ОТЗЫВ

научного руководителя о диссертации
Беляева Алексея Александровича
"Мультиplierы в пространствах беселевых потенциалов
и сингулярные возмущения эллиптических операторов",1
представленной на соискание учёной степени
кандидата физико-математических наук
по специальности 01.01.01 - вещественный,
комплексный и функциональный анализ

Диссертация посвящена изучению пространств мультиplierов в пространствах беселевых потенциалов и применению полученных результатов для исследования сингулярных возмущений эллиптических дифференциальных операторов. Интересной и важной является задача о корректном определении определителя Шрёдингера для случая, когда потенциал имеет особенность в точке или на гиперповерхности (или для случая, когда потенциал является распределением). Исследование этой задачи было инициировано в работах Ф. А. Березина, Р. А. Минлоса и Л. Д. Фаддеева. В 90-е годы их исследования получили развитие в работах С. Альбеерю, Р. Хёр-Крона, Х. Хольдена, Ф. Гештези, Т. Каппелера и многих других. Наблюдение о том, что решение этой задачи связано с проблемой описания мультиplierов в пространствах беселевых потенциалов с негативными индексами гладкости, было сделано в работе А. А. Шкаликовой и М. И. Нейман-Заде в 1999 году, где были получены первые результаты в этом направлении. Дальнейшее существенное развитие эта тема получила в работах В. Г. Мазьи, И. Э. Вертникового, Т. О. Шапошниковой, В. И. Буренкова, Дж. Г. Бак, А. А. Шкаликова, В. А. Михайла, В. Н. Моллибого, Б. С. Митягина, П. Джакова и других.

Помимо приложений к теории дифференциальных операторов задача описания пространств мультиplierов представляет несомненный самостоятельный интерес. Классические результаты в этом направлении были получены П. С. Стихарф, В. Г. Мазьёй, Т. О. Шапошниковой. Важную роль сыграли работы Г. Бурдо, В. Зикеля, Г. А. Калиби, П. - Ж. Лемари-Рёссесе, Х. Трибеля, Й. Франк, М. Фрёйзера, Б. Яверта.

В диссертации А. А. Беляева получены новые важные результаты по описанию пространств мультиplierов в пространствах беселевых потенциалов с негативным индексом гладкости и по изучению операторов вида $(-\Delta)^n + Q$ на n-мерном торе для сингулярных потенциалов Q.

Диссертация состоит из введения, трёх глав, заключения и списка литературы. В первой главе изучается задача о точности вложения равномерно локализованного пространства беселевых потенциалов в пространство мультиplierов

$$H_{p, \text{unif}}^{-m}(\mathbb{R}^n) \subset M[s, -t]$$

при условии $\max(s, t) < n/2$. Здесь $s, t > 0$, $m = \min(s, t)$, $p = n/\max(s, t)$, $M[s, -t]$ — пространство мультиplierов из пространства $H_2^2(\mathbb{R}^n)$ в пространство $H_{2, t}(\mathbb{R}^n)$, а $H_{p, \text{unif}}^{-m}(\mathbb{R}^n)$ — равномерно локализованное пространство беселевых
потенциалов, то есть пространство всех распределений из $H^{-m}_{p, \text{loc}}(\mathbb{R}^n)$, таких что

$$
\sup_{z \in \mathbb{R}^n} ||\eta_z \cdot u||_{H^{-m}_p(\mathbb{R}^n)} < +\infty,
$$

где η_z есть сдвиг на $z \in \mathbb{R}^n$ финитной гладкой функции η, равной 1 на единичном шаре. Вложение (1) было ранее доказано А.А. Шкаликовым и Дж.-Г. Баком, а А.А. Беляев доказал, что показатель $p = n/\max(s, t)$ является неулучшимым, то есть $\forall \varepsilon > 0$ найдётся распределение u_ε, такое, что

$$
u_\varepsilon \in H^{-m}_{p-\varepsilon, \text{unif}}(\mathbb{R}^n) \setminus M[s, -t].$$

