15 Ehresmann and Koszul connections

With the help of this statement we can give the following definition.

12.12.2022

Definition 15.1. Let $\pi: E \to M$ be a smooth fiber bundle with typical fiber F of dimension k. Denote $\mathcal{V}_y E := (d\pi_y)^{-1}(0_p)$, where $\pi(y) = p$. The vertical bundle on $\pi: E \to M$ is the real vector bundle $\pi_{\mathcal{V}}: \mathcal{V}E \to E$ with total space

$$\mathcal{V}E := \mathcal{N}_{y \in E} \mathcal{V}_{y} E \subset TE$$

and projection map $\pi_{\mathcal{V}} := \pi_{TE}|_{\mathcal{V}E}$. A vector bundle atlas on $\mathcal{V}E$ is given by charts of the form

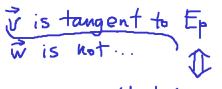
 $(\pi_{\mathcal{V}}, d\varphi \circ d\Phi) : \pi_{\mathcal{V}}^{-1}(\pi^{-1}(U) \cap \Phi^{-1}(V)) \to (\pi^{-1}(U) \cap \Phi^{-1}(V)) \times \mathbb{R}^k,$

where (π, Φ) is a bundle chart on E over U and (V, φ) is a chart in F.

We have (π, Φ) is a bundle chart on E over U and (V, φ) is a chart in F.

Home (F, Φ) is a bundle chart on E over U and (V, φ) is a chart in F.

We will be back with another way.



T PEM

 $(d\pi)(\vec{v})=0$

Definition 15.3. A smooth rank k distribution on an n-manifold M is a (smooth) rank k vector subbundle $E \to M$ of the tangent bundle.

Definition 15.4. A (linear Ehresmann) connection on a vector bundle $\pi: E \to M$ is a

- 1) H is complementary to the vertical bundle: TE = H ⊕ VE; (TE)y = θ (y ⊕ VE)y
 2) H is homogeneous: d(μ_r)_y(H_y) = H_{ry} for all y ∈ E, r ∈ R, where μ_r: E → E is the multiplication map given by μ_r: y → ry.

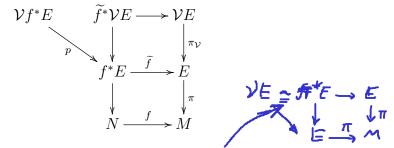
The subbundle \mathcal{H} is called the horizontal distribution (or horizontal subbundle).

Definition 15.5. For a general bundle (not necessarily a vector bundle), we have the same definition, but only with the property 1). E_ ~ F

Definition 15.6. For $y \in E$, an individual element $w \in T_yE$ is *horizontal* if $w \in \mathcal{H}_y$ and vertical if $w \in \mathcal{V}_y E$. A vector field (i.e. a section) $X \in \mathbb{X}(E)$ is said to be a horizontal vector field (resp. vertical vector field) if $X(y) \in \mathcal{H}_y$ (resp. $X(y) \in \mathcal{V}_y E$) for all $y \in E$.

Problem 15.7. Let $f: N \to M$ be a smooth map and $\pi: E \to M$ a fiber bundle. Prove Home that the pull-back (Definition 9.48) can be naturally identified with $\{(p,e) \in N \times E : f(p) = 1\}$ P*E $\pi(e)$

Problem 15.8. Let $f: N \to M$ be a smooth map and $\pi: E \to M$ a fiber bundle with Home typical fiber F. Prove that $\mathcal{V}f^*E \to f^*E$ is bundle isomorphic to $\widetilde{f}^*\mathcal{V}E \to f^*E$, where $\hat{f} := pr_2|_{f^*E} : f^*E \to E, pr_2 : N \times E \to E \text{ and } f^*E = \{(p,e) \in N \times E : f(p) = \pi(e)\} \text{ (cf. }$ the previous problem). See the diagram:



Proposition 15.9. The vertical vector bundle VE is isomorphic to the vector bundle π^*E (as bundles over E). Sometimes they say that VE is isomorphic to E along π .

Proof. If $(v, w) \in \pi^* E = \{(p, e) \in E \times E : \pi(p) = \pi(e)\}$, i.e. $\pi(v) = \pi(w)$, or $v, w \in E_p$ for some p, then $\pi(v+tw)$ is constant in t. Thus we can define a map from π^*E to TE by

for some
$$p$$
, then $\pi(v+tw)$ is constant in t . Thus we can define a map from π E to TE by $(v,w)\mapsto \frac{d}{dt}|_0 (v+tw)$. This map evidently maps into $\mathcal{V}E\subset TE$. We obtain a vector bundle isomorphism
$$\mathbf{j}:\pi^*E\cong\mathcal{V}E, \quad \mathbf{j}:(v,w)\mapsto\mathbf{j}_vw:=\frac{d}{dt}|_0 (v+tw)=w_v.$$

Problem 15.10. Prove that **j** is an isomorphism, i.e. surjective and injective.

