МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. ЛОМОНОСОВА

Механико-математический факультет

На правах рукописи УДК 517.926.4

ВЕТОХИН Александр Николаевич

МЕТОД НЕОРДИНАРНЫХ СЕМЕЙСТВ В ТЕОРИИ БЭРОВСКИХ КЛАССОВ ПОКАЗАТЕЛЕЙ ЛЯПУНОВА

01.01.02 — дифференциальные уравнения, динамические системы и оптимальное управление

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени доктора физико-математических наук

Работа выполнена на кафедре «Математика и информационные технологии в туризме» Института туризма и гостеприимства (г. Москва) (филиал) ФГБОУ ВПО «Российский государственный университет туризма и сервиса»

Научный консультант — доктор физико-математических наук, профессор Сергеев Игорь Николаевич.

Официальные оппоненты — доктор физико-математических наук, доцент Морозов Олег Игоревич, доцент кафедры высшей математики ФГБОУ ВПО «Московский государственный технический университет гражданской авиации»

- доктор физико-математических наук, доцент Попова Светлана Николаевна, профессор кафедры дифференциальных уравнений ФГБОУ ВПО «Удмуртский государственный университет»
- доктор физико-математических наук,
 член-корреспондент РАН Щепин Евгений Витальевич,
 главный научный сотрудник отдела геометрии
 и топологии ФГБУН «Математический институт
 им. В.А. Стеклова РАН»

Ведущая организация — Институт математики НАН Беларуси.

Защита диссертации состоится 27 июня 2014 г. в 16 ч 45 мин на заседании диссертационного совета по математике Д 501.001.85 при Московском государственном университете им. М. В. Ломоносова по адресу: 119991, Москва, Ленинские горы, МГУ, механико-математический факультет, аудитория 16-24.

С диссертацией можно ознакомиться в Фундаментальной библиотеке МГУ имени М.В.Ломоносова и на сайте механико-математического факультета http://mech.math.msu.su.

Автореферат разослан « » 2014 г.

Ученый секретарь диссертационного совета Д 501.001.85 при МГУ доктор физико-математических наук, профессор

В. Н. Сорокин

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Одним из основных направлений качественной теории дифференциальных уравнений является изучение характеристических показателей, которые первоначально были введены А.М. Ляпуновым¹ в связи с исследованием устойчивости по первому приближению.

Развитие теории линейных систем привело к созданию целого ряда новых показателей: все они или определяются непосредственно через показатели Ляпунова, или являются их модификациями, а потому также могут, в широком смысле, называться *ляпуновскими* (во избежание путаницы для каждого из них, как правило, предусмотрено и свое собственное название). Библиография по теории показателей Ляпунова в обзорах^{2,3} и книгах^{4,5} насчитывает более тысячи наименований.

І. Вопросы непрерывности ляпуновских показателей. Важное место в теории показателей Ляпунова занимает вопрос о характере их зависимости от коэффициентов системы.

Как показал О. Перрон⁶ показатели Ляпунова *не являются непрерывными* функционалами на пространстве линейных однородных систем с *равномерной топологией* (на положительной полуоси времени). Он же предложил и первые достаточные условия на линейную систему, при которых она является точкой непрерывности показателей Ляпунова⁷.

Впоследствии необходимые и достаточные условия, при которых линейная система является точкой полунепрерывности сверху показателей Ляпунова, были полностью изучены: сначала для старшего показателя — Р.Э. Виноградом⁸ и В.М. Миллионщиковым⁹, а затем и для любого показателя — И.Н. Сергеевым¹⁰.

Критерии полунепрерывности снизу к настоящему времени гораздо менее изучены. Так, в работе 8 приведено достаточное условие полунепрерывности снизу младше-

 $^{^{1}}$ Ляпунов $A.\,M.\,$ Общая задача об устойчивости движения $//\,M.\,-\,\Pi.$: Гостехиздат. 1950.

 $^{^2}$ Изобов Н. А. Линейные системы обыкновенных дифференциальных уравнений // Итоги науки и техники. Математический анализ. 1974. Т. 12. С. 71–146.

³ Изобов Н. А. Исследования в Беларуси по теории характеристических показателей Ляпунова и ее приложениям // Дифференциальные уравнения. 1993. Т. 29, № 12. С. 2034–2055.

 $^{^4}$ Былов Б. Ф., Виноград Р. Э., Гробман Д. М., Немыцкий В. В. Теория показателей Ляпунова и ее приложения к вопросам устойчивости // М.: Наука. 1966.

⁵Изобов Н. А. Введение в теорию показателей Ляпунова. Мн.: БГУ, 2006.

 $^{^6}$ Perron O. Die Ordnungzahlen der Differentialgleichungen // Math. Z. 1930. Bd. 32. S. 703–728.

 $^{^{7}}$ Perron O. Über lineare Differentialgleichungen, bei denen die unabhängige Variable reel ist // J. reine und angew. Math. 1931. Bd. 142. S. 254–270.

⁸Виноград Р. Э. О центральном характеристическом показателе системы дифференциальных уравнений // Матем. сборник. 1957. Т. 42, № 2. С. 207–222.

 $^{^9}$ *Миллионщиков В. М.* Доказательство достижимости центральных показателей // Сибирск. матем. журнал. 1969. Т. 10, № 1. С. 99–104.

 $^{^{10}}$ Сергеев И. Н. К теории показателей Ляпунова линейных систем дифференциальных уравнений // Тр. семинара им. И. Г. Петровского. 1983. Вып. 9. С. 111–166.

го показателя Ляпунова, а в работе⁹ доказана его необходимость. Далее, Н.А. Изобов¹¹ получил критерий полунепрерывности снизу старшего показателя Ляпунова в двумерном случае, а затем И.Н. Сергеев¹² указал критерий полунепрерывности снизу каждого из показателей Ляпунова в трехмерном случае.

В работах^{13,14,15} найден критерий непрерывности одновременно всех показателей Ляпунова линейной системы. Кроме того, к задачам о нахождении достижимых границ подвижности этих показателей тесно примыкают работы о различных видах управления показателями Ляпунова¹⁶, а также другими характеристиками асимптотического поведения решений линейных систем¹⁷.

