Problems

- (1) Let A be a C^* -algebra, $a \in A$ and let $p, q \in A$ be orthogonal projections (i.e. selfadjoint idempotents with pq = 0). Suppose that a is positive and pap = 0. Show that paq = 0.
- (2) Let A be a C^* -algebra, $a \in A$. Denote by aAa the set of all elements of the form aba with $b \in A$ and by \overline{aAa} the closure of that set. Recall that a C^* -subalgebra $B \subset A$ is hereditary if the conditions 0 < a < b and $b \in B$ imply $a \in B$.
 - (a) Check that \overline{aAa} is a C^* -subalgebra for any $a \in A$.
 - (b) Let $p \in A$ be a projection. Check that pAp is closed.
 - (c) Show that pAp is hereditary for any projection p.
 - (d) Show that \overline{aAa} is hereditary for any positive $a \in A$.
- (3) Let $X \subset \mathbb{R}$ be the set of points $1, 1/2, 1/3, \ldots$ and 0. For the C^* -algebra M_2 of two-by-two matrices denote by $C(X, M_2)$ the set of all continuous functions on X with values in M_2 . Put $B_1 = \{ f \in C(X, M_2) : f(0) \text{ is diagonal} \}, B_2 = \{ f \in C(X, M_2) : f(0) \text{ is diagonal} \}$ $C(X, M_2) : f(0)$ has the form $\binom{*0}{00}$.
 - (a) Show that $C(X, M_2)$, B_1 , B_2 are C^* -algebras.
 - (b) Find all (two-sided closed) ideals of the C^* -algebras C(X), $C(X, M_2)$, B_1 , B_2 .
- (4) Let A be a C^* -algebra, $J \subset A$ an ideal, and let $a \in A$ be selfadjoint. Show that there exists $j \in J$ such that ||[a]|| = ||a - j||, where $[a] \in A/J$ is the class a + J of a. Hint: decompose $a - \|[a]\| \cdot 1 = a_+ - a_-$ with positive a_+ , a_- and show that $a_+ \in J$.
- (5) Let A be a C^* -algebra, $a \in A$ selfadjoint. Suppose that the spectrum $\sigma(a)$ is an infinite set. Show that A is infinitedimensional.
- (6) Describe the GNS construction for the C^* -algebra C[0,1] and for the positive linear functional φ given by
 - (a) $\varphi(f) = f(0),$
 - (b) $\varphi(f) = \frac{1}{2}(f(0) + f(1)),$
 - (c) $\varphi(f) = \int_0^1 f(x) dx$, where $f \in C[0, 1]$.
- (7) Describe the GNS construction for the C^* -algebra M_n of $n \times n$ complex matrices and for the positive functional φ given by
 - (a) $\varphi(A) = a_{11}$,
 - (b) $\varphi(A) = \operatorname{tr}(A)$,
 - where $A = (a_{ij})_{i,j=1}^n \in M_n$.
- (8) Let π, σ be representations of a C^* -algebra A on Hilbert spaces H_{π} and H_{σ} respectively and let a partial isometry $U: H_{\pi} \to H_{\sigma}$ satisfy $\sigma(a)U = U\pi(a)$ for any $a \in A$. Show that the range and domain subspaces for U are invariant subspaces for $\sigma(A)$ and $\pi(A)$ respectively. (Recall that U is a partial isometry iff U^*U and UU^* both are projections and that the range subspace for U is the image of U in H_{σ} and the domain subspace for U is the orthogonal complement to the kernel of U in H_{π} .)
- (9) (a) Let $M_n(A)$ denote the set of all $n \times n$ matrices with entries from a C^* -algebra A. Show that there exists a norm on $M_n(A)$ that makes it a C^* -algebra. Hint: consider first the case $A = \mathbb{B}(H)$ and then use the Gelfand-Naimark theorem.
 - (b) Let A be a C*-algebra with the norm $\|\cdot\|$ and let $\|\cdot\|'$ be another norm on A (equivalent to the first norm). Show that if $\|\cdot\|'$ is a C^* -algebra norm on A then the two norms coincide. Use that to show that there is a unique C^* -algebra norm on $M_n(A)$.

- (10) Let φ be a state on a C^* -algebra A. Suppose that for some selfadjoint element $a \in A$ one has $\varphi(a^2) = \varphi(a)^2$. Show that this implies that $\varphi(ab) = \varphi(ba) = \varphi(a)\varphi(b)$ for any $b \in A$.
