МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М. В. ЛОМОНОСОВА Механико-математический факультет

На правах рукописи УДК 519.984.5

Зыкова Татьяна Валерьевна

ФОРМУЛЫ СЛЕДОВ ДЛЯ ВОЗМУЩЕННОГО ОПЕРАТОРА ЛАПЛАСА-БЕЛЬТРАМИ НА МНОГООБРАЗИЯХ С ЗАМКНУТЫМ ГЕОДЕЗИЧЕСКИМ ПОТОКОМ

01.01.01 — вещественный, комплексный и функциональный анализ

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук

> Москва 2014

Работа выполнена на кафедре математического анализа механико-математического факультета Московского государственного университета имени М. В. Ломоносова

Научный руководитель:

доктор физико-математических наук, профессор Подольский Владимир Евгеньевич

Официальные оппоненты:

доктор физико-математических наук, доцент Шейпак Игорь Анатольевич, профессор кафедры теории функций и функционального анализа механико-математического факультета Московского государственного университета имени М. В. Ломоносова,

кандидат физико-математических наук,

доцент **Артамонов Никита Вячеславович**, заведующий кафедрой эконометрики и математических методов анализа экономики факультета международных экономических отношений Московского государственного института международных отношений (университета) МИД России

Ведущая организация:

Башкирский государственный университет

Защита диссертации состоится 20 июня 2014 года в 16 часов 45 минут на заседании диссертационного совета Д 501.001.85 при Московском государственном университете имени М.В.Ломоносова по адресу: 119991, ГСП-1, Москва, Ленинские горы, д.1, МГУ, механико-математический факультет, аудитория 16-24.

С диссертацией можно ознакомиться в Фундаментальной библиотеке МГУ имени М.В.Ломоносова (Ломоносовский проспект, д.27).

Автореферат разослан 19 мая 2014 года.

Ученый секретарь диссертационного Совета Д 501.001.85 при МГУ, доктор физико-математических наук, профессор

В.Н. Сорокин

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Возникновение теории интегральных операторов Фурье послужило толчком для новых исследований в теории изучения спектра дифференциальных операторов на компактных многообразиях с периодическим бихарактеристическим потоком. Первые результаты, полученные в этом направлении (А. Вейнстейном¹, Дж. Дейстермаатом и В. Гийеминым² и др.) показали, что спектр таких операторов хорошо локализуется вокруг спектра невозмущенного (отвечающего главному символу) оператора. В этой теории оператор Лапласа-Бельтрами, возмущенный оператором умножения на гладкую функцию на многообразиях с замкнутым геодезическим потоком занимает особое место, как основная модель и как физически наиболее интересный случай.

Кратко обратимся к истории вопроса. Будем рассматривать Δ — оператор Лапласа-Бельтрами на единичной сфере S^2 из R^3 . Пусть q — оператор умножения на комплекснозначную бесконечно дифференцируемую функцию на S^2 . Пусть также $\{\lambda_k\}_{k=0}^{\infty}$ и $\{\mu_k\}_{k=0}^{\infty}$ — собственные числа операторов — Δ и — Δ + q соответственно, занумерованные с учетом кратности в порядке возрастания их действительных частей.

Спектр оператора $-\Delta$ на S^2 известен³:

$$\lambda_{ki} = k(k+1),\tag{1}$$

 $k = 0, 1, \ldots; i = 1, \ldots, N_k$, с кратностью $N_k = 2k + 1$.

Для собственных чисел оператора $-\Delta + q$ будем использовать двойную нумерацию μ_{ki} , согласованную с нумерацией λ_{ki} .

¹Weinstein A. The resolvent of an elliptic boundary problem. Fourier integral operators, quantization and the spectra of Riemmanian manifolds. – Colloque International de Geometrie Symplectique et Physique Mathematique CNRS Aix (Juin 1974). 1976.

²Duistermaat J.J., Guillemin V. The spectrum of positive elliptic operators and periodic bicharacterictics. – Invent.Math., 1975, vol. 29, p.39-79.

³Розенблюм Г.В., Соломяк М. З., Шубин М.А. Спектральная теория дифференциальных операторов, Дифференциальные уравнения с частными производными – 7, Итоги науки и техн. Сер. Соврем. пробл. мат. Фундам. направления, 64, ВИНИТИ, М., 1989, 5–242.

В. Гийемин
4 и Г. Видом 5 изучили спектр оператор
а $-\Delta+q$ на S^2 и показали, что оценка

$$|\mu_{ki} - \lambda_{ki}| = O(1), \quad i = 1, \dots, N_k,$$
(2)

получаемая методами теории возмущений⁶, может быть улучшена лишь для нечетных q (т.е. $q(\tau x) = -q(x)$ для каждого $x \in S^2$, где τ -антиподальное отображение) до

$$|\mu_{ki} - \lambda_{ki}| = O\left(\frac{1}{k^2}\right), \quad i = 1, \dots, N_k, \tag{3}$$

и O в (3) можно заменить на o только для $q \equiv 0$.