Рассматривая множества линейных систем, возникающих как системы в вариациях по начальным значениям (или параметрам) вдоль решений нелинейных систем, и изучая их показатели Ляпунова или другие ляпуновские показатели, нередко приходится отказываться от топологии равномерной сходимости коэффициентов на полупрямой. Действительно, поскольку теорема о непрерывной зависимости решений от начальных условий (или параметров) обеспечивает близость решений лишь на любых заранее заданных компактах оси времени, то только такая близость и гарантируется для соответствующих этим решениям линейных систем в вариациях.

Таким образом, на пространстве линейных систем, наряду с топологией равномерной сходимости, приходится рассматривать и более слабую компактно-открытую топологию (т. е. топологию равномерной сходимости коэффициентов на каждом компакте положительной полуоси).

Несомненный интерес вызывает и самая общая ситуация, когда коэффициенты системы, непрерывные на полуоси времени, еще и непрерывно (возможно, равномерно по времени) зависят от параметра из некоторого метрического пространства. Тогда ляпуновские показатели такой системы (точнее, семейства систем) можно рассматривать как функционалы, определенные на этом метрическом пространстве, и ставить вопросы об их непрерывности или полунепрерывности по параметру, а также о типичности точек такой непрерывности или полунепрерывности.

 $^{^{11}}$ Изобов Н. А. Минимальный показатель двумерной линейной дифференциальной системы // Дифференциальные уравнения. 1977. Т. 13, № 5. С. 848–858.

¹² Сергеев И. Н. Критерий полунепрерывности снизу показателей Ляпунова трехмерных линейных систем // Успехи матем. наук. 1994. Т. 49, вып. 4. С. 142.

¹³ Былов Б. Ф., Изобов Н. А. Необходимые и достаточные условия устойчивости характеристических показателей диагональной системы // Дифференциальные уравнения. 1969. Т. 5, № 10. С. 1785—1793.

 $^{^{14}}$ Былов Б. Ф., Изобов Н. А. Необходимые и достаточные условия устойчивости характеристических показателей линейной системы // Дифференциальные уравнения. 1969. Т. 5, № 10. С. 1794—1803.

 $^{^{15}}$ Миллионщиков В. М. Грубые свойства линейных систем дифференциальных уравнений // Дифференциальные уравнения. 1969. Т. 5, № 10. С. 1775–1784.

¹⁶ Попова С. Н., Тонков Е. Л. Согласованные системы и управление показателями Ляпунова // Дифференциальные уравнения. 1997. Т. 33. № 2. С. 226–235.

 $^{^{17}}$ Попова С. Н. Об управлении коэффициентами неправильности линейных систем // Дифференциальные уравнения. 2003. Т. 39. № 1. С. 50–56.

Существует несколько, не эквивалентных друг другу, подходов к тому, какие свойства называть типичными, а какие — нет. В диссертации используется понятие типичности, введенное и изученное Р. Бэром¹⁸, а именно: свойство точки топологического пространства называется *типичным по Бэру*, если множество точек, обладающих этим свойством, содержит всюду плотное множество типа G_{δ} (т. е. множество, представимое в виде счетного пересечения открытых подмножеств).

II. Классификация Бэра ляпуновских показателей. В начале 80-х годов В. М. Миллионщиков открыл новое направление в качественной теории дифференциальных уравнений, предложив для описания зависимости различных характеристик асимптотического поведения решений дифференциальных уравнений использовать классификацию Бэра разрывных функций.

В частности, он установил¹⁹, что для любого семейства линейных систем, непрерывно зависящих от параметра из метрического пространства, показатели Ляпунова, рассматриваемые как функции на этом метрическом пространстве, принадлежат второму классу Бэра, т. е. представимы в виде двух поточечных пределов от непрерывных функций (более того, для вычисления значений этих функций достаточно иметь информацию о системе лишь на некотором конечном участке временной полуоси, своем для каждой функции^{20,21}).

В дальнейшем самим В.М. Миллионщиковым 22,23,24,25 и его учениками В. Г. Агафоновым 26,27 , О. И. Морозовым 28 , К. Е. Ширяевым 29,30,31 были получены оценки свер-

 $^{^{18}}$ Бэр Р. Теория разрывных функций // М. — Л.: ГТТИ. 1932.

 $^{^{19}}$ Миллионщиков В. М. Бэровские классы функций и показатели Ляпунова. І // Дифференциальные уравнения. 1980. Т. 16, № 8. С. 1408–1416.

 $^{^{20}}$ Быков В. В. О связи классов Бэра функционалов и формул // Дифференциальные уравнения. 1996. Т. 32, № 6. С. 852.

 $^{^{21}}$ Сергеев И. Н. Бэровские классы формул для показателей линейных систем // Дифференциальные уравнения. 1995. Т. 31, № 12. С. 2092—2093.

 $^{^{22}}$ Миллионщиков В. М. О классах Бэра центральных показателей // Дифференц. уравнения. 1989. Т. 25, № 12. С. 2190.

 $^{^{23}}$ Миллионщиков В. М. Относительные показатели Боля и классы функций Бэра // Дифференц. уравнения. 1990. Т. 26, № 6. С. 1087.

 $^{^{24}}$ Миллионщиков В. М. Классификация по Бэру относительных мажорант показателей Ляпунова // Дифференц. уравнения. 1990. Т. 26, № 6. С. 1088–1089.

 $^{^{25}}$ Миллионщиков В. М. Класс Бэра показателя Изобова // Дифференц. уравнения. 1992. Т. 28, № 11. С. 2009.

 $^{^{26}}$ Агафонов В. Г. К бэровской классификации показателей Ляпунова // Дифференциальные уравнения. 1991. Т. 27, № 8. С. 1466.

 $^{^{27}}$ Агафонов В. Г. О классе Бэра показателей Ляпунова однородных и неоднородных систем // Дифференциальные уравнения. 1995. Т. 31, № 6. С. 905–906.

²⁸ *Морозов О. И.* О бэровском классе показателей Ляпунова неоднородных линейных систем // Вестник Моск. ун-та. Сер. 1. Математика. Механика. 1991, № 6. С. 22–30.

