Московский Государственный Университет имени М. В. Ломоносова Механико-математический факультет

На правах рукописи

УДК 517.925.42

Колюцкий Григорий Аркадьевич

ПРЕДЕЛЬНЫЕ ЦИКЛЫ УРАВНЕНИЙ ЛЬЕНАРА

01.01.02 — дифференциальные уравнения, динамические системы и оптимальное управление

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата физико-математических наук

Москва 2010

Работа выполнена на кафедре теории динамических систем Механико—математического факультета Московского государственного университета имени М.В. Ломоносова.

Научные руководители: академик РАН, доктор физико-математических наук,

профессор Аносов Дмитрий Викторович; доктор физико-математических наук, профессор Ильяшенко Юлий Сергеевич.

Официальные оппоненты: доктор физико-математических наук,

профессор Давыдов Алексей Александрович;

доктор физико-математических наук профессор Пилюгин Сергей Юрьевич.

Ведущая организация: Воронежский государственный университет.

Защита диссертации состоится 9 апреля 2010 года в 16 час. 40 мин. на заседании диссертационного совета Д 501.001.85 при Московском государственном университете имени М. В. Ломоносова по адресу: 119991, ГСП-1, Москва, Ленинские горы, МГУ, механико-математический факультет, ауд. 16-24.

C диссертацией можно ознакомиться в библиотеке Механико-математического факультета МГУ (Главное здание, 14 этаж).

Автореферат разослан 9 марта 2010 г.

Ученый секретарь диссертационного совета Д 501.001.85 при МГУ, доктор физико-математических наук, профессор

И. Н. Сергеев

Общая характеристика работы

Актуальность темы. Настоящая диссертация относится к качественной теории обыкновенных дифференциальных уравнений. Работа посвящена получению явных верхних оценок на число предельных циклов полиномиальных векторных полей на плоскости специального вида, т.н. уравнений Льенара

$$\begin{cases} \dot{x} = y - F(x), \\ \dot{y} = -x, \end{cases} \tag{1}$$

и обобщённых уравнений Льенара

$$\begin{cases} \dot{x} = yH(x) - xG(x), \\ \dot{y} = -x. \end{cases}$$
 (2)

Напомним, что *полиномиальное векторное поле* на плоскости задаётся системой обыкновенных дифференциальных уравнений

$$\begin{cases} \dot{x} = P(x, y), \\ \dot{y} = Q(x, y), \end{cases}$$
(3)

где $(x,y) \in \mathbb{R}^2$, а P(x,y) и Q(x,y) — многочлены.

Предельным циклом называется изолированная замкнутая траектория векторного поля (иными словами — периодическое решение, в некоторой окрестности которого других периодических решений нет, соответственно все остальные траектории из этой окрестности наматываются на предельный цикл в положительном или отрицательном времени).

В своём знаменитом списке проблем XX века¹ Гильберт во второй части проблемы под номером 16 интересовался числом предельных циклов (Гильберт называл их *предельными циклами Пуанкаре*, по имени их первооткрывателя и автора определения) полиномиальных векторных полей на плоскости. С современной точки зрения вторая часть 16-ой проблемы Гильберта распадается на следующие вопросы²:

(i) Верно ли, что число предельных циклов индивидуального полиномиального векторного поля на плоскости конечно?

 $^{^1\}mathrm{D}.$ Hilbert, *Mathematical problems*, Bull. Amer. Math. Soc., 2000, 37(4), 407-436, Reprinted from Bull. Amer. Math. Soc., 1902, 8, 437-479.

²Yu. Ilyashenko, Centennial History of Hilbert's 16th Problem, Bull. Amer. Math. Soc., 2002, **39(3)**, 301-354.

- (ii) Можно ли оценить число предельных циклов всех полиномиальных векторных поля на плоскости величиной H(n) (называемой числом Гильберта), зависящей только от n наибольшей из степеней многочленов P и Q?
- (iii) Если ответ на предыдущий вопрос положителен, то оценить сверху H(n).

Эта проблема была сформулирована Гильбертом в 1900 г. в докладе на II-ом Международном конгрессе математиков. За прошедшие более, чем сто лет удалось ответить (положительно) только на первый из этих трёх вопросов. Его называют проблемой (индивидуальной) конечности и иногда проблемой Дюлака, потому что Дюлаку принадлежит работа³, содержащая неверное решение этой задачи. Необходимо отметить, что ошибка была найдена лишь через 60 лет после публикации труда Люлака.

