МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА

МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

На правах рукописи УДК 517.982.256 515.124.4

Беднов Борислав Борисович

КРАТЧАЙШИЕ СЕТИ В БАНАХОВЫХ ПРОСТРАНСТВАХ

Специальность 01.01.01 — вещественный, комплексный и функциональный анализ

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

Работа выполнена на кафедре теории функций и функционального анализа механико-математического факультета Московского государственного университета имени М.В. Ломоносова.

Научный руководитель: доктор физико-математических наук,

доцент Бородин Петр Анатольевич

Официальные оппоненты: доктор физико-математических наук

Лившиц Евгений Давидович

(руководитель исследовательской

группы «ООО Эверноут»)

кандидат физико-математических наук

Дружинин Юрий Юрьевич (методист ГБОУ СОШ №1158)

Ведущая организация: Московский физико-технический институт

Защита диссертации состоится 17 октября 2014 г. в 16 часов 45 минут на заседании диссертационного совета Д 501.001.85 при МГУ имени М.В. Ломоносова по адресу: 119991, Российская Федерация, Москва, ГСП-1, Ленинские горы, Московский государственный университет имени М.В. Ломоносова, механикоматематический факультет, аудитория 16-24.

С диссертацией можно ознакомиться в Фундаментальной библиотеке МГУ имени М.В. Ломоносова (Ломоносовский пр-т, 27, сектор A, 8-й этаж).

Автореферат разослан сентября 2014 года.

Ученый секретарь диссертационного совета Д 501.001.85 при МГУ, доктор физ.-матем. наук, профессор

В.Н. Сорокин

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Диссертация посвящена вопросам геометрии банаховых пространств, связанным с понятиями кратчайшей сети, минимального заполнения, точек Штейнера (и соответствующих им кратчайших сетей типа звезды) для конечных подмножеств этих пространств. В работе исследуются существование кратчайшей сети, существование и единственность точки Штейнера, реализуемость минимальных заполнений и минимальных заполнений типа звезды в общих банаховых и конкретных функциональных пространствах, а также существование элемента наилучшего *п*-приближения.

Актуальность темы. Пусть (X, ρ) — метрическое пространство и G = (V, E) — связный граф со множеством вершин V и множеством ребер E. Отображение $\Gamma: V \to X$ называется cemь o в X, параметризованной графом G, или сетью типа G. Вершинами сети Γ называются точки $\Gamma(v)$, $v \in V$, ребрами сети Γ называются пары $\Gamma(v)$, $\Gamma(w)$ при условии, что пара v, w соединена ребром в графе G. Длиной ребра $\Gamma(v)\Gamma(w)$ называется число $\rho(\Gamma(v),\Gamma(w))$, а длиной $|\Gamma|$ сети Γ — сумма длин всех ее ребер. Если $M \subset X$ — конечное множество и $M \subset \Gamma(V)$, то говорят, что сеть Γ соединяет (или затягивает) множество M. Множество M называется границей сети Γ .

Число

$$|\operatorname{smt}|(M,X) = \inf\{|\Gamma| : \operatorname{cеть} \Gamma \operatorname{cоединяет} M\}$$

называется длиной кратчайшей сети для M в X, а

$$\operatorname{smt}(M,X) = \{\Gamma : \Gamma$$
— сеть в X , соединяющая $M, |\Gamma| = |\operatorname{smt}|(M,X)\}$

есть (возможно, пустое) множество кратчайших сетей для M в X.

Теория кратчайших сетей (и более общо, экстремальных сетей) составляет обширную область метрической геометрии. Теорией кратчайших сетей интересовался Гаусс: в письме к Шумахеру он задал вопрос о том, как построить кратчайшую систему дорог, соединяющих четыре города. Общая задача о поиске кратчайшей сети (то есть связного графа минимальной длины), соединяющей заданное конечное множество точек плоскости, была поставлена Ярником и Кесслером¹ в 1934 году. В книге Куранта и Роббинса "Что такое математика?" эта задача называется проблемой Штейнера. В настоящее время теория экстремальных сетей в метрических пространствах получила значительное развитие благодаря исследованиям А.О. Иванова, А.А. Тужилина и их учеников.

 $^{^1 \}textit{Jarník V., K\"{o}} \textit{ssler M.}$ O minimalnich grafeth obeahujícich n
 danijch bodu, Cas. Pest. Mat. a Fys., 1934, 63, 223-235.

Типы связных графов, задающих кратчайшие сети, удовлетворяют достаточно жестким условиям, сформулированным в следующей хорошо известной лемме.