 $^{^{29}}$ Ширяев К. Е. О классе Бэра вспомогательных логарифмических показателей // Дифференциальные уравнения. 1995. Т. 31, № 5. С. 906.

 $^{^{30}}$ Ширяев К. Е. О классе Бэра экстраординарных показателей Боля в компактно-открытой топологии // Дифференциальные уравнения. 1995. Т. 31, № 5. С. 1598.

³¹ Ширяев К. Е. О классе Бэра стапенных вспомогательных показателей // Дифференциальные

ху для номеров бэровских классов целого ряда ляпуновских показателей. В результате возник естественный вопрос о неулучшаемости полученных результатов, т. е. об адекватных оценках для тех же номеров бэровских классов снизу.

Первой работой в указанном направлении была, по всей видимости, работа М.И.Рахимбердиева³², в которой с помощью довольно тонких построений установлено, что показатели Ляпунова не принадлежат первому классу Бэра на пространстве линейных однородных систем с равномерной (а тем более и с компактно-открытой) топологией.

В дальнейшем, с помощью аналогичных построений, другими авторами была доказана непринадлежность первому классу Бэра еще некоторых ляпуновских показателей на пространстве линейных систем с равномерной топологией или с компактнооткрытой топологией. Отметим, что для каждой характеристики приходилось изобретать свой способ доказательства непринадлежности первому классу Бэра.

Поэтому возникла необходимость в получении универсальных и сравнительно просто проверяемых условий, позволяющих доказывать непринадлежность показателей первому классу Бэра. Методы же доказательства непринадлежности показателей второму, третьему и т. д. классам Бэра некоторое время оставались неизвестными.

Функционалы, представимые в виде нескольких поточечных пределов от непрерывных функций, встречаются не только в теории показателей Ляпунова, но и в теории динамических систем. Одним из таких функционалов является топологическая энтропия³³ динамической системы, представляющая собой скорость экспоненциального роста числа отрезков орбит, различимых с произвольно хорошей, но конечной точностью. Можно сказать, что топологическая энтропия описывает одним числом полную экспоненциальную сложность орбитальной структуры.

Изучению свойств топологической энтропии, рассматриваемой как функционал на множествах отображений компактных метрических пространств и гладкий многообразий с различными топологиями, посвящено немало работ (см., например, книгу³⁴ или обзор³⁵). В частности³⁴, имеет место полунепрерывность снизу топологической энтропии на пространстве непрерывных отображений отрезка, наделенном равномерной топологией, причем в общем случае этого нельзя утверждать.

III. Приложения теории Бэра. Опишем несколько возможных приложений теории Бэра к теории показателей Ляпунова.

 $^{^{32}}$ Рахимбердиев М. И. О бэровском классе показателей Ляпунова // Математические заметки. 1982. Т. 31, № 6. С. 925–931.

³³ Adler R. L., Konheim A. G., McAndrew M. H. Topological entropy, Trans. Amer. Math. Soc. 1965. 114, 2, P. 309–319.

 $^{^{34}} Kamor A. E.$, Xaccenблат E. Введение в современную теорию динамических систем. М. Факториал, 1999.

³⁵ *Каток А. Б., Хасселблат Б.* Введение в теорию динамических систем с обзором последних достижений. М.: МЦНМО, 2005.

предельных переходов. Поэтому возникает вопрос, можно ли уменьшить количество пределов в формуле для данного показателя. На этот вопрос помогает ответить бэровская теория разрывных функций, причем как раз в той части, которая связана с оценкой номера класса Бэра данного показателя снизу.

Во-вторых, в процессе развития теории дифференциальных уравнений уже введено в рассмотрение целое множество ляпуновских показателей, а со временем продолжают появляться все новые и новые. Поэтому не праздным оказывается вопрос, не совпадает ли новая характеристика с какой-либо из введенных ранее. Ответ на этот вопрос иногда может дать теория классов Бэра.

Например, минимальные полунепрерывные сверху мажоранты показателей Ляпунова на пространстве линейных систем с равномерной топологией принадлежат первому классу Бэра (на том же пространстве, в силу определения), а сами показатели Ляпунова не принадлежат первому классу Бэра, следовательно, эти характеристики асимптотического поведения решений заведомо различны.

В-третьих, если две функции принадлежат разным классам Бэра, то существует хотя бы одна точка, в которой эти функции принимают разные значения. Эту информацию можно использовать для доказательства существования объектов с определенными свойствами: скажем, из приведенного выше примера непосредственно вытекает существование линейной системы, которая не является точкой полунепрерывности сверху показателей Ляпунова (ни в равномерной, ни тем более в компактнооткрытой топологии).

В-четвертых, принадлежность того или иного показателя конкретному классу Бэра позволяет гарантировать наличие у него определенных свойств. Например, если показатель принадлежит первому классу Бэра, то, в силу теоремы Бэра о функциях первого класса, в типичной по Бэру точке он непрерывен. Если показатель представим в виде поточечного предела от неубывающей (невозрастающей) последовательности функций первого класса Бэра, то в типичной по Бэру точке он полунепрерывен снизу (сверху). Если показатель принадлежит конечному (причем любому) классу Бэра, то найдется такое всюду плотное множество типа G_{δ} , что его сужение на это множество есть непрерывная функция.

Цель работы. Центральное место в предлагаемом исследовании занимает вопрос о принадлежности или непринадлежности конкретных ляпуновских показателей тому или иному классу Бэра, причем основной акцент в диссертации сделан именно на доказательстве непринадлежности.

