Московский государственный университет имени М.В.Ломоносова Механико – математический факультет

> На правах рукописи УДК 531+521.13

Шувалова Анна Игоревна

Аналитические и численные исследования движения пылевых частиц в Солнечной системе

Специальность 01.02.01 – теоретическая механика

ДИССЕРТАЦИЯ

на соискание ученой степени кандидата физико-математических наук

Научный руководитель: кандидат физ.-мат. наук, доцент Сальникова Т.В., доктор физ.-мат. наук, профессор Степанов С.Я.

Москва 2016 год.

Оглавление

Введение

1	Ис	Исследование возмущающих эффектов					
	1.1	Круговая ограниченная задача трех тел с потенциалом					
		Кислика					
		1.1.1	Модель гравитационного потенциала Кислика	15			
		1.1.2	Постановка задачи	18			
		1.1.3	Точки либрации	19			
	1.2	Опер	риодических орбитах частицы в системе Земля – Лу-				
		на – Солнце					
		1.2.1	Периодические траектории в плоской бициркуляр-				
			ной задаче	23			
		1.2.2	Пространственная эллиптическая задача	26			
		1.2.3	Траектории движения частицы в окрестности L_4	31			
2	Об уравнении Лиувилля для скоплений астероидов и пы-						
	лев	ых ча	стиц	36			
	2.1 Уравнение Лиувилля			37			
	2.2 Алгоритм численного решения						
уравнения Лиувилля				38			

 $\mathbf{4}$

	2.3	Приложение к системе				
		Солнце – Юпитер – Астероид	40			
	2.4	Пример образования облаков Кордылевского	43			
	2.5	Грубая энтропия	46			
	2.6	Выводы	46			
3	Све	Световое давление в задаче Солнце – Земля – Луна –				
	Час	стица				
	3.1	Постановка задачи	52			
	3.2	Зависимость светового давления от физических парамет-				
		ров частицы	54			
	3.3	Периодические решения и их устойчивость	56			
	3.4	Бифуркационные диаграммы	57			
За	Заключение					
Лı	Литература					

Введение

Диссертация посвящена исследованию скоплений пылевых частиц и астероидов в окрестности треугольных точек либрации. Эта работа является продолжением статей [47], [21] об облаках Кордылевского - гипотетических скоплений космической пыли в окрестности треугольных точек либрации Земли и Луны. Рассмотрены модели, построенные в терминах классической механики. При этом результаты имеют практическое значение для астрономических наблюдений и для космических миссий.

Уравнения движения круговой ограниченной задачи трех тел допускают пять положений относительного равновесия: коллинеарные (L_1, L_2, L_3) и треугольные (L_4, L_5) точки либрации. Лагранжем был поставлен вопрос об устойчивости этих точек. L_1, L_2, L_3 оказались неустойчивыми, для L_4 и L_5 вопрос устойчивости был сложнее. Биркгоф показал, что в линейном приближении треугольные точки либрации устойчивы, когда отношение масс двух притягивающих точек удовлетворяет условию: $\mu(1 - \mu) < \frac{1}{27}$, где $\mu = \frac{m_1}{m_1+m_2}$ ($m_1 < m_2$). Леонтович А.М. [14] в 1962 году доказал устойчивость по Ляпунову, пользуясь теорией КАМ. Глобальная устойчивость выполнена почти для всех отношений масс μ , удовлетворяющих условию устойчивости по первому приближению, кроме дискретного множества. Позднее в 1969 году А.П.Маркеев [17] показал, что такому множеству принадлежат только два значения

$$\mu_1 = \frac{15 - \sqrt{213}}{30}, \quad \mu_2 = \frac{45 - \sqrt{1833}}{90}.$$

Для плоской эллиптической ограниченной задачи трех тел также имеет-

ся множество численных и аналитических исследований. В эллиптической задаче доказано существование мигрирующих точек либрации [17]. Подробную библиографию можно найти в труде Себехея [23]. Области устойчивости в окрестности L₄ и L₅ для круговой и эллиптической задачи исследовались численно. Помещенные в область устойчивости точки имели траектории в некоторой окрестности треугольной точки либрации [23].

Астероиды, которые первыми были обнаружены в окрестности треугольных точек либрации, принадлежали системе Солнце – Юпитер и были названы троянскими. Поиски первых троянских астероидов увенчались успехом только после 134 лет наблюдений в 1906 году [53]. На начало 2016 года по данным Международного астрономического союза известно более чем 6300 троянских астероидов системы Солнце – Юпитер.

Для системы Земля – Луна точки Лагранжа устойчивы по Ляпунову. Это побуждало многих ученых проводить исследования и наблюдения за треугольными точками либрации, искать там возможные скопления пыли или небольшие астероиды, подобные скоплениям на орбите Юпитера. Впервые светящиеся облака зафиксировал польский астроном К.Кордылевский, наблюдая окрестность L_5 в 1956 году. Обнаружение облаков не было случайным, а являлось следствием долгого и упорного сканирования окрестности L_4 и L_5 системы Земля – Луна. Начав в 1951 году поиски объектов, подобных астероидам, в 1956 году Кордылевский меняет стратегию поиска, по совету Дж. Витковски он ищет освещенные скопления космических пылевых частиц размером

порядка микрона. Эти усилия приводят к успеху, которым Кордылевский не сразу делится с миром, а продолжает наблюдения. В 1961 году Кордылевский получает фотографическое подтверждение и публикует статью [35]. После этой статьи возник ажиотаж вокруг новых пылевых спутников Земли. Многие профессиональные астрономы и любители терпят неудачи в наблюдениях и, как следствие, считают статью ошибочной [44], [45] [54]. Некоторые астрономы подтверждают его наблюдения [53], [42], [55]. Дж.Симпсоном [53] в 1964 году были сделаны более точные снимки облаков со специального самолета. Позднее пылевые луны пытались объяснить доплеровским смещением зодиакального свечения [43]. В то же время исследование [55] показывает, что свечение имеет другой волновой диапазон, следовательно, скопление частиц имеет другую природу. Были проведены съемки областей L_4 и L_5 экипажами Gemini12 (1971), Apollo14 (1971), Apollo16 (1972), результаты которых не были опубликованы. В 1991 году зонд MUSES-A [32] пролетел в окрестности треугольных точек либрации системы Земля – Луна. Установленный на нем счетчик частиц не выявил увеличения плотности по сравнению с фоновой. Существование пылевых спутников Земли до сих пор подвергается сомнению. Многие астрономы склонились к версии, что облака Кордылевского обладают нестабильностью: под действием возмущающих сил часть космической пыли уходит, на ее место приходят новые частицы. Ведется разработка космических миссий для проверки существования пылевых скоплений [37].

При добавлении возмущения от Солнца треугольные точки либрации системы Земля – Луна перестают быть точками равновесия. Это являлось одним из аргументов, опровергающих существование пылевых облаков [54]. Проводились исследования наилучших начальных значений углов между направлениями Солнце – Земля и Земля – Луна, чтобы уменьшить время выхода космического аппарата или астероида из окрестности L₄ [23], [17].

В возмущенной задаче существуют периодические решения, охватывающие L_4 , L_5 . Первые доказательства существования периодических решений получили Дж.Кронин и др. [30] в 1964 году: рассматривалась плоская бициркулярная задача четырех тел. Самое известное исследование принадлежит Шехтеру [49] (в трехмерной эллиптической задаче аналитически получена одна орбита, охватывающая L_4), Коленкевичу и Карпентеру [34] (численно получены более точные параметры орбиты, была найдена еще одна периодическая траектория, смещенная по фазе на 180 градусов относительно движения по первой орбите), Кэмелу [33] (аналитическое исследование плоской эллиптической задачи, результаты аналогичны результатам [34]).

Для плоской бициркулярной задачи периодические орбиты, охватывающие L₄ и две L₅, являются устойчивыми по Ляпунову периодическими траекториями в окрестности треугольных точек либрации системы Земля – Луна с учетом солнечного возмущения. В работе Сальниковой Т.В. и Степанова С.Я [48], [21] получены подобные орбиты численно при исключении малых членов высшего порядка в разложении возмущающего гравитационного потенциала Солнца. Указано оптимальное время наблюдения облаков Кордылевского, в предположении, что они движутся по периодическим траекториям. По всей вероятности, Кордылевский увидел облака в окрестности периодического движения, находящиеся в момент наблюдения на линии визирования треугольной точки либрации. Известные даты успешных наблюдений пылевых лун согласуются с теоретическими результатами для наилучших моментов наблюдения в работе [48]. В работе [47] приведены периодические траектории с учетом солнечного давления.

Описанные периодические орбиты будут условно-периодическими при учете отбрасываемых в исследованиях короткопериодических и других членов гамильтониана.

В работах [52], [51] рассмотрены и подытожены все знания о периодических орбитах в окрестностях треугольных точек либрации.

Если говорить об облаке мелких частиц космической пыли, не стоит упускать значения светового давления Солнца. Среди отечественных ученых, занимающихся этой проблемой, известны: Радзиевский В.В. открыватель эффекта Ярковского-Радзиевского [39], Поляхова Е.Н. [18], исследователь движения спутников с солнечным парусом, и другие.

Задачи одновременного притягивания и отталкивания одним из первых описал Радзиевский В.В. [41]. Он положил начало фотогравитационной небесной механике.

Световое давление на космические пылевые частицы отлично описано в статье Бернса и др. [29]. Если частицы малы, то под действием светового давления их выносит из Солнечной системы. В то же время, для более крупных частиц действует эффект Робертсона-Поинтинга: уменьшение эксцентриситета орбиты и медленное приближение к Солнцу. В статье Бернса описаны зависимости силы давления от размеров, состава ча-

8

стиц, приведены ссылки на исследования о происхождении космической пыли, ее плотности.

Куницын А.Л. и Пережогин А.А. рассмотрели влияние светового давления в ограниченной задаче трех тел Солнце – планета – частица [36]. В работе показано, что для всех планет Солнечной системы существуют треугольные точки либрации, обладающие устойчивостью по Ляпунову.

В статье [38] показана неустойчивость треугольных точек либрации системы Земля – Луна с учетом фотогравитационного действия Солнца. Статья является продолжением исследования [54] об устойчивости треугольных точек либрации в реальной системе Земля-Луна. Постановка задачи [38] схожа с данной в главе 3 настоящей работы.

Параметры солнечного давления зависят от отражательной способности частиц и их размера. Для вычислений автором была рассмотрена формула из справочника [8], которая соотносится с исследованиями [29].

В диссертации развивается статистический подход к исследованию динамики пылевых облаков. В рамках статистической теории автор опирается на труды Дж. Гиббса [6], В.В. Козлова [11, 13], Д.В. Трещева [12].

СОДЕРЖАНИЕ РАБОТЫ

Диссертация состоит из введения, трех глав, заключения и списка литературы.

Во введении дан обзор литературы по исследованию пылевых облаков и по теории орбит в окрестности треугольных точек либрации. Приведено основное содержание работы и апробации.

Первая глава состоит из двух разделов, объединенных тематикой возмущающих эффектов в системе Земля – Луна.

В первом разделе первой главы рассмотрен случай плоской круговой ограниченной задачи трех тел на примере системы Земля – Луна – точечная масса, где гравитационные потенциалы Земли и Луны заданы как потенциалы Кислика. Потенциал Кислика позволяет принять во внимание сплюснутость у полюсов притягивающего тела. Найдены положения относительного равновесия для точечной массы и проанализирована их устойчивость.