- (11) Let A = c be the C^* -algebra of converging sequences of complex numbers, $c = \{(a_n)_{n \in \mathbb{N}} : a_n \in \mathbb{C}; \lim_{n \to \infty} a_n \text{ exists}\}$. Consider it as a C^* -subalgebra of the algebra $\mathbb{B}(l_2)$ of bounded operators on the Hilbert space l_2 of square-summable sequences. Find the first and the second commutant, A' and A'', of A and (independently) the weak closure of A in $\mathbb{B}(l_2)$.
- (12) (a) Show that the weak topology is strictly weaker than the strong topology.
 - (b) Let $P \subset \mathbb{B}(H)$ denote the set of all projections. Show that the restrictions of the weak and the strong topology on P give the same topology.
 - (c) Show that the strong limit of a sequence of projections (if it exists) must be a projection.
 - Remark (not a part of the exercise): (c) is not true for weak limits: with respect to the weak topology, the set P is dense in the set of positive elements of the unit ball of $\mathbb{B}(H)$
- (13) Let $H_n \subset H$ be a subspace of the Hilbert space H spanned by the first n vectors of an orthonormal basis. In the set of all sequences (m_1, m_2, \ldots) , where $m_k \in \mathbb{B}(H_n) \subset \mathbb{B}(H)$, consider the subset A of all sequences such that
 - $\sup_k ||m_k||$ is finite;
 - sequences $(m_1, m_2, ...)$ and $(m_1^*, m_2^*, ...)$ are convergent with respect to the strong topology.
 - Show that A is a C*-algebra. Show that the map $(m_1, m_2, ...) \mapsto s \lim_{k \to \infty} m_k \in \mathbb{B}(H)$ is a surjective *-homomorphism $A \to \mathbb{B}(H)$.
- (14) Let A be a commutative C^* -algebra and let π be an irreducible representation of A on a Hilbert space H. Show that dim H = 1.
- (15) Let $A \subset \mathbb{B}(H)$ be a von Neumann algebra and let $p_1 \leq p_2 \leq p_3 \leq \ldots, p_k \in A$, $k \in \mathbb{N}$, be an increasing sequence of projections. Let $H_k \subset H$ be the range of the projection p_k . Show that the projection p onto the closure of the union $\bigcup_{k \in \mathbb{N}} H_k$ lies in A. Hint: consider the von Neumann subalgebra generated by the given projections.
- (16) (Difficult) Let $A \subset \mathbb{B}(H)$ be a von Neumann algebra of infinite dimension. Show that there exists an infinite sequence of mutually orthogonal non-zero projections with sum 1.
- (17) (a) Prove that the matrix algebra $M_n(\mathbb{C})$ is simple.
 - (b) Show that if n doesn't divide m (i.e. m = kn + r, 0 < r < n) then there is no non-degenerate representation of $M_n(\mathbb{C})$ on the Hilbert space of dimension m.
- (18) Let $\{e_i\}_{i=1}^{\infty}$ be an orthonormal basis of a Hilbert space H and let operators a, b be defined by $ae_i = e_{2i}$; $be_i = e_{2i-1}$. Let $E = C^*(a, b) + \mathbb{K}(H) \subset \mathbb{B}(H)$ be the C^* -algebra generated by a, b and compact operators. Let also p_n be the projection onto the linear span of e_1, \ldots, e_n .
 - (a) Check that a, b are bounded operators and that they satisfy $a^*a = b^*b = 1$, $aa^* + bb^* = 1$.
 - (b) Starting with $\{p_n\}_{n=1}^{\infty}$, construct a quasi-central approximate unit for the pair $\mathbb{K}(H) \subset E$.
- (19) Find the multiplier C*-algebra M(A) for the following A:
 - (a) A is the algebra c_0 of \mathbb{C} -valued sequences converging to 0;
 - (b) A is the algebra of continuous \mathbb{C} -valued functions on \mathbb{R} vanishing at $\pm \infty$.
- (20) (a) Let Y be a compact Hausdorff space and let X be a dense locally compact subspace, $X \subset Y$. Show that $C_0(X) \subset C(Y)$ is an essential ideal.

- (b) For a C^* -algebra A let $l^{\infty}(A) = \{(a_n)_{n=1}^{\infty} : a_n \in A, \sup_n ||a_n|| < \infty\}$ and $c_0(A) = \{(a_n)_{n=1}^{\infty} : a_n \in A, \lim_{n \to \infty} ||a_n|| = 0\}$. Show that $c_0(\mathbb{K}(H))$ is an essential ideal both in $l^{\infty}(\mathbb{K}(H))$ and in $l^{\infty}(\mathbb{B}(H))$.