ЛЕММА А. Пусть $M_n - n$ -точечное множество в метрическом пространстве X. При поиске графа, параметризующего кратчайшую сеть $\Gamma \in \operatorname{smt}(M_n, X)$, достаточно рассматривать деревья, которые имеют не более n-2 дополнительных (отличных от прообразов точек из M_n) вершин, причем каждая из этих дополнительных вершин имеет степень не меньше 3.

В банаховом пространстве $(X, \|\cdot\|)$ сети можно представлять себе как связные конечные объединения отрезков, соединяющих точки этого пространства, то есть как связные графы в X с ребрами—отрезками. В случае конечномерных банаховых пространств некоторые свойства кратчайших сетей собраны в книге Сванеполя "The local Steiner problem in Minkowski spaces" (2009). В диссертации исследуются кратчайшие сети в бесконечномерных банаховых пространствах.

Для трехточечных множеств M_3 кратчайшая сеть в силу леммы A состоит из трех (возможно, вырожденных) отрезков, соединяющих точки из M_3 с их точкой Штейнера, то есть точкой, сумма расстояний от которой до точек из M_3 минимальна.

В дальнейшем нам понадобится общее определение: для заданного набора $M = \{x_1, \ldots, x_n\} \subset X$ множество точек Штейнера (в англоязычной литературе — медиан) $\operatorname{st}(M, X)$ состоит из таких точек $s \in X$, для которых

$$\sum_{k=1}^{n} ||x_k - s|| = \inf \left\{ \sum_{k=1}^{n} ||x_k - x|| : x \in X \right\} =: |\operatorname{st}|(M, X).$$

В случае гильбертова пространства точка Штейнера $s(x_1, x_2, x_3)$ существует и единственна: она лежит в плоскости точек x_1, x_2, x_3 и либо совпадает с одной из них (если в треугольнике $x_1x_2x_3$ есть угол, не меньший 120°), либо совпадает с точкой Торричелли (из которой все стороны треугольника видны под углом 120°).

В широком классе метрических пространств кратчайшая сеть существует для любого набора точек.

В бесконечномерном банаховом пространстве X кратчайшие сети могут не существовать уже для трехточечных множеств M_3 — другими словами, множества $\operatorname{smt}(M_3,X)$ и $\operatorname{st}(M_3,X)$ могут быть пустыми. Первый пример таких X и M_3 построил A.Л. Гаркави 2 в 1974 г. Другие примеры строи-

 $^{^2}$ Гаркави А.Л., Шматков В.А. О точке Ламе и ее обобщениях в нормированном пространстве //

лись Л. Веселы (1993), М. Баронти, Е. Касини, П. Папини (1993), П. Папини (2005), П.А. Бородиным (2010).

Л. Веселы³ доказал, что всякое нерефлексивное банахово пространство X можно так эквивалентно перенормировать, что в новой норме некоторая тройка $M_3 \subset X$ не затягивается кратчайшей сетью. В.М. Кадец (2011), не зная о работе Веселы, доказал этот результат иным способом. Н.П. Стрелкова (2011) для всякого $n \ge 3$ построила пример банахова пространства X и n-точечного множества $M_n \subset X$, для которых множество $\operatorname{smt}(M_n,X)$ кратчайших сетей пусто. Построение Стрелковой основывается на примере П.А. Бородина (2010), для которого свойство несуществования точки Штейнера приводимых троек x_1, x_2, x_3 устойчиво: для любых троек элементов x_1', x_2', x_3' , достаточно близких по норме к x_1, x_2, x_3 соответственно, точка Штейнера также не существует. Пример Гаркави также обладает этим свойством устойчивости.

В главе I диссертации доказывается, что во всяком банаховом пространстве X, 1-дополняемом в своем втором сопряжённом (в частности, в любом сопряжённом пространстве, а также в любом пространстве L_1) множество $\mathrm{smt}(M,X)$ непусто для всякого конечного $M\subset X$.

Недавно в работе А.О. Иванова и А.А. Тужилина⁴ (2012) наметилось новое направление теории кратчайших сетей, связанное с введенным ими понятием *минимального заполнения*.

Пусть (M, ρ) — конечное метрическое пространство. Число

$$|\mathrm{mf}|(M) = \inf\{|\mathrm{smt}|(\varphi(M), Y) : \varphi : M \to Y\},\$$

где инфимум берется по всем изометричным вложениям пространства M в различные метрические пространства Y, называется длиной минимального заполнения пространства M, а сети — элементы множества

$$\operatorname{mf}(M) = {\operatorname{smt}(\varphi(M), Y) : |\operatorname{smt}|(\varphi(M), Y) = |\operatorname{mf}|(M)}$$

называются минимальными заполнениями пространства M.