А. Вейнстейн⁷ рассмотрел оператор $-\Delta + B$ на компактном римановом многообразии X (мы приводим результат для двумерного случая), где B - псевдодифференциальный оператор нулевого порядка и показал, что для любой функции f(z), аналитической в некоторой области, содержащей последовательность $\{\mu_{ki}-\lambda_{ki}\}_{k=0,i=0}^{\infty,2k}$, (здесь, аналогично предыдущим обозначениям, μ_{ki} - собственные числа возмущенного, а λ_{ki} - невозмущенного операторов) верно

$$\sum_{i=0}^{2k} f(\mu_{ki} - \lambda_{ki}) = \frac{k}{4\pi^2} \int_{S^*X} f(B^{av}) dv + O(1),$$

где S^*X расслоение единичных сфер в кокасательном пространстве; dv канонический элемент объема S^*X , $B^{av} = \frac{1}{2\pi} \int_{0}^{2\pi} (\exp t\Xi)^* \sigma(B) dt$ -символ усреднения оператора B, здесь $\sigma(B)$ -символ оператора B, Ξ - гамильтоново векторное поле на $T^*X \setminus \{0\}$. В.Гиейминым и А.Урибом⁸ это утверждение было распространено и на случай возмущения оператора Лапласа-

 $^{^4 {\}rm Guillemin}$ V. Some spectral results for the Laplace operator with potential on the n sphere. - Adv. Math. 27, 273–286. 1978.

 $^{^5 \}rm Widom$ H. The Laplace operator with potential on the 2-sphere – Adv. Math. 31, 63–66. 1979.

⁶Като Т. Теория возмущений линейных операторов. - М. Мир. 1972.

⁷Weinstein A. Asymptotics of eigenvalue clusters for the Laplacian plus a potential. Duke Math J., v.44, p.883-892, 1977

⁸Guillemin V., Uribe A. Spectral properties of a crtain class of complex potentials. - Trans, of the Amer. Math. Soc, v. 279, No, 759 - 771. 1983

Бельтрами комплексным потенциалом.

Таким образом, относительно асимптотического распределения собственных чисел оператора $-\Delta + q$ были получены окончательные результаты. Получение формул регуляризованных следов исследуемого оператора становится важным инструментом в исследовании спектра оператора, когда дальнейшее изучение асимптотического поведения спектра становится невозможным.

Регуляризованным следом порядка α оператор
аAназываются соотношения вида

$$\widetilde{\sum_{k}} (\lambda_{k}^{\alpha} - A_{k}(\alpha)) = B(\alpha), \tag{4}$$

где λ_k - собственные числа оператора $A, \alpha \in \mathbb{R}^1$, а $A_k(\alpha)$ и $B(\alpha)$ - явно вычисляемые через характеристики оператора функции, символ $\widetilde{\sum}$ означает или обычное суммирование или один из методов суммирования.

Первая формула такого вида для обыкновенных дифференциальных операторов была получена в 1953 году в работе И.М. Гельфанда и Б.М. Левитана⁹, где в качестве A рассматривался оператор Штурма-Лиувилля с потенциалом q(x), $\int_{0}^{\pi} q(x) dx = 0$:

$$\sum_{n=1}^{\infty} (\mu_n - n^2) = -\frac{q(0) + q(\pi)}{4}.$$

Получению формул регуляризованных следов для обыкновенных дифференциальных операторов были посвящены работы И.М. Гельфанда, Л.А. Дикого, М.Г. Гасымого, и Б.М. Левитана, Р.Ф. Шевченко, А.Г. Костюченко, В.А. Садовничего, В.Е. Подольского и многих других.

В.Б. Лидским и В.А. Садовничим¹⁰ был предложен метод доказательства формул типа (4) для широкого класса краевых задач, порожденных обыкновенными дифференциальными выражениями на конечном отрезке

⁹Гельфанд И.М., Левитан Б.М. Об одном простом тождестве для собственных значений дифференциального оператора второго порядка.- ДАН СССР, 1953, том 88, №4, с.593-596.

¹⁰Лидский В.Б., Садовничий В.А. Регуляризованные суммы корней одного класса целых функций.- Функц. анализ и его прил., 1967, том 1, №2, с. 52-59.

со сложным вхождением спектрального параметра, сводящийся к изучению регуляризованных сумм корней целых функций с определенной асимптотической структурой.

Даже для обыкновенных дифференциальных операторов, регуляризованные следы могут образовывать расходящиеся ряды, и тогда возникает задача их суммирования каким-либо подходящим методом суммирования.

Один из подходов — суммирование следов со скобками. Первой реализацией такого подхода для обыкновенных дифференциальных операторов можно считать работу¹¹ В.А. Садовничего, В.А. Любишкина и М. Мартиновича 1987 года. Крупным продвижением в теории следов стала работа В.А. Садовничего и В.В. Дубровского¹², где рассматривался оператор Лапласа-Бельтрами возмущенный гладким нечетным вещественнозначным потенциалом на двумерной единичной сфере S^2 . Этот оператор имеет кластерную асимптотику $N(\lambda)$ и для него суммирование со скобками является естественной постановкой задачи. Для этого случая была доказана формула:

$$\mu_0 + \sum_{k=0}^{\infty} \left[\sum_{i=0}^{2k} \mu_{ki} - k(k+1)(2k+1) \right] = -\frac{1}{8\pi} \int_{S^2} q^2 dS$$

Позже В. Е. Подольский¹³, применив к этой задаче суммирование по Абелю и затем к полученной формуле тауберову теорему Литлвуда, доказал, что ряд сходится без скобок (но этот случай является единственным исключением). Позже В.Е. Подольским ¹⁴ были получены аналогичные формулы для любых степеней собственных чисел оператора Лапласа-Бельтрами с потенциалом на компактных симметрических пространствах ранга 1.

