МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

На правах рукописи УДК 517.538.5+517.54+517.57

Мазалов Максим Яковлевич

Критерии равномерной приближаемости в классах гармонических и полианалитических функций

01.01.01 — вещественный, комплексный и функциональный анализ

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени доктора физико-математических наук

Работа выполнена на кафедре теории функций и функционального анализа механико-математического факультета Московского государственного университета имени М.В. Ломоносова.

Научный консультант: доктор физико-математических наук,

профессор Парамонов Петр Владимирович

Официальные оппоненты: Буслаев Виктор Иванович,

доктор физико-математических наук,

старший научный сотрудник, Математический институт имени

В.А. Стеклова РАН, ведущий научный сотрудник отдела комплексного анализа

Колесников Сергей Викторович, доктор физико-математических наук, доцент, Ивановский государственный энергетический университет,

профессор кафедры высшей математики

Широков Николай Алексеевич,

доктор физико-математических наук, профессор,

Санкт-Петербургский государственный

университет, математико-механический факультет, заведующий кафедрой математического анализа

Ведущая организация: Институт прикладной математики

имени М.В. Келдыша РАН

Защита диссертации состоится 20 сентября 2013 года в 16 часов 45 минут на заседании диссертационного совета Д 501.001.85 при МГУ имени М.В. Ломоносова по адресу: 119991, Российская Федерация, Москва, ГСП-1, Ленинские горы, д.1, Московский государственный университет имени М. В. Ломоносова, механико-математический факультет, аудитория 16-24.

С диссертацией можно ознакомиться в Фундаментальной библиотеке МГУ имени М.В. Ломоносова (Ломоносовский пр-т, 27, сектор A, 8-й этаж).

Автореферат разослан "___" 2013 года.

Ученый секретарь диссертационного совета Д 501.001.85 при МГУ, доктор физико-математических наук, профессор

Общая характеристика работы

Актуальность темы. В работе изучаются равномерные приближения в классах гармонических и полианалитических функций на компактах евклидова пространства \mathbb{R}^d , $d \geqslant 2$. Начнем с постановки основных задач. Далее L — дифференциальный оператор в \mathbb{R}^d с постоянными комплексными коэффициентами, символ которого — однородный эллиптический многочлен. Примеры таких операторов — Δ^n и $\overline{\partial}^n$, где $n \in \mathbb{N}$, Δ — оператор Лапласа в \mathbb{R}^d , $\overline{\partial}$ — оператор Коши-Римана на комплексной плоскости \mathbb{C} . Напомним 1 , что полианалитическими функциями порядка n (кратко — n-аналитическими, при n=2 — бианалитическими) называются решения уравнения $\overline{\partial}^n f = 0$ на открытых подмножествах \mathbb{C} .

Пусть X — компакт в \mathbb{R}^d , X^o — множество всех внутренних точек X, C(X) — пространство непрерывных функций на X с равномерной нормой; h(X,L) — класс функций $f\in C(X)$, таких, что Lf=0 в X^o ; H(X,L) — замыкание в C(X) множества функций F, каждая из которых удовлетворяет уравнению LF=0 в (своей) окрестности X. Ясно (в силу эллиптичности оператора L), что $H(X,L)\subset h(X,L)$. Естественно возникают следующие две задачи (первая из них более общая).

Задача A1 (о приближении индивидуальных функций). Для заданных компакта X и оператора L найти все функции из H(X,L).

Задача A2 (о равенстве классов функций). Для заданного оператора L найти все компакты X, такие, что H(X,L) = h(X,L).

Для аналитических функций ($L=\overline{\partial}$) классические результаты о равномерных приближениях были получены М. А. Лаврентьевым, М. В. Келдышем, С. Н. Мергеляном, а полное решение задач А1 и А2 было дано в 60-е годы прошлого века А. Г. Витушкиным (см. обзор²).

Без ограничения общности можем считать, что функция $f \in h(X, \overline{\partial})$ непрерывна на всей плоскости \mathbb{C} и финитна; пусть ω_f — модуль непрерывности f в \mathbb{C} . А. Г. Витушкиным установлен следующий критерий³.

 $^{^1}$ Балк. М. Б. Полианалитические функции и их обобщения // Итоги науки и техники. Сер. Совр. проб. матем. Фундам. напр. М.: ВИНИТИ. 1991. Т. 85, С. 187–246.

 $^{^2}$ Мельников М. С., Синанян С. О. Вопросы теории приближений функций одного комплексного переменного // Итоги науки и техн. Сер. Соврем. пробл. матем. М.: ВИНИТИ. 1975. Т. 4. С. 143-250.

 $^{^3}$ Витушкин А.Г. Аналитическая емкость множеств в задачах теории приближений // УМН. 1967. Т. 22. №6, С. 141–199 (см. гл. 4, §2, Теорема 2).

Теорема 1В. Условие $f \in H(X, \overline{\partial})$ выполнено тогда и только тогда, когда существует постоянная A > 0, такая, что для любого открытого квадрата Q с границей ∂Q и длиной стороны δ выполнена оценка

$$\left| \int_{\partial Q} f(z) dz \right| \leqslant A\omega_f(\delta) \alpha(Q \setminus X), \tag{1}$$

 $\epsilon \partial e \ \alpha(\cdot) - (непрерывная)$ аналитическая емкость.

Заметим, что вместо квадратов в теореме 1В можно, в частности, взять и открытые круги — результат П. В. Парамонова 4 .

Рассмотрим задачу А
2. А. Г. Витушкиным был установлен следующий критерий
 $^5.$

Теорема 2В. Равенство классов $h(X, \overline{\partial}) = H(X, \overline{\partial})$ имеет место тогда и только тогда, когда для любого ограниченного открытого множества D выполнено равенство

$$\alpha(D \setminus X^o) = \alpha(D \setminus X). \tag{2}$$

Для решения задач A1 и A2 (в случае $L=\overline{\partial}$) A. Г. Витушкин разработал конструктивную схему приближения, состоящую в разделении особенностей и приближении функции по частям. Именно, приближаемая функция с помощью подходящего разбиения единицы представляется в виде конечной суммы локализаций — функций с локализованными особенностями, а затем строятся приближающие функции, уравнивающие у локализаций необходимое число коэффициентов ряда Лорана.

В дальнейшем схема А. Г. Витушкина была усовершенствована. Так, Р. Харви и Дж. Полкинг предложили⁶ удобную конструкцию разбиений единицы, А. Г. О'Фаррелл, Т. Багби, Дж. Вердера, Дж. Матеу, Дж. Оробич и другие упростили концепцию рядов Лорана для решений эллиптических

 $^{^4}$ Парамонов П.В. Некоторые новые критерии равномерной приближаемости функций рациональными дробями // Матем. сборник. 1995. Т. 186. №9, С. 97–112 (см. §2).

 $^{^5}$ Витушкин А.Г. Аналитическая емкость множеств в задачах теории приближений // УМН. 1967. Т. 22. №6, С. 141–199 (см. гл. 5 §3, Теорема 1).

⁶Harvey R., Polking J. Removable singularities of solutions of linear partial differential equations // Acta Math. 1970. V. 125, P. 39–56 (cm. Lemma 3.1).

уравнений с помощью теории распределений, П. В. Парамонов предложил метод группировки индексов, при котором лорановский коэффициент уравнивается не у отдельных локализаций, а у специально построенных "групп локализаций". В частности, все это позволило установить критерии приближаемости в классах аналитических и гармонических функций в пространствах Липшица C^m , m>0 (кроме приближения индивидуальных гармонических функций при m<1).

Отметим, что указанных усовершенствований схемы А. Г. Витушкина оказалось недостаточно для построения техники равномерных приближений в случае операторов L порядка выше первого, в частности, для гармонических и полианалитических функций (при n>1). Основная причина в следующем: чем выше порядок оператора, тем больше лорановских коэффициентов локализаций приходится уравнивать (как по количеству, так и по порядку).

Задача A2 для гармонических функций была решена в 40-е годы прошлого века независимо М. В. Келдышем⁸ и Дж. Дени⁹ методами классической теории потенциала. Имеет место следующий критерий.

Теорема Д–К. Равенство $h(X, \Delta) = H(X, \Delta)$ выполнено тогда и только тогда, когда дополнение к X и дополнение к X^o разрежены в одних и тех же граничных точках X.