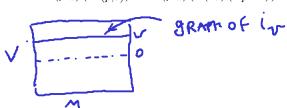
Home **Problem 15.11.** Prove that $\mathcal{H} \cong \pi^*TM$. Home

Problem 15.12. Let $E \to M$ be a a vector bundle. Suppose that for each $p \in M$ there is a subspace $E'_p \subset E_p$. Then $E' = \bigcup_{p \in M} E'_p$ is the total space of rank l vector subbundle if and only if for each $p \in M$, there is an open neighborhood U of p on which smooth sections $\sigma_1, \ldots, \sigma_2$ are defined such that for each $q \in U$ the set $\{\sigma_1(q), \ldots, \sigma_l(q)\}$ is a basis of E'_q .

Theorem 15.13. Every vector bundle admits a connection.

Proof. For a trivial bundle $pr_1: M \times V \to M$ and a fixed $v \in V$ define $i_v: M \to M \times V$ by $i_v(p) := (p, v)$. For each $p \in M$, define $\mathcal{H}_{(p,v)} := d(i_v)_p(T_pM)$. Evidently these maps are linear injections smoothly depending on p. Then one can apply the previous problem to obtain that the subspaces $\mathcal{H}_{(p,v)}$ form a subbundle \mathcal{H} of TE. Also,

Thus $d(pr_1)(\mathcal{H}_{(p,v)}) \stackrel{?}{=} d(pr_1)d(i_v)_p(T_pM) = d(pr_1 \circ i_v)_p(T_pM) = d(\mathrm{Id})_p(T_pM) = T_pM$ and hence $TE = \mathcal{V} \oplus \mathcal{H}$. For any $a \in \mathbb{R}$ we have $\mu_a \circ i_v = i_{av}$ and $d(\mu_a) \circ d(i_v) = d(i_{av})$. Thus $d(\mu_a)(\mathcal{H}_{(p,v)}) = d(\mu_a)(d(i_v)(T_pM)) = d(i_{av})(T_pM) = \mathcal{H}_{(p,av)} = \mathcal{H}_{(ap,v)} = \mathcal{H}_{a(p,v)}.$



by the first helf of the proof

Consider a general vector bundle $\pi: E \to M$ with a trivializing locally finite cover $\{U_{\alpha}\}$ of M. Choose a connection \mathcal{H}^{α} on each $\pi^{-1}(U_{\alpha})$. Let $\{\rho_{\alpha}\}$ be a partition of unity subordinated to $\{U_{\alpha}\}$. For each $y \in E$, define

$$L_y: T_{\pi(y)}M \to T_yE, \qquad L_y(v) := \sum_{\{\alpha: \pi(y) \in U_\alpha\}} \rho_\alpha(\pi(y))w_\alpha,$$

where w_{α} is the unique vector in \mathcal{H}^{α} such that $(d\pi)w_a = v$. Evidently L_y is linear and $(d\pi)_y \circ L_y = \mathrm{Id}_{T_pM}$. This implies (using Problem 15.12) that $y \mapsto L_y(T_{\pi(y)}M)$ determines a subbundle \mathcal{H} with the property 1).

Problem 15.14. Verify the property 2).

Home

Problem 15.15. Prove the above statement using a Riemannian metric (to be constructed Home first) and the orthogonal complement.

in TyE (VEy) =: Hy

Definition 15.16. For a smooth fiber bundle $\pi: E \to M$ and a smooth map $f: N \to M$, we call a map $\sigma: N \to E$ a section of E along f if $\pi \circ \sigma = f$.

If $\sigma: N \to E$ is a section of E along f, then $\sigma': N \to f^*E$, $p \mapsto (p, \sigma(p)) \in N \times E$, is a section of the pull-back f^*E .

Home **Problem 15.17.** Prove that all sections of f^*E are of this form.

Definition 15.18. Let $\sigma: N \to E$ be a section of E along a map $f: N \to M$. We say that σ is a parallel section if $(d\sigma)v$ is horizontal for all $v \in TN$. If s is a section of E and $\gamma: [a,b] \to E$ is a curve, then we say that s is parallel along γ if $s \circ \gamma$ is parallel.