Окончательное решение проблемы конечности было получено Ю. С. Ильяшенко 4 и Экалем 5 независимо. Отметим также, что для квадратичных векторных полей (т.е. для случая n=2) этот результат был получен ранее Бамоном 6 .

Вопрос о существовании чисел Гильберта, в частности, существует ли H(2), открыт до сих пор. Тем не менее, по крайней мере одна знаменитая работа, содержащая ошибочное решение этой проблемы, была предложена И. Г. Петровским и Е. М. Ландисом⁷. Ошибка была обнаружена Ю. С. Ильяшенко⁸, а также в семинаре С. П. Новикова при активном участии Д. В. Аносова. С современной точки зрения понять, что там действительно была ошибка, несложно: И. Г. Петровский и Е. М. Ландис утверждали, что H(2)=3, но прозрачный пример Ши

³H. Dulac, Sur les cycles limites, Bulletin Soc. Math. France, 1923, **51**, 45–188.

 $^{^4\}mathrm{Yu}.$ Ilyashenko, Finiteness theorems for limit cycles, Providence, R.I.: Amer. Math. Soc., 1991.

⁵J. Écalle, Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, Paris: Hermann, 1992.

⁶R. Bamón Quadratic vector fields in the plane have a finite number of limit cycles, Publ. I.H.E.S, 1986, **64**, 111-142.

 $^{^{7}}$ И. Г. Петровский и Е. М. Ландис, О числе предельных циклов уравнения dy/dx = P(x,y)/Q(x,y), где P и Q многочлены степени 2, Мат. Сб., 1955, **37(79)**, 200-250

И. Г. Петровский и Е. М. Ландис, O числе предельных циклов уравнения dy/dx = P(x,y)/Q(x,y), где P and Q многочлены, Мат. Сб., 1957, **43(85)**, 149-168.

⁸Yu. Ilyashenko, Centennial History of Hilbert's 16th Problem, Bull. Amer. Math. Soc., 2002, **39(3)**, 301-354.

Сонглина⁹ показывает, что $H(2) \ge 4$.

В 1928 году Льенар рассмотрел¹⁰ уравнения вида

$$\ddot{x} + f(x)\dot{x} + x = 0, (4)$$

где f(x) — это многочлен чётной степени. Эти уравнения возникли в качестве обобщения знаменитого уравнения Ван Дер Поля¹¹, подробно исследовавшего случай $f(x) = x^2 - 1$. Причём обобщение было не формально-математическим, а естественно возникало из рассмотренного Льенаром нелинейного затухания колебаний в электрических цепях.

Дифференциальное уравнение второго порядка (4) эквивалентно другому дифференциальному уравнению (первого порядка), заданному векторным полем на плоскости с координатами (x, y):

$$\begin{cases} \dot{x} = y, \\ \dot{y} = -x - yf(x). \end{cases}$$
 (5)

Преобразование Льенара: $(x,y) \mapsto (x,y+I(x))$, где $I(x) = \int_0^x f(s)ds$, сопрягает систему (5) с системой (1).

Уравнения Льенара попали в поле зрения специалистов по второй части 16-й проблемы Гильберта после исследования Линса Нето, Ди Мелу и Пью 12 , показавших, что отображение Пуанкаре для системы (1), у которой степень многочлена F(x) нечётна, глобально определено и не тождественно. Также ими была решена проблема конечности для таких систем и получена верхняя оценка на число предельных циклов, рождающихся в окрестности единственной особой точки при возмущении центра по линейным членам. На основании этой оценки Линс Нето, Ди Мелу и Пью выдвинули гипотезу о том, что число предельных циклов уравнений Льенара нечётной степени n=2k+1 не превосходит k.

Необходимо отметить, что в 2007 году Дюмортье, Панаццоло и Руссари построили контрпример¹³ к гипотезе Линса Нето, Ди Мелу и

⁹Shi Songling, A concrete example of the existence of four limit cycles for plane quadratic systems, Scientia Sinica, 1980, **23(2)**, 153-158.

¹⁰ A. Liénard, Etudes des oscillations entretenues, Revue générale de l'Électricité, 1928, 23, 901-912, 946-954.

¹¹B. Van der Pol, On oscillation hysteresis in a triode generator with two degree of freedom, Phil. Mag., 1922, **6(43)**, 700-719.