- (21) Let $\varphi: A \to B$ be a surjective *-homomorphism of separable C^* -algebras. Check that if $\lambda: A \to A$ is a left centralizer then the formula $\bar{\varphi}(\lambda)(\varphi(a)) = \varphi(\lambda(a))$ defines a left centralizer for B. Show that this gives rise to a *-homomorphism $\bar{\varphi}: M(A) \to M(B)$, which is surjective.
- (22) Consider C[0,1] as a C^* -subalgebra in $\mathbb{B}(H)$, where $H=L^2([0,1],\mu)$ with the Lebesgue measure μ (continuous functions act on H by multiplication).
 - (a) Check that $C[0,1] \cap \mathbb{K}(H) = 0$;
 - (b) For a linear functional φ on C[0,1] defined by $\varphi(f) = f(0)$ find a sequence of unit vectors $\{e_n\}_{n\in\mathbb{N}}$ in H such that it is weakly convergent to 0 in H and $\varphi(f) = \lim_{n\to\infty} \langle fe_n, e_n \rangle$ for any $f \in C[0,1]$.
- (23) Let X be a compact Hausdorff space and B a C^* -algebra. A linear map (not necessarily a *-homomorphism!) $\varphi: C(X) \to B$ gives rise to a linear map for matrices: $\varphi_n: M_n(C(X)) \to M_n(B)$ (by applying φ to each matrix entry). Show that if φ is a positive map (i.e. takes positive elements of C(X) to positive elements of B) then φ_n is positive map too. Hint: identify $M_n(C(X))$ with $M_n(\mathbb{C})$ -valued functions on X; then check positivity for elements of the form $g(x)T \in C(X; M_n(\mathbb{C}))$, where $g \in C(X), T \in M_n(\mathbb{C})$; finally show that linear combinations of such elements are dense in $C(X; M_n(\mathbb{C}))$.
- (24) Operators a, b on a Hilbert space H are called compalent if there is a unitary $u \in \mathbb{B}(H)$ such that $u^*au b \in \mathbb{K}(H)$. Show that selfadjoint operators a, b are compalent if and only if their essential spectra coincide.
- (25) Let S be the right (unilateral) shift on l^2 and let A be the unital C^* -algebra generated by S (i.e. A is the closure of linear combinations of polynomials on two non-commuting variables, S and S^*). Let $\alpha \in [0, 2\pi)$ and let $\varphi_{\alpha} : A \to \mathbb{C}$ be a linear multiplicative map given by $\varphi(S^n) = e^{in\alpha}$; $\varphi((S^*)^n) = e^{-in\alpha}$.
 - (a) Check that this map is a *-homomorphism and that $\varphi_{\alpha}(a) = 0$ if $a \in \mathbb{K}(l^2)$;
 - (b) Find a sequence of unit vectors $x_n \in l^2$ weakly convergent to 0 such that $\varphi_{\alpha}(S) = \lim_{n \to \infty} \langle Sx_n, x_n \rangle$.
 - (c) Let $\alpha_1, \ldots, \alpha_k \in [0, 2\pi)$. For the homomorphism $\varphi : A \to M_k(\mathbb{C})$ given by $\varphi(a) = diag(\varphi_{\alpha_1}(a), \ldots, \varphi_{\alpha_k}(a))$ and for any $\epsilon > 0$, find an isometry $V : \mathbb{C}^k \to l^2$ such that $\|\varphi(S) V^*SV\| < \epsilon$.
 - (d) Let $(\alpha_i)_{i\in\mathbb{N}}$ be a sequence of numbers in $[0,2\pi)$ and let $(e_i)_{i\in\mathbb{N}}$ be an orthonormal basis for a Hilbert space H. For $a\in A$, put $\varphi(a)(e_i)=\varphi_{\alpha_i}(a)e_i$. Then $\varphi:A\to\mathbb{B}(H)$ is a *-homomorphism. For any $\epsilon>0$ find an isometry $V:H\to l^2$ such that $\varphi(S)-V^*SV$ is compact and $\|\varphi(S)-V^*SV\|<\epsilon$.
- (26) Show that separability in Glimm's Lemma is necessary: Let $D = l^{\infty}$ be represented as diagonal operators on $H = l^2$ and let τ be a non-trivial state on D such that τ equals 0 for any sequence in D that converges to 0. Show that there is no sequence $x_n \in H$ of unit vectors such that $\tau(d) = \lim_{n \to \infty} \langle dx_n, x_n \rangle$.
- (27) Show that any AF C^* -algebra contains (if it is not unital) an approximate unit consisting of an increasing sequence of projections.
- (28) (a) Show that C[0, 1] is not AF. Hint: a finitedimensional C*-subalgebra of C[0, 1] consists only of constant functions, hence is 1-dimensional.
