Отзыв официального оппонента
на диссертацию Радомского Артема Олеговича
“Неравенства типа Сидона и некоторые свойства
пространства квазинепрерывных функций”
на соискание ученой степени кандидата
физико-математических наук
по специальности 01.01.01 – “вещественный, комплексный и
функциональный анализ”

На протяжении всего 20 века в теории функций уделялось большое внимание ис-
следованию лакунарных тригонометрических рядов. В этой области работало много
известных математиков, в частности, это направление интенсивно исследовалась и
в Московском университете. Важнейший результат относящийся к лакунарным ра-
dам был получен в 1927 году С. Сидоном, из работы которого вытекает следующая
теорема.

Пусть последовательность натуральных чисел \(\{n_k\}_{k=1}^{\infty} \) удовлетворяет условию

\[
\frac{n_{k+1}}{n_k} \geq \lambda > 1, \quad k = 1, 2, \ldots
\]

Тогда, если тригонометрический ряд

\[
\sum_{k=1}^{\infty} a_k \cos n_k x + b_k \sin n_k x
\]

estь ряд Фурье ограниченной функции \(f(x) \), то

\[
\sum_{k=1}^{\infty} |a_k| + |b_k| \leq C(\lambda) \|f\|_\infty,
\]

где \(C(\lambda) > 0 \) — величина, зависящая лишь от \(\lambda \).

Неравенство (1) называют неравенством Сидона. В дальнейшем этот результат
усиливался в нескольких направлениях, одним из которых было ослабление требова-
ний к лакунарности. В конце 90-х годов Б.С Кашин и В.Н. Темляков опубликовали
цикл работ, в которых заменили коэффициенты \(a_k \) и \(b_k \) на тригонометрические по-
линомы меньшей степени, определили и исследовали QC-норму. Полученные резуль-
tаты применялись для оценки поперечников классов функций многих переменных с
ограничением на смешанную разность. Можно утверждать, что в этих работах
было намечено новое направление в теории тригонометрических рядов. Диссертант
продолжает исследования в этой области и во многих аспектах заметно усиливает результаты Кашпина-Темлякова. Таким образом, тематика диссертации является актуальной.

Диссертация состоит из введения, трех параграфов и списка литературы из 39 наименований. Общий объем диссертации — 79 страниц.

Во введении даётся подробный исторический обзор исследуемой проблемы и кратко описываются основные результаты диссертационной работы.

Центральным результатом первого параграфа диссертации является следующее неравенство типа Сидона, значительно усиливающее соответствующий результат Кашпина-Темлякова.

Теорема 1.1. Пусть последовательность натуральных чисел \(\{n_k\}_{k=1}^{\infty} \) удовлетворяет условию \(n_{k+1}/n_k \geq \lambda > 1 \), \(k = 1, 2, \ldots \). Существует константа \(c(\lambda) > 0 \), зависящая лишь от \(\lambda \), такая, что для любого тригонометрического полинома \(f(x) = \sum_{k=1}^{N} p_k(x) \cos n_k x \),

где \(p_k \) — вещественные тригонометрические полиномы с \(\deg(p_k) \leq \gamma m_l \), \(\gamma = \min\left(\frac{1}{6}, \frac{\lambda - 1}{3}\right) \), \(k = l, \ldots, N; \ N \geq l, \ l = 1, 2, \ldots \), справедливо неравенство

\[
\|f\|_\infty \geq c(\lambda) \sum_{k=l}^{N} \|p_k\|_1.
\]

Из результатов следующего параграфа вытекает, что утверждение теоремы не может быть существенно улучшено, что, безусловно, увеличивает ее ценность. Также в первом параграфе получено аналогичное утверждение для системы Холла.

Теорема 1.2. Пусть последовательность натуральных чисел \(\{n_k\}_{k=1}^{\infty} \) удовлетворяет условию \(2^{k-1} \leq n_k < 2^k \), \(k = 1, 2, \ldots \). Тогда для любой функции \(f(x) \) вида

\[
f(x) = \sum_{k=l}^{m} p_k(x) w_{nk}(x),
\]

где \(p_k \in \mathcal{W}(2^l - 1), \ k = l + 1, \ldots, m; \ m \geq l + 1, \ l = 0, 1, 2, \ldots \), справедливо неравенство

\[
||f||_\infty \geq \sum_{k=l+1}^{m} ||p_k||_1.
\]

Во втором параграфе диссертации исследуется точность теоремы 1.1. Автором предложен метод построения тригонометрических полиномов, на которых реализуются "оценки снизу".

Теорема 2.1. Пусть \(\varepsilon, \bar{\varepsilon} \) — действительные числа, причем \(\frac{1}{2} \leq \varepsilon < \bar{\varepsilon} < 1 \). Для любого \(W \in \mathbb{N} \) существует вещественные тригонометрические полиномы \(p_k(x) \), \(k = 1, \ldots, W \), такие, что \(\deg p_k \leq \left\lfloor 2^{x-k} \right\rfloor \), \(\|p_k\|_1 \geq \frac{2\varepsilon}{3} \), \(\|p_k\|_\infty \leq 70 \), \(k = 1, \ldots, W \), и

\[
\max_{1 \leq n \leq W} \left\| \sum_{k=1}^{n} p_k(x) \cos 2^k x \right\|_\infty \leq CW\bar{\varepsilon}^2,
\]
где $C = C(\varepsilon, \bar{\varepsilon}) > 0$ — константа, зависящая лишь от ε и $\bar{\varepsilon}$.