В силу критерия Н. Винера 10 условие разреженности означает следующее (ограничимся случаем пространства \mathbb{R}^3). Пусть x — граничная точка $X, n \in \mathbb{N}$, Cap_n — гармоническая емкость множества точек дополнения к X, расстояния от которых до x находятся в пределах $[2^{-n+1},2^{-n}]$, тогда разреженность дополнения к X в точке x равносильна сходимости ряда $\sum_{n=1}^{\infty} 2^n \operatorname{Cap}_n$. Точки разреженности дополнения к X^o определяются аналогично.

Заметим, что из критерия $\mathbf{\mathcal{L}}$ - \mathbf{K} следует (например, 11) критерий

 $^{^7\}Pi$ арамонов П.В. О гармонических приближениях в C^1 -норме // Матем. сборник. 1990. Т. 181. №10, С. 1341—1365.

⁸Келдыш М. В. О разрешимости и устойчивости задачи Дирихле // УМН. 1941. №8, С. 171–231.

⁹Deny J. Systèmes totaux de functions harmoniques // Ann. Inst. Fourier. 1949. V. 1, P. 103–113.

 $^{^{10}}$ Ландкоф Н. С. Основы современной теории потенциала. М.: Наука, 1966 (см. теоремы 5.2 и 5.10).

¹¹Labrèche M. De L'approximation harmonique uniforme. Thèse. 1982. Université de Montréal.

равенства классов $h(X, \Delta) = H(X, \Delta)$, аналогичный (2):

$$h(X, \Delta) = H(X, \Delta) \iff \operatorname{Cap}(D \setminus X^{o}) = \operatorname{Cap}(D \setminus X), \tag{3}$$

где D — произвольное ограниченное открытое множество, ${
m Cap}(\cdot)$ — гармоническая емкость.

Задача A1 для гармонических функций оказалась сложнее, чем для аналитических. Имеет место следующий результат А. Дебьярда и Б. Гаво¹²:

функция f принадлежит классу $H(X,\Delta)$ тогда и только тогда, когда она непрерывна на компакте X и является тонко гармонической (finely harmonic) в тонкой внутренности (fine interior) X.

Заметим, что тонкая внутренность X есть объединение X^o и множества точек границы X, в которых дополнение к X разрежено. Важно отметить, что условие тонкой гармоничности существенно сложнее для проверки, чем, например, (1), так как является качественным, причем нужно проверять, совпадает ли функция f со своим интегральным представлением по гармонической мере.

Отправной точкой настоящего исследования послужила совокупность следующих проблем, отмеченных, например, Дж. Вердерой¹³.

- 1. Отсутствие полных результатов в задачах равномерного приближения для операторов, отличных от $\overline{\partial}$ и Δ .
- 2. Отсутствие единого подхода к доказательствам критериев (2) и (3) в общем случае, несмотря на родственные формулировки. 14

Отсюда, в частности, вытекают следующие задачи:

- 1. Для гармонических функций получить естественный аналог критерия (1), по крайней мере, при d=3 (А. Г. О'Фаррелл¹⁵).
- 2. Установить, верно ли равенство $h(X, \overline{\partial}^2) = H(X, \overline{\partial}^2)$ для произвольного компакта $X \subset \mathbb{C}$ (Дж. Вердера¹⁶).

 $^{^{12}}$ Debiard A., Gaveau B. Potentiel fin et algèbre de fonctions analytiques // J. Funct. Anal. 1974. V. 16, P. 289–304.

 $^{^{13}}$ Verdera J. Removability, capacity and approximation // NATO Adv. Sci. Int. Ser. C Math. Phys. Sci., 439. Kluwer. Dordrecht. 1994, P. 419–473 (cm. Ch. 5, Sect. 1).

 $^{^{14}}$ В случае $X^0=\emptyset$ критерий равенства $H(X,\Delta)=C(X)$ конструктивно получил А. А. Гончар (Гончар А. А. О равномерном приближении непрерывных функций гармоническими // Изв. АН СССР. 1963. №27, С. 1239–1250).

 $^{^{15} \}rm Lecture$ notes in mathematics. V. 1574. Problem book 3. Part 2. Ed. by V. P. Havin and N. K. Nikol'skiy. Springer-Verlag, 1994, Problem 12.15.

 $^{^{16}}$ там же, Problem 12.16.

Предположение об отсутствии каких-либо ограничений на компакт объясняется тем, что L_{∞} -емкость точки 17 положительна в силу (локальной) ограниченности фундаментального решения $\pi^{-1}\frac{\overline{z}}{z}$ оператора $\overline{\partial}^2$; тем самым равенство $h(X,\overline{\partial}^2)=H(X,\overline{\partial}^2)$ для произвольного компакта X представляет собой естественный аналог (2) и (3).

Следующими авторами равенство $h(X, \overline{\partial}^2) = H(X, \overline{\partial}^2)$ было установлено при дополнительных ограничениях.

- Т. Трент и Дж. Ванг 18 компакт X нигде не плотен.
- X. Кармона 19 внутренняя граница X пуста.

Дж. Вердера 20 — компакт X произволен, но модуль непрерывности приближаемой функции удовлетворяет условию Дини.

В развитие сформулированной выше задачи Дж. Вердеры естественно возникает следующая задача.

Задача А3. Найти операторы L (однородные, эллиптические, с постоянными комплексными коэффициентами), такие, что для произвольного компакта X имеет место равенство H(X,L) = h(X,L).

Отметим два естественных необходимых условия (I) и (II).

- (I) Фундаментальное решение оператора L локально ограничено (в противном случае L_{∞} -емкость точки равна нулю, и пример отсутствия равномерного приближения строится аналогично известному примеру Е. П. Долженко для аналитических функций²¹).
- (II) Размерность d пространства равна двум (при $d\geqslant 3$ для любого оператора L существует компакт X, такой, что $H(X,L)\neq h(X,L)^{22}$).

Таким образом, задача А3 по существу сводится к следующей.

Задача АЗ'. Установить, верно ли, что при выполнении условий (I) и (II) для любого компакта X имеет место равенство H(X,L) = h(X,L).

 $^{^{17}\}mathrm{Harvey~R.},$ Polking J. A notion of capacity which characterizes removable singularities // Trans. Amer. Math. Soc. 1972. V. 169, P. 183–195.

 $^{^{18}\}mathrm{Trent}$ T., Wang J.L. Uniform approximation by rational modules on nowhere dense sets // Proc. Amer. Math. Soc. 1981. V. 81, P. 62–64.

 $^{^{19}\}mathrm{Carmona~J.J.}$ Mergelyan approximation theorem for rational modules // J. Approx. Theory. 1985. V. 44, P. 113–126.

 $^{^{20} \}rm Verdera~J.$ On the uniform approximation problem for the square of the Cauchy-Riemann operator // Pacific J. of Math. 1993. V. 159. P. 379–396.

 $^{^{21}}$ Долженко Е.П. О приближении на замкнутых областях и о нуль-множествах // ДАН. 1962. Т. 143. No 4, C. 771–774.

²²Gauthier P., Tarkhanov N. N. Degenerate cases of uniform approximation by systems with surjective symbols // Canadian Journ. Math. 1993. V. 45. No. 4., P. 740–757 (cm. Theorem 8.2).

Цели исследования вытекают из поставленных выше задач.

- 1. Провести дальнейшее усовершенствование конструктивной схемы приближений А. Г. Витушкина так, чтобы ее можно было применить к задачам равномерного приближения, по крайней мере, для гармонических функций и полианалитических функций порядка $n \geqslant 2$.
- 2. Изучить задачи А. Г. О'Фаррелла и Дж. Вердеры, сформулированные выше, а также задачу A3'.
- 3. Изучить вопрос о приближении индивидуальных гармонических функций в пространствах Липшица C^m , 0 < m < 1.

Научная новизна. Результаты, выносимые на защиту.

Все результаты 1–5, выносимые на защиту, являются новыми и получены автором лично.

1. Получен следующий критерий.

