Московский Государственный Университет им. М.В. Ломоносова Механико-Математический факультет

На правах рукописи УДК 517.929, 517.927, 517.984

Лесных Андрей Александрович

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ С ЗАПАЗДЫВАЮЩИМ АРГУМЕНТОМ И СПЕКТРАЛЬНЫЕ ЗАДАЧИ, ВОЗНИКАЮЩИЕ ПРИ ИХ ИЗУЧЕНИИ

Специальность: 01.01.01 — Математический анализ

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

Москва 2007

Работа выполнена на кафедре теории функций и функционального анализа механико-математического факультета Московского Государственного Университета им. М.В. Ломоносова.

Научный руководитель:	доктор физико-математических наук, профессор А. А. Шкаликов
Официальные оппоненты:	доктор физико-математических наук, профессор Власов Виктор Валентинович, доктор физико-математических наук, профессор Филимонов Андрей Матвеевич.
Ведущая организация:	Институт проблем механики РАН.

Защита диссертации состоится 5 октября 2007 года в 16 часов 15 минут на заседании диссертационного совета Д.501.001.85 в Московском Государственном Университете им. М.В. Ломоносова по адресу: 119992, ГСП-2, Москва, Ленинские Горы, МГУ, Главное Здание, механико-математический факультет, аудитория 16-24.

С диссертацией можно ознакомиться в библиотеке механико-математического факультета МГУ (Главное здание, 14 этаж).

Автореферат разослан "____" ____ 2007 года.

Ученый секретарь диссертационного совета Д.501.001.85 в МГУ, доктор физико-математических наук, профессор

Т.П. Лукашенко.

1 Общая характеристика работы.

Актуальность темы.

Настоящая работа посвящена изучению асимптотического поведения решений функционально-дифференциальных уравнений, а также изучению связанных с этими уравнениями дифференциальных операторов со спектральным параметром в граничных условиях.

Функционально-дифференциальные уравнения (ФДУ) изучаются достаточно давно. Отдельные результаты были получены еще около 200 лет назад. Активно эта теория начала развиваться в начале-середине 20 века во многом благодаря приложениям к теории автоматического управления. Наиболее полно состояние теории на тот момент времени представлено в известных статьях и монографиях А.Д.Мышкиса¹, Р.Беллмана, К.Кука², Дж.Хейла³, Л.Э.Эльсгольца⁴, Н.Н.Красовского⁵.

Функционально-дифференциальные уравнения традиционно разбиваются на уравнения запаздывающего, нейтрального и опережающего типов. При этом большинство приложений ФДУ связаны с уравнениями запаздывающего и нейтрального типа, поэтому уравнения именно этих двух типов привлекают наибольшее внимание исследователей. Причем нейтральные уравнения исследованы значительно меньше запаздывающих уравнений, так как их изучение в определенном смысле сложнее.

Одним из важнейших вопросов, возникающих в теории ФДУ, является вопрос об асимптотическом поведении решений при неограниченном возрастании независимого параметра. Этот вопрос давно является объектом большого числа исследований. Классические результаты в этой области содержатся в упомянутых выше монографиях. В последнее время существенного продвижения в этой области удалось добиться В.В.Власову, С.А.Иванову и Д.А.Медведеву.

Помимо асимптотического поведения решений ФДУ в диссертации изучаются обыкновенные дифференциальные операторы со спектраль-

 $^{^1{\}rm Mышкис}$ А.Д. "Линейные дифференциальные уравнения с запаздывающим аргументом"// М. Наука, 1972

² Беллман Р., Кук К. "Дифференциально-разностные уравнения"// М. Мир, 1967

³ Хейл Дж. "Теория функционально-дифференциальных уравнений"// М. Мир, 1984

 $^{^4}$ Эльсгольц Э.Л. "Введение в теорию дифференциальных уравнений с отклоняющимся аргументом"// М. Наука, 1964

⁵Красовский Н.Н. "Некоторые задачи теории устойчивости движения"// М.:Физматгиз, 1959

ным параметром в граничных условиях, связанные с ФДУ. По-видимому, H.H.Красовский⁶ впервые рассмотрел запаздывающее уравнение как полугруппу линейных операторов. Инфинитезимальный производящий оператор такой полугруппы представляет собой обыкновенный дифференциальный оператор с нестандартной областью определения. А.А.Шкаликовым было показано, что теория таких операторов тесно связана с теорией краевых задач для дифференциальных уравнений со спектральным параметром в граничных условиях, которая имеет давнюю историю и ведет начало от работ Дж.Д.Биркгоффа^{7,8} и Я.Д.Тамаркина⁹. В диссертации мы более полно проследим эти связи.