Home **Problem 15.19.** Prove that if s is parallel with respect to the pull-back connection on f^*E , then σ_s is parallel, where $\sigma_s: N \to E$, $\sigma_s(x) = s(x) \in E_{f(x)} = (f^*E)_x$.

at each $y \in \pi^{-1}(p) = E_p$ we have a union yester of E_p we have a union yester E_p E_p

Problem 15.20. Let [0,b] be an interval and let $t \in [0,b]$. Suppose that $\pi : E \mapsto [0,b]$ is Class a vector bundle with some connection. Let $\widetilde{\partial}$ denote the horizontal lift of $\frac{\partial}{\partial t}$.

- 1) For an integral curve $\gamma:[0,a]\to E$ of $\widetilde{\partial}$, show that $\pi\circ\gamma$ is an integral curve of $\frac{\partial}{\partial t}$. Deduce that $\gamma(a)\in E_a$.
- 2) Prove that for any $t_0 < b$ there exists $\varepsilon = \varepsilon(t_0) > 0$ such that all integral curves of $\widetilde{\partial}$ originating in the fiber E_{t_0} are defined at least on $[t_0, \varepsilon)$.
- 3) Then 1) and 2) imply that all integral curves of $\widetilde{\partial}$ have domain [0, b].

The following theorem does not work in the general situation, but for curves this works fortunately.

Theorem 15.21. Suppose that $\pi: E \to M$ is a vector bundle with a connection \mathcal{H} and $\gamma: [a,b] \to M$ is a smooth curve. Then for each $u \in E_{\gamma(a)}$ there is a unique parallel section $\sigma_{\gamma,u}$ along γ such that $\sigma_{\gamma,u}(a) = u$. Also, the map $P_{\gamma}: E_{\gamma(a)} \to E_{\gamma(b)}$, $P_{\gamma}(u) = \sigma_{\gamma,u}(b)$, is a linear isomorphism.

Proof. One may assume a=0 and apply Problem 15.20 with γ^*E instead of E. We obtain an integral curve γ_u of $\widetilde{\partial}$ in γ^*E with $\gamma_u(0)=(0,u)\in\gamma^*E$ defined on [0,b]. By 1) in Problem 15.20, $pr_1\circ\gamma_u$ is an integral curve of $\frac{\partial}{\partial t}$ and $pr_1\circ\gamma_u(t)=t$. Let $\sigma_{\gamma,u}:=pr_2\circ\gamma_u$ on [0,b]. Then $\sigma_{\gamma,u}$ is a parallel section of $E\to M$ along γ because $\dot{\gamma}_u$ is horizontal (cf. Problem 15.19). It is unique as an integral curve (Cauchy problem for ODE).

Now prove that the above defined P_{γ} is linear. First, note that $(r\sigma_{\gamma,u}) = d(\mu_r) \circ \dot{\sigma}_{\gamma,u}$ is horizontal, because $d(\mu_r)$ preserves \mathcal{H} . Then $r\sigma_{\gamma,u}$ is parallel and $P_{\gamma}(ru) = rP_{\gamma}(u)$. So, P_{γ} is homogeneous. Now prove that $P_{\gamma} = \mathbf{j}_0^{-1} \circ d(P_{\gamma}) \circ \mathbf{j}_0$ (see the proof of Proposition 15.9 for a similar definition), i.e. a composition of linear maps. For $v_0 \in T_0 E_{\gamma(0)}$, define $\omega(t) = tv$ such that $v_0 = \dot{\omega}(0)$ for an appropriate $v \in E_{\gamma(0)}$. This means that v is v_0 under "an appropriate identification". More precisely,

$$\mathbf{j}_0(v) = \frac{d}{dt}\Big|_{0} (0 + tv) = v_0, \qquad v = \mathbf{j}_0^{-1}(v_0).$$

By the (third) definition of the tangent map,

$$(dP_{\gamma})_{0}v_{0} = \frac{d}{dt}\bigg|_{0} (P_{\gamma} \circ \omega).$$

Since $P_{\gamma} \circ \omega(t) = P_{\gamma}(tv) = tP_{\gamma}(v)$ (using the homogeneity proved first), we have

$$(dP_{\gamma})_0 v_0 = \mathbf{j}_0(P_{\gamma}(v)) = \mathbf{j}_0 \circ P_{\gamma} \circ \mathbf{j}_0^{-1} v_0$$

and $P_{\gamma} = \mathbf{j}_0^{-1} \circ dP_{\gamma} \circ \mathbf{j}_0$ is linear.

Finally, evidently P_{γ} has the inverse P_{γ^-} , where $\gamma^-(t) := \gamma(b-t)$, so it is a linear isomorphism.

Home **Problem 15.22.** Verify that P_{γ^-} is the inverse to P_{γ} .

