МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. ЛОМОНОСОВА

МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

На правах рукописи УДК 517.987.4

Панюнин Никита Михайлович

ФОРМУЛЫ ФЕЙНМАНА ДЛЯ ЭВОЛЮЦИОННЫХ ПСЕВДОДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В СУПЕРАНАЛИЗЕ

Специальность 01.01.01 — математический анализ

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико–математических наук

Mockba - 2009

Работа выполнена на кафедре теории функций и функционального анализа механико-математического факультета Московского государственного университета имени М. В. Ломоносова.

Научный руководитель:

доктор	физико-м	математичес	ких наук,
профес	сор Олег	Георгиевич	Смолянов

Официальные оппоненты:

доктор физико-математических наук, профессор Алексей Владимирович Угланов

кандидат физико-математических наук Николай Николаевич Шамаров

Ведущая организация:

Математический институт им. В. А. Стеклова РАН

Защита диссертации состоится 15 мая 2009 г. в 16 час. 40 мин. на заседании диссертационного совета Д501.001.85 при Московском государственном университете имени М. В. Ломоносова по адресу: Российская Федерация, 119991, Москва, ГСП-1, Ленинские горы, д. 1, Московский государственный университет имени М. В. Ломоносова, механикоматематический факультет, аудитория 16-24.

С диссертацией можно ознакомиться в библиотеке механико-математического факультета МГУ (Главное здание, 14 этаж).

Автореферат разослан 14 апреля 2009 г.

Ученый секретарь диссертационного совета Д501.001.85 при МГУ доктор физико-математических наук профессор

И. Н. Сергеев

Общая характеристика работы

Актуальность темы

Диссертация посвящена получению представлений функциональными интегралами решений эволюционных псевдодифференциальных уравнений относительно функций, определенных на суперпространстве и принимающих значения в супералгебре.

Кроме того, получен критерий счетной аддитивности цилиндрических супермер в терминах непрерывности их суперпреобразования Фурье.

Как известно, суперанализ возник из стремления представить вторичное квантование фермионных полей в форме, аналогичной форме квантования бозонных полей. Еще одним мотивом для его создания послужили исследования суперсимметрии в математической физике.

К настоящему времени опубликовано значительное число работ, посвященных суперанализу. Эти работы можно разделить на две группы. К одной относятся работы, связываемые с именами Дж. Л. Мартина, Ф. А. Березина. В них развивается алгебраический подход к суперанализу.

Другая группа работ более соответствует духу функционального анализа. Подход, развиваемый в работах Б. Де Витта, А. Роджерс, В. С. Владимирова и И. В. Воловича, О. Г. Смолянова и Е. Т. Шавгулидзе, А. Ю. Хренникова сейчас принято называть фунциональным суперанализом.

Именно функциональный суперанализ и используется в диссертации.

Несмотря на большое количество работ, посвященных суперанализу, результатов, связанных с интегралами типа Фейнмана, опубликовано совсем немного. Ситуация здесь существенно отличается от ситуации с исследованием классических интегралов типа Фейнмана. Здесь, особенно в последнее время, получено много результатов, при этом была развита новая техника, связанная с применением теоремы Чернова. Ничего аналогичного применительно к интегралам по траекториям в суперслучае сделано не было. Кроме того, ничего не было известно об условиях счетной аддитивности цилиндрических супермер, подобных содержащимся в теореме Минлоса-Сазонова. Получение такого рода условий существенно используется при представлении решений эволюционных псевдодифференциальных уравнений функциональными интегралами на бесконечномерном суперпространстве. Все сказанное и определяет актуальность темы диссертации.

В диссертации получены формулы Фейнмана и Фейнмана-Каца для некоторого класса эволюционных псевдодифференциальных уравнений в пространстве супераналитических функций. Для построения супермеры Фейнмана на пространстве траекторий на суперслучай были перенесены методы работы О. Г. Смолянова, А. Г. Токарева и А. Трумена¹. Полученные результаты содержат, в частности, решение задачи, поставленной в книге А. Ю. Хренникова². Кроме того, получен супераналог теоремы Минлоса-Сазонова.

Цель работы

- 1. Построить представления решений эволюционных псевдодифференциальных уравнений интегралами по траекториям в фазовом суперпространстве.
- 2. Получить условия счетой аддитивности цилиндрических супермер в терминах непрерывности их суперпреобразования Фурье.

Основные методы исследования

В диссертации используются методы классического бесконечномерного анализа, а также ряд специальных конструкций.