Во втором разделе рассмотрена оценка возмущения периодических траекторий в окрестностях треугольных точек либрации при учете факторов, связанных с наклоном орбиты, эллиптичностью траекторий. Построены уточненные орбиты, проведено сравнение с полученными ранее данными.

Вторая глава посвящена статистическому обоснованию формирования скоплений частиц и астероидов. Рассматривается плоская круговая ограниченная задача трех тел Земля – Луна – Частица с учетом периодического возмущения от Солнца. В задаче для каждой из лагранжевых точек либрации существуют две охватывающие их устойчивые периоди-

10

ческие орбиты. Из устойчивости периодического решения следует, что при малых отклонениях координат и скоростей от периодического движения, можно рассмотреть ансамбль частиц, которые будут оставаться в окрестности этого периодического движения. Чтобы оценить вероятность образования космических пылевых облаков рассматривается уравнение Лиувилля, которое дает временную эволюцию функции распределения пылевых частиц, не взаимодействующих с другими такими же частицами, в фазовом пространстве. Для проверки алгоритма построены модели для расчета плотностей в окрестности треугольной точки либрации круговой ограниченной задачи трех тел (аналогия с Троянскими астероидами). Для области фазового пространства подсчитана грубая энтропия.

В третьей главе рассмотрена задача поиска периодических решений в окрестности треугольных точек либрации системы Земля-Луна-Частица при учете светового давления и гравитационного возмущения от Солнца. Световое давление задается через понижающий коэффициент перед силой гравитационного притяжения Солнца. Описано значение понижающего коэффициента в зависимости от параметров Частицы. Построены бифуркационные диаграммы зависимости начальных условий периодических траекторий частицы от параметра, характеризующего световое давление. Исследована их устойчивость.

В заключении сформулированы основные результаты работы.

11

АПРОБАЦИЯ РАБОТЫ

По теме диссертации опубликованы две статьи [46], [25], тезисы и аннотации к докладам [28], [27], [26]. Основные результаты были доложены на научных семинарах:

- Научный семинар отдела механики ВЦ им.А.А. Дородницына
 ФИЦ ИУ РАН под руководством зав.отд. С.Я. Степанова, м.н.с.
 А.А.Бурова (2015);
- Гамильтоновы системы и статистическая механика под руководством акад. РАН, проф. В.В.Козлова, чл.-корр. РАН, проф. Д.В.Трещева, проф. С.В.Болотина (2015);
- Семинар по аналитической механике и теории устойчивости (имени В.В.Румянцева) под руководством чл.-корр. РАН, проф.
 В.В.Белецкого, проф. А.В.Карапетяна (2016);
- Механика космического полета (имени В.А.Егорова) под руководством чл.-корр. РАН, проф. В.В.Белецкого, проф. В.В.Сазонова (2016);

на конференциях:

- IAU-Symposium: Complex Planetary Systems 07-11 July 2014, Namur, Belgium, Namur, Belgium, Бельгия, 2014;
- XI Всероссийский съезд по фундаментальным проблемам теоретической и прикладной механики (Казань, 20-24 августа 2015 г.);
- Международная конференция по математической теории управления и механике (03–07 июля 2015 г., г. Суздаль, Владимирская обл.);

 Конференция-конкурс молодых ученых НИИ механики МГУ. 12-13 октября 2015 г., НИИ механики МГУ имени М.В. Ломоносова, Москва, Россия, 12-14 октября 2015.

Глава 1

Исследование возмущающих эффектов

В данной главе рассматриваются две задачи о движении в окрестности треугольных точек либрации. В первой задаче исследуется частный случай плоской круговой ограниченной задачи трех тел на примере системы Земля – Луна – точечная масса. Гравитационный потенциал Земли задан как потенциал Кислика, учитывающий сплюснутость притягивающего тела. Найдены положения относительного равновесия для точечной массы и проанализирована их устойчивость. Проведено сравнение полученных результатов с решением классической круговой ограниченной задачи трех тел.

Во второй задаче рассмотрена система Земля – Луна – Частица с учетом периодического гравитационного возмущения от Солнца. Введены малые параметры: эксцентриситет орбит Земли и Луны, эксцентриситет орбиты барицентра системы Земля – Луна, угол наклона орбит системы Земля – Луна относительно плоскости эклиптики. Исследованы возмущающие эффекты, накладывающиеся на периодическую невозмущенную траекторию.

1.1 Круговая ограниченная задача трех тел с потенциалом Кислика

1.1.1 Модель гравитационного потенциала Кислика

В классической небесной механике для большинства задач достаточно рассмотрения потенциала планеты, как потенциала материальной точки. Это связано с тем, что размеры притягивающих тел обычно несоизмеримо малы по сравнению с расстоянием между ними. Совершенно другая ситуация наблюдается в небесной баллистике. Если искусственный спутник расположен вблизи притягивающего тела, то необходимо учитывать форму притягивающего тела.

Используются различные модели потенциала. Для вытянутых тел можно рассмотреть потенциал притягивающего стержня [9], для астероидов сложной формы рассматриваются триангуляции [31]. Наиболее точной оказывается модель, в которой при триангуляции масса расположена не в вершинах получившихся при разбиении тетраэдров, а на их ребрах. Частный случай такой модели рассмотрен в работе [5].

Для нецентрального гравитационного поля планеты система дифференциальных уравнений движения и силовая функция записываются в виде:

$$\ddot{x} - 2\omega \dot{y} - \omega^2 x = U'_x,$$

$$\ddot{y} + 2\omega \dot{x} - \omega^2 y = U'_y,$$

$$\ddot{z} = U'_z,$$

(1.1.1)

$$U = \frac{\gamma m}{r} + \chi(x, y, z, t, \mu),$$

где γ - гравитационная постоянная, r - радиус-вектор движущейся точки, ω - угловая скорость вращающейся системы координат, χ - пертубационная функция, μ - малый параметр. Силовая функция может быть представлена в виде

$$U = \frac{\gamma m}{r} + \sum_{k=2}^{\infty} J_k (R/r)^k P_k(z/r), \qquad (1.1.2)$$

где P_k - полином Лежандра степени k, R - средний экваториальный радиус планеты, J_k - константы. J_2 характеризует сжатость планеты, J_3 характеризует ассиметрию планеты относительно экваториальной плоскости ($J_2 \sim -10^{-3}$, $J_3 \sim 10^{-5}$ - порядки для планет).

При построении теории движения искусственных спутников Земли, чтобы получить математически строгое решение, удобно рассматривать некоторые аппроксимирующие выражения для U. Если отбросить члены порядка J_2^2 и выше силовая функция принимает вид

$$U = \frac{\gamma m}{r} \left(1 + J_2 (R/r)^2 \left(\frac{3}{2} (z/r)^2 - \frac{1}{2} \right) \right).$$

Модели Штерна, Гарфинкеля, Акснеса [7], [8] включают некоторую функцию $\Phi(z/r)$, позволяющую учесть J_2 , при этом общий вид силовой функции:

$$U = \frac{\gamma m}{r} + \frac{\Phi(z/r)}{r^2}.$$

Задача Баррара дает лучшее приближение к(1.1.2),отличающегося от точного значения потенциала членами порядка $J_2^{3/2}$:

$$U = \frac{\gamma m}{\rho} \left(1 - \frac{\delta(z - \delta)}{\rho^2} \right),$$

где $\rho = \sqrt{x^2 + y^2 + (z - \delta)^2}, \ \delta = R\sqrt{J_2}.$

Задача Винти и Кислика уступает задаче Баррара, в ней учитывается только член разложения J_2 , но она имеет важное приложение для получения промежуточных орбит спутника:

$$U = \frac{\gamma m}{r} \left(1 + \sum_{n=1}^{\infty} (-1)^{n+1} J_2^n (R/r)^{2n} P_{2n}(z/r) \right)$$

В 1961г. Е.П.Аксенов, Е.А.Гребеников, В.Г.Демин для построения теории движения искусственных спутников Земли предложили использовать обобщенную задачу двух неподвижных центров [1]. Как известно, Л.Эйлер свел к квадратурам задачу движения точечной массы в гравитационном поле двух фиксированных точек. Силовая функция, предложенная В.Г.Деминым и др., описывает с большой точностью гравитационное поле планеты:

$$U = \frac{\gamma m}{2} \left(\frac{1+i\delta}{r_1} + \frac{1-i\delta}{r_2}\right), \tag{1.1.3}$$

где

$$r_{1,2} = \sqrt{x^2 + y^2 + (z - c(\delta \pm i))^2}.$$

Константы c и δ характеризуют форму планеты. Если небесное тело сжато вдоль оси динамической симметрии, то гравитационный потенциал тела аппроксимируется гравитационным потенциалом двух материальных точек с комплексно сопряженными массами, находящихся на мнимом расстоянии. При этом потенциал имеет действительное значение. Если известны коэффициенты разложения второго и третьего порядка для общего вида потенциала из (1.1.2), тогда c и δ выражаются следующим образом:

$$c = \frac{\sqrt{-J_3^2 - 4J_2^3}}{2J_2}R, \quad \delta = \frac{J_3}{\sqrt{-J_3^2 - 4J_2^3}}.$$
 (1.1.4)

В работах [20], [19] рассмотрена модель этого потенциала для астероида и аналитически найдены точки либрации для спутника в поле прецессирующего астероида.

При $\delta = 0$ формула (1.1.3) не учитывает ассиметрию планеты относительно экваториальной плоскости. В этом случае формула (1.1.3) совпадает с формулой М.Д. Кислика, которая не учитывает вторую зональную гармонику J_3 [10]. В терминах задачи Демина данный потенциал представляет собой потенциал двух неподвижных материальных точек одинаковой массы на мнимом расстоянии

$$V = -U = -\frac{\gamma m}{2} \left(\frac{1}{r_1} + \frac{1}{r_2}\right), \qquad (1.1.5)$$

где

$$r_{1,2} = \sqrt{x^2 + y^2 + (z \pm ci)^2}$$

1.1.2 Постановка задачи

Рассмотрим частный случай плоской круговой ограниченной задачи трех тел на примере системы Земля(E) – Луна(M) – Точечная масса(P), где гравитационные потенциалы Земли и Луны заданы как потенциалы Кислика.

Масса Р считается пренебрежимо малой. Земля и Луна имеют массы m и $(m - \mu)$ соответственно, центры масс Земли и Луны движутся по окружностям вокруг их барицентра O. Введем вращающуюся систему координат Охуг: точка O - начало координат, ось Ох проходит через точки Е и М от Е к М. Точки Е, М и Р движутся в плоскости z = 0, $\vec{\omega} = \omega \vec{e_z}$ - угловая скорость подвижной системы координат. Силовые функции для Земли и Луны в модели Кислика принимают вид

$$U_E = \frac{\gamma(m-\mu)}{\sqrt{(x+x_E)^2 + y^2 - c^2}},$$

$$U_M = \frac{\gamma\mu}{\sqrt{(x-x_M)^2 + y^2 - \lambda^2 c^2}},$$
(1.1.6)

где λ - постоянный коэффициент, характеризующий отношение сжатия Луны к сжатию Земли. Если рассматривать потенциал Кислика в задаче двух тел Земля – Луна, то ω удовлетворяет уравнению

$$\omega^{2} = \frac{\gamma(m-\mu)}{((x_{E}+x_{M})^{2}-c^{2})^{3/2}} + \frac{\gamma\mu}{((x_{E}+x_{M})^{2}-\lambda^{2}c^{2})^{3/2}}$$

Чтобы упростить аналитические вычисления рассмотрим классическое решение задачи двух тел, где

$$\omega^2 = \gamma m / (x_E + x_M)^3.$$

Движение точки Р определяется системой уравнений (1.1.1). Константа *с* для Земли равна 209.9км. Эллиптичность Луны в три раза меньше, чем эллиптичность Земли, радиус Луны оставляет 0.273 радиуса Земли.