Научная новизна. На защиту выносятся следующие основные результаты автора:

- 1) доказана непринадлежность минимальных полунепрерывных сверху мажорант показателей Ляпунова первому классу Бэра;
- 2) доказано, что максимальные полунепрерывные снизу миноранты показателей Ляпунова, экспоненциальный показатель Изобова, нижние вспомогательные

- показатели Миллионщикова (кроме старшего) не принадлежат второму классу Бэра на пространстве линейных систем с компактно-открытой топологией;
- 3) доказана непринадлежность промежуточных верхних вспомогательных показателей Миллионщикова третьему классу Бэра на пространстве линейных систем с компактно-открытой топологией;
- 4) доказано, что для любого семейства систем, непрерывно зависящих от параметра из некоторого метрического пространства, множество неправильности является множеством типа $G_{\delta\sigma}$, а также существуют такие полное метрическое пространство и семейство систем, непрерывно (равномерно по времени, при не менее чем двумерном фазовом пространстве) зависящих от параметра, что множество неправильности не является множеством типа $F_{\sigma\delta}$;
- 5) доказано, что для любого семейства липшицевых отображений, непрерывно зависящих от параметра из метрического пространства, топологическая энтропия, рассматриваемая как функция на этом метрическом пространстве принадлежит второму классу Бэра, и предъявлен пример такого семейства, для которого топологическая энтропия не принадлежит первому классу Бэра.

Таким образом, предлагаемое исследование представляет собой существенное продвижение в решении задач В. М. Миллионщикова, а в некоторых случаях их окончательное решение.

Методы исследования. Основным методом работы является построение специальных семейств линейных систем, непрерывно (возможно, равномерно по независимой переменной) зависящих от параметра, с неординарным поведением ляпуновских показателей, которые, в частности, устанавливают непринадлежность тех или иных показателей первому, второму или третьему классам Бэра на пространстве линейных систем с непрерывными и ограниченными на полуоси коэффициентами, наделенном компактно-открытой или равномерной топологией.

Теоретическая и практическая ценность. Исследование носит теоретический характер. Его результаты и методы могут быть полезны специалистам, занимающимся качественной теорией дифференциальных уравнений, в частности, теорией показателей Ляпунова и ее приложениями к вопросам устойчивости.

Апробация работы. Результаты диссертации докладывались:

• в Московском государственном университете им. М. В. Ломоносова на семинаре по качественной теории дифференциальных уравнений — руководители проф. В. А. Кондратьев (до 2010 г.), проф. В. М. Миллионщиков (до 2009 г.), проф. Н. Х. Розов, проф. И. Н. Сергеев (с 2009 г.), проф. И. В. Асташова (с 2010 г.), проф. А. В. Боровских (с 2010 г.), сделано более 30 докладов по теме диссертации в 1995—2013 гг.;

- в Московском государственном университете им. М.В. Ломоносова на семинаре «Проблемы нелинейной динамики: качественный анализ и управление» руководитель академик РАН Е.В. Емельянов, 2013 г.;
- в МЭСИ на межвузовском семинаре «Качественная теория дифференциальных уравнений и приложения» (МЭСИ МГУ им. М. В. Ломоносова МГТУ им. Н. Э. Баумана) руководители проф. И. В. Асташова, проф. В. А. Никишкин, проф. А. В. Филиновский, 2013 г.;
- в Московском государственном университете им. М. В. Ломоносова на семинаре по динамическим системам руководители академик РАН Д. В. Аносова, проф. А. М. Степин, 2013 г.;
- на совместном научном семинаре Киевского Политехнического института и механико-математического факультета МГУ имени М. В. Ломоносова «Методы нелинейного анализа в задачах математики и механики», 2012 г.;
- на международной конференции «Дифференциальные уравнения и смежные вопросы», посвященной памяти И. Г. Петровского, 2007 г.;
- на международной конференции «Fourth International Conference for Young Mathematicians on Differential Equations and Applications dedicated to Ya. B. Lopatinskii. Donetsk», 2013 г.;
- на второй международной конференции молодых ученых «Математическое моделирование фрактальных процессов, родственные проблемы анализа и информатики». Нальчик, 2013 г.

Публикации. Основные результаты диссертации опубликованы в 33 работах, из них 29— в изданиях, рекомендованных ВАК. Их список приведен в конце реферата.

Структура и объем диссертации. Текст диссертации состоит из введения и пяти глав (разбитых в общей сложности на 27 параграфов), а также списка цитированной литературы. Общий объем работы составляет 181 страницу, библиография содержит 132 наименования.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении дан исторический обзор по тематике работы, обоснована актуальность и сформулированы цели исследования, а также изложены основные результаты диссертации.

В первой главе диссертации даны определения и теоремы бэровской классификации функций, которые использованы в последующих главах, и приведены *необходимые условия принадлежности* функций 1-му, 2-му и 3-му классам Бэра.

Напомним, что функциями 0-го класса Бэра на метрическом пространстве $\mathfrak M$ называются непрерывные функции и для всякого натурального p функциями p-so

 $\kappa nacca$ Бэра называются поточечные пределы последовательностей функций (p-1)-го класса Бэра.

Вторая глава диссертации посвящена *мажорантам* и *минорантам показателей Ляпунова*.

В. М. Миллионщиков в работе 19 для любого $n \in \mathbb{N}$ и $k \in \{1, \dots, n\}$ установил, что k-ый показатель Ляпунова системы

$$\dot{x} = A(t)x, \quad x \in \mathbb{R}^n, \quad t \in \mathbb{R}^+ \equiv [0, +\infty),$$
 (1)

с непрерывной ограниченной оператор-функцией $A: \mathbb{R}^+ \to \operatorname{End} \mathbb{R}^n$, определяется формулой

$$\lambda_k(A) = \inf_{L \in G_k(\mathbb{R}^n)} \overline{\lim_{t \to \infty}} \frac{1}{t} \ln \|X_A(t,0)|_L\|,$$

где $G_k(\mathbb{R}^n)$ — множество k-мерных векторных подпространств пространства \mathbb{R}^n , $X_A(t,0)|_L$ — сужение оператора Коши системы (3) на подпространство $L \subset \mathbb{R}^n$.