¹¹Садовничий В.А., Любишкин В.А., Мартинович М. Конечномерные возмущения дискретных операторов и формулы следов. - ДАН СССР, 1987, том 293, №5, с.1062-1064.

¹²Садовничий В.А., Дубровский В.В. Классическая формула регуляризованного следа для собственных чисел оператора Лапласа-Бельтрами с потенциалом на сфере. - ДАН СССР, 1991, том 319, №1, с.61-62.

¹³Подольский В.Е. Формула регуляризованного следа оператора Лапласа-Бельтрами с нечетным потенциалом на сфере S². - Матем. заметки, 1994, том 56, №1, с.71-77.

¹⁴Podol'skii V.E. On the summability of regularized sums of eigenvalues of the Laplace-Beltrami operator with potential on symmetric spaces of rank one. - Russian J. Math. Phys. 4, №1, 123-130. 1996

А.Н. Бобров предпринимал попытку¹⁵ найти след оператора Лапласа-Бельтрами с потенциалом на поверхности вращения Цолля, но допустил неточность (подробнее см. параграф 1.2.1 настоящей работы) и приведенную им формулу нельзя считать окончательно верной, но результат для случая простой сферы S^2 и произвольной комплекснозначной функции $q \in C^{\infty}$ был получен. В.А. Садовничий и З.Ю. Фазуллин для оператора, возмущенного произвольной комплекснозначной функцией лучшей гладкости: в 2005 году для $q \in C^2(S^2)^{16}$, а в 2011 году для $q \in W_1^2(S^2)^{17}$, получили формулу регуляризованного следа:

$$\sum_{k=0}^{\infty} \sum_{i=0}^{2k} \left[\mu_{ki} - k(k+1)(2k+1) - c_0 \right] = 2c_1,$$

где $c_0 = \frac{1}{4\pi} \int_{S^2} q(\omega) d\omega, c_1 = \frac{1}{32\pi^3} \int_{S^2} \int_{S^2} \frac{q(\omega)q(\omega_0)}{\sqrt{1 - (\vec{\omega}, \vec{\omega_0})^2}} d\omega d\omega_0 - \frac{1}{16\pi} \int_{S^2} q^2(\omega) d\omega,$ $(\vec{\omega}, \vec{\omega_0})$ - скалярное произведение векторов $\vec{\omega} = (\cos \varphi \sin \theta, \sin \varphi \sin \theta, \cos \theta)$ и $\vec{\omega_0} = (\cos \varphi_0 \sin \theta_0, \sin \varphi_0 \sin \theta_0, \cos \theta_0).$

Цель работы. Исследование задач спектральной теории операторов для возмущенного и невозмущенного операторов Лапласа-Бельтрами на двумерных многообразиях с замкнутыми геодезическими одинаковой длины, метрики которых являются возмущениями стандартной метрики сферы, в том числе иследование дзета- и тета-функций таких операторов, получение формул регуляризованных следов.

Научная новизна. Все результаты диссертации являются новыми. В диссертации получены следующие основные результаты:

1. исследовано аналитическое продолжение дзета-функции для возмущенного и невозмущенного операторов Лапласа-Бельтрами на двумерных многообразиях с замкнутыми геодезическими;

¹⁵Бобров А.Н. След оператора Лапласа-Бельтрами с потенциалом на поверхности Цолля.- Доклады АН, 368 (2), 154-156. 1999.

¹⁶Садовничий В. А., Фазуллин З. Ю. Асимптотика собственных чисел и формула следа возмущения оператора Лапласа на сфере S² — Матем. заметки, 2005, 77:3, с.434-448.

¹⁷Садовничий В.А., Фазуллин З.Ю., Атнагулов А.И. Свойства резольвенты оператора Лапласа-Бельтрами на двумерной сфере и формула следов.-Доклады академии наук, 2011, Т.441.№2. С. 174-176.

- впервые получена формула геометрического регуляризованного следа для оператора Лапласа-Бельтрами при возмущении метрики многообразия;
- 3. впервые получена формула регуляризованного следа для оператора Лапласа-Бельтрами, возмущенного потенциалом, на многообразии с замкнутыми геодезическими (не являющемся сферой) и доказано, что полученная формула верна для всех таких многообразий, не зависит от явного вида метрик, а зависит только от их геометрических инвариантов.

Методы исследования. В диссертации применяются методы теории псевдодифференциальных операторов, методы теории функций действительного переменного и теории функций комплексного переменного, методы дифференциальной геометрии, методы спектральной теории операторов.

Теоретическая и практическая ценность. Работа носит теоретический характер. Полученные в диссертации результаты представляют интерес для специалистов в области функционального анализа, спектральной геометрии и математической физики.