Пусть L — дифференциальный оператор в \mathbb{R}^2 с постоянными комплексными коэффициентами, символ которого — однородный эллиптический многочлен. Если фундаментальное решение оператора L локально ограничено, то для любого компакта X всякая функция f, непрерывная на X и удовлетворяющая уравнению Lf=0 внутри X, равномерно приближается на X с любой степенью точности функциями, удовлетворяющими тому же уравнению в окрестностях X. Этот результат, в частности, при любом $n \geqslant 2$ применим к классу полианалитических функций порядка n, причем при n=2 подтверждена гипотеза, сформулированная в середине 80-х годов Дж. Вердерой. 24

- **2**. Получен критерий равномерной приближаемости гармоническими функциями на компактах в \mathbb{R}^3 для индивидуальных функций в терминах гармонической емкости Н. Винера. ²⁵ Соответствующая задача, известная с начала 70-х годов, была поставлена А.Г. О'Фарреллом.
- 3. Получен аналогичный критерий приближаемости индивидуальных функций гармоническими в нормах пространств Липшица C^m , 0 < m < 1, в терминах обхвата по Хаусдорфу порядка 1 + m.²⁶

 $^{^{23}}$ Основной результат статьи [1], завершающий решение задачи А3; в диссертации — Теорема 1.3.

 $^{^{24}}$ Основной результат статьи [2]; в диссертации — Теорема 1.2.

 $^{^{25}}$ Основной результат статьи [3]; в диссертации — Теорема 3.1.

 $^{^{26}}$ Основной результат статьи [4]; в диссертации — Теорема 4.1. В совокупности с результатами А. Г. О'Фаррелла, Дж. Вердеры, П. В. Парамонова получено решение общей задачи о приближениях индивидуальных функций гармоническими функциями в пространствах $C^m(X)$ при всех $m\geqslant 0$.

- 4. В задаче о равномерной аппроксимации функций решениями уравнения Lf=0 (где L произвольный однородный эллиптический оператор в \mathbb{R}^d , $d\geqslant 2$, с постоянными комплексными коэффициентами) получен технический результат общего характера, ²⁷ позволяющий снизить на 1 порядок требование к асимптотике на бесконечности у разностей между исходными и приближающими функциями, по сравнению со схемой приближений, предложенной А.Г. Витушкиным в 60-е годы. Это базовый результат, используемый в доказательствах сформулированных выше критериев.
- 5. Доказано, что для любой жордановой области G пространства \mathbb{R}^2 с границей Дини-Ляпунова множество граничных значений функций, полианалитических в G и непрерывных вплоть до границы Γ , имеет первую категорию в пространстве $C(\Gamma)$. Построена жорданова область с липшицевой границей, для которой задача Дирихле в классе бианалитических функций разрешима при любой граничной функции f из $C(\Gamma)$. 28

Методы исследования.

В работе применяются методы функционального анализа, классической теории потенциала, теории сингулярных интегралов (в частности, на липшицевых кривых и поверхностях), теории приближений аналитическими функциями. Автором разработаны новые геометрические конструкции для оценки лорановских коэффициентов локализаций приближаемой функции.

Теоретическая и практическая ценность.

Работа носит теоретический характер. Ее результаты могут быть использованы в задачах приближения функций решениями эллиптических уравнений в различных функциональных пространствах. Так как метод приближения в целом конструктивен, результаты могут быть использованы в задачах моделирования соответствующих векторных полей (в теории упругости, электростатике, геодезии).

Апробация работы.

Основные результаты диссертации докладывались:

 $^{^{27}}$ [1, Теорема 2]; в диссертации — Теорема 1.4.

 $^{^{28}}$ Основной результат статьи [5]; в диссертации — Теорема 2.1 и Пример 2.1.

на механико-математическом факультете МГУ им. М. В. Ломоносова — на семинаре по теории функций действительного переменного под руководством академика РАН Б. С. Кашина, профессоров Б. И. Голубова и М. И. Дьяченко, члена-корреспондента РАН С. В. Конягина (2008), на семинаре по многомерному комплексному анализу под руководством академика РАН А. Г. Витушкина (2002), под руководством члена-корреспондента РАН Е. М. Чирки, члена-корреспондента РАН С. Ю. Немировского, профессоров В. К. Белошапки и А. Г. Сергеева (2008, 2009), на семинаре по теории приближений и граничным свойствам функций под руководством профессора Е. П. Долженко (неоднократно, 1997–2012), на семинаре по теории приближений под руководством профессора П. В. Парамонова (неоднократно, 1997–2012);

в МИАН им. В. А. Стеклова — на семинаре по комплексному анализу под руководством академика РАН А. А. Гончара, члена-корреспондента РАН Е. М. Чирки и профессора А. И. Аптекарева (2007, 2008), под руководством члена-корреспондента РАН Е. М. Чирки и профессора А. И. Аптекарева (2013);

в ПОМИ РАН — на Санкт-Петербургском семинаре по теории операторов и теории функций под руководством члена-корреспондента РАН С. В. Кислякова и профессора В. П. Хавина (2009–2012);

на международной конференции, посвященной 70-летию академика А. Г. Витушкина (Москва, МГУ-МИАН, 2001), на 19-й летней международной конференции по математическому анализу (Санкт-Петербург, ММИ им. Л. Эйлера, 2010);

в Автономном университете Барселоны (Испания) в виде цикла лекций (октябрь-ноябрь 2005).

Публикации. Основные результаты диссертации опубликованы с подробными доказательствами в 9 статьях автора [1]— [9] (без соавторов) в рецензируемых научных журналах, рекомендованных ВАК и входящих в международные системы цитирования. ²⁹ Список публикаций приведен в конце автореферата.

 $^{^{29}}$ Основные результаты диссертации также опубликованы в обзоре: Мазалов М.Я., Парамонов П.В., Федоровский К.Ю. Условия C^m -приближаемости функций решениями эллиптических уравнений // Успехи математических наук. 2012. Т. 67. Вып. 6 (408), С. 53–100 (см. теоремы 1.7, 1.8, 1.17 при $m \in (0,1), 2.1$ и 2.10).

Структура и объем диссертации. Диссертация состоит из введения и четырех глав, разбитых на параграфы. Общий объем диссертации составляет 216 страниц. Список литературы включает (вместе с публикациями автора) 76 наименований.

Содержание работы

Во введении приводится краткая история изучаемых вопросов, формулируются основные результаты диссертации.

В главе 1 (состоящей из 5 параграфов) установлен следующий результат о равномерных приближениях полианалитическими функциями порядка $n \geqslant 2$.

Теорема 1.1. При $n\geqslant 2$ для произвольного компакта $X\subset\mathbb{C}$ имеет место равенство $H(X,\overline{\partial}^n)=h(X,\overline{\partial}^n).$

Напомним, что в случае n=1 имеет место критерий А. Г. Витушкина (1)–(2), а примеры компактов $X\subset \mathbb{C}$, таких, что $H(X,\overline{\partial})\neq h(X,\overline{\partial})$, хорошо известны (С. Н. Мергелян, Е. П. Долженко).

Так как фундаментальное решение оператора $L=\overline{\partial}^n$ имеет вид

$$E(z) = \frac{\overline{z}^{n-1}}{\pi z},$$

теорема 1.1 получается как следствие более общего утверждения, установленного в §1.4.

Теорема 1.3. Пусть $X \subset \mathbb{R}^2$ — произвольный компакт, и фундаментальное решение оператора L локально ограничено. Тогда имеет место равенство H(X,L) = h(X,L).

В §1.1 рассматривается схема приближения, предложенная А. Г. Витушкиным и усовершенствованная Р. Харви и Дж. Полкингом, А. Г. О'Фарреллом, Дж. Вердерой, П. В. Парамоновым, Н. Н. Тархановым и другими. Здесь рассматривается упрощенный вариант схемы, не использующий емкостей (он применяется в случае операторов L с локально ограниченным фундаментальным решением).

В §1.2 доказывается теорема 1.4 о приближении функции по частям для

произвольных операторов L в \mathbb{R}^d , $d\geqslant 2$ (однородных, эллиптических, с постоянными коэффициентами). Прежде, чем формулировать теорему 1.4, сделаем ряд пояснений.

Пусть X — компакт в \mathbb{R}^d , E — фундаментальное решение оператора L, функция $f \in h(X,L)$ продолжена на дополнение к X (например, по известной теореме Л. Брауэра — П.С. Урысона) как непрерывная финитная функция в \mathbb{R}^d .

Далее $\alpha=(\alpha_1,\alpha_2,\dots,\alpha_d)$ означает мультииндекс, то есть, набор из d целых неотрицательных чисел. При этом:

$$|\alpha| = \sum_{k=1}^{d} \alpha_k, \quad \partial^{\alpha} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \dots \partial x_d^{\alpha_d}}.$$

Через $\operatorname{Spt}(\cdot)$ обозначим замыкание носителя функции (или распределения).