 - (b) Show that C[0,1] is a C*-subalgebra of the AF algebra C(K) of continuous functions on a Kantor set K. Hint: one can construct a function f on K such that it takes on K all rational values from [0,1]. Its spectrum is the closure

of this set, i.e. the whole interval [0,1]. Thus, the unital C^* -subalgebra of C(K) generated by f is isometrically *-isomorphic to $C(\operatorname{Sp}(f)) = C[0,1]$.

(29) Let
$$A_n = M_{2^n}(\mathbb{C}) \oplus M_{2^n}(\mathbb{C})$$
 and let the embedding $\alpha_n : A_n \to A_{n+1}$ be given by $\alpha_n : \begin{pmatrix} a_1 & 0 & | & 0 & 0 \\ 0 & a_2 & | & 0 & | & 0 & 0 \\ 0 & 0 & | & 0 & a_2 \end{pmatrix}$, where $a_1, a_2 \in M_{2^n}(\mathbb{C})$.

- (a) Determine the Bratteli diagram for the AF algebra $A = \bigcup_{n=1}^{\infty} A_n$;
- (b) Using the Bratteli diagram, find all ideals in A;
- (c) Determine if A is unital or not.
- (30) Let A be an AF algebra.
 - (a) Show that linear combinations of projections are dense in A;
 - (b) Show that A has an approximate unit consisting of projections.
- (31) A derivation of a C^* -algebra A is a bounded linear map $\delta: A \to A$ such that $\delta(ab) = \delta(a)b + a\delta(b)$ for any $a, b \in A$. It is called *inner* if there exists $x \in A$ such that $\delta = \delta_x$, where $\delta_x(a) = xa - ax$. A derivation δ is approximately inner if there exists a net $\{x_{\iota}\}\subset A$ such that $\delta(a)=\lim_{\iota}\delta_{x_{\iota}}(a)$ for any $a\in A$.
 - (a) Show that every derivation of a finitedimensional C^* -algebra is inner. Hint: take a finite group G of unitaries that span A and use $x = \frac{1}{|G|} \sum_{u \in G} \delta(u)u$.
 - (b) Show that every derivation of an AF algebra is approximately inner.
- (32) Let A, B be C^* -algebras. Two *-homomorphisms $\alpha, \beta: A \to B$ are called homotopic if there is a family $(\varphi_t)_{t\in[0,1]}:A\to B$ of *-homomorphisms such that $\varphi_0 = \alpha, \ \varphi_1 = \beta$ and the map $t \mapsto \varphi_t(a)$ is continuous for any $a \in A$. A C^* algebra is *contractible* if the identity *-homomorphism is homotopic to the zero *-homomorphism. Show that the cone $CA = \{f \in C([0,1];A) : f(0) = 0\}$ is contractible for any C^* -algebra A.
- (33) Let T be the Toeplitz algebra and $\varphi: T \to T$ its automorphism. Show that $\varphi(\mathbb{K}) \subset$ \mathbb{K} , where \mathbb{K} is the ideal of compact operators. Thus, φ induces an automorphism of the quotient C^* -algebra $C(\mathbb{T})$. Show that this induced automorphism, in its turn, induces a homeomorphism of the circle \mathbb{T} .
- (34) Let \mathcal{O}_2 denote the Cuntz algebra on two isometries, s_1 and s_2 . Show that $M_3(\mathcal{O}_2)$ is isomorphic to \mathcal{O}_2 . Hint: check that the matrices $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & s_1 & s_2 \end{pmatrix}$ and $\begin{pmatrix} s_1 & s_2 s_1 & s_2^2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ generate $M_3(\mathcal{O}_2)$.
- (35) Show that the group C^* -algebra $A = C^*(\mathbb{F}_2)$ of the free group on two generators has no proper projections. Hint: if u and v are the unitaries that correspond to the two generators in a faithful representation of A (on a Hilbert space H) then there are bounded operators a, b such that $u = \exp(ia)$, $v = \exp(ib)$; put $u(t) = \exp(ita), v(t) = \exp(itb), t \in [0,1]$ and consider the C*-algebra $B = \{\Phi \in$ $C([0,1];\mathbb{B}(H)):\Phi(0)\in\mathbb{C}\cdot 1\}.$ Then use u(t) and v(t) to include A into B and check that B has no proper projections.
- (36) Show that a group homomorphism (of discrete groups) $G_1 \rightarrow G_2$ induces a *homomorphism $C^*(G_1) \to C^*(G_2)$ of their group C^* -algebras. Determine the kernel and the range of the *-homomorphism induced by the surjective group homomorphism $\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$.