Апробация работы. Результаты диссертации докладывались на:

- семинаре «Теория следов операторов» механико-математического факультета МГУ имени М.В.Ломоносова под руководством В.Е. Подольского) (неоднократно: 2007-2011 гг.);
- конференции «Спектральная теория операторов и ее приложения», г. Уфа (12-16 июня 2011 года);
- XI Школе молодых ученых «Нелокальные краевые задачи и проблемы современного анализа и информатики», г.Нальчик (4-8 декабря 2013 года);
- семинаре «Спектральная теория дифференциальных операторов» механико-математического факультета МГУ имени М.В.Ломоносова под руководством академика РАН В.А. Садовничего) (13 декабря 2013);

- 17-й международной Саратовской зимней школе «Современные проблемы теории функций и их приложения», посвященная 150-летию со дня рождения В. А. Стеклова, г. Саратов (27 января – 3 февраля 2014 года);
- семинаре «Операторные модели в математической физике» механико-математического факультета МГУ имени М.В.Ломоносова под руководством проф. А.А. Шкаликова, доц. И.А. Шейпака, доц. А.М. Савчука, А.А. Владимирова (11 апреля 2014).

Публикации. Основные результаты диссертации опубликованы в 7 работах автора, из которых 2 — в журналах перечня ВАК. Список работ приведен в конце автореферата. Работ в соавторстве нет.

Структура и объем диссертации. Диссертация состоит из введения, главы, включающей три параграфа, списка литературы из 48 наименований, включая работы автора. Общий объем диссертации составляет 90 страниц.

КРАТКОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Во введении приведена история исследования спектральных свойств дифференциальных операторов, приведено содержание работы и главные результаты.

В основной главе проводится исследование спектральных свойств возмущенного оператора Лапласа-Бельтрами на многообразиях с замкнутым геодезическим потоком.

В первом параграфе приведены предварительные сведения:

В пукте 1.1.1 описано многообразие *ML*, на котором изучаются спектральные свойства оператора Лапласа-Бельтрами (многообразие было построено и изучено в монографии А.В. Болсинова и А.Т. Фоменко¹⁸).

¹⁸Болсинов А.В., Фоменко А.Т. Интегрируемые гамильтоновы системы. Геометрия, топология, классификация (Том 2). Ижевск. Издательский дом «Удмуртский университет». 1999

Метрика этого многообразия получается посредством перехода к сфероконическим координатам (v_1, v_2, v_3) в R^3 :

$$x^{2} = \frac{v_{1}(a+v_{2})(a+v_{3})}{(a-b)(a-c)}, y^{2} = \frac{v_{1}(b+v_{2})(b+v_{3})}{(b-a)(b-c)}, z^{2} = \frac{v_{1}(c+v_{2})(c+v_{3})}{(c-a)(c-b)};$$

представления метрики стандартной сферы в сферо-конических координатах ($v_1 = x^2 + y^2 + z^2 = 1$):

$$ds_0^2 = \frac{1}{4}(v_2 - v_3)\left(-\frac{dv_2^2}{P(v_2)} + \frac{dv_3^2}{P(v_3)}\right),$$

где P(v) = (a + v)(b + v)(c + v);

и последующим возмущением этой метрики:

$$ds_{\alpha,\beta}^2 = \frac{1}{4}(v_2 - v_3)\left(-\frac{dv_2^2}{Q(v_2)} + \frac{dv_3^2}{R(v_3)}\right),\tag{5}$$

где

$$\begin{split} Q(v_2) &= Q_+(v_2), \quad R(v_3) = R_+(v_3), & \text{ на области соотв. } x > 0, z > 0; \\ Q(v_2) &= Q_+(v_2), & R(v_3) = R_-(v_3), & \text{ на области соотв. } x < 0, z > 0; \\ Q(v_2) &= Q_-(v_2), & R(v_3) = R_+(v_3), & \text{ на области соотв. } x > 0, z < 0; \\ Q(v_2) &= Q_-(v_2), & R(v_3) = R_-(v_3), & \text{ на области соотв. } x < 0, z < 0; \end{split}$$

$$\operatorname{H} Q_{\pm}(v_2) = \left(\frac{1}{\sqrt{-P(v_2)}} \pm \alpha(v_2)\right)^{-2}, R_{\pm}(v_3) = \left(\frac{1}{\sqrt{P(v_3)}} \pm \beta(v_3)\right)^{-2}.$$

Таким образом, получено целое семейство C^{∞} -гладких метрик $ds^2_{\alpha,\beta}$ (попарно неизометричных) на двумерной сфере, зависящее от двух функциональных параметров α и β , и таких, что

1) все геодезические этих метрик замкнуты и имеют одинаковую длину; 2) все эти метрики $ds_{\alpha,\beta}^2$ являются возмущениями метрики стандартной сферы в том смысле, что при $\alpha = 0$, $\beta = 0$ метрика превращается в обычную метрику ds_0^2 постоянной кривизны на сфере;

3) все метрики $ds^2_{\alpha,\beta}$ задаются явными формулами.