Научная новизна

Основные результаты диссертации являются новыми и состоят в следующем:

- 1. Доказан аналог теоремы Минлоса-Сазонова для цилиндрических супермер в гильбертовом суперпространстве.
- 2. Получены решения задачи Коши для эволюционных псевдодифференциальных уравнений в пространстве супераналитических функций.
- 3. Получены представления решений задачи Коши для эволюционных псевдодифференциальных уравнений в пространстве супераналитических функций интегралами Фейнмана по траекториям

 $^{^1 \}rm O.G.Smolyanov, A.G.Tokarev, A.Truman. Hamiltonian Feynman path integrals via the Chernoff formula // J. Math. Phys. 43 (2002).$

² А. Ю. Хренников. Суперанализ. — М.: Физматлит, 2005.

в фазовом суперпространстве (формулы Фейнмана и Фейнмана-Каца).

Теоретическая и практическая ценность

Диссертация имеет теоретический характер. Полученные результаты могут быть использованы для исследования дифференциальных и псевдодифференциальных операторов в бесконечномерных суперпространствах. Кроме того, ряд результатов может быть использован для решения уравнений, возникающих в квантовой теории поля и в теории суперструн.

Апробация результатов

Основные результаты диссертации неоднократно докладывались на семинаре "Бесконечномерный анализ и математическая физика" под руководством О. Г. Смолянова и Е. Т. Шавгулидзе (мех-мат МГУ, 2004-2009 гг.); на XXIX конференции Молодых учёных МГУ им. М. В. Ломоносова, Москва, 2007; на XXII Международной конференции "Дифференциальные уравнения и смежные вопросы", посвящённой памяти И. Г. Петровского, Москва, 2007.

Публикации

Основные результаты диссертации опубликованы в четырех работах, список которых приведен в конце автореферата.

Структура диссертации

Диссертация состоит из введения, двух глав и списка литературы. Полный объем диссертации — 71 страница, библиография включает 55 наименований.

Краткое содержание работы

Во введении дается обзор результатов, связанных с темой диссертации и даются необходимые понятия функционального суперанализа. Также формулируются основные результаты диссертации.

В главе 1 рассматривается модель бесконечномерного суперпространства, предложенная О. Г. Смоляновым и Е. Т. Шавгулидзе^{3,4}. Эта

³ О. Г. Смолянов, Е. Т. Шавгулидзе. Преобразование Фурье и псевдодифференциаьные операторы в суперанализе // ДАН, 1988, т. 299, №4, с. 816-821.

⁴ О. Г. Смолянов, Е. Т. Шавгулидзе. Представление решений линейных эволюционных супердифференциальных уравнений второго порядка функциональными интегралами // ДАН, 1989, т. 299, №4, с. 545-549.

модель обобщает на бесконечномерный случай конечномерную модель В. С. Владимирова и И. В. Воловича^{5,6}.

В параграфе 1.1 вводится суперпространство над гильбертовой супералгеброй $\Lambda = \Lambda_0 \oplus \Lambda_1$, соответствующее \mathbb{Z}_2 -градуированному гильбертовому пространству $H = H_0 \oplus H_1$. Оно определяется следующим образом: $H_{\Lambda} = \Lambda_0 \hat{\otimes} H_0 \oplus \Lambda_1 \hat{\otimes} H_1$. Тензорное произведение " \otimes " наделятся гильбертовой топологией, а " $\hat{}$ " обозначает пополнение по ней. Доказывается, что это суперпространство является также суперпространством в смысле определения, приводимого в работе А. Ю. Хренниковым⁷. А именно, доказывается, что H_{Λ} является суперпространством над коммутативными банаховыми супермодулями $\Lambda \hat{\otimes} H_0$ и $\Lambda \hat{\otimes} H_1$.

В суперпространстве H_{Λ} вводится суперскалярное произведение, обозначаемое $(\cdot, \cdot)_{\Lambda}$, и структура гильбертова суперпространства. Суперскалярное произведение строится с помощью продолжения по Λ линейности скалярного произведения в пространстве H_0 на супермодуль $\Lambda \hat{\otimes} H_0$ и некоторой антисимметричной формы в пространстве H_1 на супермодуль $\Lambda \hat{\otimes} H_1$.

В параграфе 1.2 вводится понятие супердифференцируемой функции. Для гильбертова пространства $G = G_0 \oplus G_1$ рассмотрим супермодуль $G^{\Lambda} = \Lambda \hat{\otimes} G_0 \oplus \Lambda \hat{\otimes} G_1$. Пусть функция $f : H_{\Lambda} \to G^{\Lambda}$ дифференцируема в точке $x \in H_{\Lambda}$ по Фреше. Её производной в этой точке сопоставляется матрица

$$\begin{pmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{pmatrix},$$

 $A_{00} \in \mathcal{L}(\Lambda_0 \hat{\otimes} H_0, \Lambda_0 \hat{\otimes} G), A_{01} \in \mathcal{L}(\Lambda_1 \hat{\otimes} H_1, \Lambda_0 \hat{\otimes} G), A_{10} \in \mathcal{L}(\Lambda_0 \hat{\otimes} H_0, \Lambda_1 \hat{\otimes} G), A_{11} \in \mathcal{L}(\Lambda_1 \hat{\otimes} H_1, \Lambda_1 \hat{\otimes} G).$