Приведенная потенциальная энергия для Р имеет вид

$$V_{\omega} = -\frac{1}{2}\omega^2(x^2 + y^2) - U_E - U_M.$$
(1.1.7)

1.1.3 Точки либрации

Уравнения относительного равновесия имеют вид

$$\omega^2 x = \frac{\gamma(x+x_E)(m-\mu)}{((x+x_E)^2 + y^2 - c^2)^{3/2}} + \frac{\gamma(x-x_M)\mu}{((x-x_M)^2 + y^2 - \lambda^2 c^2)^{3/2}}, \quad (1.1.8)$$

$$\omega^2 y = \frac{\gamma y (m - \mu)}{((x + x_E)^2 + y^2 - c^2)^{3/2}} + \frac{\gamma y \mu}{((x - x_M)^2 + y^2 - \lambda^2 c^2)^{3/2}}.$$
 (1.1.9)

Если *y* = 0, то уравнение (1.1.9) выполняется автоматически. Абсциссы точек равновесия находятся из уравнения:

$$\omega^2 x = \frac{\gamma(x+x_E)(m-\mu)}{((x+x_E)^2 - c^2)^{3/2}} + \frac{\gamma(x-x_M)\mu}{((x-x_M)^2 - \lambda^2 c^2)^{3/2}}.$$
 (1.1.10)

Правая часть уравнения имеет четыре вертикальных асимптоты

$$x = -x_E \pm c, \ x = x_M \pm \lambda c$$

и монотонно убывает. Следовательно, уравнение имеет три корня по аналогии с обычной задачей трех тел: коллинеарные точки либрации L_1 , L_2 и L_3 . Эти положения равновесия неустойчивы. Если $y \neq 0$, то координаты точек либрации L_4 и L_5 могут быть найдены аналитически из уравнений

$$(x + x_E)^2 + y^2 = (x_E + x_M)^2 + c^2, \ (x - x_M)^2 + y^2 = (x_E + x_M)^2 + \lambda^2 c^2 :$$
$$x = \underbrace{\frac{c^2(1 - \lambda^2)}{2(x_E + x_M)}}_{(x_E + x_M)} + (x_M - x_E)/2,$$

отличие от классического решения

$$y^{2} = -\underbrace{\frac{c^{4}(1-\lambda^{2})^{2}}{4(x_{E}+x_{M})^{2}} + \frac{c^{2}(1+\lambda^{2})}{2}}_{4} + \frac{3}{4}(x_{E}+x_{M})^{2}.$$

отличие от классического решения

В классической задаче трех тел координаты треугольных точек либрации удовлетворяют уравнениям

$$(x + x_E)^2 + y^2 = (x_E + x_M)^2, \ (x - x_M)^2 + y^2 = (x_E + x_M)^2.$$

Примем $x_E + x_M = 1$, m = 1, $\mu = \tilde{\mu}$, тогда условие устойчивости положений равновесия L_4 и L_5 в первом приближении принимает форму

$$1 - 27\tilde{\mu} + 27\tilde{\mu}^{2} + 9c^{4}(1 + (-1 + \lambda^{4})\tilde{\mu}) + 6c^{2}(-1 - 2(1 + 2\lambda^{2})\tilde{\mu} + 3(1 + \lambda^{2})\tilde{\mu}^{2}) > 0$$

Рис. 1.1: На рисунках показана зависимость $\tilde{\mu}$ от c при $\lambda = 0$. Если c = 0, условие устойчивости положений равновесия L_4 и L_5 совпадает с условием устойчивости в классической задаче трех тел $\mu < 0,0385209$. Справа - увеличенная по оси $\tilde{\mu}$ картина пограничной зоны.

Рис. 1.2: Схематическое изображение сдвига точек либрации.

На рис. 1.1 показана зависимость $\tilde{\mu}$ от c, если $\lambda = 0$.

Отклонение полученных решений от классических примерно равно 0.05 км. На рис. 1.2 схематически показаны направления сдвига точек либрации относительно решений классической задачи.

Таким образом, в рассмотренной задаче учет сжатия Земли мало повлияет на результат.

Земля не является самой сжатой планетой Солнечной системы. Постоянная *с* для других планет имеет большие значения:

	C, KM
Земля	209.9
Mapc	150.013
Юпитер	8461.57
Сатурн	7547.368

Полярное сжатие Юпитера равно 0.065 (для Земли 0.0033), для Сатурна 0.1. Если рассматривать задачу согласно вышеописанному алгоритму, для этих планет можно ожидать более значительный эффект.

1.2 О периодических орбитах частицы в системе Земля – Луна – Солнце

Для системы Земля – Луна (E-M) треугольные точки либрации устойчивы по Ляпунову. При добавлении возмущения от Солнца (S) треугольные точки либрации перестают быть точками равновесия. В возмущенной плоской бициркулярной задаче в их окрестности существуют устойчивые по Ляпунову периодические решения [52] [17]. Наличие таких решений, возможно, является объяснением феномена кажущегося исчезновения и появления космических пылевых облаков Кордылевского [48].

В данном разделе рассмотрена пространственная эллиптическая задача о возмущенном движении частицы в системе Земля – Луна – Солнце.

1.2.1 Периодические траектории в плоской бициркулярной задаче

Рассмотрим плоскую круговую ограниченную задачу трех тел Земля – Луна – Частица, учитывая гравитационное солнечное возмущение. В качестве неподвижной системы координат выберем систему с началом в центре масс Солнца и осями, направленными на неподвижные звезды. Пусть центр масс системы Земля – Луна движется по круговой орбите вокруг Солнца. Земля и Луна совершают круговое движение вокруг их общего центра масс - точки О. Движение рассматриваем в подвижной вращающейся системе координат с центром в точке О, ось х направлена от Земли к Луне. Период обращения рассматриваемой системы равняется одному синодичесому месяцу (29 дней 12 часов 44 минуты). За единицу длины возьмем расстояние между Землей и Луной, за единицу массы - сумму их масс, за единицу времени величину, при которой угловая скорость вращения системы Земля – Луна равна единице. Пусть ω - абсолютная орбитальная угловая скорость движения точки О по орбите. За начальное время берем момент полнолуния, когда Солнце, Земля и Луна находятся на одной прямой.

Рис. 1.3: Бициркулярная задача четырех тел: Оху - подвижная система координат, О совершает круговое движение вокруг S, E и M движутся вокруг своего барицентра О.

Проекции абсолютной скорости на оси подвижной системы координат имеют вид

$$v_x = R\omega \sin p - y + \dot{x}, \quad v_y = R\omega \cos p + x + \dot{y},$$

где $\mu = 0.0122$ - масса Луны, $p = (1 - \omega)t$ - угол поворота подвижной системы координат относительно неподвижной, $\omega = 1/13.36$ - абсолютная орбитальная угловая скорость подвижной системы координат, R - расстояние от Солнца до О. Кинетическая энергия Частицы, деленная

на ее массу, имеет вид

$$T = \frac{R^2 \omega^2}{2} + R\omega(\dot{x}\sin p + \dot{y}\cos p + x\cos p - y\sin p) + \frac{1}{2}(\dot{x}^2 + \dot{y}^2 + x^2 + y^2) + x\dot{y} - y\dot{x}.$$

Расстояния от Частицы до Земли и Луны имеют вид

$$e = \sqrt{(x+\mu)^2 + y^2}, \quad l = \sqrt{(1-x-\mu)^2 + y^2},$$

Силовая функция, деленная на массу Частицы, имеет вид

$$U = \frac{1-\mu}{e} + \frac{\mu}{l} + \frac{\omega^2 R^3}{\sqrt{(R\cos p + x)^2 + (-R\sin p + y)^2}}.$$

Силовую функцию можно разложить по степеням *R*. Если отбросить члены порядка *R*⁻¹ и меньше, уравнения движения частицы в форме Лагранжа с учетом гравитационного воздействия системы Солнце – Земля – Луна имеют вид:

$$\dot{x} = u, \qquad \dot{y} = v,$$

$$\dot{u} = 2v + (1 - \omega^2)x + 3\omega^2 \cos p(x \cos p - y \sin p) - (1 - \mu)(x + \mu)e^{-3} + \mu(1 - \mu - x)l^{-3},$$

$$\dot{v} = -2u + (1 - \omega^2)y - 3\omega^2 \sin p(x \cos p - y \sin p) - (1 - \mu)ye^{-3} + \mu yl^{-3}.$$

Уравнения имеют периодические решения с периодом $T = 2\pi/(1-\omega)$, обладающие устойчивостью по Ляпунову. Два из них охватывают точку либрации L_4 системы Земля – Луна, еще два решения, симметричные относительно оси Ох, охватывают точку либрации L_5 [21]. На рис. 1.4 приведена траектория двух периодических движений в окрестности L_4 .

Рис. 1.4: Периодические траектории круговой задачи Луна Земля _ Частица с учетом гравитационного возмущения OTСолнца, начальные (0.084845,0.948269, -0.0513508, условия $(x_0, y_0,$ v_0) 0.173939), $u_0,$ = (0.727404, 0.815038, 0.0742093, -0.211367).

1.2.2 Пространственная эллиптическая задача

Введем неподвижную систему координат с началом в центре масс S и осями, направленными на неподвижные звезды. Движение частицы рассматриваем относительно подвижной системы координат, центр О которой находится в барицентре системы E-M. Точка О движется по эллиптической орбите с фокусом в S. Ось Ох проходит через E и M, направлена в сторону M. Считаем, что плоскость орбиты системы Земля – Луна наклонена под углом i = 0.089 к плоскости орбиты точки O. E и M движутся по эллиптическим орбитам с фокусом в O. Линию узлов считаем неподвижной в абсолютной системе координат. Аргумент перицентра ψ , т.е.

Рис. 1.5: Плоскости движения систем S-O и E-M.

угол между линией восходящего узла и направлением от О на перицентр орбиты М, считаем постоянным.

 $\alpha = const$ - угол между направлением от S на перигелий и линией восходящего узла $\overrightarrow{O\Omega}$.