Теория обыкновенных дифференциальных операторов имеет множество приложений и в других областях математики. Например, в теории управления эти операторы возникают при рассмотрении эволюционного уравнения, задающего динамику исследуемой системы. Здесь важную роль играют полугрупповые свойства, которые изучаются в настоящей диссертации.

Основные результаты в теории полугрупп линейных операторов были получены в середине 20 века и отражены в первом издании известной монографии E.Hille, R.S.Phillips¹⁰. В настоящее время эта теория продолжает активно развиваться благодаря большому числу приложений в уравнениях с частными производными, интегро-дифференциальных уравнениях, стохастических процессах, квантовой механике и др. В настоящей диссертации рассмотрены приложения полученных результатов к задачам теории управления.

Таким образом, тема диссертации представляется вполне актуальной как с теоретической точки зрения, так и для приложений.

Цель работы.

Исследование асимптотического поведения решений функциональнодифференциальных уравнений и изучение полугрупповых свойств связанных с ними обыкновенных дифференциальных операторов.

⁶Красовский Н.Н. "Некоторые задачи теории устойчивости движения"// М.:Физматгиз, 1959

 $^{^7\}mathrm{Birkhoff}$ G.D. "On the asymptotic character of the solution of the certain linear differential equations containing parameter"// Trans. Amer. Math. Soc., 1908, v.9, p.219–231

 $^{^8{\}rm Birkhoff\,G.D.}$ "Boundary value and expansion problems of ordinary linear differential equations"// Trans. Amer. Math. Soc., 1908, v.9, p.373–395

⁹ Тамаркин Я.Д. "О некоторых общих задачах теории обыкновенных дифференциальных уравнений и о разложении произвольных функций в ряды"// Петроград, 1917

¹⁰E. Hille, R.S. Phillips "Semigroups and Functional Analysis"// AMS, 1957

Научная новизна.

Основные результаты работы являются новыми и состоят в следующем:

1. Получены точные оценки решений функционально-дифференциальных уравнений нейтрального типа с постоянными коэффициентами. Оценки получены новым методом, позволившим существенно ослабить условия на коэффициенты уравнений.

2. Получены новые результаты о поведении решений запаздывающих уравнений с переменными коэффициентами.

3. Определен класс полурегулярных краевых задач и доказана теорема о том, что полурегулярность является необходимым и достаточным условием для того, чтобы специальный линеаризатор (построенный ранее Шкаликовым А.А.) генерировал C₀-полугруппу.

Методы исследования.

В работе использованы методы теории функциональнодифференциальных уравнений, теории целых функций, спектральной теории операторов и теории полугрупп.

Теоретическая и практическая ценность.

Работа носит теоретический характер. Результаты и методы работы могут быть полезны в исследованиях по теории функциональнодифференциальных уравнений, спектральной теории операторов и теории автоматического управления.

Апробация работы.

Результаты диссертации неоднократно докладывались на конференциях "Крымская осенняя математическая школа", Севастополь, 2005; "Крымская осенняя математическая школа", Севастополь, 2006; "Современные методы теории функций и смежные проблемы", Воронежская зимняя математическая школа, Воронеж, 2007; "Дифференциальные уравнения и смежные вопросы", посвященная 106-летию со дня рождения И.Г.Петровского, Москва, 2007; на семинарах "Несамосопряженные операторы" под руководством профессоров А.Г.Костюченко и А.А.Шкаликова в 2006 г. в МГУ им. М.В.Ломоносова; "Операторные модели" под руководством профессора А.А.Шкаликова, доц. И.А.Шейпака, доц. А.М.Савчука и асс. А.А.Владимирова в 2005–2007 гг. в МГУ им. М.В.Ломоносова; "Спектральный анализ дифференциальных и разностных операторов" под руководством профессоров А.Г.Костюченко, В.В.Власова и К.А.Мирзоева в 2007 г. в МГУ им. М.В.Ломоносова; "Некоторые задачи механики сплошных сред" под руководством профессоров С.В.Нестерова и Л.Д.Акуленко в ИПМ РАН в 2007 г.; "Дифференциальные уравнения и смежные вопросы" под руководством профессора А.Д.Мышкиса в Московском Государственном Университете путей сообщения в 2007 г.

Публикации.

Результаты работы изложены в 5 работах автора, список которых приведен в конце автореферата. Публикаций, сделанных в соавторстве, нет.