¹²A. Lins Neto, W. de Melo, C. C. Pugh, *On Liénard Equations*, Proc. Symp. Geom. and Topol., Springer Lectures Notes in Mathematics, 1977, **597**, 335-357.

¹³F. Dumortier, D. Panazzolo, R. Roussarie, *More limit cycles than expected in Liénard equations*, Proc. Amer. Math. Soc., 2007, **135(6)**, 1895-1904.

Пью. Они предложили пример уравнений Льенара (1) нечётной степени n=2k+1, для которого доказали существование не менее, чем k+1 предельного цикла.

В 1998 году Смейл включил гипотезу Линса Нето, Ди Мелу и Пью в свой список 14 «Математических проблем XXI века», немного ослабив её. Он предположил, что искомое число предельных циклов допускает некоторую полиномиальную оценку (по степени n многочлена F(x)).

Первую явную оценку на число предельных циклов в уравнениях Льенара нечётной степени получили Ю. С. Ильяшенко и А. Панов в $2001 \, \mathrm{годy^{15}}$. Их оценка (тройная экспонента по n) также зависела от константы C, ограничивающей сверху модуль коэффициентов многочлена F(x) (размера компакта в пространстве параметров). Основная идея Ю. С. Ильяшенко и А. Панова состояла в том, чтобы локализовать единственное гнездо предельных циклов, продолжить отображение Пуанкаре в комплексную область и применить теорему o нулях u росте голоморфных функций 16 . Здесь же отметим, что аналогичный подход применялся Ю. С. Ильяшенко 17 к уравнениям Абеля на цилиндре и Ю. С. Ильяшенко и Либре 18 , а также А. Ю. Фишкиным 19 к квадратичным векторным полям на плоскости.

Несколько лет спустя Ю. С. Ильяшенко предложил обобщить их с А. Пановым результат на случай обобщённых уравнений Льенара и на обычные уравнения Льенара чётной степени²⁰. Та работа Ю. С. Ильяшенко и А. Панова и по сей день остаётся единственной, содержащей явные оценки на число предельных циклов в проблеме Гильберта-Смейла (за исключением результатов настоящей диссертации).

¹⁴S. Smale, *Mathematical Problems for the Next Century*, Math. Intelligencer, 1998, **20(2)**, 7-15.

¹⁵Yu. Ilyashenko, A. Panov, Some upper estimates of the number of limit cycles of planar vector fields with applications to Liénard equations, Moscow Math. J., 2001, 1(4), 583-599.

¹⁶Yu. Ilyashenko, S. Yakovenko, Counting real zeros of analytic functions satisfying linear ordinary differential equations, J. Differential Equations, 1996, 126(1), 87-105.

¹⁷Yu. Ilyashenko, *Hilbert-type numbers for Abel equations, growth and zeros of holomorphic functions*, Nonlinearity, 2000, **13(4)**, 1337-1342.

 $^{^{18}}$ Yu. Ilyashenko, J. Llibre, A restricted version of the Hilbert's 16th problem for quadratic vector fields, Moscow Math. J., принято к печати. Препринт arXiv:0910.3443v1.

¹⁹А. Ю. Фишкин О числе предельных циклов квадратичных векторных полей на плоскости, Доклады Академии Наук, 2008, 428(4), 462-464.

²⁰Yu. Ilyashenko, Some open problems in real and complex dynamical systems, Nonlinearity, 2008, **21(7)**, 101-107.

Наконец, в 2008 году Кауберг и Дюмортье показали 21 , что для уравнений Льенара чётной степени n=2k число предельных циклов большой амплитуды не превосходит k, т.е. существует такое R>0, что число предельных циклов, не содержащихся целиком в круге с центром в нуле и радиусом R, не превосходит k.

Актуальность темы вытекает из вышесказанного — значимости получения явных верхних оценок на число предельных циклов полиномиальных векторных полей на плоскости.

Цель работы. Целью работы является исследование глобальной геометрии (т.е. описание топологии фазовых портретов) уравнений Льенара чётной степени и обобщённых уравнений Льенара и следующее вслед за этим описанием получение явных верхних оценок на число предельных циклов уравнений Льенара чётной степени и обобщённых уравнений Льенара нечётного типа.

Научная новизна. Все основные результаты диссертации являются новыми.