В пункте 1.1.2 описан сам оператор Лапласа-Бельтрами на много-

образии *ML*: приведен его явный вид на нем, исследован и описан его полный символ и его компоненты, описан его бихарактеристический поток и выделены особенности его траекторий.

В пункте 1.1.3 изложены основные спектральные свойства оператора Лапласа-Бельтрами на двумерных многообразиях с замкнутыми геодезическими (собственные значения, их кратность, связь собственных чисел возмущенного и невозмущенного оператора), а так же приведены известные на сегодняшний день результаты в теории регуляризованных следов.

Во втором параграфе проводится построение и вычисление регуляризованного следа возмущенного оператора Лапласа-Бельтрами на *ML*. Для этого в рассмотрение вводятся:

1) псевдодифференциальный оператор второго порядка $-\tilde{\Delta}_{ML}$ на ML собственные числа \varkappa_{ki} , которого совпадают с собственными числами оператора Лапласа-Бельтрами на стандартной сфере, то есть $\varkappa_{ki} = k(k+1)$, где $k = 0, 1, \ldots; i = 1, \ldots, 2k+1$. Также, вводится в рассмотрение тета-функция этого оператора $F(t) \sim t^{-1} \sum_{j=0}^{\infty} f_j t^j$ при $t \to 0$;

2) оператор Лапласа-Бельтрами $-\Delta_{ML}$ на ML с собственными числами λ_{ki} и тета-функцией $L(t) \sim t^{-1} \sum_{j=0}^{\infty} l_j t^j$ при $t \to 0$;

3) возмущенный оператор Лапласа-Бельтрами $-\Delta_{ML} + q$ на ML с собственными числами μ_{ki} и тета-функцией $M(t) \sim t^{-1} \sum_{j=0}^{\infty} m_j t^j$ при $t \to 0$.

В пункте 1.2.1 строится формула регуляризованного следа для собственных чисел операторов $-\Delta_{ML}$ и $-\tilde{\Delta}_{ML}$, которая имеет вид:

$$\sum_{k=0}^{\infty} \left(\sum_{i=0}^{2k} \lambda_{ki} - k(k+1)(2k+1) - a_0(2k+1) \right) =$$
$$= f_2 - l_2 - a_0 f_1 + \frac{1}{16\pi^2} \int_{S^*ML} (\sigma^{av})^2 dv, \tag{6}$$

где σ^{av} определен ниже в формулировке Теоремы 1, $a_0 = \frac{f_1 - l_1}{f_0}, l_i$ - коэффициенты разложения тета-функции L(t) и f_i - коэффициенты разложения тета-функции F(t).

В пункте 1.2.2. строится формула регуляризованного следа для соб-

ственных чисел операторов $-\Delta_{ML} + q$ и $-\Delta_{ML}$, которая имеет вид:

$$\sum_{k=0}^{\infty} \left(\sum_{i=0}^{2k} (\mu_{ki} - \lambda_{ki}) - b_0(2k+1) \right) =$$
$$= l_2 - m_2 - b_0 l_1 + \frac{1}{16\pi^2} \int_{S^*ML} (q^{av})^2 dv, \tag{7}$$

где q^{av} определен ниже в формулировке Теоремы 1, $b_0 = \frac{l_1 - m_1}{l_0}, l_i$ - коэффициенты разложения тета-функции L(t) и m_i - коэффициенты разложения тета-функции M(t).

В пункте 1.2.3 из формул, полученных в пунктах 1.2.1 и 1.2.2, выводится окончательная формула искомого регуляризованного следа:

$$\sum_{k=0}^{\infty} \left(\sum_{i=0}^{2k} \mu_{ki} - k(k+1)(2k+1) - (a_0 + b_0)(2k+1) \right) =$$

$$= f_2 - a_0 f_1 + \frac{1}{16\pi^2} \int_{S^*ML} (\sigma^{av})^2 dv - m_2 - b_0 l_1 + \frac{1}{16\pi^2} \int_{S^*ML} (q^{av})^2 dv, \quad (8)$$
где σ^{av} и q^{av} определены ниже в формулировке Теоремы 1, $a_0 = \frac{f_1 - l_1}{f_0},$
 $b_0 = \frac{l_1 - m_1}{1 - m_1}, m_i$ - коэффициенты разложения тета-функции $M(t), l_i$ -

 $b_0 = \frac{m_1 + m_1}{l_0}, m_i$ - коэффициенты разложения тета-функции $M(t), l_i$ - коэффициенты разложения тета-функции L(t) и f_i - коэффициенты разложения тета-функции F(t).

В пункте 1.2.4 устанавливается связь дзета-функции и тета-функции оператора Лапласа-Бельтрами, и приводится схема вычисления искомых коэффициентов тета-функций операторов для вычисления правой части формулы (8).