Структура работы.

Диссертация состоит из введения, трех глав и списка используемой литературы. Общий объем диссертации – 85 страниц. Список литературы содержит 80 наименований. Нумерация теорем и лемм в автореферате совпадает с нумерацией в диссертации.

2 Краткое содержание диссертации.

В первой главе изучается дифференциально-разностное уравнение нейтрального типа общего вида, в котором сдвиги по времени и коэффициенты задаются функциями ограниченной вариации а на коэффициенты наложены минимальные ограничения, гарантирующие лишь корректную разрешимость начальной задачи. Для решений соответствующей начальной задачи получена точная оценка в пространстве Соболева W_2^m . Для этого используется хорошо известный операционный подход, основанный на представлении решения начальной задачи в виде преобразования Лапласа. При таком подходе ключевую роль играют вопросы о распределении нулей характеристического определителя² и его оценки на контурах интегрирования. В случае, когда $\Delta(\lambda)$ есть квазиполином вида $g(\lambda) = \sum_{j=0}^{n} p_j \lambda^{m_j} e^{\beta_j \lambda}$, где p_j, m_j, β_j – некоторые числа, эти вопросы достаточно хорошо изучены (см., например, монографии и работы Левина Б.Я.¹¹, Понтрягина Л.С.¹², Садовничего В.А.,

 $^{^{11} \}Pi$ евин Б.Я. "Распределение корней целых функций"// М. Гостехиздат, 1956

¹²Понтрягин Л.С. "О нулях некоторых элементарных трансцендентных функций"// Изв. АН СССР,

Любишкина В.А., Белабасси Ю.¹³). Характеристический определитель, который получается для изучаемого уравнения, имеет более общий вид, для которого развитая ранее техника не применима. В диссертации предлагается новый подход для получения оценок таких функций, основанный на технике двух работ Шкаликова А.А.^{14,15}. Результаты и методы этой главы могут быть без существенных изменений перенесены на случай векторных уравнений.

Сначала рассматривается начальная задача для однородного уравнения.

$$\sum_{j=0}^{m} \int_{0}^{h} u^{(j)}(t-\theta) \, d\sigma_{j}(\theta) = 0, \quad t > h \tag{1}$$

$$u(t) = u_0(t), \quad t \in [0, h],$$
 (2)

где функции $\sigma_j(\theta) \in BV[0,h]$. Характеристический определитель уравнения (1) задается формулой

$$\Delta(\lambda) = \sum_{j=0}^{m} \lambda^{j} \int_{0}^{h} e^{-\lambda\theta} \, d\sigma_{j}(\theta).$$

Характер распределения нулей функции $\Delta(\lambda)$ описывается следующей теоремой.

Теорема 1.1 Пусть $\sigma_m(0+) - \sigma_m(0) \neq 0$. Тогда все нули $\Delta(\lambda)$ лежат в некоторой левой полуплоскости { $Re \ \lambda \leq C$ }, и поэтому существует число $\varkappa = \sup\{Re \ \lambda : \Delta(\lambda) = 0\} < \infty$. Кроме того, число нулей $n_{\Delta}(P(a, b, h))$ определителя $\Delta(\lambda)$, лежащих в прямоугольнике $P(a, b, h) = \{\lambda \in \mathbb{C} : Re \ \lambda \in (a, \varkappa), \operatorname{Im} \lambda \in (b, b + h)\}$, ограничено постоянной, не зависящей от $b \in \mathbb{R}$, и существует предел

$$q = \lim_{a \to \varkappa} \lim_{h \to 0} \max_{b \in \mathbb{R}} n_{\Delta}(P(a, b, h)).$$

Число q, определенное в теореме 1.1, имеет простой смысл. Например, если имеется только один корень функции $\Delta(\lambda)$ с действительной частью

Сер. Матем., 1942, т.6, 3, с.115-134

¹³Садовничий В.А., Любишкин В.А., Белабасси Ю. "О нулях целых функций одного класса"// Труды семинара им. И.Г.Петровского, 1982, вып.8, с.211-217

 $^{^{14} {\}rm III}$ каликов А.А. "Теоремы тауберова типа о распределении нулей голоморфных функций"// Мат. сб., 1984, т.123, N3, 317-347

¹⁵ Шкаликов А.А. "Краевые задачи для обыкновенных дифференциальных уравнений с параметром в граничных условиях"// Труды семинара им. И.Г.Петровского, 1983, вып.9, с.190-229

равной \varkappa , а все остальные корни лежат в полуплоскости {Re $\lambda \leq \varkappa - \varepsilon$ } при некотором $\varepsilon > 0$, то число q равно кратности этого корня.