- 1. Получена верхняя оценка на число предельных циклов уравнений Льенара чётной степени в случае, когда единственная неподвижная точка является фокусом. Это число оценивается функцией, зависящей от четырёх параметров: степени (чётной) многочлена, задающего векторное поле, максимума модулей коэффициентов этого многочлена, радиуса Кауберг-Дюмортье, вне которого расположены предельные циклы большой амплитуды, и расстояния в пространстве систем от линеаризации исходной до центра по линейным членам (та же константа отвечает и за расстояние до узла).
- 2. Получена явная верхняя оценка на число предельных циклов обобщённых уравнений Льенара нечётного типа. Это число оценивается функцией, зависящей от трёх параметров: степени многочленов, задающих векторное поле, максимума модулей коэффициентов этих многочленов и константы, отделяющей снизу от нуля значения многочлена H в мешке Бендиксона, ловящем все предельные циклы рассматриваемого векторного поля.

Методы исследования. В работе применяются методы качественной теории обыкновенных дифференциальных уравнений, теории функций комплексного переменного, а также теории особенностей векторных полей.

²¹M. Caubergh, F. Dumortier, Hilbert's 16th problem for classical Liénard equations of even degree, J. Differential Equations, 2008, 244(6), 1359-1394.

Теоретическая и практическая ценность. Работа носит теоретический характер. Полученные результаты относятся к качественной теории обыкновенных дифференциальных уравнений. Как результаты работы, так и разработанные в ней приёмы, могут быть полезны специалистам, занимающимся исследованием предельных циклов, в частности многообразием задач, связанных с 16-й проблемой Гильберта.

Апробация работы. Результаты диссертации докладывались на следующих семинарах и конференциях:

- на семинаре кафедры теории динамических систем механикоматематического факультета МГУ им. М. В. Ломоносова под руководством академика РАН Д. В. Аносова — неоднократно, с 2006 по 2008 год;
- на семинаре «Динамические системы» механико-математического факультета МГУ им. М. В. Ломоносова под руководством д. ф.-м. н., профессора Ю. С. Ильяшенко неоднократно, с 2005 по 2009 год;
- на семинаре кафедры математики факультета математики и компьютерных наук института им. Х. Вайцмана под руководством профессора С. Ю. Яковенко в 2008 г.;
- на семинаре отдела дифференциальных уравнений математического института им. В. А. Стеклова РАН под руководством академика РАН Д. В. Аносова, д. ф.-м. н., профессора Ю. С. Ильяшенко в 2009 г.;
- на международной конференции «Дифференциальные уравнения и смежные вопросы», посвящённой памяти И. Г. Петровского (г. Москва, 2007 г.);
- на международной конференции «Lyapunov Memorial Conference» (г. Харьков, 2007 г.);
- на Воронежской зимней математической школе С. Г. Крейна 2008 (г. Воронеж, 2008 г.);
- на международной конференции «Дифференциальные уравнения и топология», посвящённой 100-летию со дня рождения Л. С. Понтрягина (г. Москва, 2008 г.);
- на девятой Крымской международной математической школе «Метод функций Ляпунова и его приложения» (г. Алушта, 2008 г.)
- на седьмой молодёжной научной школе-конференции «Лобачев-

ские чтения — 2008» (г. Казань, 2008 г.);

- на Добрушинской международной конференции (г. Москва, 2009 г.);
- на второй международной научной конференции «Математическое моделирование и дифференциальные уравнения» (г. Минск, 2009 г.);
- на Украинском математическом конгрессе 2009, посвящённом столетнему юбилею Н. Н. Боголюбова (г. Киев, 2009 г.);
- на международной школе-конференции «International School and Conference on Foliations, Dynamical Systems, Singularity Theory and Perverse Sheaves» (г. Самарканд, 2009 г.)
- на международной конференции «Topology, Geometry and Dynamics: Rokhlin Memorial» (г. Санкт-Петербург, 2010 г.);

Публикации. Основные результаты диссертации опубликованы в 3 статьях (одна из списка ВАК) и в 9 тезисах конференций. Полный список приведён в конце автореферата.

Структура работы. Работа состоит из введения, двух глав и списка литературы, содержащего 23 наименования. Общий объем диссертации — 62 страницы.

Краткое содержание диссертации

Работа посвящена получению явных верхних оценок на число предельных циклов уравнений Льенара чётной степени и обобщённых уравнений Льенара нечётного типа.