Рассмотрим всевозможные покрытия $\{Q_j\}$ компакта $\mathrm{Spt}(Lf)$ конечными семействами раздельных двоичных кубов с длинами сторон $s_j \leqslant 1$. Каждому покрытию подчинено $\{\varphi_j\}$ — разбиение единицы на $\{Q_j\}$ из следующей леммы 1.1, принадлежащей Р. Харви и Дж. Полкингу³⁰.

Лемма 1.1. Пусть $\{Q_j\}$ — конечное множество раздельных двоичных кубов. Тогда существует множество функций $\{\varphi_j\}$, таких, что $\operatorname{Spt}\varphi_j \subset (3/2)Q_j$, $\|\partial^{\alpha}\varphi_j\|_{\mathrm{L}_{\infty}} \leqslant A(s_j)^{-|\alpha|}$ для соответствующих номеров j (где A зависит только от α), и $\sum_j \varphi_j = 1$ в некоторой окрестности $\bigcup_j Q_j$.

Используя указанное разбиение единицы, разложим функцию f в конечную сумму локализаций: $f = \sum_j f_j$, где $f_j = E*(\varphi_j L f)$, "*" означает операцию свертки, понимаемую в обобщенном смысле.

Теорема 1.4. Пусть существует функция $\varepsilon(r)$, $r \in (0,1]$, $\varepsilon \setminus 0$ при $r \setminus 0$, такая, что имеет место следующее. Для любого покрытия $\{Q_j\}$ и любой соответствующей функции f_j существует функция $F_j \in C(\mathbb{R}^d)$, удовлетворяющая следующим условиям:

- 1) Spt $LF_i \subset (10Q_i \setminus X)$;
- 2) $||r_i||_{L_{\infty}} \leqslant \varepsilon(s_i)$, $\varepsilon \partial e \ r_i = f_i F_i$;
- 3) $\lim_{x\to\infty} |x|^{d-1}r_i(x) = 0.$

Тогда $f \in H(X, L)$.

 $^{^{30}}$ см. сноску 6 на с.2.

Заметим, что (в частном случае $L=\overline{\partial}$) критерий А. Г. Витушкина (1)–(2) является несложным следствием теоремы 1.4, так как каждое из условий (1) или (2) автоматически (в силу определения аналитической емкости) приводит к построению нужной функции F_j с асимптотикой из условия 3) теоремы 1.4 при d=2.

Теорема 1.4 сразу же вытекает из леммы 1.5 (следствия известной теоремы об отделимости выпуклых множеств в нормированном пространстве) и леммы 1.6.

Лемма 1.5. Пусть $\mathbf{D} - \kappa y \delta \in \mathbb{R}^d$; $\psi_1, \psi_2, \dots, \psi_p - \kappa$ онечное множество неотрицательных функций, непрерывных на \mathbf{D} ; b > 0 — постоянная.

Пусть для любой неотрицательной функции $\nu \in L_1(\mathbf{D}, dm)$, такой, что $\int_{\mathbf{D}} \nu(x) dm_x = 1$, найдется номер $k = k(\nu)$, при котором выполнено неравенство $\int_{\mathbf{D}} \psi_k(x) \nu(x) dm_x \leqslant b$.

Тогда для некоторой (конечной) выпуклой комбинации $\psi = \sum_{k} \lambda_{k} \psi_{k}$ (то есть, $\lambda_{k} \geqslant 0$ и $\sum_{k} \lambda_{k} = 1$) выполнена оценка $\max_{x \in \mathbf{D}} \psi(x) \leqslant b$.

В качестве ψ_k возьмем функции вида $\left|\sum_j r_j\right|$ из следующей леммы, соответствующие подходящим покрытиям $\{Q_j\}$.

Лемма 1.6. Пусть $n_0 \in \mathbb{N}$, причем $\delta = 2^{-n_0}$ столь мало, что $\varepsilon(\delta) < 1$; $\mathbf{D} - \kappa y \delta$, такой, что $X \subset \operatorname{Spt} f \subset (1/4)\mathbf{D}$.

Тогда для любой неотрицательной функции $\nu \in L_1(\mathbf{D})$, такой, что $\int_{\mathbf{D}} \nu(x) dm_x = 1$, существует покрытие $\{Q_j\}$ компакта $\mathrm{Spt}(Lf)$, для которого выполнены следующие условия:

- 1) $\delta \leqslant s(Q_j) \leqslant \varepsilon(\delta) < 1$;
- 2) для функций $r_j = f_j F_j$, удовлетворяющих условиям теоремы 1.4, имеет место оценка

$$\int_{\mathbf{D}} \left| \sum_{j} r_{j}(x) \right| \nu(x) dm_{x} < \varepsilon_{1}, \ \partial e \ \varepsilon_{1} = \varepsilon_{1}(\varepsilon, \delta) \ u \ \lim_{\delta \to 0} \varepsilon_{1} = 0.$$

Используемый здесь подход по существу опирается на известную в

функциональном анализе теорему С. Мазура:

если последовательность ψ_k элементов нормированного пространства слабо сходится κ элементу Ψ , то некоторая последовательность их выпуклых комбинаций сходится κ Ψ сильно.

Такой подход оказывается полезным и в других ситуациях $(\text{например}, ^{31}).$

Идея доказательства леммы 1.6 состоит в следующем. Если $\nu(x) \leqslant 1/\varepsilon(\delta)$ при всех x, то в качестве требуемого покрытия возьмем совокупность кубов координатной сетки с длиной стороны δ . Там, где значения функции ν достаточно велики, кубы покрытия увеличим, используя стандартную процедуру Кальдерона—Зигмунда. При этом с применением теории сингулярных интегралов получается следующая оценка (где A=A(L))

$$\int_{\mathbf{D}} \left| \sum_{j} r_{j}(x) \right| \nu(x) dm_{x} < A\left((m(\mathbf{D})\varepsilon(\delta))^{1/2} + \varepsilon(\varepsilon(\delta)^{1/d}) \right),$$

правая часть которой и представляет собой требуемую функцию ε_1 .

В §1.3 техника, развитая в §1.2, применяется к доказательству следующего частного случая теоремы 1.1 при n=2.

Теорема 1.2. Для произвольного компакта $X \subset \mathbb{C}$ имеет место равенство $H(X, \overline{\partial}^2) = h(X, \overline{\partial}^2)$.

Доказательство теоремы 1.2 опирается на теорему 1.4 и использует следующую геометрическую конструкцию из леммы 1.12.

Пусть $Q_0 = [0,1] \times [0,1]$; \mathcal{X}_o — непустое открытое подмножество квадрата Q_0 (имеющее смысл "порции" дополнения к X), \mathcal{X} — замыкание \mathcal{X}_o .

Будем рассматривать покрытия компакта \mathcal{X} конечными семействами замкнутых двоичных квадратов

$$Q = Q_k^{m_1, m_2} = [m_1 2^{-k}, (m_1 + 1) 2^{-k}] \times [m_2 2^{-k}, (m_2 + 1) 2^{-k}],$$

где k, m_1 и m_2 — целые числа. По индукции строим

 $^{^{31}}$ Колесников С.В. Об одной теореме М.В. Келдыша, касающейся поточечной сходимости последовательностей полиномов // Матем. сборник. 1984. Т. 124 (166). №4 (8), С. 568–570.

"невозрастающую" последовательность покрытий Q(k), $k=0,1,2,\ldots$, где $Q(0)=Q_0$, и каждый квадрат из Q(k+1) содержится (возможно, совпадая) в соответствующем квадрате из Q(k). Каждое покрытие состоит из квадратов двух типов: *белых*, которые на следующем шаге делятся, и *красных*, которые в дальнейшем не изменяются (исходный квадрат Q_0 — белый).

Два квадрата $Q_k^{m_1,m_2}$ и $Q_k^{n_1,n_2}$ (одного размера) назовем согласованными (согласованной парой), если $|m_1-n_1|\leqslant 1$ и $2\leqslant |m_2-n_2|\leqslant 3$. Множество квадратов $\{Q_k^{m_1,m_2}\}$, где k и m_1 фиксированы, назовем вертикальным рядом (согласованные квадраты расположены в одном или в соседних вертикальных рядах).