Обозначим через $\overline{\lambda}_k(A)$ минимальную полунепрерывную сверху мажоранту k-го показателя Ляпунова системы (1), определяемую формулой

$$\overline{\lambda}_k(A) = \lim_{\varepsilon \to 0} \sup_{\{B: \sup_{t \in \mathbb{P}^+} ||B(t)|| < \varepsilon\}} \lambda_k(A+B),$$

а через $\underline{\lambda}_k(A)$ максимальную полунепрерывную снизу *миноранту k*-го показателя Ляпунова системы (1), определяемую формулой

$$\underline{\lambda}_k(A) = \lim_{\varepsilon \to 0} \inf_{\{B: \sup_{t \in \mathbb{R}^+} \|B(t)\| < \varepsilon\}} \lambda_k(A+B).$$

По метрическому пространству \mathfrak{M} и непрерывному ограниченному отображению

$$A: \mathfrak{M} \times \mathbb{R}^+ \to \operatorname{End} \mathbb{R}^n \tag{2}$$

образуем функции

$$\mu \mapsto \overline{\lambda}_k(A(\mu,\cdot)),$$
 (3)

$$\mu \mapsto \underline{\lambda}_k(A(\mu, \cdot)).$$
 (4)

В.М. Миллионщиков в одном из своих докладов³⁶ поставил задачу о нахождении минимального бэровского класса, которому принадлежит функция (3). Позднее И.Н. Сергеев³⁷ установил, что функция (3) принадлежит второму классу Бэра.

В диссертации построено такое отображение (2), что функция (3) не принадлежит первому классу Бэра.

 $^{^{36}}$ Миллионщиков В. М. Нерешенная задача о мажорантах показателей Ляпунова // Дифференциальные уравнения. 1991. Т. 27, № 8. С. 1457.

 $^{^{37}}$ Сергеев И. Н. Класс Бэра максимальных показателей линейных систем // Дифференциальные уравнения. 2002. Т. 38, № 11. С. 1574.

ТЕОРЕМА I [1]. Существует такое полное метрическое пространство \mathfrak{M} , что для любого $n \geqslant 1$ и каждого $k \in \{1, ..., n\}$ найдется отображение (2), для которого функция (3) всюду разрывна и не принадлежит первому классу Бэра на \mathfrak{M} .

В своем докладе³⁸ В.М. Миллионщиков поставил задачу о нахождении минимального класса Бэра, которому принадлежит функция (4). В.В. Быков и Е.Е. Салов доказали³⁹, что она принадлежит третьему классу Бэра (ранее это было установлено И.Н. Сергеевым⁴⁰ для трехмерного случая).

В диссертации доказано, что существует такое отображение (2), что функция (4) не принадлежит второму классу Бэра.

ТЕОРЕМА II [2, 16]. Существует такое полное метрическое пространство \mathfrak{M} , что для любого $n \ge 2$ и каждого $k \in \{1, ..., n\}$ найдется отображение (2), для которого функция (4) всюду разрывна и не принадлежит второму классу Бэра на \mathfrak{M} .

В том же докладе³⁸ В.М. Миллионщиков поставил вопрос о всюду плотности точек полунепрерывности снизу функции (4). В диссертации, в случае $\mathfrak{M} = [0,1]$, построено такое отображение (2), что множество точек полунепрерывности снизу функции (4) пусто.

ТЕОРЕМА III [15]. Для $\mathfrak{M} \equiv [0, 1]$ и любого $n \geqslant 1$ существует такое отображение (2), что для любого $k \in \{1, \ldots, n\}$ множество точек полунепрерывности снизу функции (4) пусто.

В третьей главе диссертации изучаются экспоненциальный показатель Изобова и вспомогательные показатели Миллионщикова.

H.A. Изобов 41 ввел экспоненциальный показатель

$$\nabla(A) = \sup_{B \in K_0} \lambda_n(A+B),$$

который отвечает за подвижность вверх старшего показателя Ляпунова при непрерывных возмущениях системы (1), принадлежащих множеству

$$K_0 = \{B(\cdot) : \overline{\lim_{t \to \infty}} \frac{1}{t} \ln ||B(t)|| < 0\}.$$

По метрическому пространству \mathfrak{M} и отображению (2) образуем функцию

$$\mu \mapsto \nabla(A(\mu, \cdot)).$$
 (5)

 $^{^{38}}$ Миллионщиков В. М. Задачи о минорантах показателей Ляпунова // Дифференциальные уравнения. 1993. Т. 29, № 11. С. 2014—2015.

 $^{^{39}}$ Быков В. В., Салов Е. Е. О классе Бэра минорант показателей Ляпунова // Вестник МГУ. Серия 1. Математика и механика. 2003. № 1. С. 33–40.

 $^{^{40}}$ Сергеев И. Н. К задаче о классе Бэра минорант показателей Ляпунова // Дифференциальные уравнения. 1995. Т. 31, № 9. С. 1600–1601.

 $^{^{41}}$ Изобов Н. А. Экспоненциальные показатели линейной системы и их вычисление // Докд. АН БССР. 1982. Т. 26, № 1. С. 5–8.

В.Г. Агафонов^{42,43} (по заданию В.М. Миллионщикова) установил, что для любого отображения (2) функция (5) принадлежит третьему классу Бэра и существует такое отображение (2), что эта функция не принадлежит первому классу Бэра.

В диссертации построено такое отображение (2), что функция (5) не принадлежит и второму классу Бэра.

ТЕОРЕМА IV [22]. Существует такое полное метрическое пространство \mathfrak{M} , что для любого $n \ge 2$ найдется отображение (2), для которого функция (5) всюду разрывна и не принадлежит второму классу Бэра на \mathfrak{M} .

Для исследования стохастической устойчивости показателей Ляпунова линейных систем В.М. Миллионщиков⁴⁴ ввел *верхние вспомогательные показатели* системы (1), определяемые формулами

$$\overline{\nu}_k(A) = \overline{\lim}_{T \to \infty} \overline{\lim}_{m \to \infty} \frac{1}{mT} \sum_{j=1}^m \ln \delta_k(jT, (j-1)T), \quad k = 1, \dots, n,$$

и нижние вспомогательные показатели —

$$\underline{\nu}_k(A) = \underline{\lim}_{T \to \infty} \overline{\lim}_{m \to \infty} \frac{1}{mT} \sum_{j=1}^m \ln \delta_k(jT, (j-1)T), \quad k = 1, \dots, n,$$

где $\delta_k(t,\tau)-k$ -е сингулярное число оператора Коши $X_A(t,\tau)$ системы (1).