Во введении даётся исторический обзор, посвящённый кругу вопросу, возникшему из второй части 16-й проблемы Γ ильберта, и прежде всего проблеме Γ ильберта-Смейла.

- 1 глава посвящена уравнениям Льенара чётной степени, их глобальной геометрии и получению верхних оценок на число предельных циклов в случае, когда единственная особая точка является фокусом по линейным членам.
- **2 глава** посвящена обобщённым уравнениям Льенара, их глобальной геометрии и получению явных верхних оценок на число предельных циклов для обобщённых уравнений Льенара нечётного типа.

Основные результаты диссертации — это теоремы 4 и 5, сформулированные ниже, их доказательству посвящены главы 1 и 2 соответственно.

Для получения искомых оценок мы применяем стратегию, предложенную Ю. С. Ильяшенко. Она заключается в следующем: сначала локализуются гнёзда предельных циклов из чисто геометрических соображений (качественного анализа векторного поля). Далее, для каждого гнезда строится мешок Бендиксона, оснащённый отрезком D трансверсали, пересекающим все предельные циклы этого гнезда. Таким образом, предельные циклы рассматриваемого гнезда — это неподвижные точки отображения Пуанкаре P(x) на D, т.е. нули функции невязки Q(x) = P(x) - x. Затем отображение Q(x) аналитически продолжается в комплексную окрестность трансверсали D, после чего оказывается применимой теорема о нулях и росте голоморфных функций. Мы будем пользоваться версией этой теоремы, приспособленной к оценке числа предельных циклов.

Введём некоторые обозначения: $U^{\varepsilon}(K) - \varepsilon$ -окрестность множества K в произвольном метрическом пространстве, |D| - длина отрезка D. Если отрезок D' содержит отрезок D, то через $d(D,\partial D')$ мы обозначим хаусдорфово расстояние между D и $\partial D'$. В нашей работе метрики в $\mathbb C$ и $\mathbb C^2$ задаются следующим образом:

$$\begin{split} \rho(z,w) &= |z-w|, & z,w \in \mathbb{C}; \\ \rho(z,w) &= \max(|z_1-w_1|,|z_2-w_2|), & z,w \in \mathbb{C}^2. \end{split}$$

Теорема 1 (Ю. С. Ильяшенко, С. Ю. Яковенко, 1996^{22}). Пусть $\Gamma-$ трансверсаль κ аналитическому векторному полю v на \mathbb{R}^2 , $D \subset \Gamma-$ отрезок. Пусть P- отображение Пуанкаре для системы

$$\dot{x} = v(x), \qquad x \in \mathbb{R}^2, \tag{6}$$

определённое на D, и $D \subset D' = P(D)$. Предположим, что P может быть аналитически продолжено в $U = U^{\varepsilon}(D) \subset \mathbb{C}$, $\varepsilon < 1$ и $P(U) \subset U^1(D') \subset \mathbb{C}$. Тогда #LC(D) — число предельных циклов векторного поля v, пересекающих D, допускает следующую верхнюю оценку:

$$#LC(D) \le e^{2|D|\varepsilon^{-1}} \log \frac{|D'| + 2}{d(D, \partial D')}.$$
 (7)

To же верно, если P заменить на P^{-1} .

Для применения теоремы 1 необходимо оценить размер комплексной окрестности ε , в которую аналитически продолжается отображение Пуанкаре. Мы применяем для этого следующую теорему.

²²Yu. Ilyashenko, S. Yakovenko, Counting real zeros of analytic functions satisfying linear ordinary differential equations, J. Differential Equations, 1996, **126(1)**, 87-105.

Теорема 2 (Ю. С. Ильяшенко, А. Панов, 2001^{23}). Пусть Γ — трансверсаль к аналитическому векторному полю v на \mathbb{R}^2 , $D \subset \Gamma$ — отрезок. Пусть $P: D \to D'$ — это отображение Пуанкаре для системы (6). Для каждого $x \in D$ обозначим через $\varphi_{x,P(x)}$ дугу фазовой кривой системы (6), соединяющую точки x и P(x). Пусть

$$\Omega(D) = \bigcup_{x \in D} \varphi_{x,P(x)},$$

u

$$1 \le \mu = \max_{U^2(\Omega)} |v|, \qquad L = 2\mu.$$
 (8)