Индукционный переход: построение Q(k). Разделим каждый белый квадрат Q покрытия Q(k-1) на четыре квадрата со стороной s(Q)/2. Из полученных квадратов включим в Q(k) только те, которые пересекают \mathcal{X} , назовем их квадратами поколения k; покрытие Q(k) состоит из квадратов поколения k и всех красных квадратов предыдущих поколений. Определим цвет квадратов поколения k следующим образом. Если среди них найдется согласованная пара (Q_1,Q_2) , то назовем красными Q_1 и Q_2 , а также каждый квадрат из Q(k), находящийся с Q_1 или Q_2 в одном вертикальном ряду; затем в множестве квадратов, цвет которых еще не определен, продолжим поиск согласованных пар (определяя красные квадраты так же, как и выше). Когда все согласованные пары будут исчерпаны, оставшиеся квадраты поколения k назовем белыми, и тем самым покрытие Q(k) будет построено.

Лемма 1.12. *Каждое покрытие* Q(k) *обладает следующими свойствами.*

- 1) Разложим все квадраты покрытия Q(k) на группы так, чтобы каждая группа располагалась в своем вертикальном ряду. Тогда проекции групп на ось Ox не имеют общих внутренних точек, а цвет квадратов в каждой группе одинаков. Если группа состоит из белых квадратов, то их не более двух, причем соседних, а если из красных то не более четырех $Q_k^{m_1, m_2}$, причем индекс m_2 отличается не более, чем на три. Длина стороны белого квадрата равна 2^{-k} , а красного не меньше 2^{-k} .
 - 2) Пусть $Q_k^{m_1,m_2}$ и $Q_k^{m_1+1,n_2}$ квадраты поколения k в соседних

вертикальных рядах. Тогда $|m_2 - n_2| \leqslant 3$, а если оба квадрата белые, то $|m_2 - n_2| \leqslant 1$.

- 3) Если в вертикальном ряду есть красный квадрат, то существует согласованная пара красных квадратов, один из которых находится в том же вертикальном ряду, а другой в том же вертикальном ряду или в соседнем.
- 4) Пусть Q и Q' квадраты из Q(k) с центрами, соответственно, (x,y) и (x',y'), находящиеся в различных вертикальных рядах. Тогда выполнено неравенство |y'-y|/|x'-x| < 7.

Лемма 1.12 доказывается в $\S 1.3$.

Комментарии.

- 1. Так как компакт \mathcal{X} замыкание непустого открытого множества и в силу свойства 1) покрытий $\mathcal{Q}(k)$ не может быть для всех k покрыт только белыми квадратами, при достаточно больших k будет зафиксирована хотя бы одна согласованная пара красных квадратов.
- 2. Момент остановки, то есть, номер k, на котором покрытие $\mathcal{Q}(k)$ окончательно фиксируется, определяется с помощью модуля непрерывности приближаемой функции $f \in h(X, \overline{\partial}^2)$. Именно, берется минимальный номер k, для которого выполнено условие

$$\omega_f(2^{-k}) < \sum_{\text{COFJI}} s(Q),$$

где в правой части для каждой согласованной пары красных квадратов (Q_1,Q_2) суммируется длина стороны $s=s(Q_1)=s(Q_2)$.

3. Для каждой согласованной пары красных квадратов (Q_1, Q_2) возьмем точки $z_1 \in 1.1Q_1 \cap \mathcal{X}^o$ и $z_2 \in 1.1Q_2 \cap \mathcal{X}^o$, расстояние между которыми (в силу определения согласованных пар) "не мало" по сравнению с s, и поэтому функции вида

$$K(z, z_1, z_2) = \frac{\overline{z - z_2}}{z - z_2} - \frac{\overline{z - z_1}}{z - z_1},$$

ограниченные и бианалитические вне множества $\{z_1, z_2\}$, могут быть использованы для построения функций, приближающих локализации f.

4. В силу свойств 1), 2) и 4) покрытий $\mathcal{Q}(k)$, квадраты "накапливаются" к липшицевой кривой Γ : $y=\Psi(x)$, причем $|\Psi'(x)|<7$. Это (в

сочетании с техникой доказательства теоремы 1.4) позволяет использовать для доказательства теоремы 1.2 теорию сингулярных интегралов на липшицевой кривой Γ (включая L_2 -оценки).

В §1.4 доказывается теорема 1.3. Напомним 32 , что дифференциальный оператор L порядка n в \mathbb{R}^d , символ которого — однородный эллиптический многочлен, имеет фундаментальное решение вида

$$E(x) = E_0(x) - E_1(x) \log |x|,$$

где E_0 — вещественно аналитическая функция в $\mathbb{R}^d \setminus \{0\}$, однородная степени n-d, E_1 — однородный многочлен степени n-d (если n < d, то $E_1 \equiv 0$). Напомним, что при $d \geqslant 3$ для любого оператора L (в том числе и с локально ограниченным фундаментальным решением) существует компакт X, такой, что $H(X,L) \neq h(X,L)$.

При d=2 имеет место интегральное представление (где $n\geqslant 2$)³³:

$$E_1(x_1, x_2) = -\frac{1}{4\pi^2(n-2)!} \int_0^{2\pi} \frac{(x_1 \cos \theta + x_2 \sin \theta)^{n-2}}{L(\cos \theta, \sin \theta)} d\theta.$$

В случае $E_1 \equiv 0$ теорема 1.3 доказывается по существу так же, как и теорема 1.2; случай $E_1 \not\equiv 0$ (при этом, очевидно, $n \geqslant 3$) нетривиален и требует отдельного рассмотрения: для построения приближающих функций нужно специально подбирать ограниченные линейные комбинации частных производных E порядка n-2, и в итоге их оказывается "достаточно".

В §1.5 показывается (результат установлен в [6]), что для доказательства теоремы 1.2 вместо применения теоремы 1.4 можно адаптировать метод П. В. Парамонова группировки индексов, предложенный им для гармонических приближений в C^1 -норме и равномерных аналитических приближений.

Суть метода в следующем. Напомним, что стандартная схема А. Г. Витушкина требовала бы в условии 3) теоремы 1.4 замены в показателе d-1 на d (то есть, 1 на 2) — существенно более

 $^{^{32}}$ Хёрмандер Л. Анализ линейных дифференциальных операторов с частными производными. Т. 1. Теория распределений и анализ Фурье. М.: Мир, 1986, см. Теорема 7.1.20.

 $^{^{33}}$ Шилов Г.Е. Математический анализ. Второй специальный курс. М.: Наука, 1965, §22.

жесткого ограничения на асимптотику разностей $f_j - F_j$. Оказывается, для приближения функции f достаточно, чтобы такая асимптотика имела место не для каждого индекса j в отдельности, а суммарно, для специально подобранных групп индексов, причем индексов, которые нельзя "сгруппировать оказывается "мало".

Основное достоинство метода — его полная конструктивность, однако по мере увеличения порядка оператора строение групп усложняется, что затрудняет применение метода в случае произвольных операторов L.

В главе 2 (состоящей из 3 параграфов) изучается вопрос о массивности множества граничных значений полианалитических функций в случае жордановых областей G с липшицевой границей ∂G . Это во многом мотивировано исследованиями о равномерном приближении непрерывных функций полианалитическими многочленами³⁴.

Пусть $C(\partial G)$ — банахово пространство функций, непрерывных на ∂G , с равномерной нормой; $S_n = S_n(\partial G, G)$ — подпространство $C(\partial G)$, элементами которого являются граничные значения функций, n-аналитических в G и непрерывных в замкнутой области \overline{G} ; $S = \bigcup_n S_n$. Основным результатом §2.1 является теорема 2.1, установленная в [5].

Напомним, что (гладкая) кривая называется \mathcal{L} ини-гладкой, если угол наклона ее касательной $\beta(s)$ к вещественной оси как функция длины дуги s удовлетворяет условию $|\beta(s_2) - \beta(s_1)| < \omega(|s_2 - s_1|)$, где для функции ω выполнено условие \mathcal{L} ини $\int_0^1 \frac{\omega(\delta)}{\delta} d\delta < \infty$. В частности, каждая кривая \mathcal{L} Яяпунова является \mathcal{L} ини-гладкой.

Теорема 2.1. Пусть $\partial G - \mathcal{A}$ ини-гладкая кривая. Тогда S имеет первую категорию в $C(\partial G)$.

Так как $C(\partial G)$ — полное метрическое пространство, по теореме Бэра о категории имеем неравенство $S \neq C(\partial G)$ для Дини-гладких кривых ∂G .

Теорема 2.1 является следствием леммы 2.1 и леммы 2.2.