Старшие из этих показателей совпадают с минимальной полунепрерывной мажорантой старшего показателя Ляпунова, а младшие — с максимальной полунепрерывной снизу минорантой младшего показателя Ляпунова Тогда же В.М. Миллионщиков предположил, что промежуточный верхний и соответствующий ему нижний вспомогательный показатели совпадают. В дальнейшем О.Г. Илларионова построила трехмерную систему, для которой промежуточные вспомогательные показатели не совпадают.

По метрическому пространству \mathfrak{M} и отображению (2) образуем функции

$$\mu \mapsto \overline{\nu}_k(A(\mu,\cdot)),$$
 (6)

$$\mu \mapsto \nu_k(A(\mu, \cdot)).$$
 (7)

В.Г. Феклин 46 (по заданию В.М. Миллионщикова) установил, что для любого отображения (2) функция (7) принадлежит третьему классу Бэра. Затем К.Е. Ширяев 47

 $^{^{42}}$ Агафонов В. Г. О классе Бэра показателя Изобова // Дифференциальные уравнения. 1993. Т. 29, № 6. С. 1092–1093.

 $^{^{43}}$ Агафонов В. Г. О классе Бэра верхнего показателя Изобова // Дифференциальные уравнения. 1994. Т. 30, № 6. С. 1089.

 $^{^{44}}$ Миллионщиков В. М. К теории характеристических показателей Ляпунова // Математические заметки. 1970. Т. 7. № 4. С. 503–513.

 $^{^{45}}$ Илларионова О. Г. О вспомогательных показателях линейных систем дифференциальных уравнений // Тр. Ин-та прикл. механики им. Векуа. 1988. Т. 31. С. 80–98.

 $^{^{46}}$ Феклин В. Г. Классификация нижних вспомогательных показателей по Бэру // Дифференциальные уравнения. 1992. Т. 28, № 11. С. 2009.

 $^{^{47}}$ Ширяев К. Е. О классе Бэра некоторых показателей линейных систем в компактно-открытой топологии // Дифференциальные уравнения. 1995. Т. 31, № 5. С. 905.

установил, что существует такое отображение (2), что функции (6), (7) не принадлежат первому классу Бэра.

В диссертации доказано, что существует такое отображение (2), что функция (7), кроме случая k=n, не принадлежит и второму классу Бэра.

ТЕОРЕМА V [18]. Существует такое полное метрическое пространство \mathfrak{M} , что для любого $n \ge 2$ и каждого $k \in \{1, \ldots, n-1\}$ найдется отображение (2), для которого функция (7) всюду разрывна и не принадлежит второму классу Бэра на \mathfrak{M} .

В диссертации также построено такое отображение (2), что функция (6), кроме случаев k=n и k=1, не принадлежит третьему классу Бэра.

ТЕОРЕМА VI [3]. Существует такое полное метрическое пространство \mathfrak{M} , что для любого $n \ge 2$ при каждом $k \in \{2, ..., n-1\}$ найдется отображение (2), для которого функция (6) всюду разрывна и не принадлежит третьему классу Бэра на \mathfrak{M} , а при k=1 — не принадлежит второму.

В **четвертой главе** диссертации рассматриваются *правильные по Ляпунову системы*.

Один из важнейших классов линейных систем образуют правильные системы, которые были введены А.М. Ляпуновым в связи с исследованием экспоненциальной устойчивости неавтономной системы по первому приближению.

Напомним, что система (1) называется правильной, если выполнено равенство

$$\sum_{k=1}^{n} \lambda_k(A(\cdot)) = \underline{\lim}_{t \to \infty} \frac{1}{t} \int_{0}^{t} \operatorname{Sp}A(\tau) d\tau.$$

Для произвольного отображения (2) обозначим через W_n подмножество тех значений параметра $\mu \in \mathfrak{M}$, при которых система $\dot{x} = A(\mu, t)x$ неправильна по Ляпунову.

Рассматривая семейства линейных систем, в которые параметр входит как множитель при матрице коэффициентов системы, а сама эта система правильна по Ляпунову, Ю.С. Богданов в 1980 г. поставил вопрос о пустоте множества W_n .

Н.А. Изобов и Е.К. Макаров построили^{48,49} такие семейства систем, линейно зависящие от вещественного параметра, множества W_n которых могут оказаться следующими: множеством значений произвольной бесконечной в обе стороны арифметической прогрессии, не содержащей нуля и единицы; объединением значений таких прогрессий, замыкание которого счетно; дополнение до \mathbb{R} такой арифметической прогрессии; множество $\mathbb{R} \setminus \{0, 1\}$.

В диссертации для любого семейства (2) установлен дескриптивный тип множества W_n .

ТЕОРЕМА VII [18]. Для любого метрического пространства \mathfrak{M} и каждого отображения (2), подмножество W_n является множеством типа $G_{\delta\sigma}$ в пространстве \mathfrak{M} .

 $^{^{48}}$ Изобов Н. А., Макаров Е. К. О неправильных по Ляпунову линейных системах с параметром при производной // Дифференциальные уравнения. 1988. Т. 24, № 11. С. 1870–1880.

 $^{^{49}}$ Макаров Е. К. О множествах неправильности линейных систем с параметром при производной // Дифференциальные уравнения. 1988. Т. 24, № 12. С. 2091–2098.

Оказывается, что существуют такие полное метрическое пространство \mathfrak{M} и семейство систем (2), непрерывно (равномерно по времени, при не менее чем двумерном фазовом пространстве) зависящих от параметра, что множество W_n не является множеством типа $F_{\sigma\delta}$.

ТЕОРЕМА VIII [4]. Существует такое полное метрическое пространство \mathfrak{M} , что для любого $n \ge 1$ найдется отображение (2) (а при $n \ge 2$ еще и непрерывное по $\mu \in \mathfrak{M}$ равномерно по $t \in \mathbb{R}^+$), для которого подмножество W_n не является множеством типа $F_{\sigma\delta}$ в пространстве \mathfrak{M} .

В дальнейшем Е.А. Барабанов⁵⁰, в частности, доказал, что множество вещественной прямой тогда и только тогда есть множество неправильности некоторого семейства линейных дифференциальных систем, непрерывно зависящих от параметра, когда оно является множеством типа $G_{\delta\sigma}$.

