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1 Some concepts from topology

07.09.2023We start from metric spaces.

Definition 1.1. A metric ρ on a set X is a mapping ρ : X × X → [0,∞), restricted to
satisfy:

1. ρ(x, y) = 0 ⇔ x = y ∀x, y ∈ X (identity axiom);

2. ρ(x, y) = ρ(y, x) ∀x, y ∈ X (symmetry axiom);

3. ρ(x, z) ≤ ρ(x, y) + ρ(y, z) ∀x, y, z ∈ X (triangle axiom).

A pair (X, ρ), where X is a set and ρ is a metric on X, is called a metric space. Sometimes
we write simply X.

A subset Y ⊂ X is automatically a metric space itself.

Definition 1.2. Diameter of Y is diamY := sup
x,y∈Y

ρ(x, y). If diamY < ∞, then Y is

bounded. A ball (ball neighborhood) is

Bε(x) := {y ∈ X | ρ(y, x) < ε}.

The distance between Y ⊆ X and Z ⊆ X is

ρ(Y, Z) := inf
y∈Y,z∈Z

ρ(y, z).

Definition 1.3. If ρ(y, Y ) = 0, then y is an adherent point of Y . The closure of a subset
Y is Y :={the set of all adherent points of Y }. Evidently, Y ⊆ Y . A subset Y is closed , if
Y = Y .

Definition 1.4. A point x is an interior point of a subset Y , if there exists ε > 0 such that
Bε(x) ⊆ Y (in particular, x ∈ Y ). The interior of Y is the set IntY ⊆ Y of all its interior
points. A subset Y is open, if Y = IntY .

Problem 1.5. Suppose, ClassX is a metric space. Then Y ⊆ X is open iff (if and only if)

X \ Y is closed. In fact, IntY = X \X \ Y .

Theorem 1.6. Suppose, X is a metric space. Then

1 O X is open;

2 O ∅ is open;
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3 O the union
⋃
α∈A

Uα of any collection of open subsets Uα ⊆ X is open;

4 O the intersection
k⋂
i=1

Ui of a finite collection of open subsets Ui ⊂ X is open;

1 C ∅ is closed;

2 C X is closed;

3 C the intersection
⋂
α∈A

Fα of any collection of closed subsets Fα ⊂ X is closed;

4 C the union
k⋃
i=1

Fi of a finite collection of closed subsets Fi ⊂ X is closed.

Proof. Properties 1 O and 2 O are evident. Let us prove 3 O. Suppose, U :=
⋃
α∈A

Uα and

x ∈ U . Then. for some α, we have x ∈ Uα and Bε(α) ⊆ Uα. Then Bε(α) ⊆ Uα ⊆ U .

Let us prove 4 O. Suppose, U :=
k⋂
i=1

Ui, x ∈ U . Then there are εi (i = 1, . . . , k) such

that x ∈ Bεi(x) ⊆ Ui. Take ε := min{ε1, . . . , εk}. Take Bε(x) ⊆ Bεi(x) ⊆ Ui ∀i. Hence,
Bε(x) ⊂ U .

Finally, by Problem 1.5, k O ⇔ k C ∀ k.

Problem 1.7. ShowHome that the finiteness condition is essential.
Problem 1.8. ProveHome that Bε(x) is open.
Problem 1.9. ProveHome that IntY is open, i.e., Int(IntY ) = IntY .

Problem 1.10. ProveHome that Y is closed, i.e., Y = Y .

Definition 1.11. A topology on a set X is a system τ of its subsets (these subsets are called
open), restricted to satisfy the following axioms:

1) X ∈ τ ;

2) ∅ ∈ τ ;

3) if Uα ∈ τ for all α ∈ A, then
⋃
α∈A

Uα ∈ τ ;

4) if U1, . . . , Uk ∈ τ , then
k⋂
i=1

Ui ∈ τ .

Then (X, τ) is called a topological space. Any set of the form F = X \ U , where U ∈ τ , is
called closed.

Problem 1.12. VerifyHome 1 C – 4 C for closed sets in a topological space.

Example 1.13. Any metric space is a topological space.

Problem 1.14. FindClass an example of a topological space (X, τ), which is not related to any
metric (this is called: topology is not metrizable).
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Definition 1.15. An (open) neighborhood of a point x ∈ X (respectively, of a subset Y ⊆ X)
in a topological space is any open set, where x (respectively, Y ) is contained.

An adherent point of Y ⊆ X is a point x ∈ X such that any its neighborhood has a
non-empty intersection with Y . The closure of Y is the set Y of all adherent points of Y (in
particular, Y ⊆ Y ).

A point x ∈ Y is called an interior point of Y , if there exists a neighborhood U of x such
that x ∈ U ⊆ Y . The set IntY of all interior points of Y is called the interior of Y .

Problem 1.16. Y ⊆ X Homeis closed iff Y = Y .