Основной результат первой главы представляет следующая теорема.

Теорема 1.2 Пусть $\sigma_m(0+) - \sigma_m(0) \neq 0$. Тогда при достаточно больших T > 0 для решения u(t) задачи (1), (2) имеет место оценка

$$\|u\|_{W_2^m(T,T+h)} \le CT^{q-1} e^{\varkappa T} \|u_0\|_{W_2^m(0,h)},$$

где числа \varkappa и q определены в теореме 1.1, а постоянная C не зависит от начальной функции $u_0(t)$.

В доказательстве этой теоремы используется операционный подход, а для обоснований ключевую роль играют следующие леммы.

Лемма 1.1 Пусть $\sigma_m(0+) - \sigma_m(0) \neq 0$. Тогда характеристический определитель $\Delta(\lambda)$ обладает следующими свойствами.

а) Для достаточно больших $Re\,\lambda$ имеется асимптотика

$$\Delta(\lambda) \asymp \lambda^m.$$

b) В любой полуплоскости $\{Re \ \lambda > C_1\}$ для характеристического определителя и его производных справедливы оценки

$$|\Delta^{(j)}(\lambda)| < C_2(|\lambda|+1)^m, \qquad j = 0, 1, 2, \dots, m$$

c) Для всех $\varepsilon \in (0, 1/2]$ в любой полуплоскости $\{Re \lambda > C_1\}$ вне ε окрестности нулей $\Delta(\lambda)$ для достаточно больших λ справедлива оценка

$$|\Delta(\lambda)| > C_2 |\lambda|^m,$$

где постоянная C_2 зависит только от ε и C_1 .

Лемма 1.7 Пусть функция $R(\lambda)$ аналитична в некоторой области, лежащей в некоторой вертикальной полосе { $Re \ \lambda \in (C_1, C_2)$ }, за исключением полюсов, удовлетворяющих условиям леммы 1.6. Тогда ε -окрестность полюсов для достаточно малого числа ε представляется в виде объединения непересекающихся компонент G_k , в каждой из которых количество полюсов с учетом кратности есть $q_k + 1$. Причем $q_k + 1 \leq q$ для некоторого числа q и всех k. Пусть $\lambda_k^0, \ldots, \lambda_k^{q_k}$ – полюса $R(\lambda)$, лежащие в G_k , и вне ε -окрестности этих полюсов для функции $R(\lambda)$ и ее производных выполняется оценка

$$\left| R^{(j)}(\lambda) \right| < C \quad j = 0, \dots, q-1.$$

Тогда при T > 0 справедливо представление

$$\int_{\partial G_k} e^{\lambda(T+x)} R(\lambda) \int_0^1 f(\xi) e^{-\lambda\xi} d\xi d\lambda = T^{q-1} e^{\varkappa T} c_k \varphi_k(x,T),$$

где \varkappa = $\sup_k \max_{j=0,...,q_k} \operatorname{Re} \lambda_k^j$, последовательность чисел $\{c_k\}$ принадлежит пространству l_2 , а система функций $\{ arphi_k(x,T) \}$ – бесселева по x в $L_2(0,1), m.e.$ для всех T > 0 и для любой функции $g(x) \in L_2(0,1)$ сходится $p_{\mathcal{A}} \sum_{k} |(g(x), \varphi_k(x, T))|^2$, причем сходимость равномерна по T > 0. Лемма 1.7 является аналогом леммы 3.3 из работы Шкаликова А.А.¹⁵.

Используя теорему 1.2 нетрудно получить оценку решений начальной задачи для неоднородного уравнения

$$\sum_{j=0}^{m} \int_{0}^{h} u^{(j)}(t-\theta) \, d\sigma_{j}(\theta) = w(t), \quad t > h \tag{3}$$

$$u(t) = u_0(t), \quad t \in [0, h].$$
 (4)

Теорема 1.3 Пусть $\sigma_m(0+) - \sigma_m(0) \neq 0$. Тогда для решения u(t) задачи (3), (4) имеет место оценка

$$\|u\|_{W_{2}^{m}(T-h,T)} \leq C_{1}T^{q-1}e^{\varkappa T}\|u_{0}\|_{W_{2}^{m}(0,h)} + C_{2}\sqrt{T} \Big(\int_{0}^{T} (T-\tau+1)^{2(q-1)}e^{2\varkappa(T-\tau)}|w(\tau)|^{2} d\tau\Big)^{1/2}, \quad (5)$$

где числа × и q определены в теореме 1.1, а постоянные C_1, C_2 не зависят от функций $u_0(t).w(t).$

Ранее, в работах Власова В.В., Иванова С.А. и Медведева Д.А.^{16,17} оценки теорем 1.2, 1.3 и следствия 1.1 были получены для уравнений либо с конечным числом запаздываний, либо для случая, когда функция $\sigma_m(\theta)$ имеет скачок в обеих точках $\theta = 0$ и $\theta = h$. Для их получения использовались другие методы.