Мне кажется весьма интересным вопрос о том, на сколько близки к друг другу результаты теорем 1.1 и 2.1, например, при $n_k = 2^k$. Теорема 1.1 дает положительный результат (для любых тригонометрических полиномов p_k), если

$$\deg p_k \leq A_{k,l} := \frac{1}{6} 2^l, \quad l \leq k \leq N.$$

Теорема 2.1 позволяет построить последовательность тригонометрических полиномов p_k, для которых не выполняется неравенство Сидона, таких что

$$\deg p_k \leq B_{k,\varepsilon} := 2^{[k-k/\psi_k]}, \quad l \leq k \leq N, \quad \varepsilon \in (0,1). \quad (2)$$

С одной стороны, при $\varepsilon = 1$, не выполняется неравенство $A_{k,l} < B_{k,\varepsilon}$. Таким образом, в некотором смысле можно говорить о принципиальной неулучшаемости теорем 1.1 и 2.1. Но, с другой стороны, при $\varepsilon < 1$ левый между $A_{k,l}$ и $B_{k,\varepsilon}$ является достаточно большим. Он был существенно уменьшен в теореме 2.2, полученной диссертантом совместно с П.Г. Григорьевым. Из которой следует, что в интересующем нас случае $n_k = 2^k$ условие (2) может быть заменено на более сильное

$$\deg p_k \leq 2^{[k-k/\psi_k]}, \quad l \leq k \leq N,$$

где ψ_k произвольная положительная, возрастающая, стремящаяся к бесконечности последовательность. Необходимо отметить, что доказательство теоремы 2.2 в значительной степени базируется на идеях теоремы 2.1.

Явное построение тригонометрических полиномов, реализующих оценки снизу, всегда сопряжено с серьезными техническими трудностями, и получение теорем 2.1 и 2.2 является безусловным успехом диссертанта.

Третий параграф диссертации посвящен изучению QC-нормы, введенной Б. С. Кашиным и В. Н. Темликовым. Полученная ими оценка QC-нормы снизу была перенесена на случай произвольной лакунарной последовательности.

Теорема 3.1. Пусть последовательность натуральных чисел $\{n_k\}_{k=1}^\infty$ удовлетворяет условию $n_{k+1}/n_k \geq \lambda > 1, \ k = 1, 2, \ldots$. Существует константа $c(\lambda) > 0$, зависящая лишь от λ, такая, что для любого тригонометрического полинома вида

$$f(x) = \sum_{k=1}^N p_k(x) \cos n_kx,$$

где p_k — вещественные тригонометрические полиномы с $\deg(p_k) \leq n_k/3, \ k = 1, \ldots, N, \ N = 1, 2, \ldots$, справедливо неравенство

$$\int_0^1 \left\| \sum_{k=1}^N r_k(t)p_k(x) \cos n_kx \right\|_\infty^N dt \geq c(\lambda) \sum_{k=1}^N \|p_k\|_1^N.$$

Также параграф 3 содержит обобщение примера К.И. Осколкова и один многомерный результат.
Интерес к этой области, вероятно, в значительной степени был вызван тем, что найденные оценки QC-норм позволяли получить точные порядки энтропийных чисел и поперечников по Колмогорову некоторых классов функций. Может возникнуть естественный вопрос о том, позволяло ли улучшение исходных оценок Катышева-Темлякова получить какие-либо новые результаты о поперечниках и энтропийных числах.

Тем не менее, мне представляется абсолютно оправданным включение этих результатов (если они есть) в настоящую диссертацию, в виду того, что она и так имеет достаточно большой объем и содержит много интересных теорем.

Диссертант продемонстрировал очень хорошее владение аппаратом теории тригонометрических и ортогональных рядов. Все доказательства проведены очень аккуратно, число источникостей и опечаток минимально. В качестве основного недостатка работы можно указать полное отсутствие разбения доказательства теорем на более мелкие логические единицы. Диссертация содержит семь полновесных теорем, суммарный размер доказательств которых превышает 50 страниц. При этом в работе нет ни одной леммы или предложения. Отмеченный недостаток ни в коей мере не влияет на достоверность результатов и не умаляет очевидных достоинств диссертационной работы. Диссертация является научно квалифицированной работой, результаты которой представляют несомненный интерес для специалистов по теории приближения и теории функций. Автором опубликованы три научные работы на теме диссертации, в том числе две статьи в изданиях, рекомендованных ВАК. Результаты докладывались и обсуждались на международной конференции и различных научных семинарах. Автореферат правильно отражает содержание диссертации.

Считаю, что диссертация соответствует требованиям положения ВАК о присуждении ученых степеней, и ее автор, Радомский Артем Олегович, заслуживает присуждения ему ученой степени кандидата физико-математических наук по специальности 01.01.01 – “вместственный, комплексный и функциональный анализ”.

07.12.2014
Руководитель исследовательской группы отдела новых технологий ООО “Эверноут”
доктор физико-математических наук /Е.Д. Лившиц/

Подпись Е.Д. Лившиц заверена.
Генеральный директор ООО “Эверноут”
/И.В. Сосинская/