В пункте 1.2.5. проводятся все вычисления недостающих коэффициентов для вычисления окончательного ответа:

$$m_0 = 1, m_1 = \frac{1}{3} - \frac{1}{4\pi} \iint_{ML} q(v_2, v_3) \sqrt{\det g} dv_2 dv_3,$$

$$\begin{split} m_2 &= \frac{1}{60\pi} \iint_{ML} (\Delta_{ML} K_{ML} + K_{ML}^2) \sqrt{\det g} dv_2 dv_3 + \\ &+ \frac{1}{24\pi} \iint_{ML} \left(-\Delta_{ML} q(v_2, v_3) + 3q^2(v_2, v_3) - 2q(v_2, v_3) K_{ML} \right) \sqrt{\det g} dv_2 dv_3, \\ l_0 &= 1, l_1 = \frac{1}{3}, l_2 = \frac{1}{60\pi} \iint_{ML} (\Delta_{ML} K_{ML} + K_{ML}^2) \sqrt{\det g} dv_2 dv_3, \\ f_0 &= 1, f_1 = \frac{1}{3}, f_2 = \frac{1}{15}. \end{split}$$
где $K_{ML} = \frac{2(R(v_3) - Q(v_2)) + (v_2 - v_3)(R'(v_3) + Q'(v_2))}{(v_2 - v_3)^3}$ - гауссова кривизна ML и $\sqrt{\det g} = \frac{v_2 - v_3}{4\sqrt{-Q(v_2)R(v_2)}}$ - корень из определителя матрицы

метрического тензора. ${}^{\tau_V}$ ${}^{-\varsigma_U(v_2)n(v_3)}$

Здесь же формулируется основной результат второго параграфа:

Теорема 1. Пусть ML — многообразие, заданное некоторым функциональным семейством гладких почти лиувиллевых метрик на сфере и определенное формулами (5). Если q - бесконечно-дифференцируемая комплекснозначная функция на ML, то для собственных чисел оператора $-\Delta_{ML} + q$ верно равенство:

$$\begin{split} &\sum_{k=0}^{\infty} \sum_{i=0}^{2k} \left(\mu_{ki} - k(k+1) - \frac{1}{4\pi} \int_{ML} q dS \right) = \\ &= \frac{1}{16\pi^2} \int_{S^*ML} (q^{av})^2 dv + \frac{1}{16\pi^2} \int_{S^*ML} (\sigma^{av})^2 dv + \frac{1}{15} - \\ &- \frac{1}{60\pi} \int_{ML} (\Delta_{ML} K_{ML} + K_{ML}^2) dS - \\ &- \frac{1}{24\pi} \int_{ML} \left(-\Delta_{ML} q(v_2, v_3) + 3q^2(v_2, v_3) - 2q(v_2, v_3)(K_{ML} - 1) \right) dS, \end{split}$$

где $K_{ML} = \frac{2(R(v_3) - Q(v_2)) + (v_2 - v_3)(R'(v_3) + Q'(v_2))}{(v_2 - v_3)^3}$ - гауссова кривизна ML, dS - элемент площади поверхности ML, S*ML - расслоение

единичных сфер в кокасательном пространстве, dv - каноническая форма объема на S^*ML , $q^{av} = \frac{1}{2\pi} \int_{0}^{2\pi} (\exp t\Xi)^*(q) dt$, где Ξ - гамильтоново векторное поле на кокасательном расслоении $T^*ML \setminus \{0\}$, определяемое римановой структурой на ML, $\sigma^{av} = \frac{1}{2\pi} \int_{0}^{2\pi} (\exp t\Xi)^*(\sigma) dt$, где $\sigma = \frac{1}{4} (K_{ML} - 1 + \left[\frac{1}{3} (K_{ML})_v u^3 \int_{0}^{r} (K_{ML})_v J^3 ds - (K_{ML})_v u^2 J \int_{0}^{r} (K_{ML})_v u J^2 ds \right] \right)$, где v - единичный вектор нормали к геодезической γ , $J(r, \omega)$ - объемная плотность в геодезических полярных координатах, то есть $dvol(\gamma) = J(r, \omega) dr d\omega$, u(*) u v(*) - фундаментальные решения уравнения Якоби вдоль геодезической γ с условиями $\begin{pmatrix} u(0) & v(0) \\ \dot{u}(0) & \dot{v}(0) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

В третьем параграфе задача нахождения регуляризованного следа возмущенного оператора Лапласа-Бельтрами рассматривается в случае общего положения, когда метрика многообразия задана в абстрактном виде.

В пункте 1.3.1 определяется многообразие $M \in SC_{2\pi}$ (геодезические замкнуты и имеют одинаковую длину 2π), метрика которого, получена возмущением метрки единичной сферы, заданной в некоторых координатах (u_1, u_2)

$$ds^{2} = A(u_{1}, u_{2})du_{1}^{2} + 2B(u_{1}, u_{2})du_{1}du_{2} + C(u_{1}, u_{2})du_{2}^{2},$$
(9)

и имеет вид

$$ds_p^2 = A_p(u_1, u_2)du_1^2 + 2B_p(u_1, u_2)du_1du_2 + C_p(u_1, u_2)du_2^2,$$
(10)

причем $A_p(u_1, u_2) = A(u_1, u_2) + P_A(u_1, u_2), B_p(u_1, u_2) = B(u_1, u_2) + P_B(u_1, u_2), C_p(u_1, u_2) = C(u_1, u_2) + P_C(u_1, u_2),$ то есть возмущения таковы, что при обнулении функций $P_A(u_1, u_2), P_B(u_1, u_2), P_C(u_1, u_2),$ мы получим стандартную метрику сферы ds^2 .