Для всякого конечного множества M в метрическом пространстве (X, ρ) , рассматриваемого как метрическое пространство с той же метрикой ρ , выполнено очевидное неравенство $|\operatorname{smt}|(M, X) \geqslant |\operatorname{mf}|(M)$.

Матем. сб., 1974, **95(137)**, №2(10), 272–293.

 $^{^3}$ Veselý L. A characterization of reflexivity in the terms of the existence of generalized centers // Extracta Mathematicae, 1993, 8, №2–3, 125–131.

⁴*Иванов А.О., Тужсилин А.А.* Одномерная проблема Громова о минимальном заполнении// Матем. сб., 2012, **203**, №5, 65–118.

В отличие от кратчайших сетей, минимальные заполнения всегда существуют, то есть $\mathrm{mf}(M)$ непусто для всякого конечного метрического пространства M.

Для трехточечного пространства $M_3 = (\{x_1, x_2, x_3\}, \rho)$ минимальное заполнение можно получить в четырехточечном расширении $(\{x_1, x_2, x_3, s\}, \rho)$, где $\rho(s, x_i) = \frac{1}{2}(\rho(x_i, x_j) + \rho(x_i, x_k) - \rho(x_j, x_k))$ $(i = 1, 2, 3, \{i, j, k\} = \{1, 2, 3\})$ в виде сети-дерева с ребрами sx_1 , sx_2 и sx_3 . При этом величина $|\text{mf}|(M_3)$ равна полупериметру треугольника $x_1x_2x_3$.

Для четырехточечного пространства $M_4 = (\{x_1, x_2, x_3, x_4\}, \rho)$ минимальное заполнение имеет длину $|\text{mf}|(M_4) = \frac{1}{2}(\max(M_4) + \min(M_4))$, где $\max(M_4)$ и $\min(M_4)$ — соответственно максимальная и минимальная из сумм $\rho(x_1, x_2) + \rho(x_3, x_4)$, $\rho(x_1, x_3) + \rho(x_2, x_4)$, $\rho(x_1, x_4) + \rho(x_2, x_3)$, и может быть реализовано сетью в некотором не более чем 6-точечном расширении M_4 .

Для произвольных конечных метрических пространств M величина $|\mathrm{mf}|(M)$ как функция расстояний между точками из M может быть вычислена по некоторой переборной формуле, полученной А.Ю. Ереминым⁵.

Будем говорить, что метрическое пространство (X, ρ) реализует минимальное заполнение для своего конечного подмножества M, если $|\mathrm{smt}|(M,X) = |\mathrm{mf}|(M)$ и множество $\mathrm{smt}(M,X)$ непусто.

А.О. Иванов и А.А. Тужилин поставили задачу⁶ об описании всех метрических пространств, реализующих минимальные заполнения для всех своих конечных подмножеств, и вместе со своими учениками привели нетривиальные примеры таких пространств. В частности, З.Н. Овсянников (2011) доказал, что таким пространством является пространство l_{∞}^{n} для всякого натурального n (n-мерное действительное пространство с нормой $||x|| = \max\{|x_1|, \ldots, |x_n|\}$), а также пространство l_{∞} ограниченных последовательностей.

В случае банаховых пространств эта задача полностью решается в главе I диссертации. Именно, оказалось, что банахово пространство реализует минимальные заполнения для всех своих конечных подмножеств в точности тогда, когда оно обладает так называемым свойством 4.2.I.Р. (предуально к L_1 , является пространством Линденштраусса).

Напомним необходимые сведения из геометрии банаховых пространств. Пусть $n \geqslant 3$ — натуральное число. Говорят, что банахово пространство

 $^{^5} Еремин A.Ю.$ Формула веса минимального заполнения конечного метрического пространства // Матем. сб., 2013, **204**, 9, 51–72.

 $^{^6}Edelsbrunner H.$, Ivanov A., Karasev R. Current Open Problems in Discrete and Computational Geometry // Модел. и анализ информ. систем, 2012, 19, №5, 5–17.

X обладает свойством n.2.I.P. (n.2 Intersection Property), если всякие n попарно пересекающихся замкнутых шаров в X имеют непустое пересечение.