Движение Е, М. Пусть г- расстояние между Е и М, m_1 - их суммарная масса, p_{EM} , e_{EM} , φ_1 -параметр, эксцентриситет, истинная аномалия для их орбиты, с - константа интеграла площадей. Тогда

$$r = \frac{p_{EM}}{1 + e_{EM} \cos \varphi_1},$$
$$\dot{\varphi_1} = c/r^2,$$

где $c = \sqrt{\gamma m_1 p_{EM}}, \gamma$ - гравитационная постоянная. Тогда выражение для угловой скорости принимает вид

$$\dot{\varphi}_1 = \sqrt{\gamma m_1 p_{EM}} (1 + e_{EM} \cos \varphi_1)^2 / p_{EM}^2.$$

В качестве единиц массы и длины возьмем m_1 и p_{EM} . Тогда p = 389.888 - параметр орбиты барицентра Е-М, $\mu = 0.01215$ - масса М, m = 328961 - масса S. За единицу времени возьмем такую величину, чтобы $\gamma = 1. e_{EM} = 0.0549006, e_{SE} = 0.01671123$ - реальные значения

эксцентриситетов орбит E-M, S-(E-M). φ - истинная аномалия орбиты барицентра E-M. Тогда уравнения для угловых скоростей переписываются в виде:

$$\dot{\varphi}_1 = (1 + e_{EM} \cos \varphi_1)^2,$$
$$\dot{\varphi} = \sqrt{mp} (1 + e_{SE} \cos \varphi)^2 / p^2.$$

Перейдем к выводу уравнений движения частицы. Рассмотрим проекции угловой скорости и вектора $\overline{SO} = \overline{R}$ на подвижные оси.

$$\overline{\dot{\varphi}} = \dot{\varphi}(\sin i \sin(\varphi_1 + \psi); \quad \sin i \cos(\varphi_1 + \psi); \quad \cos i)^T,$$

$$\overline{R} = R \begin{pmatrix} (\sin(\varphi - \alpha) \sin(\varphi_1 + \psi) \cos i + \cos(\varphi_1 + \psi) \cos(\varphi - \alpha)) \\ (\sin(\varphi - \alpha) \cos(\varphi_1 + \psi) \cos i - \sin(\varphi_1 + \psi) \cos(\varphi - \alpha)) \\ - \sin i \sin(\varphi - \alpha) \end{pmatrix},$$

где

.

,

$$R = \frac{p}{1 + e_{SE} \cos \varphi}$$

Абсолютная скорость частицы в подвижной системе координат и кинетическая энергия частицы, деленная на ее массу имеют вид:

$$\bar{V} = \begin{pmatrix} \dot{x} - \dot{\varphi_1}y \\ \dot{y} + \dot{\varphi_1}x \\ \dot{z} \end{pmatrix} + [\overline{\dot{\varphi}}; \overline{R}]$$

 $T = 0.5V^{2}$

Расстояние от Е, М, S до частицы соответственно равны

$$r_{1} = \sqrt{(x + \mu/(1 + e_{EM}\cos\varphi_{1}))^{2} + y^{2} + z^{2}},$$

$$r_{2} = \sqrt{(x - (1 - \mu)/(1 + e_{EM}\cos\varphi_{1}))^{2} + y^{2} + z^{2}},$$

$$r_{3} = [(x + R(\sin(\varphi - \alpha)\sin(\varphi_{1} + \psi)\cos i + \cos(\varphi_{1} + \psi)\cos(\varphi - \alpha)))^{2} + (y + R(\sin(\varphi - \alpha)\cos(\varphi_{1} + \psi)\cos i - \sin(\varphi_{1} + \psi)\cos(\varphi - \alpha)))^{2} + (z - R\sin i\sin(\varphi - \alpha))^{2}]^{0.5}.$$

Потенциальная энергия частицы, разделенная на ее массу, имеет вид

$$V = -\frac{1-\mu}{r_1} - \frac{\mu}{r_2} - \frac{m}{r_3}.$$

 Φ ункцию Лагранжа L=T-V разложим по степеням малого параметра, пренебрегая величинами порядка 10^{-5} .

$$L = L_0 + L_1 + L_2 + L_3 + \widetilde{L},$$

где L_j - члены разложения со степенью ј малых параметров, \tilde{L} - члены порядка 10^{-5} и меньше. Обозначим $\cos \beta = c, \sin \beta = s, \beta = \phi_1 - \phi + \alpha + \psi$.

$$\begin{split} L_{0} &= \frac{1}{2}(\dot{x}^{2} + \dot{y}^{2} + \dot{z}^{2} + x^{2} + y^{2}) + \dot{y}x - \dot{x}y + \frac{\sqrt{mp}}{p}[\dot{y}c + \dot{x}s + xc - ys] + \\ \frac{1-\mu}{r_{01}} + \frac{\mu}{r_{02}} - \frac{m}{p^{2}}(xc - ys) + \frac{3m}{2p^{3}}(xc - ys)^{2} - \frac{m}{2p^{3}}(x^{2} + y^{2} + z^{2}). \\ L_{1} &= [-\frac{3mz}{p^{3}}(xc - ys - \frac{p}{3})\sin(\phi - \alpha) - \dot{z}\frac{\sqrt{mp}}{p}\cos(\phi - \alpha)]i + \\ &+ [2(x^{2} + y^{2}) + 2(\dot{y}x - \dot{x}y) + 2\frac{\sqrt{mp}}{p}(xc - ys) + \frac{(1-\mu)\mu(x+\mu)}{r_{01}^{3}} - \\ \frac{(1-\mu)\mu(1-x-\mu)}{r_{02}^{3}}]\cos\phi_{1}e_{EM} + \\ &+ [\frac{\sqrt{mp}}{p}(\dot{y}c + \dot{x}s + xc - ys) - \frac{2m}{p^{2}}(xc - ys) - \frac{3m}{2p^{3}}(x^{2} + y^{2} + z^{2}) + \frac{9m}{2p^{3}}(xc - ys)^{2}]\cos\phi_{ESE}. \end{split}$$

$$L_{2} = \frac{1}{2} \left[\frac{\sqrt{mp}}{p} (-\dot{x}\sin(\psi + \phi_{1})\cos(\phi - \alpha) - \dot{y}\cos(\psi + \phi_{1})\cos(\phi - \alpha) - x\cos(\psi + \phi_{1})\cos(\phi - \alpha) + y\sin(\psi + \phi_{1})\cos(\phi - \alpha)) + \frac{m}{p^{2}} (x\sin(\psi + \phi_{1})\sin(\phi - \alpha) + y\cos(\psi + \phi_{1})\sin(\phi - \alpha)) \right] i^{2} + \frac{\cos^{2}\phi_{1}}{2} \left[6(x^{2} + y^{2}) + 2(\dot{y}x - \dot{x}y) + \frac{2\sqrt{mp}}{p} (xc - ys) - \frac{(1 - \mu)\mu^{2}}{r_{01}^{3}} - \frac{2(1 - \mu)\mu(x + \mu)}{r_{01}^{3}} + \frac{1}{r_{01}^{3}} \right] i^{2} + \frac{\cos^{2}\phi_{1}}{r_{01}^{3}} \left[\frac{1}{r_{01}^{3}} - \frac{2(1 - \mu)\mu(x + \mu)}{r_{01}^{3}} + \frac{1}{r_{01}^{3}} + \frac{1}{r_{01}^{3}} \right] i^{2} + \frac{1}{r_{01}^{3}} - \frac{1}{r_{01}^{3}} - \frac{1}{r_{01}^{3}} - \frac{1}{r_{01}^{3}} + \frac{1}{r_{01}^{3}} + \frac{1}{r_{01}^{3}} + \frac{1}{r_{01}^{3}} - \frac{1}{r_{01}^{3}} + \frac{1}{r_{01}^{3}} + \frac{1}{r_{01}^{3}} - \frac{1}{r_{01}^{3}} + \frac{1}{r_{01}^{$$

$$\begin{aligned} \frac{3(1-\mu)(x+\mu)^2\mu^2}{r_{01}^6} &- \frac{(1-\mu)^2\mu}{r_{02}^3} - \frac{2(1-\mu)\mu(1-\mu-x)}{r_{02}^{33}} + \frac{3(1-\mu)^2\mu(1-x-\mu)^2}{r_{02}^5}]e_{EM}^2 - \\ &- \frac{m\cos^2\phi}{p^2} (xc - ys)e_{SE}^2 + \frac{2\sqrt{mp}}{p} (x\cos\beta - y\sin\beta)\cos\phi\cos\phi\cos\phi_1 e_{SE}e_{EM} + \\ [-\frac{\sqrt{mp}}{p}\dot{z}\cos(\phi-\alpha) + \frac{2mz}{p^2}\sin(\phi-\alpha)]\cos\phi ie_{SE}. \\ &L_3 &= \frac{i^3}{6} [\frac{\sqrt{mp}}{p}\dot{z}\cos(\phi-\alpha) + \frac{mz}{p^2}\sin(\phi-\alpha)] + \\ &+ 2e_{EM}^3\cos^3\phi_1(x^2+y^2) + \\ &+ i^2e_{EM}\frac{\sqrt{mp}}{p}\cos\phi_1[-x\cos(\psi+\phi_1)\cos(\phi-\alpha) + y\sin(\psi+\phi_1)\cos(\phi-\alpha)] + \\ &+ i^2e_{ES}\cos\phi[\frac{\sqrt{mp}}{2p}(-\dot{y}\cos(\psi+\phi_1)\cos(\phi-\alpha) + y\sin(\psi+\phi_1)\cos(\phi-\alpha) - \\ &\dot{x}\sin(\psi+\phi_1)\cos(\phi-\alpha) - x\cos(\psi+\phi_1)\cos(\phi-\alpha)) + \frac{m}{p^2}(x\sin(\psi+\phi_1)\sin(\phi-\alpha) - \\ &\dot{x}\sin(\psi+\phi_1)\sin(\phi-\alpha))] + \\ &+ \frac{e_{EM}^2s_{EN}}{p^2}\cos^2\phi\sin(\phi-\alpha) + \\ &+ \frac{e_{EM}^2s_{EN}\sqrt{mp}}{p}\cos\phi\cos^2\phi_1(xc - ys). \\ &\Gamma_{\rm Re}\ r_{01} &= \sqrt{(x+\mu)^2 + y^2 + z^2}, \\ &r_{02} &= \sqrt{(x-1+\mu)^2 + y^2 + z^2}. \end{aligned}$$

Уравнения движения в форме Лагранжа принимают следующий вид $\ddot{x} = 2\dot{y} + (1 - \frac{m}{p^3})x + \frac{3mc}{p^3}(xc - ys) + U_x^{EM} - i\frac{3mzc}{p^3}\sin(\phi - \alpha) + e_{EM}[4\cos\phi_1(x + \dot{y}) - 2y\sin\phi_1]] + e_{SE}\frac{m}{p^2}[\cos(\phi_1 - 2\phi + \alpha + \psi) - \frac{3}{p}\cos\phi(x - 3c(xc - ys))] + e_{EM}^2\cos\phi_1[-6y\sin\phi_1 + 2\dot{y}\cos\phi_1 + 6x\cos\phi_1] + e_{SE}^2\frac{2m}{p^2}\cos(\phi_1 - 2\phi + \alpha + \psi) + e_{EM}^3\cos^2\phi_1[-6y\sin\phi_1 + 4x\cos\phi_1] - i^2e_{ES}\frac{m}{2p^2}\sin(\phi_1 + \psi)\sin(2\phi - \alpha) + i^2e_{SE}e_{EM}\frac{\sqrt{mp}}{p}\cos\phi\cos\phi_1\cos(\phi - \alpha)\cos(\phi_1 + \psi) + i^2e_{EM}^2\frac{\sqrt{mp}}{2p}\cos^2\phi_1\cos(\phi - \alpha)\cos(\phi_1 + \psi) + i^2e_{EM}^2\frac{\sqrt{mp}}{2p}\cos^2\phi_1\cos(\phi - \alpha)\cos(\phi_1 + \psi),$

$$\ddot{y} = -2\dot{x} + (1 - \frac{m}{p^3})y - \frac{3ms}{p^3}(xc - ys) + U_y^{EM} + i\frac{3mzs}{p^3}\sin(\phi - \alpha) + e_{EM}[4\cos\phi_1(y - \dot{x}) + 2x\sin\phi_1] + e_{SE}\frac{m}{p^2}[-\sin(\phi_1 - 2\phi + \alpha + \psi) - \frac{3}{p}\cos\phi(y + 3s(xc - ys))] + e_{EM}^2\cos\phi_1[6x\sin\phi_1 - 2\dot{x}\cos\phi_1 + 6y\cos\phi_1] - e_{SE}^2\frac{2m}{p^2}\sin(\phi_1 - 2\phi + \alpha + \psi) + e_{EM}^3\cos^2\phi_1[6x\sin\phi_1 + 4y\cos\phi_1] - i^2e_{ES}\frac{m}{2p^2}\cos(\phi_1 + \phi_1)$$

$$\psi)\sin(2\phi - \alpha) - i^2 e_{SE} e_{EM} \frac{\sqrt{mp}}{p} \cos\phi \cos\phi_1 \cos(\phi - \alpha) \sin(\phi_1 + \psi) - i^2 e_{EM}^2 \frac{\sqrt{mp}}{2p} \cos^2\phi_1 \cos(\phi - \alpha) \sin(\phi_1 + \psi),$$

$$\ddot{z} = -\frac{m}{p^3} z + U_z^{EM} - i\frac{3m}{p^3} (xc - ys) \sin(\phi - \alpha) - e_{SE} \frac{3mz}{p^3} \cos\phi - ie_{SE} \frac{m}{p^2} \sin(2\phi - \alpha) + i^3 \frac{m}{3p^2} \sin(\phi - \alpha) - ie_{ES}^2 \frac{2m}{p^2} \cos\phi \sin(2\phi - \alpha),$$