В.М. Миллионщиков^{51,52,53} предложил два естественных расширения подмножества правильных линейных систем. Первое EI_n множество систем вида (1) таких, что для всякой непрерывной оператор-функции $B \in K_0$ система $\dot{y} = (A(t) + B(t))y$ имеет те же показатели Ляпунова, что и система (1). Второе GROD_n множество систем вида (1), которые заменой переменных $x = Q_A(t)y$, где $Q_A : \mathbb{R}^+ \to \mathrm{End}\,\mathbb{R}^n$ непрерывно дифференцируемая оператор-функция, удовлетворяющая условиям

$$\overline{\lim_{t \to \infty}} \frac{1}{t} \ln \|Q_A(t)\| \leqslant 0, \quad \overline{\lim_{t \to \infty}} \frac{1}{t} \ln \|Q_A^{-1}(t)\| \leqslant 0,$$

приводимы к диагональным системам

$$\dot{y} = \begin{pmatrix} p_1(t) & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & p_n(t) \end{pmatrix} y$$

с упорядоченной диагональю

$$p_1(t) \leqslant \ldots \leqslant p_n(t), \quad t \in \mathbb{R}^+.$$

В докладе⁵⁴ В.М. Миллионщиковым установлено включение второго множества в первое и поставлен вопрос о его строгости. В диссертации доказано, что это включение является строгим.

ТЕОРЕМА IX [8]. Пусть $n \geqslant 2$, тогда $GROD_n \neq EI_n$.

 $^{^{50}}$ Барабанов Е. А. О множествах неправильности семейств линейных дифференциальных систем // Дифференциальные уравнения. 2009. Т. 45, № 8. С. 1067–1084.

 $^{^{51}}$ Миллионщиков В. М. Экспоненциально-инвариантные системы // Дифференциальные уравнения. 1993. Т. 29, № 11. С. 2014.

 $^{^{52}}$ Миллионщиков В. М. Линейные системы, обобщенно приводимые к упорядоченнодиагональному виду // Дифференциальные уравнения. 1993. Т. 29, № 11. С. 2020.

 $^{^{53}}$ Миллионщиков В. М. Об одном классе линейных систем // Дифференциальные уравнения. 1993. Т. 29, № 6. С. 1090–1091.

 $^{^{54}}$ Миллионщиков В. М. Нерешенная задача о классах линейных систем // Дифференциальные уравнения. 1995. Т. 31, № 12. С. 2092.

В пятой главе диссертации изучается топологическая энтропия.

Напомним определение топологической энтропии динамической системы 34 . Пусть X- компактное метрическое пространство, а $f:X\to X-$ непрерывное отображение. Наряду с исходной метрикой d определим на X дополнительную систему метрик

$$d_n^f(x,y) = \max_{0 \leqslant i \leqslant n-1} d(f^i(x), f^i(y)), \quad n \in \mathbb{N}.$$

Обозначим через $B_f(x,\varepsilon,n)$ открытый шар $\{y\in X: d_n^f(x,y)<\varepsilon\}$. Множество $E\subset X$ называется (f,ε,n) -покрытием, если

$$X \subset \bigcup_{x \in E} B_f(x, \varepsilon, n).$$

Пусть $S_d(f,\varepsilon,n)$ обозначает минимальное количество элементов (f,ε,n) -покрытия. *Топологической энтропией* динамической системы, порожденной непрерывным отображением f называется

$$h_{\text{top}}(f) = \lim_{\varepsilon \to 0} \overline{\lim_{n \to \infty}} \frac{1}{n} \ln S_d(f, \varepsilon, n).$$

В книге³⁴ установлено, что топологическая энтропия, рассматриваемая как функционал на пространстве непрерывных отображений из [0;1] в [0;1] с равномерной топологией, является всюду полунепрерывной снизу функцией, а следовательно, принадлежит первому классу Бэра. В работе⁵⁵ установлено, что в случае произвольного компактного риманова многообразия топологическая энтропия не является полунепрерывной ни снизу, ни сверху даже на пространстве диффеоморфизмов с C^1 -топологией, и поставлен вопрос о классе Бэра, которому принадлежит топологическая энтропия.

В диссертации топологическая энтропия семейства липшицевых отображений, непрерывно зависящих от параметра из метрического пространства, рассматривается как функция на этом метрическом пространстве

По метрическому пространству \mathfrak{M} и непрерывному по совокупности переменных отображению

$$f: \mathfrak{M} \times X \to X,$$
 (8)

образуем функцию

$$\mu \mapsto h_{\text{top}}(f_{\mu}(\cdot)).$$
 (9)

Изучим поведение функции (9) с точки зрения бэровской классификации.

Напомним, что свойство точки топологического пространства называется munuvным по Бэру, если множество точек, обладающих этим свойством, содержит всюду плотное множество типа G_{δ} , т. е. множество, представимое в виде счетного пересечения открытых подмножеств.

 $^{^{55}}$ Misiurewicz M. Diffeomorphism without any measure with maximal entropy // Bull Acad Pol. sci, Math, astron et phys. 1973. 21. 10. P. 903–910.

ТЕОРЕМА X [14]. Для любого метрического пространства \mathfrak{M} и каждого отображения (8), удовлетворяющего условию Липшица по $x \in X$ при всяком фиксированном значении $\mu \in \mathfrak{M}$, функция (9) принадлежит второму классу Бэра, а если \mathfrak{M} метризуемо полной метрикой, то в типичной по Бэру точке полунепрерывна снизу.

ТЕОРЕМА XI [5]. Существуют такие компактные метрические пространства \mathfrak{M} и X, что для любого K > 1 найдется такое отображение (8), удовлетворяющее условию Липшица с константой K по $x \in X$ при всяком фиксированном значении $\mu \in \mathfrak{M}$, что функция (9) не принадлежит первому классу Бэра.

* * *

В заключение автор выражает свою глубокую признательность профессору В.М. Миллионщикову, профессору И.Н. Сергееву и доценту В.В. Быкову за постановки задач и полезное обсуждение работы, а также академику Н.А. Изобову за организационную и моральную поддержку.