Пусть t(x) — время движения вдоль траектории $\varphi_{x,P(x)}$, и

$$T_{\max} = \max_{x \in D} t(x), \qquad T = T_{\max} + 1.$$

Положим

$$\delta \le e^{-LT}, \qquad \lambda = \sqrt{\delta}, \qquad \varepsilon = \delta^2.$$
 (9)

Предположим, что (z_1,z_2) — координаты в \mathbb{C}^2 , $^{\mathbb{C}}\Gamma=\{z_1=0\}$, $v=(v_1,v_2)$. Пусть $K\subset D$ — отрезок, K'=P(K), $\Pi_{\delta}=U^{\delta}(0)\times U^{\lambda}(K')\subset \mathbb{C}^2$.

Предположим, что

$$\left| \frac{v_2}{v_1} \right| \le \mu \ \ 6 \ \Pi_{\delta}. \tag{10}$$

Тогда отображение Пуанкаре $P:K\to K'$ может быть аналитически продолжено в $U^\varepsilon(K)\subset {}^{\mathbb C}\Gamma$ и $P(U^\varepsilon(K))\subset U^1(K')$.

У уравнений Льенара чётной степени, в отличие от нечётной, могут быть предельные циклы большой амплитуды.

Но их может быть не слишком много, как показывает следующая теорема.

Теорема 3 (Кауберг, Дюмортье, 2008^{24}). Пусть K — это компактное множество многочленов степени n = 2l, тогда существует такое

²³Yu. Ilyashenko, A. Panov, Some upper estimates of the number of limit cycles of planar vector fields with applications to Liénard equations, Moscow Math. J., 2001, **1(4)**, 583-599.

²⁴M. Caubergh, F. Dumortier, Hilbert's 16th problem for classical Liénard equations of even degree, J. Differential Equations, 2008, 244(6), 1359-1394.

R>0, что для любого уравнения Льенара (1), задающий которое многочлен F принадлежит K, не более, чем l предельных циклов могут иметь непустое пересечение c $\mathbb{R}^2\backslash B_R$.

Здесь и далее B_R обозначает круг с центром в начале координат и радиусом R.

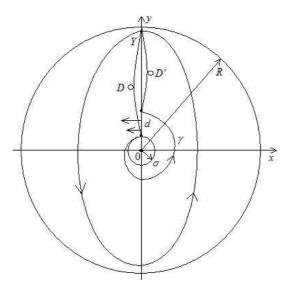


Рис. 1. Фазовый портрет уравнения Льенара чётной степени внутри круга B_R .

Мы применяем теорему о нулях и росте для оценки числа предельных циклов уравнений внутри круга B_R , см. рис. 1.

Без ограничения общности можно считать, что многочлен F, задающий уравнения Льенара чётной степени n имеет вид: $F(x) = x^n + \sum_{i=1}^{n-1} a_i x^i$.

Обозначим
$$C = \max_{i \in [1,n]} |a_i|$$
.

Единственная особая точка системы (1) (начало координат) будет фокусом по линейным членам при $0 < |a_1| < 2$.

Именно в случае фокуса поведение решений в окрестности особенности легко контролируется, что позволяет оценить рост отображения Пуанкаре.

Основной результат главы 1 заключается в следующей верхней оценке на число предельных циклов.

Теорема 4 (Г. К., 2008). Число $L(n,C,a_1,R)$ предельных циклов уравнения Льенара (1) чётной степени п в случае, когда $C \geq 4$ и $0 < |a_1| < 2$, допускает следующую верхнюю оценку:

$$L(n, C, a_1, R) < \exp\left(\exp\left(\frac{38400C^4n^2R^{n+1}(R+2)^{n+1}}{|a_1|^3(2-|a_1|)^2}e^{\frac{16\pi}{2-|a_1|}}\right)\right).$$

Перейдём теперь к обобщённым уравнениям Льенара.

Обозначим через I(x) компоненту рациональной кривой, заданной уравнением $y=x\frac{G(x)}{H(x)}$, содержащую начало координат (т.е. вертикальную изоклину, проходящую через ноль).

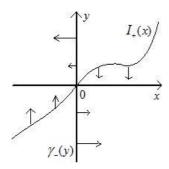


Рис. 2. Отсутствие предельных циклов у системы (2) в случае H(0) < 0.