Лемма 2.1. Пусть $H - \phi$ ункция, аналитическая в круге K : |w| < 1 и однолистно отображающая K на жорданову область G со спрямляемой границей ∂G , причем в K выполнено неравенство $|H'(w)| > c_0 > 0$. Если

 $^{^{34}}$ Кармона X.X., Парамонов П.В., Федоровский К.Ю. О равномерной аппроксимации полианалитическими многочленами и задаче Дирихле для бианалитических функций // Матем. сборник. 2002. Т. 193. №10, С. 75–98.

выполнено условие

$$\iint_K |H''(w)| r dr d\varphi < \infty$$

 $(r\partial e\ w=re^{i\varphi}),\ mo\ S\ uмеет\ первую\ категорию\ в\ C(\partial G).$

В лемме 2.2 доказывается, что, если ∂G — Дини-гладкая кривая, то выполнены условия леммы 2.1; этот факт по существу вытекает из теоремы С. Е. Варшавского³⁵.

Теорему 2.1 интересно сопоставить с результатом К. Ю. Федоровского³⁶: для "большинства" областей G, в том числе и с аналитической границей (кроме весьма специальных областей, так называемых неванлинновских) $S_2(\partial G, G)$ является всюду плотным подпространством $C(\partial G)$. О неванлинновских областях с нигде не аналитическими границами см. также [7].

Возникает естественный вопрос, можно ли в теореме 2.1 избавиться от ограничений на ∂G . В §§2.2-2.3 на него дается отрицательный ответ (соответствующий пример был построен в [5]).

Пример 2.1. Существует экорданова область G с липшицевой границей, такая, что $S_2(\partial G, G) = C(\partial G)$.

Основным результатом §2.2 является следующая теорема 2.3.

Рассмотрим лакунарный ряд

$$h_{k_0}(w) = w + \sum_{k=k_0}^{\infty} \frac{1}{k\alpha_k} w^{\alpha_k},$$

где $w\in\mathbb{C},\ |w|<1,\ k_0\in\mathbb{N},$ возрастающая последовательность $\{\alpha_k\}$ натуральных чисел настолько разрежена, что

$$\sum_{n=2}^{\infty} \sum_{k=1}^{n-1} \frac{\alpha_k}{\alpha_n} < \infty$$

(достаточно взять $\alpha_k = 2^{k^2}$). Пусть K (как и выше) — единичный круг в $\mathbb{C}, \, \partial K$ — единичная окружность.

³⁵Pommerenke Ch. Univalent functions. Göttingen. Studia Math, 1975, cm. Theorem 10.2.

 $^{^{36}}$ Федоровский К.Ю. О равномерных приближениях функций n-аналитическими полиномами на спрямляемых контурах в \mathbb{C} // Матем. заметки. 1996. Т. 59. № 4, С. 604–610.

Теорема 2.3. Для любых функции $f \in C(\partial K)$ и $k_0 \in \mathbb{N}$ существует функция $F_f = \Phi_1 \overline{h_{k_0}} - \Phi_2$, где Φ_1 и Φ_2 — аналитические функции в K, такая, что F_f непрерывно продолжается на ∂K , причем $F_f = f$ на ∂K .

Так как (в силу расходимости гармонического ряда) функция h_{k_0} не является однолистной в K ни при каком k_0 , пример 2.1 непосредственно не следует из теоремы 2.3. Однако важно, что $h'_{k_0} \in H^2$ и

$$\lim_{k_0 \to \infty} \|h'_{k_0} - 1\|_{L_2}(\partial K) = 0.$$

Построение примера 2.1 завершается в §2.3. Здесь существенно используются "эскимо-конструкция" Н.Н. Лузина – И.И. Привалова (функция h_{k_0} однолистна на "достаточно массивном" подмножестве K), техника конформных отображений и методы функционального анализа, в частности, теорема У. Рудина – Л. Карлесона об интерполяционных множествах пика для непрерывных аналитических функций.

В главе 3 (состоящей из 5 параграфов) техника равномерных приближений, развитая в §§1.2–1.3, применяется для получения критерия равномерной приближаемости функции, непрерывной на компакте $X \subset \mathbb{R}^3$ и гармонической внутри X, функциями, гармоническими в окрестностях X, в терминах гармонической емкости Винера. Напомним, что в теории потенциала принято следующее определение гармонической емкости: для компакта $K \subset \mathbb{R}^3$

$$\operatorname{Cap}(K) \stackrel{def}{=} \sup_{\mu} \left\{ \|\mu\| : \left\| \mu * \frac{1}{|x|} \right\|_{\operatorname{L}_{\infty}} \leqslant 1 \right\},\,$$

где $\|\mu\|$ — полная масса μ — неотрицательной меры Радона, распределенной на K. Емкость ограниченного множества — точная верхняя грань емкостей его компактных подмножеств.

При изучении устранимых особенностей непрерывных решений уравнения Lf=0 Р. Харви и Дж. Полкинг ввели емкости, естественно обобщающие аналитическую и гармоническую емкости. Рассмотрим случай n < d. Емкостью компакта K называется величина

$$\sup_{g} \{ |\langle Lg|1\rangle| : ||g||_{\mathcal{L}_{\infty}} \leqslant 1, \ g \in C(\mathbb{R}^d), \ \lim_{x \to \infty} g(x) = 0, \ \mathrm{Spt}(Lg) \subset K \},$$

которую будем обозначать $\operatorname{Cap}_{\operatorname{L}}(K)$ (здесь и далее $\|\cdot\|_{\operatorname{L}_{\infty}} = \|\cdot\|_{\operatorname{L}_{\infty}}(\mathbb{R}^d)$). Запись $\langle \Psi | \varphi \rangle$, означает действие распределения Ψ с компактным носителем на функцию $\varphi \in C_0^{\infty}(\mathbb{R}^d)$.

Для гармонических функций в \mathbb{R}^3 оба указанных определения емкости равносильны 37 .

Хорошо известно, что гармоническая емкость полуаддитивна:

если
$$U = U_1 \bigcup U_2$$
, то $Cap(U) \leqslant Cap(U_1) + Cap(U_2)$.

Вопрос о полуаддитивности емкости $\operatorname{Cap}_L(\cdot)$, по-видимому, в общем случае открыт; полуаддитивность аналитической емкости — весьма тонкий факт, который сравнительно недавно доказал X. Толса. Полуаддитивность гармонической емкости в настоящей работе в доказательствах нигде не используется.

Введем упрощенные обозначения $h(X) = h(X, \Delta)$ и $H(X) = H(X, \Delta)$, где $X \subset \mathbb{R}^3$ — компакт, Δ — оператор Лапласа в \mathbb{R}^3 . Продолжив произвольную функцию $f \in h(X)$ по теореме Л. Брауэра—П.С. Урысона, будем считать ее непрерывной на всем пространстве \mathbb{R}^3 и финитной.

Теорема 3.1. Пусть существуют постоянная $k \geqslant 1$ и функция $\epsilon(t) \searrow 0$ при $t \searrow 0$, такие, что для любого открытого шара B радиуса r с границей ∂B имеет место оценка

$$\left| \frac{1}{\sigma(\partial B)} \int_{\partial B} f(x) d\sigma_x - \frac{1}{m(B)} \int_B f(x) dm_x \right| \leqslant \epsilon(r) r^{-1} \operatorname{Cap}(kB \setminus X), \quad (4)$$

где $x \in \mathbb{R}^3$, $\sigma_{(\cdot)}$ — поверхностная мера на ∂B , $m_{(\cdot)}$ — мера Лебега в \mathbb{R}^3 , kB — шар радиуса kr, концентричный B. Тогда $f \in H(X)$.

Обратно, если $f \in H(X)$, то оценка (4) выполнена для k = 1, а в качестве функции ϵ достаточно взять $A\omega_f$, где A > 0 — подходящая абсолютная постоянная, ω_f — модуль непрерывности f в \mathbb{R}^3 .

Теорема 3.1 представляет собой естественный аналог теоремы А.Г. Витушкина о равномерном приближении аналитическими функциями на компактах в С. Теорему 3.1 в качестве гипотезы формулировал П. В. Парамонов, им было предложено естественное условие (4).

Доказательство теоремы 3.1 опирается на следующее утверждение —

 $^{^{37} \}rm Harvey~R.,~Polking~J.~A~notion~of~capacity~which~characterizes~removable~singularities~//~Trans.~Amer.~Math.~Soc.~1972.~V.~169,~P.~183–195.$

естественный аналог леммы А. Г. Витушкина³⁸.