Доказывается, что имеют место вложения: $\Lambda_0 \hat{\otimes} (H_0 \hat{\otimes} G)$ в пространство $\mathcal{L}(\Lambda_0 \hat{\otimes} H_0, \Lambda_0 \hat{\otimes} G)$, $\Lambda_1 \hat{\otimes} (H_1 \hat{\otimes} G)$ в $\mathcal{L}(\Lambda_1 \hat{\otimes} H_1, \Lambda_0 \hat{\otimes} G)$, $\Lambda_1 \hat{\otimes} (H_0 \hat{\otimes} G)$ в $\mathcal{L}(\Lambda_0 \hat{\otimes} H_0, \Lambda_1 \hat{\otimes} G)$ и $\Lambda_0 \hat{\otimes} (H_1 \hat{\otimes} G)$ в $\mathcal{L}(\Lambda_1 \hat{\otimes} H_1, \Lambda_1 \hat{\otimes} G)$.

Функция $f: H_{\Lambda} \to G^{\Lambda}$ называется супердифференцируемой по Фреше, если $A_{00} \in \Lambda_0 \hat{\otimes}(H_0 \hat{\otimes} G), A_{01} \in \Lambda_1 \hat{\otimes}(H_1 \hat{\otimes} G), A_{10} \in \Lambda_1 \hat{\otimes}(H_0 \hat{\otimes} G),$

⁵ В. С. Владимиров, И. В. Волович. Суперанализ, 1. Дифференциальное исчисление // ТМФ, 1984, т. 59, с. 3-27.

⁶ В. С. Владимиров, И. В. Волович. Суперанализ, 2. Интегральное исчисление // ТМФ, 1984, т. 60, с. 169-198.

 $^{^7}$ А. Ю. Хренников. Функциональный суперанализ // Успехи математических наук, 1988, т. 43, вып. 2(260), с. 87-144.

 $A_{11} \in \Lambda_0 \hat{\otimes} (H_1 \hat{\otimes} G)$. Такое определение супердифференцируемости было предложено О. Г. Смоляновым и Е. Т. Шавгулидзе.

Для суперпроизводных порядка n справедливо следующее предложение.

Предложение 1.4. Пусть f — отображение открытой части суперпространства H_{Λ} в Λ , n раз супердифференцируемое в точке x.

Тогда

$$f^{(n)}\Big|_{H_{\Lambda_1}}(x) \in \Lambda \hat{\otimes} \left(\bigwedge_n H_1\right),$$

где символ $\bigwedge_{n} H_{1}$ обозначает гильбертово пространство, представляющее собой замкнутое векторное подпространство пространства $H_{1}\hat{\otimes}\ldots\hat{\otimes}H_{1}$, порожденное алгебраическим внешним произведением п экземпляров H_{1} . Пространство $\bigwedge_{n} H_{1}$ наделяется нормой, индуцируемой из $\bigotimes_{n} H_{1}$. Символ " | " означает "сужение на".

В параграфе 1.3 вводится понятие супермеры на суперпространстве H_{Λ} . Это борелевская мера ограниченной вариации в пространстве H_0 , принимающая значения в супермодуле $\Lambda \hat{\otimes} (\Lambda H_1)$.

Определение интеграла по супермере использует понятие билинейного интеграла⁸. Обозначим символом $\langle \cdot, \cdot \rangle_{\Lambda} \Lambda$ -линейное отображение $\Lambda \hat{\otimes} (\Lambda H_1) \times \Lambda \hat{\otimes} (\Lambda H_1) \to \Lambda$, получаемое продолжением скалярного произведения в ΛH_1 по Λ -линейности.

Для функции $f: H_{\Lambda} \to \Lambda$ супердифференцируемой во всем пространстве H_{Λ} бесконечное число раз рассмотрим отображение $Df: H_{\Lambda} \to \prod_{n=0}^{\infty} \Lambda \hat{\otimes} \left(\bigwedge_{n} H_{1}\right)$, определяемое так:

$$(Df)(z) = \left(f(z), f'(z)|_{H_{\Lambda_1}}, \ldots, \frac{1}{\sqrt{n!}}f^{(n)}(z)|_{H_{\Lambda_1}}, \ldots\right).$$

Обозначим символом $F(H_{\Lambda})$ пространство всех бесконечно супердифференцируемых функций из H_{Λ} в Λ таких, что значения сужения Df на H_0 принадлежат $\Lambda \otimes (\Lambda H_1)$.

⁸R.G.Bartle. A general bilinear vector integral // Studia Math., 1956, vol. 15, p. 337-352.