Без ограничения общности можно считать, что в системе (2) выполнено: H(0) > 0. Действительно, если $H(0) \le 0$, то у системы (2) нет предельных циклов. См. рис. 2.

Уравнения нечётного типа выделяются следующим требованием: множество значений функции I(x) должно быть всей осью 0Y. Неформально говоря это означает, что положительная и отрицательная ветви вертикальной изоклины «уходят на разные бесконечности». В противном случае говорят, что система (2) чётного типа.

Геометрическое различие между чётным и нечётным типом можно пояснить ещё и следующим образом — для уравнений нечётного типа предельных циклов большой амплитуды не существует, а у чётного типа они есть, но никаких оценок на их число (аналогичных результату Кауберг и Дюмортье) не существует.

Основной результат главы 2 заключается в следующей верхней оценке на число предельных циклов.

Теорема 5. Пусть $G(x)=x^{n-1}+\sum\limits_{j=0}^{n-2}a_jx^j,\ H(x)=\sum\limits_{j=0}^{n-1}b_jx^j.$ Пред-положим, что все коэффициенты a_j и b_j не превосходят по модулю некоторой константы C>100.

Наложим на систему (2) следующее условие общности положения:

многочлены
$$G(x)$$
 и $H(x)$ не имеют общих нулей на \mathbb{R} . (11)

Тогда для системы (2) нечётного типа при условии (11) существует полоса $\Pi = \{(x,y) \in \mathbb{R}^2 | x_- < x < x_+ \}$ (здесь x_- и x_+ строятся явно по многочленам F(x) и H(x), подробнее см. ниже), содержащая все предельные циклы системы (2), в которой многочлен H(x) отделён от нуля некоторой константой $\theta \in (0, \frac{1}{2})$:

$$\forall x \in [x_-, x_+]: \qquad H(x) \ge \theta.$$

Обозначим через $\#LC(n,C,\theta)$ число предельных циклов системы (2) нечётного типа, на которую наложено условие (11). Тогда имеет место оценка:

$$\#LC(n, C, \theta) \le \exp\left(\exp\left(\frac{8C^{6n^2+12n+11}}{\theta^{6n^2+13n+8}}\right)\right).$$

Отрезок $[x_-,x_+]$ определяется по-разному в следующих четырёх случаях, потому что для системы (2) нечётного типа при условии (11) существует ровно 4 принципиально различных типа глобальной геометрии:

- 1. Многочлен H(x) не имеет вещественных корней и n нечётно.
- 2. Все корни многочлена H(x) отрицательны.
- 3. Все корни многочлена H(x) положительны и n- нечётно.
- 4. Многочлен H(x) имеет как положительные, так и отрицательные корни.

Пусть r_- - наибольший из отрицательных корней многочлена H(x), а r_+ - наименьший из его положительных корней. Тогда требование

нечётности типа влечёт следующие неравенства на G: $G(r_-) > 0$ в случае 2, $G(r_+) < 0$ в случае 3, $G(r_-)$ и $G(r_+)$ разных знаков в случае 4.

Отрезок $[x_-,x_+]$ определяется следующим образом. Положим $S_-=\max(2C|r_-|^n,2^{n+1}C),\,S_+=\max(2Cr_+^n,2^{n+1}C).$ Тогда x_- — это самый левый корень уравнения $|I(x)|=S_-$ на отрезке $[r_-,0]$ в случаях 2 и 4, а x_+ — это самый правый корень уравнения $|I(x)|=S_+$ на отрезке $[0,r_+,]$ в случаях 3 и 4. В случаях 1 и 2: $x_+=16C^2$, в случаях 1 и 3: $x_-=-16C^2$.

Фазовые портреты обобщённых уравнений Льенара (как нечётного, так и чётного типов) изображены на рис. 3–5.

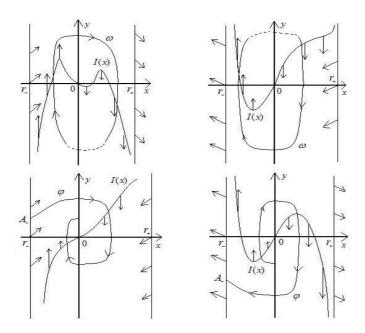


Рис. 3. Глобальная геометрия обобщённых уравнений Льенара в случае обращения многочлена H(x) в ноль по обе стороны от нуля, H(0)>0. Сверху — чётный тип: слева $G(r_-)>0$ и $G(r_+)>0$, а справа $G(r_-)<0$ и $G(r_+)<0$; снизу — нечётный тип: слева $G(r_-)>0$ и $G(r_+)<0$, а справа $G(r_-)<0$ и $G(r_+)>0$.