В пункте 1.3.2 описан сам оператор Лапласа-Бельтрами на многообразии *M*: приведен его явный вид на нем, исследован и описан его полный символ и его компоненты.

В пункте 1.3.3 показано, что асимптотики тета-функций $\hat{F}(t)$, $\hat{L}(t)$, $\hat{M}(t)$ соответствующих операторов $-\tilde{\Delta}_M$, $-\Delta_M$, $-\Delta_M + q$ взятых уже на произвольном M аналогичны асимптотикам, полученым в пункте 1.2.5, то есть найденные коэффициенты не зависят от вида метрики M, а зависят только лишь от инвариантных характеристик многообразия. Все коэффициенты были получены с помощью символьных вычислений в системе компьютерной алгебры Wolfram Mathematica 9^{19} , так как при задании метрики в общем виде (10), произвести вычисления вручную становится невозможным. В случае общего положения вид этих асимптотик представляет отдельный интерес, поэтому результат сформулирован в виде Леммы:

Лемма 1: Пусть $M \in SC_{2\pi}$ — многообразие, метрика которого является возмущением метрики стандартной сферы и задана формулой (10), тогда для тета-функций $\hat{F}(t)$, $\hat{L}(t)$, $\hat{M}(t)$ соответствующих операторов $-\tilde{\Delta}_M$, $-\Delta_M$, $-\Delta_M + q$ верны асимптотические разложения при $t \to 0$:

$$\hat{F}(t) = t^{-1} + \frac{1}{3} + \frac{1}{15}t + O(t^2),$$
$$\hat{L}(t) = t^{-1} + \frac{1}{3} + \left(\frac{1}{60\pi}\int_M (\Delta_M K_M + K_M^2)dS\right)t + O(t^2),$$
$$\hat{M}(t) = t^{-1} + \left(\frac{1}{3} - \frac{1}{4\pi}\int_M qdS\right) + \left(\frac{1}{60\pi}\int_M (\Delta_M K_M + K_M^2)dS + \frac{1}{24\pi}\int_M (-\Delta_M q + 3q^2 - 2qK_M)dS\right)t + O(t^2),$$

$$\begin{aligned} \imath \, de \ K_M &= \frac{1}{4 \left(B_p(u_1, u_2)^2 - A_p(u_1, u_2) C_p(u_1, u_2) \right)^2} \times \\ \left(C_p(u_1, u_2) A_{p_{u_2}}^{'}(u_1, u_2)^2 - 2 B_p(u_1, u_2) A_{p_{u_2}}^{'}(u_1, u_2) B_{p_{u_2}}^{'}(u_1, u_2) + \right. \\ \left. A_p(u_1, u_2) A_{p_{u_2}}^{'}(u_1, u_2) C_{p_{u_2}}^{'}(u_1, u_2) + 2 B_p(u_1, u_2)^2 A_{p_{u_2}u_2}^{''}(u_1, u_2) - \right. \end{aligned}$$

¹⁹Wolfram Mathematica 9 [Электронный ресурс] - Режим доступа: http://www.wolfram.com/mathematica/

$$\begin{split} & 2A_p(u_1,u_2)C_p(u_1,u_2)A_{pu_2u_2}^{''}(u_1,u_2)-2C_p(u_1,u_2)B_{pu_2}^{'}(u_1,u_2)A_{pu_1}^{'}(u_1,u_2)+\\ & B_p(u_1,u_2)C_{pu_2}^{'}(u_1,u_2)A_{pu_1}^{'}(u_1,u_2)+4B_p(u_1,u_2)B_{pu_2}^{'}(u_1,u_2)B_{pu_1}^{'}(u_1,u_2)-\\ & 2A_p(u_1,u_2)C_{pu_2}^{'}(u_1,u_2)B_{pu_1}^{'}(u_1,u_2)-B_p(u_1,u_2)A_{pu_2}^{'}(u_1,u_2)C_{pu_1}^{'}(u_1,u_2)+\\ & C_p(u_1,u_2)A_{pu_1}^{'}(u_1,u_2)C_{pu_1}^{'}(u_1,u_2)-2B_p(u_1,u_2)B_{pu_1}^{'}(u_1,u_2)C_{pu_1}^{'}(u_1,u_2)+\\ & A_p(u_1,u_2)C_{pu_1}^{'}(u_1,u_2)^2-4B_p(u_1,u_2)^2B_{pu_1u_2}^{''}(u_1,u_2)+\\ & 4A_p(u_1,u_2)C_p(u_1,u_2)B_{pu_1u_2}^{''}(u_1,u_2)+2B_p(u_1,u_2)^2C_{pu_1u_1}^{''}(u_1,u_2)-\\ & 2A_p(u_1,u_2)C_p(u_1,u_2)C_{pu_1u_1}^{''}(u_1,u_2)\Big)-\\ & zayccosa\ \kappa puseus au\ M. \end{split}$$