Problem 1.17. Y Homeis closed.

Problem 1.18. Y ⊆ X is Homeopen iff Y = IntY .

Problem 1.19. IntY is Homeopen.

Definition 1.20. Suppose Y ⊆ X, where (X, τ) is a topological space. The system of sets
τ1 := {U ∩ Y | U ∈ τ} is called the induced topology (by τ on Y ).

Problem 1.21. Verify Homethe axioms for τ1.

Problem 1.22. Suppose Homethat (X, ρX) is a metric space. Then one can introduce a topology
on Y ⊆ X in two ways:

1) ρX generates τX , which then induces τ1,

2) ρX after the restriction on Y gives ρY , which generates τρY .

Prove that τ1 = τρY .

Definition 1.23. A subset Y ⊆ X is called (everywhere) dense, if Y = X.

Problem 1.24. Let Y1 ⊆ X Homeand Y2 ⊆ X be dense open sets. Then Y = Y1 ∩ Y2 is a dense
open set.

Definition 1.25. A map f : X → Y of topological spaces is called continuous at a point
x0 ∈ X, if, for any neighborhood of its image V (f(x0)), there exists a neighborhood U(x0)
such that f(U(x0)) ⊆ V (f(x0)). A map is called continuous, if it is continuous at each point.

Theorem 1.26. The next properties are equivalent:

1) a map f : X → Y is continuous;

2) for any open set V ⊆ Y , its full pre-image f−1(V ) is open in X;

3) for any closed set F ⊂ Y its full pre-image f−1(F ) is closed in X.

Proof. Since f−1(Y \V ) = f−1(Y )\f−1(V ) = X\f−1(V ), properties 2) and 3) are equivalent.

Suppose, 1) is fulfilled, i.e., f is continuous, and V ⊆ Y is an open set. Then either the
pre-image of V is empty, hence open, or there is some point x, i.e., f(x) ∈ V . Then, by
definition, for any such x, there exists a neighborhood U(x) such that f(U(x)) ⊆ V , i.e.,
U(x) ⊆ f−1(V ). Thus, any point of f−1(V ) is interior.

Conversely, suppose 2) is fulfilled. Then, for V = V (f(x0)), one can take U(x0) = f−1(V )
as the desired open neighborhood (see Def. 1.25).
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Problem 1.27. Suppose,Home X = F1∪F2, where F1 and F2 are closed subsets, and f : X → Y
is a map. Then f is continuous iff f |F1 : F1 → Y and f |F2 : F2 → Y are continuous.

Problem 1.28. Let fn : X → R beClass a sequence of continuous functions, which is uniformly
convergent on X to some function f . Then f is continuous.

Problem 1.29. Let X and Y be metric spaces.Home Prove that f : X → Y is continuous
at x0 as a map of topological spaces iff, for any sequence {xn} with lim

n→∞
xn = x0 we have

lim
n→∞

f(xn) = f(x0).

Definition 1.30. A map f : X → Y is called a homeomorphism, if

1) f is a bijection;

2) f and f−1 (inverse mapping) are continuous.

Problem 1.31. Give anClass example of a continuous bijection, which is not a homeomorphism.

Definition 1.32. A base of a topology τ is a system of open sets B such that any τ–open
set is as a union of some of them.

Problem 1.33. WhatHome conditions need to be imposed on an arbitrary system of subsets
B1, to obtain some topology by taking their arbitrary unions?

Definition 1.34. Suppose that (X, τX) and (Y, τY ) are topological spaces. Consider in
X × Y the following base of topology:

B := {V ×W | V ∈ τX , W ∈ τY }.

The resulting topological space is called the cartesian product of X and Y .

Problem 1.35. VerifyHome (with the help of the previous problem) that X × Y is really a
topological space.

Problem 1.36. ProveHome that X × Y and Y ×X are homeomorphic.

Problem 1.37. ProveHome that (X × Y )× Z and X × (Y × Z) are homeomorphic.

Problem 1.38. LetHome (X, ρX) and (Y, ρY ) be metric spaces. Define on X × Y the following
distances:

ρmax((x1, y1), (x2, y2)) := max{ρX(x1, x2), ρY (y1, y2)},

ρ2((x1, y1), (x2, y2)) :=
√
ρ2
X(x1, x2) + ρ2

Y (y1, y2),

ρ+((x1, y1), (x2, y2)) := ρX(x1, x2) + ρY (y1, y2).

Prove:

1) That these are metrics.

2) That the corresponding topologies on X × Y coincide.

Problem 1.39. ProveClass that (a, b), [a, b) and [a, b] (subsets of real line) are pair-wise non-
homeomorphic.
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1.1 Connectedness and arc connectedness

Definition 1.40. A topological space X is called disconnected, if one of the following (evi-
dently equivalent to each other) conditions is fulfilled:

� X is equal to a union of its two non-intersecting non-empty open subsets.