Интеграл от функции $f \in F(H_{\Lambda})$ по супермере ν определяется так:

$$\int_{H_{\Lambda}} f(z)\nu(dz) = \int_{H_{0}} \langle (Df)(t), \nu(dt) \rangle_{\Lambda}$$

Замечание 1. Для вычисления интеграла по супермере нужно вычислить кратный интеграл: по четному подпространству это интеграл по борелевской мере, а по нечетному подпространству интегрирование сводится к вычислению значения линейного функционала.

В параграфе 1.4 определяется суперпреобразование Фурье супермер в H_{Λ} . Это функция на H_{Λ} , определяемая следующим образом:

$$ilde{\mu}(y) = \int\limits_{H_\Lambda} e^{i(y,z)_\Lambda} \mu(dz).$$

Оказывается, что значения суперпреобразования Фурье $\tilde{\mu}(\cdot)$ супермеры μ на подпространстве $\overline{H}_{\Lambda} = H_0 \oplus \Lambda_1 \hat{\otimes} H_1$ можно получить из значений ее классического преобразования Фурье, применив некоторый оператор.

Обозначим оператор, сопоставляющий супермере ее суперпреобразование Фурье, символом F_S . Оператор классического преобразования Фурье обозначим символом F, а через S_{y_1} обозначим следующий оператор из $\Lambda \otimes (\Lambda H_1)$ в Λ :

$$S_{y_1} \bullet = \left\langle \left(1, \ldots, \frac{i^n}{\sqrt{n!}} < y_1, \cdots < y_1, \cdots < y_1, \cdots \right), \bullet \right\rangle_{\Lambda}$$

Доказывается, что справедливо следующее представление:

$$(F_{S}\mu)(t, y_{1}) = S_{y_{1}}((F\mu)(t)),$$

где $t \in H_0, y_1 \in H_{\Lambda_1}$.

Преобразование Фурье супермер, определенных на суперпространствах с нулевой четной частью обладает свойством изометричности.

Теорема 1.1. Пусть H_{Λ} — суперпространство с $H_0 = \{0\}$ и μ — супермера в H_{Λ} . Тогда

$$\|\widetilde{\mu}(\,\cdot\,)\|_{F(H_{\Lambda_1})}=\|\mu\|_{\Lambda\hat{\otimes}(\wedge H_1)}.$$

Из этой теоремы получаем следующее утверждение о ядре суперпреобразования Фурье.

Следствие 1.1. Ядро оператора суперпреобразования Фурье F_S равно нулю.

Заключительный параграф главы 1 посвящен аналогу теоремы Минлоса-Сазонова для супермер. Здесь даются условия счетной аддитивности цилиндрических супермер в терминах непрерывности их суперпреобразования Фурье.

Теорема 1.2. Для счетной аддитивности цилиндрической супермеры μ необходимо и достаточно непрерывности в топологии Сазонова (ассоциированной с топологией в H_0) отображения $t \to \tilde{\mu}(t, \cdot) : H_0 \to F(H_{\Lambda_1})$.

Замечание 2. Рассматривая различные топологии в тензорном произведении в определении суперпространства, будем получать различные суперпространства. В этих суперпространствах аналогичным образом можно определить понятие супердифференцируемости, супермеры, интеграла по супермере и суперпреобразования Фурье. Для суперпреобразования Фурье также будет иметь место представление в виде композиции классического преобразования Фурье и некоторого оператора. В этих суперпространствах также возникает задача о поиске условий счетной аддитивности цилиндрических супермер в терминах непрерывности их суперпреобразования Фурье.

Глава 2 диссертации посвящена вопросу о представлении решений эволюционных псевдодифференциальных уравнений функциональными интегралами.

В параграфе 2.1 даются предварительные сведения теории супераналитических распределений на бесконечномерном суперпространстве, развитой в работах А. Ю. Хренникова.

Пусть X — суперпространство над банаховыми коммутативными супермодулями. Функция $f: U \to \Lambda$, где U — окрестность точки $x_0 \in X$, называется компактно супераналитической в точке x_0 , если для $x \in U$ имеет место представление

$$f(x) = \sum_{n=0}^{\infty} b_n(x - x_0, \dots, x - x_0),$$

где Λ -*п*-линейные формы b_n принадлежат супермодулям $\mathcal{K}_{n,r}(L_X^n, \Lambda)$ Λ *п*-линейных справа отображений $L_X \times \cdots \times L_X$ в Λ непрерывных на компактных множествах и сужение этих форм на X^n симметрично. Кроме того, существует окрестность V точки x_0 в L_X такая, что для любого компактного множества $K \subset V$ справедливо неравенство:

$$||f(\cdot)||_{K} = \sum_{n=0}^{\infty} \sup_{x \in K} ||b_{n}(x - x_{0}, \dots, x - x_{0})|| < \infty.$$

Пространство функций, компактно супераналитических на всем X обозначается символом $\mathcal{A}(X)$. Оно наделяется топологией, индуцируемой системой норм $\|\cdot\|_{K}$ с $x_{0} = 0$. Распределением на суперпространстве X называется элемент сопряженного супермодуля $\mathcal{A}'(X)$.