где
$$U^{EM} = \frac{1-\mu}{r_{01}} + \frac{\mu}{r_{02}} + \left[\frac{(1-\mu)\mu(x+\mu)}{r_{01}^3} - \frac{(1-\mu)\mu(1-x-\mu)}{r_{02}^3}\right] \cos \phi_1 e_{EM} + \left[-\frac{(1-\mu)\mu^2}{r_{01}^3} - \frac{2(1-\mu)\mu(x+\mu)}{r_{01}^3} + \frac{3(1-\mu)(x+\mu)^2\mu^2}{r_{01}^5} - \frac{(1-\mu)^2\mu}{r_{02}^3} - \frac{2(1-\mu)\mu(1-\mu-x)}{r_{02}^3} + \frac{3(1-\mu)^2\mu(1-x-\mu)^2}{r_{02}^5}\right] \frac{\cos \phi_1 e_{EM}}{2}.$$

Среднеквадратичное отклонение возмущенного движения за период при реальных значениях параметров орбит имеет порядок 10⁻², что разрушает периодическую орбиту невозмущенной задачи. Зависимость от угла наклона имеет меньший порядок.

1.2.3 Траектории движения частицы в окрестности L_4

На рисунках 1.6-1.9 представлены результаты численного интегрирования точных уравнений при некоторых значениях параметров. При реальном значении угла наклона i=0.089 траектория частицы находится вблизи периодического решения круговой задачи.

Рис. 1.6: Проекция движения с началом из точки либрации на плоскости Оху, Ох
z, i=0.089, $e_{EM}=0, e_{SE}=0, \alpha=0, \psi=0, t\in[0,300].$

Рис. 1.7: Движение в окрестности периодической траектории i=0.089, $e_{EM} = 0, e_{SE} = 0, \alpha = 0, \psi = 0.$ 1. $t \in [0, 100]$. 2. Проекция в плоскости Оху, Охг, $t \in [0, 300]$.

Рис. 1.8: і=0.089, $e_{EM} = 0.003, e_{SE} = 0, \alpha = 0, \psi = 0, t \in [0, 100]$. При добавлении эллиптичности орбиты Луны траектория отдаляется от периодического решения.

Рис. 1.9: i=0.089, $e_{EM} = 0.005, e_{SE} = 0.001, \alpha = 0, \psi = 0, t \in [0, 50]$. При учете эллиптичности орбиты барицентра системы Земля-Луна уход от периодического решения происходит заметно интенсивнее.

Глава 2

Об уравнении Лиувилля для скоплений астероидов и пылевых частиц

Уравнение Лиувилля есть следствие теоремы о сохранении фазового объема динамической системы. Фазовое пространство динамической системы можно разбить на участки, элементы фазового пространства, и ввести фазовую плотность в этих участках [6]. Фазовая плотность будет постоянна вдоль траектории в фазовом пространстве.

Используя этот принцип, поставим задачу вероятностного описания скопления пылевых частиц и астероидов. Проследим эволюцию во времени фазовой плотности космических частиц в элементах фазового пространства. Первая рассмотренная задача служит демонстрацией и проверкой алгоритма: рассматривается плоская круговая задача трех тел Солнце - Юпитер - Астероид, ведется исследование в окрестности устойчивого относительного равновесия. В качестве второй задачи рассмотрена задача из первой главы: движение Частицы в поле тяготения системы
Земля - Луна - Солнце, рассматривается окрестность устойчивых периодических движений.

2.1 Уравнение Лиувилля

Рассмотрим систему частиц с одинаковыми массами, не взаимодействующих друг с другом. Система возмущаяется внешними силами. Рассмотрим движение тестовой частицы P(x, y, u, v) и зададим функцию распределения $\rho(x, y, u, v, t)$ в фазовом пространстве, где x, y, u, v - фазовые переменные рассматриваемой системы.

Чтобы оценить плотность скопления частиц, рассмотрим уравнение Лиувилля, которое описывает эволюцию функции распределения (плотности вероятности) системы частиц в фазовом пространстве. Уравнение Лиувилля для функции распределения $\rho(x, y, u, v, t)$ имеет вид:

$$\frac{\partial \rho}{\partial t} + \dot{x}\frac{\partial \rho}{\partial x} + \dot{y}\frac{\partial \rho}{\partial y} + \dot{u}\frac{\partial \rho}{\partial u} + \dot{v}\frac{\partial \rho}{\partial v} = 0.$$

Это однородное линейное уравнение в частных производных первого порядка. Обычно такие уравнения решаются методом характеристик. Решение уравнения постоянно вдоль характеристик, а уравнения характеристик являются уравнениями движения частицы:

$$\dot{x} = u, \quad \dot{y} = v, \quad \dot{u} = f(x, y, u, v, t), \quad \dot{v} = g(x, y, u, v, t)$$

2.2 Алгоритм численного решения уравнения Лиувилля

Рассмотрим прямоугольную область фазового пространства:

$$P(x, y, u, v)\epsilon[x_0 - 0.5w_x; x_0 + 0.5w_x] \times \dots \times [v_0 - 0.5w_v; v_0 + 0.5w_v],$$

где w_x , w_y , w_u , w_v - длины сторон прямоугольного четырехмерного параллепипеда, ограничивающего область фазового пространства с центром в точке (x_0, y_0, u_0, v_0) . Разобьем область равномерной по каждой координате сеткой. Координаты узлов сетки записываются в четырехмерный массив.

Численное решение уравнения Лиувилля основано на интегрировании уравнений движения для всех узлов сетки назад по времени. Интегрирование ведется методом Рунге – Кутта с точностью до 10^{-12} . Рассмотрим алгоритм для одной частицы в узле $P_1(x_1, y_1, u_1, v_1)$ в заданный момент времени t. Проинтегрируем уравнения движения частицы назад по времени до момента t_0 и получим координаты точки P_2 . То есть можно проследить движение частицы за время $t - t_0$ из точки P_2 в точку P_1 . Если считать момент времени t_0 началом движения всей системы и задать в этот момент начальное распределение $\rho_0(x, y, u, v)$, то в момент времени t функция распределения в точке P_1 будет равна функции распределения в точке P_2 в момент t_0 и равна $\rho_0(P_2)$, так как функция распределения постоянна вдоль траектории. Координаты P_2 сохраняются в новый четырехмерный массив. Для изучения эволюции функции распределения за больший промежуток времени для точки P_1 ведется интегрирование назад по времени от точки P_2 в момент времени t_0 до момента $t_0 - \Delta t$. Получили другой прообраз P_3 точки P_1 и считаем теперь момент времени $t_0 - \Delta t$ началом движения системы, где задана функция распределения $\rho_0(x, y, u, v)$. Интегрирование назад может быть продолжено далее, координаты прообразов узлов сетки сохраняются в новом, соответствующем новому моменту времени массиве.

Начальное распределение задается в виде

$$\rho_0(x, y, u, v) = \frac{\sigma_1 \sigma_2}{\pi^2} exp(-\sigma_1((x - x_0)^2 + (y - y_0)^2) - \sigma_2((u - u_0)^2 + (v - v_0)^2)),$$

где $\sigma_1, \sigma_2, x_0, y_0, u_0, v_0$ - параметры модели. Для визуализации результатов интегрирования изобразим линии уровня плотности вероятности на плоскости Оху после ее осреднения по скоростям

$$\tilde{\rho}(x_i, y_j, t) = \frac{\sum_{k,l} \rho(x_i, y_j, u_k, v_l, t)}{N_k N_l},$$

где N_k, N_l- количество узлов равномерной сетки по и и v соответственно.

Сохраняя данные о координатах прообразов точек, можно менять параметры начального распределения, избегая повторных вычислений.

В алгоритме ведется интегрирование назад, т.к. интегрирование вперед по времени дает распределение в точках, которые могут не принадлежать рассматриваемому объему фазового пространства, тогда некоторые части фазового пространства останутся без задания функции распределения.

2.3 Приложение к системе Солнце – Юпитер – Астероид

Рассмотрим плоскую круговую ограниченную задачу трех тел Солнце – Юпитер – Астероид (S – J – A). Уравнения, описывающие движения Астероида во вращающейся системе координат, связанной с Солнцем и Юпитером, представимы в виде

$$\begin{split} \dot{x} &= u, \quad \dot{y} = v, \\ \dot{u} &= 2v + x - (1 - \mu)(x + \mu)r^{-3} + \mu(1 - \mu - x)l^{-3}, \\ \dot{v} &= -2u + y - (1 - \mu)yr^{-3} + \mu yl^{-3}, \\ r &= \sqrt{(x + \mu)^2 + y^2}, \quad l = \sqrt{(1 - x - \mu)^2 + y^2}, \end{split}$$

где µ - масса J, r - расстояние от A до J, l - расстояние от A до S. Система имеет два относительных положения равновесия, обладающих устойчивостью в первом приближении – треугольные точки либрации L₄ и L₅ [17].

На рис. 2.1 изображены два типа скоплений астероидов, которые наблюдаются в окрестности треугольных точек либрации системы S – J: троянские астероиды и семейство Хильды [50]. Прямоугольником отмечена область интегрирования в окрестности L₄:

$$-\mu < x < 1 - \mu, \quad \sqrt{3}/2 - 0.4 < y < \sqrt{3}/2 + 0.4,$$

где $\mu = 0.000953$ - масса J.

На рис. 2.2 приведены результаты расчета по указанному алгоритму в выделенной области, дополненной распределением скоростей в прямоугольной области -1.5 < u < 1.5, -1.5 < v < 1.5.