ТЕОРЕМА А (Гротендик 7 , Линденштраусс 8). Для действительного банахова пространства X следующие свойства эквивалентны:

- (1) X обладает свойством n.2.I.P. для всякого $n \geqslant 3$;
- (2) Х обладает свойством 4.2.І.Р.;
- (3) X^* изометрически изоморфно $L_1(\mu) = L_1(E, \Sigma, \mu)$ для некоторого множества E, некоторой σ -алгебры Σ подмножеств E и некоторой σ -аддитивной меры μ , определенной на Σ ;
- (4) X^{**} 1-дополняемо в любом содержащем его банаховом пространстве Z (то есть существует линейный проектор $P:Z\to X^{**}$ нормы 1).

Пространства, удовлетворяющие условиям теоремы A, называются предуальными к L_1 или пространствами Линденштраусса. К этому классу пространств относятся все пространства C(Q) действительнозначных функций, непрерывных на (хаусдорфовом) компакте Q, пространства $c_0(E)$, l_∞ и многие другие. Пространство размерности n предуально к L_1 тогда и только тогда, когда оно изометрически изоморфно l_∞^n .

Отметим, что класс предуальных к L_1 пространств уже известен как описывающий экстремальное геометрическое свойство.

ТЕОРЕМА В (Pao⁹). Действительное банахово пространство X предуально к L_1 тогда и только тогда, когда для всякого конечного множества $M \subset X$ его чебышевский радиус

$$r_C(M) = \inf_{e \in X} \sup_{x \in M} ||x - e||$$

равен половине диаметра M.

Нетрудно видеть, что для всякого ограниченного множества в произвольном банаховом пространстве X имеет место неравенство $r_C(M) \ge {\rm diam}(M)/2$. При этом Рао показал, что чебышевский центр (точка e, для которой $\sup_{x\in M}\|x-e\|=r_C(M)$) в предуальном к L_1 пространстве существует для всякого конечного множества M, то есть предуальные к L_1 пространства и только они реализуют "минимальные заполнения" всех своих конечных подмножеств в смысле чебышевских центров.

 $^{^7}$ Grothendieck A. Une caractérisation vectorielle-métrique des espaces $L^1//$ Canad. J. Math., 1955, 7, №4, 552–561.

⁸ Lindenstrauss J. Extension of compact operators // Mem. Amer. Math. Soc., 1964, 48, 1–112.

 $^{^9}Rao\ T.\ S.\ S.\ R.\ K.$ Chebyshev centers and centrable sets// Proc. Amer. Math. Soc., 2002, **130**, №9, 2593–2598.

В главе II диссертации доказывается аналог теоремы В, в котором вместо чебышевских центров фигурируют точки Штейнера. Приведем необходимые определения.

Помимо общих минимальных заполнений, в упомянутой работе Иванова и Тужилина вводятся еще так называемые параметрические минимальные заполнения конечных метрических пространств (M, ρ) , в определении которых изометрично вложенное пространство $\varphi(M)$ соединяется в пространстве Y кратчайшей сетью заданного типа. Один из таких типов, специально рассматриваемый в работе Иванова и Тужилина, получил название $36e3\partial \omega$: рассматриваемые сети параметризуются графами—деревьями, в которых одна вершина соединена со всеми остальными. Дадим точное определение в терминах точек Штейнера.

Число

$$|st|(M) = \inf\{|st|(\varphi(M), Y) : \varphi : M \to Y\},\$$

где инфимум берется по всем изометричным вложениям пространства M в различные метрические пространства Y, называется длиной минимального заполнения типа звезды множества M.

Для трехточечных метрических пространств M_3 величина $|st|(M_3)$ совпадает с $|mf|(M_3)$ и равна полупериметру треугольника с вершинами из M_3 .

Для четырехточечных метрических пространств M_4 нетрудно показать, что $|st|(M_4)$ совпадает с определенной выше величиной $\max(M_4)$.

Будем говорить, что метрическое пространство (X, ρ) реализует минимальное заполнение типа звезды для своего конечного подмножества M, если $|\mathrm{st}|(M,X) = |\mathrm{st}|(M)$ и множество $\mathrm{st}(M,X)$ непусто.

Теперь можно сформулировать доказываемый в главе II аналог теоремы B: банахово пространство реализует минимальные заполнения типа звезды тогда и только тогда, когда оно предуально к L_1 .

Остальные результаты главы II посвящены точкам Штейнера (или, что то же, кратчайшим сетям типа звезды) в пространствах L_1 и C.