Преобразование Фурье распределения $\mu \in \mathcal{A}'(X)$ обозначается символом $F\mu$. Это функция на двойственном суперпространстве Y, определяемая как:

$$(F\mu)(\,\cdot\,) = \int\limits_X \mu(dx) e^{i < \cdot, x >}$$

Пространство $\mathcal{F}(Y)$ суперпреобразований Фурье распределений на X берется в качестве основного пространства для распределений на двойственном суперпространстве Y. Пространство распределений на двойственном суперпространстве определяется с помощью стандартной схемы с использованием равенства Парсеваля:

$$\mathcal{M}(Y) = \{ \nu \in \mathcal{F}^*(Y) : \exists f \in \mathcal{A}(X) : \\ \int_Y g(y)\nu(dy) = \int_X F^{-1}(g)(dx)f(x), \ \forall g \in \mathcal{F}(Y) \},$$

где $\mathcal{F}^*(Y)$ — алгебраически сопряженный супермодуль.

В параграфе 2.2 приводятся необходимые факты теории псевдодифференциальных операторов. Пусть P, Q — двойственные суперпространства, тогда суперпространство $X = Q \times P$ называется фазовым.

Псевдодифференциальные операторы определяются с помощью распределения Фейнмана на фазовом суперпространстве. Распределение Фейнмана Φ — это элемент пространства $\mathcal{M}(Q \times P)$, задаваемый своим суперпреобразованием Фурье:

$$\tilde{\Phi}(p,q) = e^{i < p,q > +i < p,\bar{q} >}$$

для некоторого $\bar{q} \in Q$.

Псевдодифференциальный оператор в пространстве $\mathcal{F}(Q)$ с символом qp-символом $a \in \mathcal{F}(Q \times P)$ определяется равенством

$$(\hat{a}f)(q) = \int_{Q \times P} a(q,p)f(q_1)\Phi(dq_1dp).$$

В параграфе 2.3 рассматриваются эволюционные псевдодифференциальные уравнения вида

$$\frac{\partial u(t,q)}{\partial t} = (\hat{a}u)(t,q) \tag{1}$$

в пространстве $\mathcal{A}(Q)$.

Для этого уравнения рассматривается "слабая" задача Коши с начальным условием $u_0(\cdot)$ из пространства $\mathcal{F}(Q)$. Находятся условия существования решений уравнения (1), принадлежащих пространству непрерывных Λ -линейных (справа и слева) $\mathcal{A}(Q)$ -значных функционалов на пространстве

$$\mathcal{W}(\mathbb{R}) = \{ \phi \in \mathcal{A}'(\mathbb{R}) : \|\phi\|_{\alpha} = \sum_{n=0}^{\infty} \frac{1}{n!} \|\phi(t^n)\| e^{\alpha n^2} < \infty, \quad \forall \alpha > 0, \}$$

где $\mathcal{A}'(\mathbb{R})$ — пространство аналитических вещественнозначных функций на \mathbb{R} . Топология в $\mathcal{W}(\mathbb{R})$ определяется системой норм $\|\cdot\|_{\alpha}$. Пространство таких функционалов обозначим символом $\mathcal{W}'(\mathbb{R}, \mathcal{A}(Q))$. Символом $\mathcal{W}'(\mathbb{R}, \mathcal{A}(Q \times P))$ обозначим пространство непрерывных Λ -линейных (справа и слева) функционалов на пространстве $\mathcal{W}(\mathbb{R})$ со значениями в $\mathcal{A}(Q \times P)$. На подпространстве $\mathcal{F}(Q)$ пространства $\mathcal{W}'(\mathbb{R}, \mathcal{A}(Q))$ определяется псевдодифференциальный оператор с символом из $\mathcal{W}'(\mathbb{R}, \mathcal{A}(Q \times P))$. Для $h(\cdot) \in \mathcal{W}'(\mathbb{R}, \mathcal{A}(Q \times P))$ и $\mu \in \mathcal{M}(P)$, положим

$$(\hat{h}\tilde{\mu})(t,q) = \int_{P} h(t,q,p) e^{i \langle p,q \rangle} \mu(dp).$$

Тогда $(\hat{h}\tilde{\mu})(\cdot,\cdot)$ определяет $\mathcal{A}(Q)$ -значный функционал на $\mathcal{W}(\mathbb{R})$ в следующем смысле:

$$((\hat{h}\tilde{\mu})(\cdot,q),\phi) = \int_{P} (h(t,q,\sigma(p)),\phi(t))e^{i < p,q > \mu}(dp),$$

для $\phi(\cdot) \in \mathcal{W}(\mathbb{R})$. Этот функционал непрерывен.

