
0 0 | a1 0
0 0 | 0 a2


, where a1, a2 ∈ M2n(C).

(a) Determine the Bratteli diagram for the AF algebra A = ∪∞n=1An;
(b) Using the Bratteli diagram, find all ideals in A;
(c) Determine if A is unital or not.

(30) Let A be an AF algebra.
(a) Show that linear combinations of projections are dense in A;
(b) Show that A has an approximate unit consisting of projections.

(31) A derivation of a C∗-algebra A is a bounded linear map δ : A → A such that
δ(ab) = δ(a)b + aδ(b) for any a, b ∈ A. It is called inner if there exists x ∈ A such
that δ = δx, where δx(a) = xa− ax. A derivation δ is approximately inner if there
exists a net {xι} ⊂ A such that δ(a) = limι δxι(a) for any a ∈ A.
(a) Show that every derivation of a finitedimensional C∗-algebra is inner. Hint:

take a finite group G of unitaries that span A and use x = 1
|G|

∑
u∈G δ(u)u.

(b) Show that every derivation of an AF algebra is approximately inner.
(32) Let A,B be C∗-algebras. Two ∗-homomorphisms α, β : A → B are called ho-

motopic if there is a family (ϕt)t∈[0,1] : A → B of ∗-homomorphisms such that
ϕ0 = α, ϕ1 = β and the map t 7→ ϕt(a) is continuous for any a ∈ A. A C∗-
algebra is contractible if the identity ∗-homomorphism is homotopic to the zero
∗-homomorphism. Show that the cone CA = {f ∈ C([0, 1]; A) : f(0) = 0} is
contractible for any C∗-algebra A.

(33) Let T be the Toeplitz algebra and ϕ : T → T its automorphism. Show that ϕ(K) ⊂
K, where K is the ideal of compact operators. Thus, ϕ induces an automorphism
of the quotient C∗-algebra C(T). Show that this induced automorphism, in its
turn, induces a homeomorphism of the circle T.

(34) Let O2 denote the Cuntz algebra on two isometries, s1 and s2. Show that M3(O2)

is isomorphic to O2. Hint: check that the matrices
(

0 0 0
1 0 0
0 s1 s2

)
and

(
s1 s2s1 s2

2
0 0 0
0 0 0

)

generate M3(O2).
(35) Show that the group C∗-algebra A = C∗(F2) of the free group on two generators

has no proper projections. Hint: if u and v are the unitaries that correspond
to the two generators in a faithful representation of A (on a Hilbert space H)
then there are bounded operators a, b such that u = exp(ia), v = exp(ib); put
u(t) = exp(ita), v(t) = exp(itb), t ∈ [0, 1] and consider the C∗-algebra B = {Φ ∈
C([0, 1];B(H)) : Φ(0) ∈ C · 1}. Then use u(t) and v(t) to include A into B and
check that B has no proper projections.

(36) Show that a group homomorphism (of discrete groups) G1 → G2 induces a ∗-
homomorphism C∗(G1) → C∗(G2) of their group C∗-algebras. Determine the
kernel and the range of the ∗-homomorphism induced by the surjective group
homomorphism Z→ Z/2Z.