В пространстве $L_1(M, \Sigma, \mu)$ действительнозначных функций, суммируемых на множестве M по мере μ , определенной на сигма-алгебре Σ подмножеств M, точки Штейнера описываются достаточно просто. Для трех функций f_1, f_2, f_3 из этого пространства точка Штейнера s существует, единственна и почти в каждой точке $t \in M$ значение s(t) равно среднему из чисел $f_1(t), f_2(t), f_3(t)$. При этом величина $|st|(\{f_1, f_2, f_3\}, L_1)$ равна полупериметру треугольника f_1, f_2, f_3 , то есть пространство L_1 реализует минимальные заполнения (они же — минимальные заполнения типа звезды) для всех своих трехточечных множеств.

Как показано в главе II, это свойство вместе со свойством единственности точки Штейнера $s(f_1, f_2, f_3)$ полностью характеризует пространство L_1 среди всех банаховых пространств.

Отметим, что это не первый результат, в котором пространство L_1 характеризуется во "внутренне-метрических" терминах — см., например, теорему 3.10 в работе О. Лимы¹⁰.

Отметим также, что в терминах точек Штейнера были охарактеризованы гильбертовы пространства.

ТЕОРЕМА С (Бенитез, Фернандез, Сориано¹¹). Действительное нормированное пространство X размерности не меньше 2 является гильбертовым тогда и только тогда, когда выпуклая оболочка любых трёх точек из X содержит их точку Штейнера.

Кроме того, в главе II диссертации приводится описание множеств точек Штейнера для троек точек в пространстве непрерывных функций и исследуются свойства этих множеств.

Наряду с точками Штейнера можно (по аналогии с чебышевскими центрами) рассматривать и *относительные* точки Штейнера, когда для заданных точек x_1, \ldots, x_n банахова пространства X точка s, минимизирующая сумму $||x_1 - s|| + \cdots + ||x_n - s||$, ищется не во всем пространстве X, а в заданном множестве $M \subset X$. Такие точки s составляют так называемую метрическую n-проекцию $P_M(x_1, \ldots, x_n)$ точек x_1, \ldots, x_n на множество M.

Исследование свойств метрической n-проекции — относительно новый раздел теории приближений в нормированных пространствах. В частности, в работе Π .А. Бородина¹² поставлен вопрос об исследовании n-антипроксиминальных множеств.

Пусть $(X,\|\cdot\|)$ — банахово пространство, $M\subset X$. Для $x_1,\ldots,x_n\in X$ положим $\rho(x_1,\ldots,x_n,M)=\inf_{z\in M}\sum_{i=1}^n\|x_i-z\|$

Непустое множество M назовём n-антипроксиминальным, если для любых таких $x_1, \ldots, x_n \in X$, что $\rho(x_1, \ldots, x_n, M) > \rho(x_1, \ldots, x_n, X)$, выполнено $P_M(x_1, \ldots, x_n) \setminus \{x_i\}_{i=1}^n = \emptyset$.

При n=1 это определение дает обычные антипроксиминальные множества (то есть такие множества $M \subset X$, что для любой точки $x \in X \setminus M$ во множестве M нет точки, ближайшей к x), исследование которых состав-

 $^{^{10}}Lima\,\mathring{A}$. Intersection properties of balls and subspaces in Banach spaces// Trans. Amer. Math. Soc., 1977, **227**, 1–62.

 $^{^{11}}Ben\'{i}tez\,C.,\,Fern\'{a}ndez\,M.,\,Soriano\,M.L.\,$ Location of Fermat–Torricelli medians of three points // Trans. Amer. Math. Soc., 2002, **354**, N12, 5027–5038.

 $^{^{12}}$ Бородин П.А. О выпуклости N-чебышёвских множеств // Изв. РАН. Сер. Матем., 2011. **75**, № 5. 19–46.

ляет заметную область в геометрической теории приближений.