В пространстве $\mathcal{P}(\mathcal{F}(Q), \mathcal{W}'(\mathbb{R}, \mathcal{A}(Q \times P)))$ псевдодифференциальных операторов с символами из $\mathcal{W}'(\mathbb{R}, \mathcal{A}(Q \times P))$ введем топологию, индуцируемую отображением $\hat{}: \mathcal{W}'(\mathbb{R}, \mathcal{A}(Q)) \to \mathcal{P}(\mathcal{F}(Q), \mathcal{W}'(\mathbb{R}, \mathcal{A}(Q \times P))).$

Продолжим \hat{h} с пространства $\mathcal{F}(Q)$ на подпространство пространства $\mathcal{W}'(\mathbb{R}, \mathcal{A}(Q))$ функций, представимых в виде

$$f = \sum_{n=0}^{\infty} f^{(0)}(t,\ldots,t),$$

где $f^{(0)}(t,...,t) \in \mathcal{F}(Q)$, а сходимость ряда понимается в топологии пространства $\mathcal{W}'(\mathbb{R}, \mathcal{A}(Q))$. Областью определения продолжения \hat{h} будет пространство функций такого вида, для которых в топологии пространства $\mathcal{W}'(\mathbb{R}, \mathcal{A}(Q))$ сходится ряд

$$\sum_{n=0}^{\infty} \hat{h} f^{(0)}(t,\ldots,t).$$

Его сумма и определяет значение \hat{h} на f.

Слабым решением задачи Коши для уравнения (1) называется элемент пространства $\mathcal{W}'(\mathbb{R}, \mathcal{A}(Q))$, такой что

$$-(u(t,q),\phi(t)) = (\hat{a}u(t,q),\phi(t))$$

И

$$(u(t,q),\delta(t))=u_0(q),$$

где $\delta(\cdot)$ — элемент пространства $\mathcal{W}'(\mathbb{R})$, такой что $(t^n, \delta(\cdot)) = 0$ для всех n.

Теорема 2.1. Пусть $\mu \in \mathcal{A}'(P \times Q)$ и $a(p,q) = \tilde{\mu}(p,q)$. Тогда символ h оператора эволюции $e^{t\hat{a}}$ уравнения (1) в пространстве $\mathcal{W}'(\mathbb{R}, \mathcal{A}(Q \times P))$ имеет вид:

$$h(\cdot,\cdot,t) = \sum_{n=0}^{\infty} \frac{t^n}{n!} \iint_{P Q} \mu(dp_1 dq_1) \dots \iint_{P Q} \mu(dp_n dq_n) e^{\sum_{1 \le k < l \le n} } e^{<\sum_{m=0}^n p_m, \cdot> + <\sum_{m=0}^n q_m, \cdot>}.$$

Следствие 2.1. Пусть $a(\cdot, \cdot) \in \mathcal{F}(Q \times P)$ и $u_0(\cdot) \in \mathcal{F}(Q)$, $u_0(q) = \tilde{\mu}_0(q)$ Тогда уравнение (1) имеет в пространстве $\mathcal{W}'(\mathbb{R}, \mathcal{A}(Q))$ решение, представимое в виде

$$u(q,t) = \int\limits_P h(q,p,t) e^{i \langle p,q
angle} \mu_0(dp).$$

Замечание 3. Теорема 2.1, с естественными изменениями, справедлива и для случая $t \in \Lambda_0$.

В параграфе 2.4 построены представления решений "слабой" задачи Коши уравнения (1) с помощью интеграла Фейнмана по траекториям в фазовом суперпространстве.

Обозначим символом E_P банахово пространство борелевских ограниченных P-значных функций на [0, t], таких что p(0) = 0 с нормой $||x_P(\cdot)||_{E_P} = \sup_{o \le \tau \le t} ||x(\tau)||_{\Lambda}$. Символом E_Q обозначим банахово пространство борелевских ограниченных Q-значных функций на [0, t], таких что q(t) = 0 с нормой $||x_Q(\cdot)||_{E_Q} = \sup_{o \le \tau \le t} ||x(\tau)||_{\Lambda}$. Пусть $E = E_P \times E_Q$ — банахово пространство с нормой $||(x_Q, x_P)||_E = ||x_Q||_{E_Q} + ||x_P||_{E_P}$. Обозначим через F_Q , F_P пространства счетно-аддитивных мер на [0, t] со значениями в пространствах Q, P, имеющих ограниченную вариацию. Пространства F_Q, F_P будут банаховыми относительно норм $|y_Q|_Q = |y_Q|_Q([0, t])$ для $y_Q \in F_Q$ и $|y_P|_P = |y_P|_P([0, t])$ для $y_P \in F_P$, здесь $|\cdot|_Q, |\cdot|_P$ — вариации

меры. Положим $F = F_Q \times F_P$. Норма $||(y_Q, y_P)||_F = |y_Q|_Q + |y_P|_P$ задает на F банахову структуру.