¹⁶Власов В.В., Иванов С.А. "О точных оценках решений дифференциально-разностных уравнений нейтрального типа"// ДАН, 2006, т.406, N5

¹⁷Vlasov V.V., Medvedev D.A. "On asymptotic behavior and estimates of solutions to neutral equations"// Functional differential equations, 2006, v.13, N2, 207-223

Во второй главе изучаются ФДУ с переменными коэффициентами. Такие уравнения изучены значительно меньше уравнений с постоянными коэффициентами. Ряд результатов можно найти упомянутых выше монографиях. Среди недавних работ отметим работы Власова В.В. ^{18,19}, где изучаются уравнения с операторными коэффициентами и где могут быть найдены дальнейшие ссылки.

Рассматривается векторное дифференциально-разностное уравнение запаздывающего типа с переменными коэффициентами

$$u'(t+h) + \int_0^h a(\theta, t)u(t+\theta) \, d\sigma(\theta) = 0, \qquad t > h,$$

где $a(\theta, t)$ – матрица коэффициентов, а функция ограниченной вариации $\sigma(\theta)$ задает сдвиги по времени. Для изучения асимптотического поведения решений этого уравнения нам будет удобно ввести следующее понятие типа роста по аналогии с теорией целых функций.

Определение 2.1 Пусть функция f(t) определена на \mathbb{R}^+ . Тогда типом роста \varkappa функции f(t) называется нижняя грань чисел A таких, что для некоторой постоянной C выполняется оценка

$$\|f(t)\| \le Ce^{At}, \qquad t \ge 0. \tag{6}$$

Тип роста \varkappa называется точным типом роста, если существует такая постоянная C, что оценка (6) выполняется при $A = \varkappa$. Типом роста некоторого семейства функций называется верхняя грань типов роста всех функций этого семейства. Тип роста \varkappa семейства функций называется точным типом роста этого семейства, если для каждой функции f(t) из этого семейства найдется постоянная C такая, что оценка (6) выполняется при $A = \varkappa$.

Результаты и методы второй главы диссертации наиболее близки к результатам и методам работ Bellman R., Cook K.L.²⁰, Banks H.T.²¹,

 $^{^{18}}$ Vlasov V.V. "Spectral problems arising in the theory of differential equations with delay"// J. Math. Sci., 2004, v.124, N4

¹⁹Власов В.В. "О разрешимости и свойствах решений функционально-дифференциальных уравнений в гильбертовом пространстве"// Мат. сб., 1995, т.186, N8, 67-92

 $^{^{20}}$ Bellman R., Cook K.L. "Stability theory and adjoint operators for linear differential-difference equations"// Trans. Amer. Math. Soc., 1959, v.92, 470-500

 $^{^{21}}Banks$ H.T. "The representation of solutions of linear functional differential equations"// J. Diff. Eq., 1969, v.5, 399-410

Hale J.K., Meyer K.R.²². В частности, обобщается ряд результатов Bellman R., Cook K.L.²⁰, полученных для уравнения с конечным числом запаздываний, на случай уравнения, запаздывания в котором задаются функцией ограниченной вариации.

Для доказательства основных результатов второй главы уравнение (2) представляется в возмущенном виде

$$a(\theta, t) = \alpha(\theta, t) + \delta(\theta, t),$$

где $\delta(\theta, t)$ – возмущение, и наряду с уравнением (2) рассматривается невозмущенное уравнение

$$u'(t+h) + \int_0^h \alpha(\theta, t) u(t+\theta) \, d\sigma(\theta) = 0, \qquad t > h.$$
(7)

Следующая теорема показывает, что тип роста решений меняется непрерывно при непрерывном изменении коэффициентов уравнения.

Теорема 2.1 Пусть матрица коэффициентов $\alpha(\theta, t) \equiv \alpha(\theta)$ не зависит от $t, \varkappa - mun$ роста решений невозмущенного уравнения (7). Тогда для любого $\varepsilon > 0$ существует число δ_0 такое, что если при больших t выполнена оценка $\|\delta(\theta, t)\| < \delta_0$, то тип роста решений возмущенного уравнения (2) не превосходит $\varkappa + \varepsilon$.