Кли¹³ сформулировал вопрос о существовании в банаховом пространстве выпуклого замкнутого ограниченного антипроксиминального множества. Антипроксиминальные множества начал исследовать Зингер¹⁴. Он называл такие множества "very non-proximinal". Пространство X содержит выпуклое замкнутое антипроксиминальное множество M тогда и только тогда, когда оно не рефлексивно (M — ядро функционала, не достигающего своей нормы). Холмс ввёл термин "антипроксиминальное множество". Эдельштейн (1970) доказал, что в сепарабельном сопряжённом пространстве выпуклых замкнутых ограниченных антипроксиминальных множеств нет. Эдельштейн и Томпсон 15 (1972) построили первое выпуклое замкнутое ограниченное антипроксиминальное тело (в пространстве \mathbf{c}_0). Кобзаш (1974, 1976, 1978) привёл примеры таких тел в пространствах, изоморфных $\mathbf{c_0}$, и доказал, что если измеримое пространство (E, Σ, μ) содержит атом относительно меры μ , то в пространстве $L_1(E, \Sigma, \mu)$, для которого сопряжённое пространство канонически изоморфно $L_{\infty}(E, \Sigma, \mu)$, выпуклых замкнутых ограниченных антипроксиминальных множеств нет. Борвейн, Эдельштейн и Фелпс доказали отсутствие выпуклых замкнутых ограниченных множеств в пространствах X со свойством Радона-Никодима. Флорет (1978) доказал несуществование таких множеств в пространствах $X = X_1 \times X_2$ с нормой $||x_1 + x_2|| = ||x_1|| + ||x_2||$, где рефлексивное пространство $X_2 \neq \{0\}$. В.П. Фонф построил выпуклые замкнутые ограниченные антипроксиминальные тела в широком классе пространств непрерывных функций и доказал, что произвольное бесконечномерное банахово пространство можно так эквивалентно перенормировать, что выпуклых замкнутых ограниченных антипроксиминальных множеств в новой норме существовать не будет. В.С. Балаганский 16 построил пример такого множества в бесконечномерном пространстве C(Q) для произвольного топологического хаусдорфового пространства Q, а также в некоторых пространствах Гротендика (2012). Борвейн, Хименез-Севилла и Морено (2002) доказали, что в пространстве $X = Y \times \mathbf{c_0}$ с нормой $||x|| = \max\{||y||, ||z||\}$ есть выпуклое замкнутое ограниченное антипроксиминальное тело. Теория

 $^{^{13} \}it{Klee} \it{V}.$ Remarks on nearest points in normed linear spaces//Proc. Colloq. Convexity, Copenhagen 1965. 161–176.

 $^{^{14}}$ Singer I. Best approximation in normed linear spaces by elements of linear subspaces. Bucharest-Berlin: Editura Academiei and Springer Verlag, 1970.

 $^{^{15}}$ Edelstein M., Thompson A.C. Some results on nearest points and support properties of convex sets in $\mathbf{c_0}$ // Pacific J. Math. 1972. 40, № 3. 553–560.

 $^{^{16}}$ Балаганский В.С. Антипроксиминальные множества в пространствах непрерывных функций// Математические заметки. 1996. **60**, № 5. 643–657.

антипроксиминальных множеств развивалась также и в других направлениях.

Одна из самых интересных нерешённых задач теории антипроксиминальных множеств формулируется так: существует ли выпуклое замкнутое ограниченное антипроксиминальное тело в $L_1[0,1]$?

В главе III диссертации исследуется вопрос о существовании выпуклых замкнутых n-антипроксиминальных множеств в пространствах непрерывных функций и суммируемых функций.

Цель работы: исследование существования кратчайшей сети, существования и единственности точки Штейнера, реализуемости минимальных заполнений и минимальных заполнений типа звезды в общих банаховых и конкретных функциональных пространствах, а также существования элемента наилучшего *п*-приближения.

Научная новизна работы. Все результаты работы являются новыми. В диссертации получены следующие основные результаты.

- 1. Доказано, что в банаховом пространстве X, для которого существует проектор $P: X^{**} \to X$ нормы 1 (в частности, в любом сопряжённом пространстве или в пространстве L_1), для любого натурального n и для любых n точек существует соединяющая их кратчайшая сеть.
- 2. Доказано, что для действительного банахова пространства X следующие условия эквивалентны: X реализует минимальное заполнение для всякого конечного набора своих элементов; X реализует минимальное заполнение для всякой четвёрки своих элементов; X реализует минимальное заполнение типа звезды для всякого конечного набора своих элементов; X реализует минимальное заполнение типа звезды для всякой тройки и всякой четвёрки своих элементов; X предуально к L_1 .
- 3. Доказано, что действительное банахово пространство X реализует единственное минимальное заполнение типа звезды для всякой тройки сво-их элементов тогда и только тогда, когда X изометрически изоморфно L_1 .
- 4. Доказано, что в пространствах C и L_1 условия антипроксиминальности и 2-антипроксиминальности множества эквивалентны, и что в этих пространствах не существует n-антипроксиминальных выпуклых замкнутых ограниченных тел при $n=3,4\ldots$

Методы исследования. В работе используются различные методы теории функций действительного переменного, функционального анализа, линейной алгебры, выпуклой геометрии.

Теоретическая и практическая ценность. Работа носит теоретиче-

ский характер. Результаты диссертации могут найти применение в теории функций, функциональном анализе и геометрии.