РАБОТЫ АВТОРА ПО ТЕМЕ ДИССЕРТАЦИИ

- [1] Bemoxuh A. H. К бэровской классификации остаточных показателей // Дифференциальные уравнения. 1998. Т. 34, № 8. С. 1039–1042.
- [2] *Ветохин А. Н.* Класс Бэра максимальных полунепрерывных снизу минорант показателей Ляпунова // Дифференциальные уравнения. 1998. Т. 34, № 10. С. 1313— 1317.
- [3] Bетохин A. H. Точный класс Бэра вспомогательных показателей // Дифференциальные уравнения. 2000. Т. 36, № 10. С. 1424–1426.
- [4] *Ветохин А. Н.* Точный дескриптивный тип множества правильных линейных систем // Дифференциальные уравнения. 2000. Т. 36, № 8. С. 1128–1129.
- [5] Bemoxuh A. H. О некоторых свойствах топологической энтропии динамических систем // Математические заметки. 2013. Т. 93. Вып. 3. С. 347–356.
- [6] *Ветохин А. Н.* Об одном свойстве центральных показателей // Вестник МГУ им. М. В. Ломоносова. Сер. 1. Математика. Механика. 2002. № 1. С. 52–53.
- [7] *Ветохин А. Н.* О свойствах показателей Ляпунова правильных линейных систем // Дифференциальные уравнения. 2013. Т. 49, № 4. С. 417–423.
- [8] *Ветохин А. Н.* О несовпадении двух множеств линейных систем // Дифференциальные уравнения. 2013. Т. 49, № 6. С. 784–788.

- [9] Bemoxuh A. H. К задаче о минорантах показателей Ляпунова // Дифференциальные уравнения. 2013. Т. 49, № 7. С. 950–952.
- [10] Bemoxuh A. H. О классах Бэра остаточных функционалов // Дифференциальные уравнения. 1995. Т. 31, № 5. С. 909–910.
- [11] Bemoxuh A. H. Класс Бэра верхних вспомогательных показателей // Дифференциальные уравнения. 1997. Т. 33, № 6. С. 852–853.
- [12] *Ветохин А. Н.* Класс Бэра нижних вспомогательных показателей // Дифференциальные уравнения. 1997. Т. 33, № 6. С. 853–854.
- [13] *Ветохин А. Н.* О множестве точек полунепрерывности сверху некоторых показателей Изобова // Дифференциальные уравнения. 2013. Т. 49, № 6. С. 806–807.
- [14] *Ветохин А. Н.* О свойствах топологической энтропии липшицевых отображений // Дифференциальные уравнения. 2012. Т. 48, № 11. С. 1566–1567.
- [15] *Ветохин А. Н.* О множествах точек полунепрерывности показателей, не принадлежащих второму классу Бэра // Дифференциальные уравнения. 2013. Т. 49, № 11. С. 1506–1507.
- [16] Bemoxuh A. H. О классе Бэра нижнего центрального показателя // Дифференциальные уравнения. 1995, Т. 31, № 9. С. 1597.
- [17] Bemoxuh A. H. О характеристиках условной экспоненциальной устойчивости // Дифференциальные уравнения. 1995, Т. 31, № 9. С. 1601.
- [18] Bemoxuh A. H. О топологической структуре множество правильных систем // Дифференциальные уравнения. 1995, Т. 31, № 11. С. 1937.
- [19] *Ветохин А. Н.* О классе Бэра минимальных показателей // Дифференциальные уравнения. 1995. Т. 31, № 12. С. 2090.
- [20] *Ветохин А. Н.* О векторных пространствах, определяемых показателями Ляпунова и характеристиках условной экспоненциальной устойчивости // Дифференциальные уравнения. 1995, Т. 31, № 12, С. 2095.
- [21] *Ветохин А. Н.* К классификации Бэра сигма показателей Изобова // Дифференциальные уравнения. 1997. Т. 33, № 11. С. 1574.
- [22] *Ветохин А. Н.* Точный класс экспоненциального показателя Изобова // Дифференциальные уравнения. 1999. Т. 35, № 6. С. 856.
- [23] Bemoxuh A. H. Некоторые свойства конструктивного показателя // Дифференциальные уравнения. 2000. Т. 36, № 6. С. 853.

- [24] *Ветохин А. Н.* Об одном свойстве мажорант и минорант остаточных функционалов // Дифференциальные уравнения. 2000. Т. 36, № 11. С. 1573.
- [25] Bemoxuh A. H. Лебеговские множества показателей Ляпунова // Дифференциальные уравнения. 2001. Т. 37, № 6. С. 849.
- [26] *Ветохин А. Н.* О лебговских множествах показателей Ляпунова // Дифференциальные уравнения. 2002. Т. 38, № 11. С. 1567.
- [27] *Ветохин А. Н.* О точном классе Бэра показателей Ляпунова на множестве правильных линейных систем // Дифференциальные уравнения. 2010. Т. 46, № 6. С. 905.
- [28] Bemoxuh A. H. Об устойчивости показателей Ляпунова правильноых линейных систем // Дифференциальные уравнения. 2011. Т. 47, № 6. С. 1672.
- [29] *Ветохин А. Н.* О свойствах топологической энтропии диффеоморфизмов гладких компактных многообразий // Дифференциальные уравнения. 2012. Т. 48, № 11. С. 1572.
- [30] Bemoxuh A. H. О свойствах сигма-показателя Изобова // Труды Института математики НАН Беларуси. Минск. 2000. Т. 4. С. 20–24.
- [31] Ветохин А. Н. О свойствах топологической энтропии // Дифференциальные уравнения и смежные вопросы: Материалы Международной конференции, посвященной памяти И. Г. Петровского. Тезисы докладов М.: Изд-во МГУ. 2007. С. 379.
- [32] Ветохин А. Н. О множестве точек полунепрерывности снизу топологической энтропии на пространстве липшицевых отображений // Fourth International Conference for Young Mathematicians on Differential Equations and Applications dedicated to Ya. B. Lopatinskii. Donetsk, 2013. C. 30–31.
- [33] Ветохин А. Н. О типичности полунепрерывности снизу топологической энтропии на пространстве липшицевых отображений // Математическое моделирование фрактальных процессов, родственные проблемы анализа и информатики: Материалы Второй международной конференции молодых ученых. Нальчик, 2013. С. 67–68.