В Теореме 2 показано, что результат Теоремы 1, сформулированный в пункте 1.2.5 полностью переносится на случай произвольного *M*. Результат, приведенный в Теореме 2, является универсальным и не зависит от явного вида метрик многообразия, а зависит только от его геомерических инвариантов. Из Теоремы 2, полученной для произвольного *M*, сформулированы три следствия, представляющих самостоятельный интерес:

Следствие 1: Пусть $M \in SC_{2\pi}$ — многообразие, метрика которого является возмущением метрики стандартной сферы и задана формулой (10), тогда для собственных чисел λ_{ki} невозмущенного оператора Лапласа-Бельтрами — Δ_M на M верно равенство:

$$\sum_{k=0}^{\infty} \sum_{i=0}^{2k} (\lambda_{ki} - k(k+1)) =$$
$$= \frac{1}{15} - \frac{1}{60\pi} \int_{M} (\Delta_M K_M + K_M^2) dS + \frac{1}{16\pi^2} \int_{S^*M} (\sigma^{av})^2 dv,$$

где все обозначения определены в формулировке Теоремы 2.

Следствие 2: Пусть $M = S^2 - cm$ андартная сфера единичного радиуса, метрика которой задана в виде (9), q - бесконечно-дифференцируемая комплекснозначная функция на S^2 , тогда для собственных чисел μ_{ki} oneратора $-\Delta_{S^2} + q$ верно равенство:

$$\sum_{k=0}^{\infty} \sum_{i=0}^{2k} \left(\mu_{ki} - k(k+1) - \frac{1}{4\pi} \int_{S^2} q dS \right) =$$
$$= \frac{1}{16\pi^2} \int_{S^* S^2} (q^{av})^2 dv - \frac{1}{24\pi} \int_{S^2} \left(-\Delta_{S^2} q + 3q^2 \right) dS$$

где все обозначения определены в формулировке Теоремы 2.

Следствие 3: Пусть $M \in SC_{2\pi}$ — многообразие, метрика которого является возмущением метрики стандартной сферы и задана формулой (10), тогда для собственных чисел λ_{ki} невозмущенного оператора Лапласа-Бельтрами — Δ_M и для собственных чисел μ_{ki} возмущенного комплекснозначной функцией q оператора Лапласа-Бельтрами — $\Delta_M + q$ на M, верно равенство:

$$\sum_{k=0}^{\infty} \sum_{i=0}^{2k} \left(\mu_{ki} - \lambda_{ki} - \frac{1}{4\pi} \int_{M} q dS \right) =$$
$$= \frac{1}{16\pi^2} \int_{S^*M} (q^{av})^2 dv - \frac{1}{24\pi} \int_{M} \left(-\Delta_M q + 3q^2 - 2q(K_M - 1) \right) dS,$$

где все обозначения определены в формулировке Теоремы 2.

В Приложении приведены вычисленные значения аналитического продолжения дзета-функции оператора Лапласа-Бельтрами на многообразии *M* в случае общего положения в нуле и единице, так как эти значения используются при получении основных результатов, однако они слишком громоздки и приведение их в основном тексте мешает восприятию основных рассуждений. Автор выражает глубокую благодарность своему научному руководителю, доктору физико-математических наук, профессору Подольскому Владимиру Евгеньевичу за постановку задач, постоянное внимание и поддержку в работе.

РАБОТЫ АВТОРА ПО ТЕМЕ ДИССЕРТАЦИИ

[1] Зыкова Т.В. Регуляризованный след возмущенного оператора Лапласа-Бельтрами на некотором семействе многообразий // Доклады Академии Наук, 2011, 437:5, 590–591;

[2] Зыкова Т.В. След оператора Лапласа – Бельтрами с потенциалом при возмущении метрики многообразия // Научное обозрение, 2014, 2, 95 - 103;

 [3] Зыкова Т.В. След оператора Лапласа – Бельтрами с потенциалом при возмущении метрики многообразия // Деп. в ВИНИТИ РАН — 2014.
 — №85-В2014, 12 с.

[4] Зыкова Т.В. Регуляризованный след оператора Лапласа-Бельтрами возмущенного оператором умножения на функцию на многообразиях со специальным возмущением метрики сферы // *e*prints arXiv:1404.4810— 2014. — [Электронный ресурс] Режим доступа: http://arxiv.org/abs/1404.4810.

[5] Зыкова Т.В. Регуляризованный след возмущенного оператора Лапласа-Бельтрами на некотором семействе многообразий // Международная конференция «Спектральная теория операторов и ее приложеения», Тезисы докладов, г. Уфа — 2011. — С. 34–35.

[6] Зыкова Т.В. Регуляризованный след возмущенного оператора Лапласа на некоторых многообразиях // XI Школа молодых ученых «Нелокальные краевые задачи и проблемы современного анализа и информатики», Тезисы докладов, г. Нальчик — 2013.— С. 27–31.

[7] Зыкова Т.В. Формулы регуляризованных следов возмущенного оператора Лапласа-Бельтрами на двумерных многообразиях с замкнутыми геодезическими в случае общего положения. // 17-ая международная Саратовская зимняя школа «Современные проблемы теории функций и их приложения», посвященная 170-летию со дня рождения В. А. Стеклова, Тезисы докладов, г. Саратов — 2014. — С. 97–99.