На основании этой теоремы получено следующее утверждение о типе роста при асимптотически постоянных коэффициентах.

Следствие 2.1 Пусть $\alpha(\theta, t) = \alpha(\theta)$ не зависит от t, \varkappa – тип роста решений невозмущенного уравнения (7), $\|\delta(\theta, t)\| < \varphi(t), \varphi(t) \to 0$ при $t \to \infty$. Тогда тип роста решений возмущенного уравнения (2) не превосходит типа роста решений невозмущенного уравнения (7).

Известно что тип роста решений для уравнений с постоянными коэффициентами равен $\sup\{\text{Re } s : \Delta(s) = 0\}$. Поэтому из этого следствия немедленно получаем, что для уравнений с асимптотически постоянными коэффициентами тип роста решений тоже равен этой величине. Для уравнений с конечным числом запаздываний этот результат ранее другим более трудным способом был получен Wright E.M.^{23,24}.

²²Hale J.K., Meyer K.R. "A class of functional equations of neutral type"// Mem. Amer. Math. Soc., 1967, N76

 $^{^{23}{\}rm Wright}$ E.M. "The linear difference-differential equation with asymptotically constant coefficients"// Amer. J. Math., 1948, v.70, 221-238

²⁴Wright E.M. "Perturbed functional equations"// Quart. J. Math., 1949, v.20, 155-165

При дополнительных условиях на скорость убывания возмущения $\delta(\theta, t)$, получена более точная экспоненциальная оценка.

Теорема 2.2 Пусть $\alpha(\theta, t) = \alpha(\theta)$ не зависит от t, \varkappa – тип роста решений невозмущенного уравнения (7), $\|\delta(\theta, t)\| < \varphi(t) \ u \ \varphi(t) < 1/t^{\beta}$. Тогда для любого решения u(t) уравнения (2) и для любого $\varepsilon > 0$ имеется оценка

$$||u(t)|| < c_1 \exp\left((\varkappa + \varepsilon)t + c_2 t^{1-\beta}\right), \quad npu \ \beta \neq 1,$$

или

$$||u(t)|| < c_1 \exp\left((\varkappa + \varepsilon)t + c_2 \ln t\right), \qquad npu \ \beta = 1.$$

Если \varkappa – точный тип роста решений уравнения (7), то оценки справедливы при $\varepsilon = 0$.

Следующие результаты показывают невозрастание типа роста при возмущениях из $L_1(0, +\infty)$.

Теорема 2.3 Пусть $\alpha(\theta, t) = \alpha(\theta)$ не зависит от t, \varkappa – тип роста решений невозмущенного уравнения (7), $\|\delta(\theta, t)\| < \varphi(t)$ и $\varphi(t) \in L_1(0, +\infty)$. Тогда тип роста решений уравнения (2) не превосходит \varkappa .

Теорема 2.4 Пусть $\alpha(\theta, t) = \alpha(t)$ не зависит от t, \varkappa – точный тип роста решений невозмущенного уравнения (7), $\|\delta(\theta, t)\| < \varphi(t)$ и $\varphi(t) \in L_1(0, +\infty)$. Тогда точный тип роста решений уравнения (2) не превосходит \varkappa .

Если все решения уравнения (7) ограничены, то либо тип роста решений этого уравнения меньше нуля, либо точный тип роста равен нулю. В первом случае на основании теоремы 2.3 получаем, что тип роста решений уравнения (2) меньше нуля. А во втором случае на основании теоремы 2.4 получаем, что точный тип роста решений уравнения (2) равен нулю. В обоих случаях все решения уравнения (2) ограничены. Этот результат для уравнений с конечным числом запаздываний был получен Bellman R., Cook K.L.²⁰.