Лемма 3.1. Если выполнена оценка

$$\left| \int_{B} f(x) \Delta \varphi(x) dm_{x} \right| \leq \epsilon(r) \|\nabla^{2} \varphi\|_{\mathcal{L}_{\infty}} r^{2} \operatorname{Cap}(kB \setminus X)$$
 (5)

(где B, k и ϵ — mе же, что и в теореме 3.1, φ — nроизвольная функция из $C_0^2(B)$), то $f \in H(X)$. Обратно, если $f \in H(X)$, то оценка (5) выполнена c k=1 и $\epsilon=A\omega_f$.

Необходимость каждой из оценок (4) и (5) для выполнения условия $f \in H(X)$ доказывается стандартно: так же, как для равномерных приближений аналитическими функциями или гармонических приближений в C^1 -норме. Вопрос о достаточности указанных оценок значительно сложнее, чем в случае аналитических функций. Напомним, что гипотезу о достаточности оценки вида (5) для $f \in H(X)$ формулировал А. Г. О'Фаррелл.

Доказательство достаточности оценки (5) проводится по той же схеме, по которой в главе 1 доказывается теорема 1.2. Именно, применяется теорема 1.4, а геометрическая конструкция обобщает проводимую в §1.3.

Заметим, что теорема 3.1 переносится (с несущественным изменением доказательства) на гармонические функции в \mathbb{R}^d , d>3, при этом правая часть неравенства (4) изменяется на $\epsilon(r)r^{2-d}\mathrm{Cap}(kB\backslash X)$. Лемма 3.1 на \mathbb{R}^d , d>3, переносится без изменений.

Напомним, что задача о равенстве классов H(X) и h(X) изучена значительно лучше более общей задачи описания функций $f \in H(X)$. Имеет место следующий критерий Дж. Дени – М. В. Келдыша.

(Д-K): равенство H(X) = h(X) выполнено тогда и только тогда, когда дополнения к X и к X^o разрежены в одних и тех же точках ∂X .

Из (Д–**K**) следует критерий (3) равенства
$$H(X) = h(X)$$
 (см. с. 4).

Аналогично случаю аналитических функций, (3) является несложным следствием леммы 3.1, так как равенство емкостей влечет выполнение оценки (5) для всех функций $f \in h(X)$ и всех соответствующих φ .

Заметим, что теорема 3.1 и лемма 3.1 ранее (до работы [3]) были

 $^{^{38}}$ Витушкин А.Г. Аналитическая емкость множеств в задачах теории приближений // УМН. 1967. Т. 22. №6, см. гл. 4, §2, Лемма 1.

установлены автором при следующих дополнительных ограничениях:

1) существует постоянная $k_0 \geqslant 1$, такая, что для любой точки $x \in \mathbb{R}^3 \setminus X^o$ и для всех r>0 имеет место оценка [8]

$$\operatorname{Cap}(B(x,2r)\setminus X)\leqslant k_0\operatorname{Cap}(B(x,r)\setminus X);$$

2) модуль непрерывности функции f удовлетворяет условию Дини [9]. Сопоставим формулировки теорем 1.3 и 3.1 и рассмотрим ситуацию в случае операторов L порядка выше двух. Отметим следующее.

1. Особая роль размерности d = 2.

В случае локальной ограниченности фундаментального решения эллиптического оператора L равенство H(X,L)=h(X,L) имеет место для любого компакта $X\subset\mathbb{R}^2$; вместе с тем, как отмечалось выше³⁹, при d>2 для любого оператора L (в том числе, и с локально ограниченным фундаментальным решением) существует компакт X, такой, что $H(X,L)\neq h(X,L)$.

2. Значение порядка оператора $n \le 2$ при d > 2.

В случае 2 < n < d не имеет место аналога (3) (или аналога критерия А.Г. Витушкина (2)) в терминах соответствующей емкости Р. Харви и Дж. Полкинга $\mathrm{Cap}_L(\cdot)$, характеризующей устранимые особенности непрерывных решений уравнения Lf=0 (см. пример 3.1, установленный в §3.1).

Пример 3.1. Пусть 2 < n < d. Тогда существуют компакт X, такой, что для любого куба Q выполнена оценка $\operatorname{Cap}_L(Q \setminus X^o) \leqslant A\operatorname{Cap}_L(2Q \setminus X)$, u функция $f \in h(X, L)$, такая, что $f \notin H(X, L)$.

Заметим, что вопрос о (естественном) критерии равенства H(X,L)=h(X,L) в случае $d>2,\ n>2$ и компактов X с непустой внутренностью остается открытым.

В §3.1 получен ряд оценок, в частности, доказана лемма 3.2 об аддитивности гармонической емкости при специальных разбиениях множеств.

Лемма 3.2. Пусть $Y - \kappa$ омпакт, $\delta = \operatorname{Cap}(Y) > 0$, $D_j - c$ емейство раздельных замкнутых кубов c $s(D_j) = \delta$, покрывающих Y, $\delta_j =$

 $^{^{39}\}mathrm{cm}.$ сноску 22 на с. 5.

 $\operatorname{Cap}(2D_j \cap Y)$. Тогда выполнена оценка $\sum_j \delta_j \leqslant A\delta$.

Затем доказывается необходимость оценки (5) в лемме 3.1 и устанавливается лемма 3.5, связывающая оценки (5) и (3).

Лемма 3.5 Пусть $X \subset \mathbb{R}^3 - \kappa o \lambda n a \kappa m$.

- 1) Если существует постоянная A > 0, такая, что для любого шара B имеет место оценка $\operatorname{Cap}(B \setminus X^o) \leqslant A\operatorname{Cap}(kB \setminus X)$, то для любых соответствующих функций f и φ выполнена оценка (5).
- 2) Если имеет место равенство H(X) = h(X), то для любого ограниченного открытого множества D выполнено равенство

$$\operatorname{Cap}(D \setminus X^o) = \operatorname{Cap}(D \setminus X).$$

В конце §3.1 строится пример 3.1.

В §3.2 рассматривается связь между оценками (4) и (5). Как вытекает из формулы Грина, оценка (4) фактически представляет собой частный случай (5) для функций φ простой "радиальной" структуры.

Из оценки (4) выводится оценка (5) для "достаточно хороших" функций φ , которые в дальнейшем применяются для построения разбиений единицы. Именно, теорема 3.1 сводится следующей к лемме 3.12, которая доказывается в §§3.3–3.5.

Лемма 3.12 Пусть для фиксированного $k \geqslant 1$, произвольного шара B и всех соответствующих функций $\varphi \in C_0^3(B)$ имеет место оценка

$$\left| \int_{B} f(x) \Delta \varphi(x) dm_{x} \right| \leq Ak^{3} \epsilon(r) \|\nabla^{3} \varphi\|_{\mathcal{L}_{\infty}} r^{3} \operatorname{Cap}((k+3)B \setminus X).$$

Тогда $f \in H(X)$.

В §3.3 применяется теорема 1.4 о приближении функции по частям, рассматриваются согласованные пары двоичных кубов (это понятие обобщает введенные в главе 1 согласованные пары двоичных квадратов). Заметим, что здесь ситуация сложнее, чем в главе 1, так как нужно оценивать емкость дополнения. Одно из утверждений об оценке емкости — сформулированная выше лемма 3.2; другое — следующее утверждение, представляющее собой вариант леммы 3.21, доказанной в §3.3 (с некоторым упрощением обозначений).

Пусть Q- двоичный куб, $\{Q_j\}-$ конечное множество двоичных кубов, таких, что $Q_j\subset Q;\ \widetilde{Q}\ u\ \widetilde{Q}_j-$ соответственно, проекции кубов $Q\ u\ Q_j$ на плоскость $x_3=0,\ s\ u\ s_j-$ длины сторон кубов.

Пусть $Y \subset \mathbb{R}^3$ — компакт, $\beta = \beta(Q) = \operatorname{Cap}((3/2)Q \cap Y); \beta_j = \beta(Q_j).$ Если для $\lambda_j = \lambda(Q_j) \geqslant 0$ и всех $x \in \widetilde{Q}$ выполнено неравенство

$$\sum_{j} \lambda_{j} \chi(\widetilde{Q}_{j})(x) \leqslant 1,$$

 $\mathit{rde}\ \chi(\cdot)\ -\ \mathit{xарактеристическая}\ \mathit{функция},\ \mathit{mo}\ \mathit{npu}\ q\in[0,1)\ \mathit{имеет}\ \mathit{место}$ ouehka

$$\sum_{j} \lambda_{j}(\beta_{j})^{1+q}(s_{j})^{1-q} \leqslant A(q)\beta^{1+q}s^{1-q}.$$

В следующих двух параграфах проводится геометрическая конструкция (требования к которой даются в лемме 3.23), представляющая собой значительное обобщение конструкции из рассмотренной выше леммы 1.12. Важно отметить, что, по аналогии с леммой 1.12, кубы покрытия накапливаются к липшицевой поверхности.