Рис. 2.1: Наблюдаемое расположение троянских астероидов для системы Солнце – Юпитер: серые группы с центрами в L_4 (греки) и L_5 (троянцы). Также в окрестности треугольных точек либрации можно наблюдать семейство Хильды, находящееся с Юпитером в орбитальном резонансе 3:2 (черная группа, образующая треугольник с вершинами в L_4 , L_5 , L_3). Данные получены в работе [50], элементы орбиты астероидов взяты из базы Международного Астрономического Союза. Прямоугольником выделена область в плоскости Оху для последующего интегрирования уравнения Лиувилля.

Плотность в выбранной области интегрирования уменьшается со временем, что связано с наличием частиц, фазовые координаты которых при интегрировании назад переходят в область с пониженной начальной плотностью. Результаты интегрирования качественно совпадают с

Рис. 2.2: Линии уровня $\tilde{\rho}(x,y) = i\tilde{\rho}_{max}(x,y)/5$, i=1,..5, $P(x_0,y_0,u_0,v_0) = (0.5 - \mu, \sqrt{3}/2, 0, 0)$, точка максимума плотности $\tilde{\rho}_{max}$ отмечена черным кружком. Большей плотности соответствует более темный цвет линий. (a) $t_0 = -249, \sigma_1 = 1, \sigma_2 = 30, \tilde{\rho}_{max}(x,y) = 0.387$; (b) $t_0 = -250, \sigma_1 = \sigma_2 = 10, \tilde{\rho}_{max}(x,y) = 1.109$; (c) $t_0 = -250, \sigma_1 = 10, \sigma_2 = 30, \tilde{\rho}_{max}(x,y) = 2.205$; (d) $t_0 = -251, \sigma_1 = \sigma_2 = 10, \tilde{\rho}_{max}(x,y) = 1.466$; (e) $t_0 = -251, \sigma_1 = 10, \sigma_2 = 30, \tilde{\rho}_{max}(x,y) = 3.169$; (f) $t_0 = -251.5, \sigma_1 = \sigma_2 = 10, \tilde{\rho}_{max}(x,y) = 2.208$.

наблюдаемым расположением астероидов (рис. 2.1). Для окрестности L_5 ожидается симметричная относительно оси Ох картина, т.к. уравнения движения не изменяются при замене $y \to (-y)$. Таким образом, в рассмотренной автономной динамической системе численный анализ позволяет говорить о сходимости плотности распределения вероятности в среднем (по Чезаро), подобно аналитическому исследованию в работе [13].

2.4 Пример образования облаков Кордылевского

Для исследования движения пылевых частиц, рассмотрим плоскую круговую ограниченную задачу трех тел Земля – Луна – Частица, учитывая гравитационное солнечное возмущение. В качестве неподвижной системы координат выберем систему с началом в центре масс Солнца и осями направленными на неподвижные звезды. Пусть центр масс системы Земля – Луна движется по круговой орбите вокруг Солнца. Земля и Луна совершают круговое движение вокруг их общего центра масс - точки О. Движение рассматриваем в подвижной вращающейся системе координат с центром в точке О, ось х направлена от Земли к Луне. Период обращения рассматриваемой системы равняется одному синодическому месяцу (29 дней 12 часов 44 минуты).

Периодические решения задачи уже описаны в разделе 1.2.1. Уравнения движения частицы в форме Лагранжа с учетом гравитационного воздействия Солнца, Земли и Луны имеют вид

$$\dot{x} = u, \quad \dot{y} = v,$$

$$\dot{u} = 2v + (1 - \omega^2)x + 3\omega^2 \cos p(x \cos p - y \sin p) - (1 - \mu)(x + \mu)r^{-3} + \mu(1 - \mu - x)l^{-3},$$
$$\dot{v} = -2u + (1 - \omega^2)y - 3\omega^2 \sin p(x \cos p - y \sin p) - (1 - \mu)yr^{-3} + \mu yl^{-3},$$
$$(2.4.1)$$

$$r = \sqrt{(x+\mu)^2 + y^2}, \quad l = \sqrt{(1-x-\mu)^2 + y^2}.$$

где $\mu = 0.0122$ - масса Луны, $p = (1 - \omega)t$ - угол поворота подвижной системы координат относительно неподвижной, $\omega = 1/13.36$ - абсолютная орбитальная угловая скорость подвижной системы координат, r и l - расстояния от частицы до Земли и Луны соответственно. Представленный вид уравнения движения имеют, при отбрасывании слагаемых лагранжиана порядка 1/R, где R расстояние от Солнца до О [47]. Будем рассматривать устойчивое по Ляпунову периодическое решение с периодом $T = 2\pi/(1 - \omega)$, охватывающее L_4 (траектория показана на рис. 1.3). Для движений, охватывающих L_5 , будет симметричные относительно оси Ох траектории, т.к. уравнения (2.4.1) сохраняются при замене $y \to (-y)$. При малых отклонениях начальных условий движение происходит в ограниченной окрестности траектории.

орбите: Рассмотрим три точки периодической на -0.0513508, 0.173939) при *t* $P_1(0.084845,$ 0.948269,T/2= 0.0742093, -0.211367) при t = $P_2(0.727404,$ 0.815038,0. $P_3(0.399253, 0.712658, -0.333169, 0.14713)$ находится на линии визирования, t = 0.3024T [21]. Выбранные точки P_1 и P_2 располагаются диаметрально противоположно на периодической траектории. P_1 и P_2 совпадают с начальными условиями при t = 0 двух периодических движений, охватывающих L_4 .

Пределы интегрирования для пространства координат выделены на puc.2.3: $w_{xP1} = 0.4$, $w_{yP1} = 0.1$, $w_{xP2} = w_{yP2} = w_{xP3} = w_{yP3} = 0.3$. На годографе выбраны окрестности, соответствующие скоростям частицы в этих точках, для всех трех областей $w_u = w_v = 0.2$.

На рис.2.3 представлены результаты интегрирования уравнения Лиувилля для введенных окрестностей периодического движения. При $P(x_0, y_0, u_0, v_0) = P_2$ мы наблюдаем эволюцию системы частиц, которые были распределены в окрестности точки P_2 . Здесь и далее, говоря об временной эволюции функции распределения, подразумевается рассмотрение движения частиц по разным по длительности интервалам времени, все графики функций зависимости от времени - зависимость от интервала времени, в котором эволюционирует функция. На рис.2.4 приведены графики зависимости значений максимальной плотности $\tilde{\rho}$ от времени. На рис.2.5 приведены графики суммарной плотности ρ_{sum} :

$$\rho_{sum}(t) = \frac{w_x w_y w_u w_v \sum_{m,n,k,l} \rho(x_m, y_n, u_k, v_l, t)}{(N_k - 1)(N_l - 1)(N_n - 1)(N_m - 1)},$$

где N_m, N_n, N_k, N_l - количество узлов сетки по x, y, u, v соответственно.

Плотность в выбранных областях уменьшается, что связано с выбросом частиц, фазовые координаты которых не близки к периодическому решению.

Если рассматривать центральную часть облака, получившегося на линии визирования, с $\tilde{\rho} > \tilde{\rho}_{max3}/2$, то ширина облака приблизительно равна 0.1 единицы длины, угловой размер облака будет равняться 7^{o} . Полученный численный результат согласуется с наблюдениями Кордылевского.

2.5 Грубая энтропия

Полученная в узлах сетки функция распределения позволяет вычислить грубую энтропию, которая является обобщением обычной энтропии Гиббса [12], [11]. Грубая энтропия вычисляется по формуле:

$$\overline{s}(t) = -\sum_{m,n,k,l} d\mu \rho(x_m, y_n, u_k, v_l, t) \ln \rho(x_m, y_n, u_k, v_l, t)$$

где $d\mu$ - мера элемента фазового пространства,

$$d\mu = \frac{w_x w_y w_u w_v}{(N_k - 1)(N_l - 1)(N_n - 1)(N_m - 1)}$$

N_m, *N_n*, *N_k*, *N_l* - количество узлов сетки по х, у, u, v соответственно. На рис. 2.6 приведены численные значения энтропии в зависимости от времени. Энтропия имеет тенденцию к возрастанию со временем.

2.6 Выводы

Уравнение Лиувилля позволяет оценить функцию распределения системы частиц в окрестности периодической траектории, оценить размер облака Кордылевского и его форму при допущениях модели. Численное интегрирование уравнения Лиувилля в окрестности периодического решения показывает формирование сплоченного участка в текущем положении точки при движении вдоль периодической траектории. Численный анализ доказывает вероятность образования облаков пыли. Плотность, форма скопления не постоянны вдоль периодической траектории.

Рис. 2.3: Результаты интегрирования уравнения Лиувилля в окрестности точек P_1, P_2, P_3 периодического движения $(P(x_0, y_0, u_0, v_0) = P_2, \sigma_1 = 10, \sigma_2 = 80, t_0 = -150T$; окрестности точек P_2, P_3, P_1 соответствуют моментам времени: $t_{P2} = 0, t_{P3} = 0.3024T, t_{P1} = 0.5T$, где Т - период. $\tilde{\rho}_{max1} = 0.473706, \tilde{\rho}_{max2} = 0.861971, \tilde{\rho}_{max3} = 0.498954).$

Рис. 2.4: Максимальные значения $\tilde{\rho}$ в окрестности точек P_1, P_2, P_3 в зависимости от времени $\frac{t_{P_i}-t_0}{T}$, i=1, 2, 3, соответственно. Начальные условия интегрирования см. на рис.2.3.

Результаты, полученные на основании интегрирования уравнения Лиувилля хорошо согласуются с параметрами облака Кордылевского, показанными в работе [21] путем точечного отображения Пуанкаре для уравнения движения частицы.

Результаты, полученные в модели образования скоплений космических частиц показали качественное совпадение с известными наблюдениями скоплений троянских астероидов, показанных на рис.2.1.

Рис. 2.5: Значения ρ_{sum} в окрестности точек P_1, P_2, P_3 в зависимости от времени $\frac{t_{Pi}-t_0}{T}$, i=1, 2,3, построение графика ведется с момента $t_{Pi} - t_0 = 15T$. Начальные условия интегрирования см. рис.2.3.

Рис. 2.6: Зависимость значений грубой энтропии \overline{s} в окрестности точек P_1, P_2, P_3 от времени $\frac{t_{Pi}-t_0}{T}$ (i=1, 2, 3, T - период), с начальными условиями: $P(x_0, y_0, u_0, v_0) = P_2$, $\sigma_1 = 10, \sigma_2 = 80, t_0 = -150T$; окрестности точек P_2, P_3, P_1 соответствуют моменты времени: $t_{P2} = 0, t_{P3} = 0.3024T, t_{P1} = 0.5T$. Полученная грубая энтропия имеет тенденцию к возрастанию до некоторого предельного значения для каждого рассмотренного участка фазового пространства.

Глава 3

Световое давление в задаче Солнце – Земля – Луна – Частица

Рассматривается плоская ограниченная круговая задача трех тел Земля – Луна – Частица, при учете влияния на Частицу гравитационного и светового воздействия Солнца. Называемое радиационным давлением в ряде иностранных источников [29], световое давление обусловлено столкновением потока фотонов с поверхностью тела и передаче импульса, согласно закону сохранения импульса. В настоящей работе световое давление вводится через понижающий коэффициент $(1 - \varepsilon)$ перед функцией гравитационного потенциала Солнца. В первой и второй главе рассматривалась плоская бициркулярная задача четырех тел, что соответствует $\varepsilon = 0$. Значение коэффициента зависит от параметров частицы: размера, формы, плотности, отражающего свойства поверхности. Для мелких пылевых частиц сила гравитационного притяжения Солнца соизмерима с силой светового давления. Это вызвало гипотезу, что облака Кордылевского состоят именно из таких частиц и находятся в близкой окрестности треугольных точек либрации. В главе представлены результаты компьютерного поиска периодических траекторий в окрестности треугольных точек либрации Земля – Луна для некоторых значений понижающего коэффициента и исследована их устойчивость. Построена неполная бифуркационная диаграмма зависимости начальных условий периодического движения от коэффициента.