В третьей главе изучаются полугрупповые свойства дифференциальных операторов связанных с ФДУ. Рассмотрим начальную задачу для простейшего ФДУ

$$a_0 u'(t) + a_1 u'(t-h) + b_0 u(t) + b_1 u(t-h) = 0, \quad t > 0,$$

 $u(t) = u_0(t), \quad t \in [-h, 0],$

где $a_0 \neq 0$, и введем в пространстве $W_2^1(-h,0)$ семейство операторов U_t сдвигов вдоль решений

$$(U_t u_0)(s) = u(t+s), \quad t \ge 0, \quad s \in [-h, 0].$$

Тогда это семейство является C_0 -полугруппой, генератор A которой имеет вид

$$Ay = y',$$

$$D(A) = \left\{ y \in W_2^2(-h, 0), \ a_0 u'(0) + a_1 u'(-h) + b_0 u(0) + b_1 u(-h) = 0 \right\}.$$

Спектральную задачу $Ay = \lambda y$ можно записать в виде краевой задачи для обыкновенного дифференциального уравнения с параметром в граничном условии

$$y' - \lambda y = 0,$$

 $(a_0\lambda + b_0)y(0) + (a_1\lambda + b_1)y(-h) = 0.$

Эта краевая задача является частным случаем следующей краевой задачи с параметром в граничных условиях общего вида, которая изучается в диссертации,

$$l(y,\lambda) = y^{(n)} + p_1(x,\lambda)y^{(n-1)} + \dots + p_n(x,\lambda)y = 0$$
(8)

$$U_j(y,\lambda) = \sum_{k=1}^n a_{jk}(\lambda) y^{(k-1)}(0) + b_{jk}(\lambda) y^{(k-1)}(1) = 0, \qquad j = 1, \dots, n,$$
(9)

где $p_s(x,\lambda) = \sum_{\nu=0}^{s} p_{\nu s}(x)\lambda^{\nu}$, $p_{\nu s}(x) \in C^{\infty}[0,1]$, $p_{ss}(x) = \text{const}, s = 1, \ldots, n$, $p_{nn} \neq 0, a_{jk}(\lambda), b_{jk}(\lambda)$ – полиномы. Краевые условия (9) предполагаются нормированными в смысле определения Шкаликова А.А.¹⁵, порядок *j*-го краевого условия равен \varkappa_j , а суммарный порядок краевых условий равен $\varkappa = \varkappa_1 + \cdots + \varkappa_n$, причем $\varkappa \geq n$.

Задаче (8),(9) можно поставить в соответствие оператор, линеаризующий эту задачу. Конечно, существует много способов такой линеаризации. Но есть специальный линеаризатор этой задачи, который мы будем обозначать \mathcal{H} , построенный Шкаликовым А.А.¹⁵, который играет особую роль. В третьей главе диссертации мы убеждаемся в этом еще раз. Мы получаем необходимое и достаточное условие для того, чтобы этот оператор являлся генератором C_0 полугруппы. В предыдущих работах (см., например, работы Grabowski P.²⁵, Morgul O., Rao B.P., Conrad F.²⁶) были получены лишь достаточные условия в некоторых частных случаях. Данная глава обобщает эти результаты и содержит приложения к задачам теории управления.

 $^{^{25}}$ Grabowski P. "Well-posedness and stability analysis of hybrid feedback systems using Shkalikov's theory"// Opuscula Mathematica, 2006, v.26, N1, 45-97

 $^{^{26}}$ Morgul O., Rao B.P., Conrad F. "On the stabilization of a cable with a tip mass"// IEEE Transactions on Automatic Control, 1994, v.39, N10, 2140-2145

Рассмотрим характеристическое уравнение

$$\omega^{n} + p_{11}\omega^{n-1} + \dots + p_{n-1,n-1}\omega + p_{nn} = 0$$

и обозначим через $\omega_1, \ldots, \omega_n$ его корни, которые предполагаются простыми и вещественными. Введем числа

$$\mu_{J_k} = \sum_{\alpha \in J_k} \omega_\alpha,$$

где $J_k, k = 1, \ldots, n$ – произвольное k-элементное подмножество множества $\{1, \ldots, n\}, \mu_{J_0} = 0$, и характеристический определитель

$$\Delta(\lambda) = \begin{vmatrix} U_1(y_1) & \dots & U_1(y_n) \\ \vdots & & \vdots \\ U_n(y_1) & \dots & U_n(y_n) \end{vmatrix}$$

Тогда характеристический определитель имеет вид

$$\Delta(\lambda) = \lambda^{\varkappa} \sum_{J_k} [F^{J_k}] e^{\lambda \mu_{J_k}},$$

где \varkappa – суммарный порядок краевых условий (9), и использовано обозначение [η] = $\eta_0 + O(\lambda^{-1})$.

Пусть отрезок $M = [M_0, M_1]$ есть выпуклая оболочка всех точек μ_{J_k} .