Так как геометрическая конструкция весьма сложна, сначала в §3.4 проводим упрощенный вариант, в котором не требуем, чтобы кратность пересечений увеличенных кубов $(129/128)Q_j$ для кубов покрытия Q_j была ограничена сверху абсолютной постоянной. В §3.5 конструкция уточняется с целью контроля над указанной кратностью. По окончании доказательства леммы 3.23 доказательство леммы 3.12 завершается аналогично тому, как в §1.3 было завершено доказательство теоремы 1.2 (с применением теории сингулярных интегралов на липшицевой поверхности).

В главе 4 (состоящей из 3 параграфов) рассматривается вопрос о приближении гармоническими функциями на компактах в \mathbb{R}^3 в пространствах Липшица C^m , где 0 < m < 1.

Пусть $0 < m < 1, X \subset \mathbb{R}^3$ — компакт; напомним, что пространство Липшица $\mathrm{Lip}^m(X)$ состоит из функций $f: X \to \mathbb{R}$, таких, что для всех $x,y \in X$ выполнено неравенство

$$|f(x) - f(y)| \leqslant c|x - y|^m,$$

где $c = c(f, X, m) < \infty$. Точная нижняя грань значений c задает полунорму $||f||_{m,X}$. Пространство $C^m(X)$ — подпространство $\mathrm{Lip}^m(X)$, состоящее из функций f, таких, что $|f(x) - f(y)| = o(|x-y|^m)$ при $|x-y| \to 0$.

Пространство $\operatorname{Lip}^m(\mathbb{R}^3)$ с полунормой $\|f\|_m = \|f\|_{m,\mathbb{R}^3}$ и пространство $C^m(\mathbb{R}^3)$ определяется аналогично. По теореме X. Уитни⁴⁰ продолжим функцию $f \in \operatorname{Lip}^m(X)$ до функции из $\operatorname{Lip}^m(\mathbb{R}^3)$, имеющей компактный носитель и принадлежащей классу C^∞ вне X, так, что $\|f\|_m \leqslant A\|f\|_{m,X}$ и $A \geqslant 1$ — абсолютная постоянная (при этом $f \in C^m(X)$ продолжается до функции из $C^m(\mathbb{R}^3)$).

Пусть $h_m(X) = C^m(X) \cap \{f|_X : \Delta f = 0 \text{ в } X^o\}, H_m(X)$ — замыкание в $C^m(X)$ множества функций, гармонических в окрестностях X.

Критерий принадлежности функций из $h_m(X)$ классу $H_m(X)$ установлен в [4]. В диссертации это теорема 4.1 из §4.1. Она близка по форме критерию равномерной приближаемости (теореме 3.1) с единственным отличием: вместо гармонической емкости используется $M^{1+m}(\cdot)$ — обхват по Хаусдорфу порядка 1+m. Напомним, что для ограниченного множества $U \subset \mathbb{R}^3$ и t>0 имеем:

$$M^t(U) = \inf \sum_{k} (r_k)^t,$$

где точная нижняя грань берется по всем покрытиям U не более, чем счетными наборами шаров B_k радиусов r_k .

Теорема 4.1 Пусть существуют постоянная $k \geqslant 1$ и функция $\epsilon(r) \searrow 0$ при $r \searrow 0$, такие, что для любого открытого шара B = B(a,r) (где $a \in \mathbb{R}^3$ — центр, r — радиус) с границей ∂B выполнена оценка

$$\left| \frac{1}{\sigma(\partial B)} \int_{\partial B} f(x) d\sigma_x - \frac{1}{m(B)} \int_B f(x) dm_x \right| \leqslant \epsilon(r) r^{-1} M^{1+m} (kB \setminus X), \quad (6)$$

тогда $f \in H_m(X)$. Обратно, если $f \in H_m(X)$, то оценка (6) выполнена $npu \ k=1$.

В доказательстве теоремы 4.1 применяются схема А. Г. Витушкина,

 $^{^{40}{\}rm Cr}$ ейн И.М. Сингулярные интегралы и дифференциальные свойства функций. М.: Мир, 1973, гл. 6, Теорема 3.

теорема Фростмана⁴¹ и специальная геометрическая конструкция §4.3.

Хотя формулировки теорем 4.1 и 3.1 близки, а схемы доказательств в ряде деталей совпадают, теорема 4.1 доказывается значительно проще и полностью конструктивно.

Напомним, что описание компактов X, таких, что $h_m(X) = H_m(X)$, получили⁴² Дж. Матеу и Дж. Оробич; по существу, это частный случай теоремы 4.1. Заметим, что в указанной работае (в отличие от доказательства теоремы 4.1) используются двойственные аргументы.

Теоремы 3.1 и 4.1, в сочетании с результатами работ П. В. Парамонова, Дж. Вердеры и А. Г. О'Фаррелла дают решение задачи о приближении индивидуальных гармонических функций в пространствах Липшица C^m при всех $m\geqslant 0$. Случай m=1 изучен П. В. Парамоновым⁴³ в терминах гармонической C^1 -емкости, случаи C^m при 1< m<2 и целых $m\geqslant 2$ — Дж. Вердерой⁴⁴; при остальных m-A. Г. О'Фарреллом⁴⁵.

Автор искренне благодарен профессору Петру Владимировичу Парамонову за постановку ряда задач, внимание к результатам и многочисленные рекомендации по улучшению работ, М.Б. Балку, Е. П. Долженко, М.С. Мельникову, В.П. Хавину, К.Ю. Федоровскому и всем коллегам из Автономного университета Барселоны — за многолетнее плодотворное сотрудничество.

Публикации автора по теме диссертации

- [1] Мазалов М.Я. Критерий равномерной приближаемости на произвольных компактах для решений эллиптических уравнений // Матем. сборник. 2008. Т. 199. №1, С. 15–46.
- [2] Мазалов М.Я. О равномерных приближениях бианалитическими функциями на произвольных компактах в С // Матем. сборник. 2004. Т. 195. №5. С. 79–102.

 $^{^{41}}$ Карлесон Л. Избранные проблемы теории исключительных множеств. М.: Мир, 1971, гл. 2.

 $^{^{42}\}mathrm{Mateu}$ J., Orobitg J. Lipshitz approximation by harmonic functions and some applications to spectral sinthesis // Indiana Univ. Math. Journ. 1990. V. 39, P. 703–736.

 $^{^{43}}$ см. сноску 7 на с. 3.

 $^{^{44}}$ Verdera J. C^m approximation by solutions of elliptic equations, and Calderon-Zygmund operators // Duke Math. J. 1987. V. 55, P. 157–187.

 $^{^{45}\}mathrm{O'Farrell}$ A.G. Metaharmonic approximation in Lipschitz norms // Proc. Roy. Irish Acad. 1975. V. 75A, P. 317–330.

- [3] Мазалов М.Я. Критерий равномерной приближаемости гармоническими функциями на компактах в \mathbb{R}^3 // Труды Математического института им. В. А. Стеклова. 2012. Т. 279, С. 120–165.
- [4] Мазалов М.Я. Критерий приближаемости гармоническими функциями в пространствах Липшица // Записки научных семинаров ПОМИ. 2012. Т. 401, С. 144–171.
- [5] Мазалов М.Я. О задаче Дирихле для полианалитических функций // Матем. сборник. 2009. Т. 200. №10, С. 59–80.
- [6] Мазалов М.Я. Равномерное приближение функций, непрерывных на произвольном компакте в С и аналитических внутри компакта, функциями, бианалитическими в его окрестности // Матем. заметки. 2001. Т. 69. №2, С. 245–261.
- [7] Мазалов М.Я. Пример непостоянной бианалитической функции, обращающейся в нуль всюду на нигде не аналитической границе // Матем. заметки. 1997. Т. 62. № 4, С. 629–632.
- [8] Мазалов М.Я. О задаче равномерного приближения гармонических функций // Алгебра и анализ. 2011. Т. 23. №4, С. 136–178.
- [9] Мазалов М.Я. О равномерном приближении гармоническими функциями на компактах в \mathbb{R}^3 // Записки научных семинаров ПОМИ. 2011. Т. 389, С. 162–190.