3.1 Постановка задачи

Рассмотрим движение Частицы в поле притяжения Солнца, Земли и Луны, с учетом светового давления Солнца.

Рис. 3.1: Бициркулярная задача четырех тел: Оху - подвижная система координат, О совершает круговое движение вокруг S, E и M движутся вокруг своего барицентра O, Fs - сила светового давления.

Движение Частицы рассматриваем во вращающейся системе координат Оху с центром в точке О - барицентре системы Земля-Луна, ось х направлена от Земли к Луне (рис. 3.1). Период обращения рассматриваемой системы равняется одному синодическому месяцу (29дней 12часов 44минут). За начальное время t = 0 принят момент полнолуния, то есть когда Солнце, Земля и Луна находятся на одной прямой. Если принять за единицы массы и длины сумму масс системы Земли - Луны и расстояние между ними, а за единицу времени - величину, нормализующую гравитационную постоянную, то лагранжиан Частицы в подвижной системе координат будет отличаться от лагранжиана (1.2.1) сомножителем $(1 - \varepsilon)$ перед гравитационным потенциалом Солнца:

$$\begin{split} L &= \frac{1}{2}R^2\omega^2 + R\omega(s\dot{x} + c\dot{y}) + R\omega(cx - sy) + \frac{1}{2}(\dot{x}^2 + \dot{y}^2) + \frac{1}{2}(x^2 + y^2) + \\ (x\dot{y} - y\dot{x}) + (1 - \mu)e^{-1} + \mu l^{-1} + (1 - \varepsilon)\omega^2 R^3 r^{-1}, \\ e &= ((x + \mu)^2 + y^2)^{\frac{1}{2}}, \\ l &= ((1 - x - \mu)^2 + y^2)^{\frac{1}{2}}, \\ r &= ((Rc + x)^2 + (-Rs + y)^2)^{\frac{1}{2}}, \end{split}$$

где $\mu = 0.0122$ - масса Луны, $s = \sin p$, $c = \cos p$, $p = (1 - \omega)t$ угол поворота подвижной системы координат относительно неподвижной, $\omega = 1/13.36$ - абсолютная орбитальная угловая скорость подвижной системы координат, e, l, r - расстояния от частицы до Земли, Луны, Солнца, соответственно, R=389.18 - расстояние между центром масс Солнца и барицентром системы Земля-Луна.

Тогда уравнения движения Частицы в форме Лагранжа в безразмерных единицах имеют вид

$$\dot{x} = u, \quad \dot{y} = v_{z}$$

$$\dot{u} = 2v + (1 - (1 - \varepsilon)\omega^2)x + 3(1 - \varepsilon)\omega^2 \cos p(x \cos p - y \sin p) - (3.1.1)$$
$$-(1 - \mu)(x + \mu)r^{-3} + \mu(1 - \mu - x)l^{-3} + R\varepsilon\omega^2 \cos p,$$

$$\dot{v} = -2u + (1 - (1 - \varepsilon)\omega^2)y - 3(1 - \varepsilon)\omega^2 \sin p(x\cos p - y\sin p) - (1 - \mu)yr^{-3} + \mu yl^{-3} - R\varepsilon\omega^2 \sin p,$$

Представленный вид уравнения движения имеют при отбрасывании слагаемых лагранжиана порядка 1/R. Правые части уравнений периодичны с периодом $T = 2\pi/(1 - \omega)$. Отбрасываемая часть на численные результаты практически не влияет. Будем рассматривать периодические движения, охватывающие точку L_4 . Для точки L_5 ожидаются симметричные относительно оси Ох результаты.

3.2 Зависимость светового давления от физических параметров частицы

Для соотнесения параметров пылевых частиц и значения понижающего коэффициента использована формула для вычисления светового давления [8]:

$$\frac{F_{\rm cb.dab.}}{m_p} = k P_0 \frac{S}{m_p} \left(\frac{a'}{r}\right)^2,$$

где m_p и S - масса и площадь сечения частицы соответственно, k=1 в случае зеркального отражения, k=1.44 в случае диффузного рассеивания, $P_0 = 4.65 \cdot 10^{-6} \frac{\text{H}}{\text{M}^2}$, a' - среднее расстояние от Солнца до Земли.

Тогда введенный параметр ε выписывается в виде

$$\varepsilon = \frac{F_{\rm cB. ДаB}}{F_s} = \frac{k P_0 S a'^2}{\gamma m_p m_S},$$

где F_S - сила притяжения действующая на частицу со стороны Солнца, γ -гравитационная постоянная, m_S - масса Солнца. Отсюда следует, что понижающий коэффициент прямо пропорционален отношению плоскости сечения частицы к ее массе, то есть обратно пропорционален размеру частицы. Если рассмотреть допущения

– частица имеет форму шара радиуса σ ,

– плотность частицы равна 2г/см³,

– диффузное рассеивание света на поверхности частицы, т.е. k=1.44, то $\varepsilon\sigma = 4.23316\cdot 10^{-7}$ м.

Некоторые соотношения ε и радиусов частицы приведены в таблице.

ε	σ
1	4.23316 · 10 ⁻⁷ м
0.1	4.23316 · 10 ⁻⁶ м
0.01	$4.23316 \cdot 10^{-5}$ м
0.001	$4.23316 \cdot 10^{-4}$ м
0.0001	$4.23316 \cdot 10^{-3}$ м

Полученное выражение отличается от предложенного в работе [38] в два раза, однако в этой статье не конкретизируются параметры рассматриваемой частицы. Также нужно отметить, что при размере частицы менее 10^{-7} м описанная выше формула светового давления не верна: происходит рэлеевское рассеяние - рассеяние света на объектах, размеры которых меньше длины волны света. Различные соотношения для ε и радиуса частицы показаны в работе [29], кроме того, приведены известные данные о форме, составе и плотностях космических пылинок.

3.3 Периодические решения и их устойчивость

Пусть $\xi = (x, y, u, v)^T$, тогда уравнения движения Частицы (3.1.1) можно переписать в векторно-матричном виде

$$\dot{\xi}(\xi^0, t) = F(\xi(\xi^0, t), t),$$

где $\xi^0 = \xi(\xi^0, 0)$ – начальное условие. Периодические решения определяются численно по методу Ньютона. Рассматривается система сопряженных уравнений

$$\dot{A}(t) = \frac{\partial F}{\partial \xi} A(t),$$
$$A(t) = \frac{\partial \xi(\xi^0, t)}{\partial \xi^0}, \quad A(0) = E,$$

где Е – единичная матрица. Уточнение $\delta\xi^0$ начальных условий периодических движений с периодом Т по методу Ньютона получается из решения уравнения

$$(A(T) - E)\delta\xi^{0} = \xi^{0} - \xi(\xi^{0}, T).$$

Для начальных значений ξ^0 при $\varepsilon = 0$ выбираются начальные условия известного периодического движения из раздела 1.2.1. Проводится итерация метода Ньютона до достижения желаемой точности начальных условий периодической траектории. После этого параметр ε увеличивается и определяются начальные условия для новой орбиты, соответствующей увеличенному значению ε . Начальное приближение ξ^0 для итерации берется из периодической траектории, полученной для предыдущего значения ε .

Периодическое движение устойчиво в первом приближении, если собственные значения матрицы монодромии A(T) по абсолютному значению равны единице.

3.4 Бифуркационные диаграммы

На рис. 3.3-3.6 построены диаграммы, показывающие зависимость начальных условий для периодических движений с периодом Т (Т- синодический месяц) от параметра ε . Эти диаграммы представлены на плоскостях $O\varepsilon x$, $O\varepsilon y$, $O\varepsilon u$, $O\varepsilon v$, где x, y, u, v - начальные условия для периодического движения. Численно определяются точки бифуркаций.

Из точки A периодические орбиты строятся до F(0.504301, 0.456801, -0.820447,-0.647266), где ε =0.031225; из точки B периодические орбиты продолжением по параметру ε строятся до E(0.272048, 0.919739, -0.029723,0.111899), где ε = 6.322 · 10⁻⁵.

Проведенные исследования дают представление о распределении и миграции пылевых частиц в зависимости от их размера в окрестности системы Земля-Луна.

Рис. 3.2: Некоторые типы орбит. Буквами A и B отмечены начальные условия устойчивых периодических движений при $\varepsilon = 0$. С - неустойчивая периодическая траектория, охватывающая L_4 при $\varepsilon = 0$.

Рис. 3.3: Зависимость начальных условий периодического движения от ε . Из точки А периодические орбиты строятся до F(0.504301, 0.456801, -0.820447,-0.647266), где ε =0.031225; из точки В периодические орбиты продолжением по ε строятся до E(0.272048, 0.919739, -0.029723,0.111899), где ε = 6.322 · 10⁻⁵.

Рис. 3.4: Зависимость начальных условий периодического движения от ε .

Рис. 3.5: Зависимость начальных условий периодического движения от ε .

Рис. 3.6: Зависимость начальных условий периодического движения от ε .

Рис. 3.7: 1. Орбиты с периодом в один месяц при $\varepsilon = 0.0005, 0.002, 0.005, 0.01,$ ($\sigma \approx 0.84 * 10^{-3}m, 2.11 * 10^{-4}m, 0.84 * 10^{-4}m, 4.23 * 10^{-5}m$), линиями одного цвета помечены точки периодических орбит при разных ε , соответственно при iT/8, i = 0, ...7. 2. Орбита с периодом в два месяца при $\varepsilon = 0.01$.

Заключение

Диссертация посвящена теоретическому исследованию динамики областей скопления космических пылевых частиц и астероидов в Солнечной системе.Рассмотрены различные возмущающие факторы, влияющие на относительные равновесия и периодические движения часстиц.

В плоской круговой ограниченной задаче трех тел Земля-Луна-Частица вычислена величина смещения треугольных точек либрации при учете сплюснутости формы Земли и Луны с заданием их гравитационных потенциалов в форме потенциала Кислика.

Исследованы свойства периодических орбит и динамика частиц в их окрестности, обусловленные гравитационным периодическим возмущением от Солнца. Получены оценки возмущенного движения частиц при учете пространственных возмущений от наклонения и эллиптичности орбит основных тел.

Для определения формы областей скопления частиц предложен метод, основанный на численном интегрировании уравнений в частных производных Лиувилля для определения плотности вероятности нахождения частиц в заданных областях пространства. На основе этого метода определены местоположение и размеры таких скоплений.

Получены значения функции распределения в окрестности треуголь-

64

ных точек либрации в круговой ограниченной задаче трех тел Солнце-Юпитер-Частица (Троянские астероиды), и в окрестности устойчивого периодического движения в круговой ограниченной задаче трех тел Земля – Луна – Частица с учетом возмущения от Солнца (облака Кордылевского).

Построены картины распределения плотности частиц. Вычислена грубая энтропия, согласующаяся с соответствующими физическими законами. Полученные результаты качественно совпадают с астрономическими наблюдаемыми. Дано объяснение природы непостоянства в наблюдениях облаков Кордылевского.