Вторая глава посвящена изучению следующей задачи: найти условия на индексы $s, t \in \mathbb{R}, p, q > 1$, при которых пространство мультипликаторов $M[H^s_p(\mathbb{R}^n) \rightarrow H^t_q(\mathbb{R}^n)]$ можно явно описать в терминах равномерно локализованных пространств бесселевых потенциалов. Здесь А.А. Беляев получил один из лучших результатов диссертации. А именно, он показал, что при $p \leq q$ и выполнении одного из условий 1) $s \geq t, s > \frac{n}{p}$, 2) $t \geq s, t > \frac{n}{q}$, имеет место совпадение пространств

$$M[H^s_p(\mathbb{R}^n) \rightarrow H^t_q(\mathbb{R}^n)] = H^{-t}_{q', \text{unif}}(\mathbb{R}^n) \cap H^{-s}_{p', \text{unif}}(\mathbb{R}^n).$$

Это важная и сложная теорема.

Кроме того, во второй главе получены теоремы вложения для нестрикцарцевского случая, которые существенно обобщают полученные ранее теоремы вложения Бака-Шкаликова.

В третьей главе изучаются пространства мультипликаторов на торе \mathbb{T}^n и даются приложения полученных результатов к задаче возмущения степеней оператора Лапласа на торе сингулярным потенциалом. Эта задача имеет давнюю историю, А.А. Беляев существенно продвинулся в её изучении. Ранее эта задача была достаточно полно изучена В.А. Михайлюцем и В.Н. Моллибогой в одномерном случае $n = 1$. Основной результат третьей глав таков: оператор

$$(-\Delta)^\alpha + Q$$

корректно определён в пространстве $L_2(\mathbb{T}^n)$ и может быть аппроксимирован операторами $(-\Delta)^\alpha + Q_n$ с гладким потенциалом Q_n в смысле равномерной резольвентной сходимости, если выполнено одно из двух условий

$$1) \alpha > \frac{n}{2}, \quad Q \in H^{-\alpha}_2(\mathbb{T}^n);$$

$$2) 0 < \alpha \leq \frac{n}{2}, \quad Q \in H^{-\alpha + \varepsilon}_n(\mathbb{T}^n)$$

для некоторого $\varepsilon > 0$.

Результаты диссертации являются новыми, получены автором самостоятельно и обоснованы в виде строгих математических доказательств. По теме диссертации автором опубликованы 6 работ, в том числе 2 из них в журналах из списка ВАК, а результаты диссертации неоднократно представлялись автором на научно-исследовательских семинарах и международных научных конференциях. Автореферат правильна отражает содержание диссертации.
Таким образом, в диссертационной работе А. А. Беляева "Мультипликаторы в пространствах бесселевых потенциалов и сингулярные возмущения эллиптических операторов" решён ряд важных и трудных задач теории функциональных пространств и теории операторов. Эта работа является завершённым научным исследованием и удовлетворяет всем требованиям "Положения о порядке присуждения учёных степеней" Высшей Аттестационной Комиссии Министерства образования и науки Российской Федерации, а её автор Беляев Алексей Александрович несомненно заслуживает присуждения ему учёной степени кандидата физико-математических наук по специальности 01.01.01 - вещественный, комплексный и функциональный анализ.

Научный руководитель,
доктор физико-математических наук, профессор,
профессор кафедры теории функций и функционального анализа
механико-математического факультета ФГБОУ ВО
"Московский государственный университет имени М. В. Ломоносова"

А. А. Шкаликов

14 сентября 2016 г.

119991, Москва, Ленинские горы, МГУ, д. 1, Главное здание
механико-математический факультет,
кафедра теории функций и функционального анализа
e-mail: ashkaliko@yandex.ru; тел. +7(495)939-55-40

Подпись профессора А. А. Шкаликова заверяю.
И.о. декана механико-математического факультета МГУ
имени М. В. Ломоносова, профессор

В. Н. Чубариков