Определение 3.1 Краевая задача (8), (9) называется регулярной в правой (левой) полуплоскости, если $F_0^{M_1} \neq 0$ ($F_0^{M_0} \neq 0$); регулярной – если она регулярна и в правой, и в левой полуплоскостях; полурегулярной – если она регулярна либо в правой, либо в левой полуплоскости, но не регулярна.

Такое определение регулярности согласуется с определением Шкаликова А.А.¹⁵ и уточняет определение Тамаркина Я.Д.⁹. Основной результат третьей главы содержится в следующей теореме.

Теорема 3.1 Оператор \mathcal{H} является генератором C_0 -полугруппы в том и только том случае, когда задача (8), (9) регулярна в правой полуплоскости.

В качестве приложений полученных результатов в третьей главе рассмотрены следующие задачи.

Рассмотрена задача о стабилизации троса к массой на конце^{25,26}, которая сводится к краевой задаче

$$u''(x) = \lambda^2 u(x),$$

 $(m\lambda^2 + b\lambda)u(1) + (1 + a\lambda)u'(1) = 0,$
 $u(0) = 0.$

Линеаризатор Шкаликова \mathcal{H} , соответствующий этой задаче, определен в пространстве

$$\mathcal{W}_{2,U}^{0} = \Big\{ (u, v, w) \in W_{2}^{1} \oplus W_{2}^{0} \oplus \mathbb{C} : u(0) = 0 \Big\},\$$

имеет область определения

$$D(\mathcal{H}) = \left\{ (u, v, w) \in W_2^2 \oplus W_2^1 \oplus \mathbb{C} : \ u(0) = v(0) = 0, \ w = au'(1) + mv(1) \right\}$$

и действует по правилу

$$\mathcal{H}(u, v, w) = (v, u'', -u'(1) - bv(1)).$$

Grabowski P.²⁵ показал, опираясь на результаты работы Шкаликова A.A.¹⁵, что для того, чтобы оператор \mathcal{H} являлся генератором C_0 -полугруппы, достаточно, чтобы выполнялось условие $m + a \neq 0$. Также для некоторых значений параметров было показано, что оператор \mathcal{H} не является генератором C_0 полугруппы. С помощью теоремы 3.1 в третьей главе настоящей диссертации показано, что условие $m + a \neq 0$ является как достаточным, так и необходимым для того, чтобы оператор \mathcal{H} являлся генератором C_0 -полугруппы. Из той же теоремы 3.1 следует, что для того, чтобы оператор \mathcal{H} являлся генератором C_0 -группы, необходимо и достаточно, чтобы выполнялось условие $(m + a)(m - a) \neq 0$.

Другой пример – известная задача Редже (см. работы Regge T.²⁷ и Шкаликова А.А.²⁸)

$$-y'' + \lambda^2 y + q(x)y = 0,$$

y'(1) + \lambda y(1) = 0,
y(0) = 0.

Известно²⁸, что эта задача всегда нерегулярна. Более того, при $q(x) \equiv 0$ у этой задачи нет собственных функций. Тем не менее, как показано в настоящей диссертации, она регулярна справа при любом потенциале q(x), а ее линеаризатор есть генератор C_0 -полугруппы.

Автор искренне благодарен своему научному руководителю профессору А.А.Шкаликову за постановку задач, за постоянное внимание к работе и многочисленные обсуждения.

²⁷Regge T. "Analytic properties of the scattering matrix"// Nuovo Cimento (10), 1958, v.8, 671-679

²⁸ Shkalikov A.A. "Spectral analysis of the Regge Problem"// Russ. J. Math. Phys., 2001, v.8, N3, 356-364

Работы автора по теме диссертации.

- [1] Лесных А.А. Оценки решений дифференциально-разностных уравнений нейтрального типа // Мат. заметки, 2007, т.81, вып.4, с.569–585
- [2] Лесных А.А. Полурегулярные краевые задачи для обыкновенных дифференциальных уравнений с параметром в граничных условиях // Современные методы теории функций и смежные проблемы, Материалы Воронежской зимней математической школы, 2007, с.128–129
- [3] Лесных А.А. *Многоточечные полурегулярные краевые задачи* // "Дифференциальные уравнения и смежные вопросы", тезисы конференции, посвященной 106-летию И.Г.Петровского, Москва, 2007, с.174–175
- [4] Лесных А.А. Оценки решений запаздывающих уравнений с переменными коэффициентами // Фундаментальная и прикладная математика, 2006, т.12, вып.5, с.83–93
- [5] Лесных А.А. Оценки решений неоднородных нейтральных уравнений // Спектральные и эволюционные задачи, Симферополь, 2006, т.17, с.50–55