Численно найдены основные периодические орбиты в окрестности треугольных точек либрации системы Земля – Луна – Частица при учете светового давления и гравитационного возмущения от Солнца. Определены условия их устойчивости в линейном приближении. Построены бифуркационные диаграммы зависимости начальных условий для периодических движений от параметра ϵ , характеризующего световое давление. Дано обоснование непостоянства свечения облаков Кордылевского.

Литература

- [1] Аксенов Е. П., Гребеников Е. А., Демин В. Г. Обобщенная задача двух неподвижных центров и ее применение в теории движения искусственных спутников Земли // Астрономический журнал. – 1963. – Т. 40, вып. 2. – С. 363-375.
- [2] Белецкий В.В. Очерки о движении космических тел. М.: Наука, 1977. – С. 432.
- [3] Белецкий В.В., Пономарева О.Н. Параметрический анализ устойчивости относительного равновесия в гравитационном поле // Космич. исследования. – 1990. – Т. 28, No 5. – С. 664-675
- [4] Белецкий В. В., Родников А. В. Точки либрации обобщенной ограниченной круговой задачи трех тел в случае мнимого расстояния между притягивающими центрами // Нелинейная динамика. – 2012.
 – Т. 8, №5. – С. 931–940.
- [5] Буров А., Никонов В. Существование и устойчивость стационарных конфигураций в задаче о движении проволочного треугольника и точки под действием сил взаимного притяжения // Труды 12 Всероссийского совещания по проблемам управления (электронный ресурс). – 2014. – С. 1851–1862.

- [6] Гиббс Дж.В. Основные принципы статистической механики. М.-Л.:
 ГИТТЛ, 1946. С. 204.
- [7] Демин В.Г. Движение искусственного спутника в нецентральном поле тяготения. – М.:Наука, 1968. – С. 240.
- [8] Дубошин Г.Н. Справочное руководство по небесной механике и астродинамике. – М.: Наука. Глав. ред. физ.-мат. лит., 1976. – С. 864.
- [9] Карапетян А.В., Сахокиа И.Д. О бифуркации и устойчивости стационарных движений двух гравитирующих тел // Прикл. матем. и механ. – 1992. Т. 56, Вып. 6. – С. 935-938.
- [10] Кислик М.Д. Движение искусственного спутника в нормальном гравитационном поле Земли // Сб. Искусственные спутники Земли. – 1960, Вып. 4. – С. 13-17.
- [11] Козлов В.В. Ансамбли Гиббса и неравновесная статистическая механика. – НИЦ «Регулярная и хаотическая динамика», М.–Ижевск, 2008. – С. 203.
- [12] Козлов В.В., Трещев Д.В. Тонкая и грубая энтропия в задачах статистической механики // ТМФ. – 2007, Т.151, №1. – С. 120–137.
- [13] Козлов В.В. Флуктуации ансамблей Гиббса //Доклады Академии наук. – 2014. – Т. 458, № 1. – С. 22-26.
- [14] Леонтович А.М. Об устойчивости лагранжевых периодических решений ограниченной задачи трех тел // ДАН СССР. – 1962. – Т.142, №3.

- [15] Лидов М.Л., Охоцимский Д.Е., Тесленко Н.М. Исследование одного класса траекторий ограниченной задачи трех тел // Космич. исследования. – 1964. – Т.2, №6. – С.843-852
- [16] Маркеев А.П. Об устойчивости треугольных точек либрации в круговой ограниченной задаче трех тел // ПММ. – 1969. – Т.33, №1. – С. 112-114.
- [17] Маркеев А. П. Точки либрации в небесной механике и космодинамике. – М.: Наука, 1978. – С. 312.
- [18] Поляхова Е. Н.,Космический полёт солнечным парусом: проблемы и перспективы. – М.:Наука, 1986. – С. 304.
- [19] Родников А. В. Компланарные точки либрации обобщенной ограниченной круговой задачи трех тел в случае комплексно-сопряженных масс притягивающих центров // Нелинейная динамика. – 2013. – Т. 9, №4. – С. 697–710.
- [20] Родников А. В. Треугольные точки либрации обобщенной ограниченной круговой задачи трех тел в случае комплексно-сопряженных масс притягивающих центров // Нелинейная динамика. – 2014. – Т. 10, № 2. – С. 213–222.
- [21] Сальникова Т.В., Степанов С.Я. Математическая модель образования космических пылевых облаков Кордылевского // Доклады РАН.
 2015. Т. 463, № 2. С. 164–167.

- [22] Сальникова Т.В., Степанов С.Я., Шувалова А.И. Вероятностная модель облаков Кордылевского // Доклады РАН. – 2016. – Т.468, №3.
 – С. 24-29.
- [23] Себехей В. Теория орбит, ограниченная задача трех тел. М.:Наука, 1982. – С. 656.
- [24] Трещев Д.В., Потеря устойчивости в гамильтоновых системах, зависящих от параметров // ПММ. – 1992. – Т. 56, вып. 4. – С. 587-595.
- [25] Шувалова А.И. О вероятностной модели космических пылевых облаков Кордылевского // Тезисы конференции-конкурса молодых ученых Научно-исследовательского института механики МГУ имени М.В. Ломоносова. 12-14 октября 2015 года. – 2015. – С.
- [26] Шувалова А.И. Об уравнениях Лиувилля для космических пылевых облаков Кордылевского // Международная конференция по математической теории управления и механике. Тезисы докладов. (03–07 июля 2015 г., г. Суздаль, Владимирская обл.). М.: МИАН. – 2015. – С. 152.
- [27] Шувалова А.И. О периодических орбитах частицы в системе Земля-Луна-Солнце // XI Всероссийский съезд по фундаментальным проблемам теоретической и прикладной механики. Аннотации докладов. (Казань, 20 - 24 августа 2015 г.). — Издательство Казанского (Приволжского) федерального университета Казань. – 2015. – С. 312-312.

- [28] Шувалова А.И. О периодических орбитах частицы в системе Земля-Луна-Солнце // Сборник трудов XI Всероссийский съезд по фундаментальным проблемам теоретической и прикладной механики (Казань, 20-24 августа 2015 г.). — Издательство Казанского (Приволжского) федерального университета Казань. – 2015. – С. 4262–4263.
- [29] Burns J. A., Lamy P. L., Soter S. Radiation forces on small particles in the Solar System // Icarus. - 1979. - Vol. 40. - P. 1-48.
- [30] Cronin J., Richards P.B., Russell L.H. Some Periodic Solutions of a Four-Body Problem // Icarus. – 1964. – Vol. 3. – P.423-428.
- [31] Fahnestock E.G., Lee T., Leok M., McClamroch N.H., Scheeres D.J. Polyhedral potential and variational integrator computation of the full two body problem // Proc. AIAA/AAS Astrodynamics Specialist Conf. AIAA. - 2006. - P.6289.
- [32] Igenbergs, et al., The Munich Dust Counter -A cosmic dust experiment on board of the MUSES-A Mission of Japan // proceedings of the 126th IAU Colloquium, Kyoto, Japan, 1990.
- [33] Kamel A.A. Perturbation theorybased on Lie transforms and its application to the stability of motion near sun-perturbed Earth-Moon triangular libration points // NASA, CR 1622. – 1970.
- [34] Kolenkiewicz R., Carpenter L. Stable periodic orbits about the Sun perturbed Earth-Moon triangular points // AIAA Journal. 1968. Vol. 6, no. 7. P. 1301-1304.

- [35] Kordylewski K. Photographische Untersuchungen des Librationspunktes im System Erde-Mond // Acta Astronomica. – 1961. – Vol. 11. – P. 165.
- [36] Kunitsyn A.L., Perezhogin A.A. On the stability of triangular libration points of the photogravitational restricted circular three-body problem // Celestial Mechanics. – 1978. – Vol. 18, no. 4. – P. 395-408.
- [37] Laufer R., et al. The Kordylewsky Clouds an Example for a Cruise Phase Observation During the Lunar Mission BW1 // 11th ISU Annual International Symposium. – 2007.
- [38] Mignard F. Stability of L₄ and L₅ against radiation pressure // Celestial Mechanics. - 1984. - Vol. 34, no. 1. - P. 275-287.
- [39] Radzievskii, V. V. «A mechanism for the disintegration of asteroids and meteorites» // Doklady Akademii Nauk SSSR. – 1954. – P. 49–52.
- [40] Radzievskii, V. V. Gravitational capture of cosmic dust by Sun and planets and evolution of the circumterrestrial cloud. // Sov. Astron. AJ.
 – Vol. 11. – 1967. – P. 128-136.
- [41] Radzievskii, V.V. The Restricted Problem of Three Bodies Taking Account of Light Pressure // Astronomical Journal. – 1950. – Vol. 27. – P. 249.
- [42] Roach J.R. Counterglow from the Earth-Moon libration points // Planetary and Space Science. - 1975. - Vol. 23, no. 1. - P. 173-181.
- [43] Roosen, R. G. Earth's Dust Cloud // Nature. 1971. Vol. 229. P. 478-480.

- [44] Roosen, R. G. A photographic investigation of the gegenschein and the Earth-Moon libration point L_5 // Icarus. 1968. Vol. 9. P. 429-439.
- [45] Roosen, R. G., Wolff, C. L. // Nature. 1969. Vol. 224. P. 571.
- [46] Salnikova T., Shuvalova A. The special case of the three body problem, when gravitational potential is given as the Kislik potential // ISSN 1743-9213. Complex Planetary Systems. Proceedings of the International Astronomical Union. Cambridge University Press. - 2014. - Vol. 9, no. 310. - P. 45-48.
- [47] Salnikova T., Stepanov S. On the Kordylewski cosmic dust clouds
 // Mechanics Seventh Polyakhov's Reading, 2015 International Conference on, pp.1-3, 2-6 Feb. 2015.
- [48] Salnikova T., Stepanov S. On the lagrange libration points of the perturbed earth-moon system // ISSN 1743-9213. Complex Planetary Systems. Proceedings of the International Astronomical Union. Cambridge University Press. - 2014. - Vol. 9, no. 310. - P. 192-193.
- [49] Schechter H.B. Three-dimensional nonlinear stability analysis of the sunperturbed earth-moon equilateral points // AIAA J. – 1968. – Vol. 6. no. 7. – P. 1223-1228.
- [50] Scheirich P. Asteroid (and Comet) Groups. 2005, URL: http://sajri.astronomy.cz/asteroidgroups/groups.htm
- [51] Simo C., Jorba A., Masdemont J., Gomez G. Dynamics and Mission Design Near Libration Points. Vol. IV: Advanced Methods for Triangular Points. – World Scientific Publishing Company. – 2001. – P. 263.
- [52] Simo C., Libre J., Martinez R., Gomez G. Dynamics and Mission Design Near Libration Points. Vol. II: Fundamentals: The Case of Triangular Libration Points. – World Scientific Publishing Company. – 2001. – P. 159.
- [53] Simpson J. Dust Cloud Moons of the Earth // Physics Today. 1967. –
 Vol. 20, no. 2, P.39-46.
- [54] Valdes Fr. A Search for Objects near the Earth-Moon Lagrangian Points
 // Icarus. 1983. Vol. 53, P.453-457.
- [55] Winiarsky M., Photographic observations of the cloud in the neighbourhood of the libration poin L5 of the Earth-Moon system // Earth, Moon, and Planets. – 1989. – Vol. 47. – P. 193-215.