Для пары пространств E_P, F_Q определяется двойственность:

$$\langle x_P, y_Q \rangle = \int_0^t \langle x_P(\tau), y_Q(d\tau) \rangle,$$

где $x_P \in E_P$ и $y_Q \in F_Q$. Аналогично определяется двойственность для пары E_Q, F_P :

$$\langle x_Q, y_P \rangle = \int_0^t \langle x_Q(\tau), y_P(d\tau) \rangle,$$

где $x_Q \in E_Q$ и $y_P \in F_P$. Двойственности $\langle E_P, F_Q \rangle$, $\langle E_Q, F_P \rangle$ задают двойственность $\langle E, F \rangle$:

$$\langle (x_P, x_Q), (y_P, y_Q) \rangle = \langle x_P, y_Q \rangle + \langle x_Q, y_P \rangle.$$

Определим теперь последовательность $\{E_n\}$ подпространств E, которым будет соответствовать супермера Фейнмана. Для $k, n, N \in \mathbb{N}, k \leq n = 2^N$ положим $t_k = k2^{-N}t$.

Подпространство E_n состоит из непрерывных слева функций из E, на каждом интервале (t_k, t_{k+1}) являющихся постоянными. Пространства E_n изоморфны $(Q \times P)^n$. Действительно, функции $f \in E_n$, принимающей значения $f(0) = (0, q^n), f(t_1) = (p^n, q^{n-1}), \ldots, f(t_n) = (p_1, 0)$, поставим в соответствие вектор $((p^1, q^1), \ldots, (p^n, q^n))$.

Пусть F_n — подпространство F, состоящее из $P \times Q$ -значных мер, сосредоточенных в точках t_k вида $(p_1, 0)\delta_0 + \ldots + (0, q_n)\delta_{t_n}$. Поставив такой мере в соответствие вектор $((p_1, q_1), \ldots, (p_k, q_k))$, получим изоморфим F_n и $(P \times Q)^n$.

В дальнейшем пространства E_n и $(Q \times P)^n$ и F_n и $(P \times Q)^n$ различаться не будут.

Двойственность $\langle E, F \rangle$ индуцирует двойственность между пространствами E_n и F_n , которая будет обозначаться символом $\langle \cdot, \cdot \rangle_n$. Для $((p^1, q^1), \ldots, (p^n, q^n)) \in E_n$ и $((p_1, q_1), \ldots, (p_n, q_n)) \in F_n$ справедливо равенство:

$$\langle ((p^1, q^1), \dots, (p^n, q^n)), ((p_1, q_1), \dots, (p_n, q_n)) \rangle_n =$$

= $\sum_{k=1}^n \langle p^k, q_k \rangle + \langle q^k, p_k \rangle$.

Рассмотрим супермодуль компактно супераналитических функций на пространстве $F_n - \mathcal{A}(F_n)$. Обозначим символом $\mathcal{A}'(F_n)$ его сопряженный, а символом $\mathcal{F}(E_n)$ — фурье-образ пространства распределений.

Распределение Фейнмана Φ_n на E_n определим как элемент пространства $\mathcal{M}(E_n)$ с суперпреобразованием Фурье равным сужению на подпространство F_n функции $\tilde{\Phi}: F \to \Lambda$, имеющий вид

$$\tilde{\Phi}(y) = e^{i \langle y_P((\cdot,t]), y_Q \rangle}$$

Таким образом,

$$\tilde{\Phi}_n(q_1, p_1, \ldots, q_n, p_n) = e^{i \sum_{k=1}^n \langle p_k, \sum_{l=1}^k q_l \rangle}.$$

Обозначим символом $\mathcal{A}(E)$ супермодуль компактно супераналитических функций на E и скажем, что функция $f \in \mathcal{A}(E)$ интегрируема по супермере Фейнмана Φ , если для любого n ее сужения на E_n интегрируемы по мере Φ_n и существует предел

$$\int_{E} f(q,p)\Phi(dqdp) = \lim_{n \to \infty} \int_{E_n} f(q,p)\Phi_n(dqdp).$$
 (2)

Замечание 4. Супермера Фейнмана на траекториях в фазовом суперпространстве определяется как предел конечнократных интегралов по фазовому суперпространству, поэтому ее естественно называть секвенцальной. При этом супермера Фейнмана на произведении конечного числа экземпляров фазового суперпространства определяется с помощью равенства Парсеваля. Суперпреобразования Фурье супермер Фейнмана на этом произведении получаются сужением функции $\tilde{\Phi}$, заданной на пространстве, двойственном пространству траекторий и которую, поэтому, естественно называть суперпреобразованием Фурье супермеры Фейнмана. Замечание 5. При определении супермеры Фейнмана на пространстве траекторий в фазовом суперпространстве были использованы два различных подхода к определению меры Фейнмана в классическом случае: равенство Парсеваля и предел конечнократных интегралов⁹.