Апробация работы. Автор выступал с докладами по теме диссертации на следующих научных семинарах:

- семинар по теории приближений и граничным свойствам функций в МГУ имени М.В. Ломоносова под руководством профессора Е.П. Долженко (неоднократно, 2010–2014);
- семинар по теории приближений в МГУ имени М.В. Ломоносова под руководством профессора И.Г. Царькова, доцента А.С. Кочурова, н.с. А.Р. Алимова, асс. А.А. Васильевой (2011);
- семинар по теории функций в МГУ имени М.В. Ломоносова под руководством академика РАН Б.С. Кашина, чл.-корр. РАН С.В. Конягина, проф. Б.И. Голубова и проф. М.И. Дьяченко (2012);
- научный семинар кафедры высшей математики Московского физикотехнического института (государственного университета) под руководством профессора Е.С. Половинкина (2014);
- семинар по геометрической теории приближений в МГУ имени М.В. Ломоносова под руководством доцента П.А. Бородина (неоднократно, 2009–2014).

Содержащиеся в диссертации результаты докладывались автором на следующих конференциях:

- Международная конференция «Теория приближений», посвященная 90-летию со дня рождения С.Б. Стечкина (2010);
- школа С.Б. Стечкина по теории функций в г.Миасс (2011, 2013, 2014);
- 17-я Саратовская зимняя школа «Современные проблемы теории функций и их приложения» (2014).

Публикации. Результаты диссертации опубликованы в 5 работах (три из перечня ВАК), список которых приведён в конце автореферата. Из работы [2] в диссертацию включены только результаты, доказанные автором без участия Н.П. Стрелковой. Все теоремы из [1] получены совместно с П.А. Бородиным и включены в диссертацию. В каждой из них автору принадлежит либо первая, либо вторая половина доказательства.

Структура и объём работы. Диссертация состоит из введения, трёх глав и списка литературы из 66 наименований. Общий объем диссертации — 70 страниц.

СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Во введении дан исторический обзор по тематике работы, обоснована актуальность и сформулированы цели исследования, а также изложены основные результаты диссертации.

В главе I диссертации исследуется вопрос существования кратчайших сетей и минимальных заполнений для конечных множеств в банаховых пространствах.

ТЕОРЕМА 1.1. В банаховом пространстве X, для которого существует проектор $P: X^{**} \to X$ нормы 1 (в частности, в любом сопряжённом пространстве или в пространстве L_1), для любого натурального n и для любых точек x_1, \ldots, x_n существует соединяющая их кратчайшая сеть.

Далее m[a,b] обозначает метрический отрезок с концами a и b в банаховом пространстве X:

$$m[a,b] = \{x \in X : ||x - a|| + ||x - b|| = ||a - b||\}.$$

ТЕОРЕМА 1.2. Пусть X- действительное банахово пространство. Следующие свойства эквивалентны:

- (1) X реализует минимальное заполнение для всякой тройки своих точек;
- (2) для всякой тройки $a, b, c \in X$ множество $st(\{a, b, c\}, X)$ непусто и величина $|st|(\{a, b, c\}, X)$ равна полупериметру треугольника abc;
- (3) для всякой тройки $a,b,c\in X$ пересечение $m[a,b]\cap m[b,c]\cap m[c,a]$ непусто:
- $(4)\ X\ обладает\ свойством\ 3.2.I.Р.$

При этом во всяком таком пространстве X для всякой тройки точек выполнено равенство $\operatorname{st}(\{a,b,c\},X) = m[a,b] \cap m[b,c] \cap m[c,a].$

Приводится пример четырёх точек в пространстве l_1^3 (обладающего свойством 3.2.I.P.), для которых минимальное заполнение не реализуется.

Следующая теорема характеризует банаховы пространства, реализующие минимальные заполнения для произвольного конечного множества своих элементов.

ТЕОРЕМА 1.4. Для действительного банахова пространства X следующие условия эквивалентны:

- (1) X реализует минимальное заполнение для всякого конечного набора своих точек;
- $(2)\ X\ peanusyem\ минимальное\ заполнение\ для\ всякого\ набора\ us\ 4\ cвоих\ moчe\kappa;$
- (3) X предуально к L_1 .

Из этой теоремы следует, что в пространстве непрерывных функций для любого конечного набора точек существует кратчайшая сеть, которая является минимальным заполнением для этого набора.

В главе II диссертации исследуются свойства сетей типа звезды и множеств точек Штейнера в банаховых пространствах.