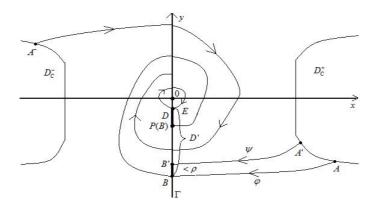


Рис. 4. Векторное поле, заданное системой (2), в случае положительности многочлена H(x) на всей оси 0x (нечётный тип).

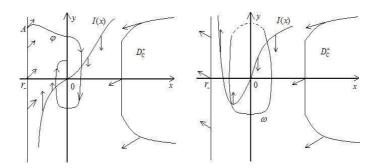


Рис. 5. Векторное поле, заданное системой (2), в случае, когда многочлен H(x) обращается в ноль только слева от 0, H(0)>0. Слева: $G(r_-)>0$ — нечётный тип, а справа: $G(r_-)<0$ — чётный тип.

Благодарности. Автор благодарен своим научным руководителям, академику РАН Дмитрию Викторовичу Аносову и профессору Юлию Сергеевичу Ильяшенко, за постановку задач, плодотворные обсуждения и создание всех условий, способствующих научной деятельности.

Статьи автора по теме диссертации.

- [1] Г. Колюцкий Верхние оценки на число предельных циклов в обобщённых уравнениях Льенара нечётного типа, Доклады Академии Наук, **431**:1, 2010, стр. 12-15.
- [2] Г. Колюцкий Некоторые верхние оценки на число предельных циклов в обобщённых уравнениях Льенара нечётного типа, депонировано в ВИНИТИ РАН, 2009, №667-В2009, стр. 1-44.
- [3] Г. Колюцкий Some Upper Estimates on the Number of Limit Cycles of Even Degree Lienard Equations in the Focus Case, Труды Добрушинской международной конференции, 2009, стр. 77-82.

Тезисы докладов на конференциях автора по теме диссертации.

- [4] Г. Колюцкий *The Hilbert-Smale Problem: Some Upper Estimates on the Number of Limit Cycles*, Тезисы докладов международной конференции «Тороlogy, Geometry and Dynamics: Rokhlin Memorial», Санкт-Петербург, 2010, стр. 50-51.
- [5] Г. Колюцкий The Upper Estimate on the Number of Limit Cycles of Even Degree Liénard Equations in the Focus Case, Тезисы докладов международной конференции «Математическое моделирование и дифференциальные уравнения», Минск, 2009, стр. 183-184.
- [6] Г. Колюцкий Некоторые верхние оценки в проблеме Гильберта-Смейла, Труды Математического центра имени Н. И. Лобачевского, 37, Лобачевские чтения — 2008, Материалы седьмой молодёжной научной школы-конференции, Казань, 2008, стр. 85-86.
- [7] Г. Колюцкий Верхние оценки на число предельных циклов в задаче Гильберта-Смейла, Тезисы докладов международной математической школы «Метод функций Ляпунова и его приложения», Алушта, 2008, стр. 85-86.

- [8] Г. Колюцкий Some Upper Estimates of the Number of Limit Cycles in the Hilbert-Smale Problem, Тезисы докладов международной конференции «Дифференциальные и функционально-дифференциальные уравнения», Москва, 2008, стр. 35-36.
- [9] Г. Колюцкий *The Hilbert-Smale problem: new horizons*, Тезисы докладов международной конференции «Дифференциальные уравнения и топология», Москва, 2008, стр. 51.
- [10] Г. Колюцкий *Предельные циклы в обобщённых уравнениях Льенара* нечётного типа, Тезисы докладов Воронежской зимней математической школы С. Г. Крейна 2008, Воронеж, 2008, стр. 75.
- [11] Г. Колюцкий Global geometry of generalized Lienard equations and limit cycles, Тезисы докладов международной конференции «Lyapunov Memorial Conference», Харьков, 2007, стр. 78-79.
- [12] Г. Колюцкий Global Geometry of Generalized Lienard Equations and Limit Cycles, Тезисы докладов международной конференции «Дифференциальные уравнения и смежные вопросы», Москва, 2007, стр. 146-147.