Definition 15.23. The map P_{γ} from the previous theorem is called *parallel translation* or parallel transport along γ from $\gamma(a)$ to $\gamma(b)$. For $t_1, t_2 \in [a, b]$, let $P(\gamma)_{t_1}^{t_2} := P_{\gamma|[t_1, t_2]} : E_{\gamma(t_1)} \to E_{\gamma(t_2)}$ if $t_2 \ge t_1$ and $P(\gamma)_{t_1}^{t_2} := P_{\gamma|[t_2, t_1]}^{-1} : E_{\gamma(t_1)} \to E_{\gamma(t_2)}$ if $t_1 \ge t_2$.

The curve $\sigma_{\gamma, u}$ is a parallel lift or horizontal lift of the curve γ .

A parallel transport along a piece-wise smooth curve is defined by stages as a composition.

Denote the vector bundle isomorphism from VE to E along π by \mathbf{p} , i.e. $\mathbf{p}: VE \to E$ is the composition in the upper row of diagram (cf. Proposition 15.9):

$$VE \xrightarrow{\mathbf{j}^{-1}} \pi^*E \longrightarrow E$$

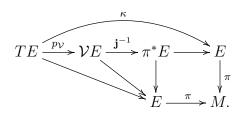
$$\downarrow \qquad \qquad \downarrow^{\pi}$$

$$E \xrightarrow{\pi} M$$

In the notation of Proposition 15.9 $\mathbf{p}: w_y \mapsto w$ and for each y, it gives the canonical identification of $T_y E_p$ with E_p , and on each fiber, it is the inverse of \mathbf{j} . If we have a connection on $\pi: E \to M$, then we have an associated *connector*, which is the map $\kappa: TE \to E$ defined by

$$\kappa(v) := \mathbf{p}(p_{\mathcal{V}}(v)) = \mathbf{j}_y^{-1}(p_{\mathcal{V}}(v)),$$

where $v \in T_yE$ and $p_{\mathcal{V}}: TE = \mathcal{V} \oplus \mathcal{H} \to \mathcal{V}$ is the canonical projection. It is a vector bundle homomorphism along $\pi: E \to M$:



Problem 15.24. Prove that $d\pi: TE \to TM$ is a vector bundle. In particular, the addition Class and scalar multiplication on a fiber $(d\pi^{-1})(x)$ of $d\pi: TE \to TM$ are defined by

$$u \boxplus v := (d\alpha)(u, v)$$
 for $u, v \in TE$ with $(d\pi)u = (d\pi)v = x$,

$$c \odot v := (d\mu_c)v$$
 for $v \in TE$ and $c \in \mathbb{K}$,

where $\alpha(y_1, y_2) := y_1 + y_2$ for $(y_1, y_2) \in E \oplus E$ and $\mu_c y := cy$ for $y \in E$ and $c \in \mathbb{K}$.

Lemma 15.25. Suppose that $f: \mathbb{R}^K \to \mathbb{R}^k$ is a smooth map such that f(av) = af(v) for all $v \in \mathbb{R}^K$ and $a \in \mathbb{R}$. Then f is linear. Similarly for \mathbb{C} .

Proof. One has $(Df)(0)v = \frac{d}{dt}|_{t=0} f(tv) = \frac{d}{dt}|_{t=0} tf(v) = f(v)$. Thus f = (Df)(0) and f is linear. Similarly, in the complex case, f is \mathbb{R} -linear and by f(iv) = if(v) it is \mathbb{C} -linear. \square

Applying this lemma to each chart we obtain the following statement.

Corollary 15.26. Suppose that $\pi_1: E_1 \to M$ and $\pi_2: E_2 \to M_2$ are K-vector bundles, $\widehat{f}: E_1 \to E_2$ is a fiber bundle morphism over $f: M_1 \to M_2$. If \widehat{f} is homogeneous on each fiber, i.e. $\widehat{f}(av) = a\widehat{f}(v)$ for all $v \in E_1$ and $a \in K$, then \widehat{f} is linear on fibers, i.e. it is a vector bundle morphism.

Lemma 15.27. Let $\mu_r: E \to E$ be multiplication by r. Then for any $p \in M$ and $y, w \in E_p$, we have

$$(d\mu_r)(\mathbf{j}_y w) = \mathbf{j}_{ry}(rw) = r\mathbf{j}_{ry}w.$$

Proof. Indeed

$$(d\mu_r)(\mathbf{j}_y w) = \frac{d}{dt}\Big|_{t=0} \mu_r(y+tw) = \frac{d}{dt}\Big|_{t=0} (ry+trw)$$
$$= \mathbf{j}_{ry}(rw) = r\mathbf{j}_{ry}w.$$