ТЕОРЕМА 2.1. Для действительного банахова пространства X следующие свойства эквивалентны:

- (1) X реализует минимальное заполнение типа звезды для всякого конечного набора своих точек;
- (2) X реализует минимальное заполнение типа звезды для всех троек и четверок своих точек;
- (3) X предуально κ L_1 .

ТЕОРЕМА 2.2. Для действительного банахова пространства X следующие условия эквивалентны:

- (1) для всяких трех точек $a,b,c \in X$ существует и единственна точка $s=\mathrm{st}(a,b,c),$ для которой сумма $\|s-a\|+\|s-b\|+\|s-c\|$ равна полупериметру треугольника abc;
- (2) для всяких трех точек $a, b, c \in X$ пересечение $m[a, b] \cap m[b, c] \cap m[c, a]$ одноточечно;
- (3) X изометрически изоморфно некоторому пространству $L_1(\mu)$.

В пространстве непрерывных функций на хаусдорфовом компакте K описано множество точек Штейнера для произвольной тройки функций, выявлены тройки функций, для которых точка Штейнера единственна, и построена липшицева выборка из отображения St, ставящего в соответствие тройке функций множество их точек Штейнера.

Глава III диссертации посвящена исследованию n-антипроксиминальных множеств в пространствах непрерывных и суммируемых функций.

ТЕОРЕМА 3.1. Пусть M — выпуклое замкнутое множество в пространстве $\mathbf{c_0}$ и $n \in \mathbb{N}$. Множество M п-антипроксиминально тогда и только тогда, когда M антипроксиминально.

ТЕОРЕМА 3.2. В пространстве C[K] непрерывных функций на бесконечном хаусдорфовом компакте K (1) антипроксиминаль-

ность выпуклого замкнутого множества M эквивалентна его 2-антипроксиминальности; (2) не существует выпуклых замкнутых ограниченных n-антипроксиминальных тел npu $n=3,4,\ldots$

ТЕОРЕМА 3.3. В пространстве ${\bf c}$ нет выпуклых замкнутых пантипроксиминальных множеств при $n=3,4,\ldots$

Здесь ${\bf c}$ обозначает пространство сходящихся последовательностей с равномерной нормой.

Приведён пример, показывающий, что аналог теоремы 3.3 для произвольного пространства C[K] неверен.

ТЕОРЕМА 3.4. Для пространства $L_1(E, \Sigma, \mu)$, сопряжённое к которому канонически изоморфно $L_{\infty}(E, \Sigma, \mu)$, в частности, для пространства $L_1(E, \Sigma, \mu)$ с σ -конечной мерой μ , верны следующие утверждения:

- (1) антипроксиминальность выпуклого замкнутого множества M эквивалентна его 2-антипроксиминальности;
- (2) не существует выпуклого замкнутого n-антипроксиминального множества $npu \ n=3,4\dots;$
- (3) если σ -алгебра Σ содержит хотя бы один атом относительно меры μ , то в пространстве $L_1(E,\Sigma,\mu)$ нет выпуклых замкнутых ограниченных 2-антипроксиминальных множеств.

Автор глубоко благодарен своему научному руководителю доктору физико-математических наук Петру Анатольевичу Бородину за постановку задач, их обсуждение и постоянную поддержку в работе. Автор благодарен профессору И.Г. Царькову, академику РАН Б.С. Кашину, кандидату физико-математических наук А.Р. Алимову, доценту О.Н. Косухину за ценные замечания.

ПУБЛИКАЦИИ АВТОРА ПО ТЕМЕ ДИССЕРТАЦИИ

- [1] Беднов Б.Б., Бородин П.А. Банаховы пространства, реализующие минимальные заполнения // Матем. сб., 2014, Т. 205, вып. 4, 3–21.
- [2] Беднов Б.Б., Стрелкова Н.П. О существовании кратчайших сетей в банаховых пространствах // Матем. заметки, 2013, Т. 94, вып. 1, 46–54.
- [3] *Беднов Б.Б.* О точках Штейнера в пространстве непрерывных функций // Вестник МГУ, Серия 1, Математика, Механика, 2011, № 6, 26-31.
- [4] Беднов Б.Б. О точках Штейнера в пространстве непрерывных функций // Международная конференция по теории приближений, посвященная 90-летию С.Б. Стечкина, Тезисы докладов, М., 2010, 9.
- [5] Беднов Б.Б. Об n-антипроксиминальных множествах // Материалы 17-й международной Саратовской зимней школы, Саратов, ООО Издательство "Научная книга", 2014, 33–34.