Представление интегралом по траекториям в фазовом суперпространстве дается следующей теоремой:

Теорема 2.2. Пусть выполнены условия теоремы 2.1. Тогда решение "слабой" задачи Коши для уравнения

$$\frac{\partial u(t,q)}{\partial t} = (\hat{a}u)(t,q)$$

представимо в виде

$$u(t,z) = \int_{E} e^{\int_{0}^{t} a(q(\tau)+z,p(\tau))d\tau} u_{0}(q(0)+z)\Phi(dqdp).$$

Последнее равенство естественно называть формулой Фейнмана-Каца для уравнения (1): в классическом анализе формулой Фейнмана-Каца называют представление решения эволюционного псевдодифференициального уравнения функциональным интегралом по траекториям в фазовом пространстве.

Формулой Фейнмана в классическом анализе называют представление решения эволюционного псевдодифференициального уравнения в виде предела конечнократных интегралов по фазовому пространству.

Поскольку мера Фейнмана на пространстве траекторий определялась как предел конечнократных интегралов по фазовому суперпространству, тоже самое равенство является одновременно и формулой Фейнмана. При этом на произведении фазовых суперпространств $(Q \times P)^n$ берутся сужения меры Фейнмана, определенной на пространстве траекторий в фазовом суперпространстве.

В общем случае, однако, в формуле Фейнмана не предполагается существование пространства траекторий и меры на нем.

⁹ О. Г. Смолянов, Е. Т. Шавгулидзе. Континуальные интегралы. — М. : МГУ, 1990.

Можно было получать формулы Фейнмана и Фейнмана-Каца подругому. При доказательстве теоремы 2.2 фактически была доказана формула

$$e^{t\hat{a}}u_0 = \lim_{n \to \infty} \left(\widehat{e^{\frac{t}{n}a}}\right)^n u_0,\tag{3}$$

т.е. формула Фейнмана: доказывается, что правая часть (3) при всех n совпадает с конечнократными интегралами порядка n, предел которых задает супермеру Фейнмана на пространстве траекторий. Таким образом, можно было, не вводя заранее пространство траекторий и меры на нем, получить формулу Фейнмана, а уже потом, заметив, что меры на $(Q \times P)^n$ суть сужения некоторой меры на пространстве траекторий, получить формулу Фейнмана-Каца.

Замечание 6. В работе О. Г. Смолянова, А. Г. Токарева и А. Трумена¹⁰, представление решений эволюционного псевдодифференциального уравнения интегралом Фейнмана (в классическом случае) также строятся с помощью формулы (3) (понимаемой, конечно, иначе). Там эта формула является следствием теоремы Чернова. В случае рассматриваемых пространств условия теоремы Чернова не выполняются, поэтому формула была доказана непосредственно. Кроме того, в указанной работе в предположении существования решений псевдодифференциальных уравнений с помощью формулы (3) строятся их представления в виде ряда по степеням t. Условия существования решений рассмотренных там уравнений можсно получить из теорем о возмущении генераторов полугрупп. В случае рассматриваемых пространств таких теорем автору не известно, поэтому сначала было получено решение (в виде ряда по степеням t), а уже потом его представление интегралом Фейнмана.

Благодарности

Автор выражает глубокую благодарность своему научному руководителю профессору Олегу Георгиевичу Смолянову за постановку задач, их обсуждение и многолетнюю поддержку. А также профессору Евгению Тенгизовичу Шавгулидзе за многочисленные советы.

 $^{^{10}}$ O. G. Smolyanov, A. G. Tokarev, A. Truman. Hamiltonian Feynman path integrals via the Chernoff formula // J. Math. Phys. 43 (2002).

Публикации автора по теме диссертации

- 1. N. M. Panyunin. Fourier transform of supermeasures // Russian Journal of Mathematical Physics, 2007, vol. 14, n. 4, pp. 501-504.
- 2. N. M. Panyunin. Feynman-Kac and Feynman Formulas for Evolution Pseudodifferential Equations in Superspace // Russian Journal of Mathematical Physics, 2008, vol. 15, n. 4, pp. 511-521.
- Н. М. Панюнин. О счетной аддитивности цилиндрических супермер // Тезисы международной конференции "Дифференциальные уравнения и смежные вопросы", посвященной памяти И. Г. Петровского, 2007, стр. 232.
- 4. Н. М. Панюнин. Формулы Фейнмана-Каца и Фейнмана для эволюционных псевдодифференциальных уравнений в суперпространстве // Тезисы международной конференции "Современные проблемы математики, механики и их приложений", посвященной 70летию ректора МГУ академика В. А. Садовничего, 2009, стр. 187.