� X has a non-empty subset A 6= X, which is open and closed simultaneously.

� X is equal to a union of its two non-intersecting non-empty open and closed simulta-
neously subsets.

Otherwise X is connected.

Definition 1.41. A topological space X is called arc connected, if, for any two points
x0, x1 ∈ X, there exists a continuous map (path) f : [0, 1]→ X, f(0) = x0, f(1) = x1.

Problem 1.42. Any interval Class[a, b] ⊂ R is connected and arc connected.

Theorem 1.43. Suppose, X =
⋃
α

Xα, each Xα is connected, and
⋂
α

Xα 6= ∅. Then X is

connected.

Proof. Suppose that X is disconnected, X = A ∪ B, A ∩ B = ∅, A and B are non-empty
closed-open sets. Then, for each α, we have Xα = (Xα ∩ A) ∪ (Xα ∩ B). By the definition
of the induced topology, these sets are closed-open in Xα. Since Xα is connected, one of
them should be empty. Hence, each Xα belongs entirely either to A, or to B, which do not
intersect. Since A and B are non-empty and X is the union of Xα, then at least one of Xα,
say Xα0 is contained in A and some other, Xα1 ⊆ B. Then

⋂
α

Xα ⊆ Xα0 ∩ Xα1 = ∅. A

contradiction.

Theorem 1.44. Suppose that, for any two points x and y of a topological space X, there
exists a connected subset Pxy such that x ∈ Pxy and y ∈ Pxy. Then X is connected.

Proof. Suppose that X is disconnected: X = A ∪ B, A ∩ B = ∅, A and B are non-empty
closed-open subsets. Then there exist some a ∈ A, b ∈ B and a corresponding Pab. Then
Pab = (Pab∩A)∪ (Pab∩B). The subsets Pab∩A and Pab∩B are closed-open in Pab and non-
empty (the first one contains a, the second one — b). A contradiction with connectedness
of Pab.

Problem 1.45. The image Homeof a connected space under a continuous mapping is connected.

Theorem 1.46. An arc connected space is connected.

Proof. By the previous problem, the set f([0, 1]) is connected, where f = fx0,x1 is the function
from Def. 1.41. Taking Px0,x1 := f([0, 1]), apply Theorem 1.44.

Problem 1.47. Find an Classexample of connected space, which is not arc-connected.
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1.2 Compact, Hausdorff and normal spaces

14.09.2023
Definition 1.48. A topological space X is called Hausdorff, if, for any x, y ∈ X, x 6= y,
there exist their neighborhoods U(x) and U(y) such that U(x) ∩ U(y) = ∅.

Problem 1.49. Give an example of non-Hausdorff topological space.Home
Problem 1.50. Prove that the Cartesian product of Hausdorff spaces is a HausdorffClass space.
Problem 1.51. Prove that in any Hausdorff space each point is a closed set.Home

Definition 1.52. A topological space X is called normal, if it is Hausdorff and, for any
two non-intersecting closed sets F1 and F2, there exist their non-intersecting neighborhoods
U1 ⊇ F1 and U2 ⊇ F2, U1 ∩ U2 = ∅.

Problem 1.53. Verify thatClass any metric space is normal.

Definition 1.54. A cover {Vβ}β∈B is a refinement of a cover {Uα}α∈A, if, for any β, there
exists α = α(β) such that Vβ ⊆ Uα.

Theorem 1.55. Suppose that X is a normal topological space and {Ui}Ni=1 is a finite open
cover. Then there exists its refinement of the form {Vi}Ni=1 such that V i ⊆ Ui.

Proof. Consider the following closed sets

F1 =

(
X \

N⋃
i=2

Ui

)
⊆ U1, F̃1 = X \ U1,

and, by normality, neighborhoods

V1 ⊇ F1, Ṽ1 ⊇ F̃1, V1 ∩ Ṽ1 = ∅.

Each point of F̃1 has an open neighborhood Ṽ1, which does not intersect V1. Hence this
point can not be an adherent point of V1 and

V 1 ∩ F̃1 = ∅, V1 ⊂ V 1 ⊂ (X \ F̃1) = U1.

Also, (V1, U2, . . . , UN) is a cover by the construction of F1. At next steps we replace U2 by
V2 and so on.

Problem 1.56. Let f : X → X be a continuous self-map of a HausdorffHome space. Prove
that the set of fixed points Ff := {x ∈ X | f(x) = x} is closed.
Problem 1.57. Prove that X is HausdorffHome iff the diagonal ∆ := {(x, y) | x = y} ⊂ X ×X
is closed in X ×X.
Problem 1.58. Prove that if a map f : X → Y ,Class where Y is Hausdorff, is continuous, then
its graph Γf := {(x, f(x)) | x ∈ X} ⊂ X × Y is closed in X × Y .

Lemma 1.59. (Uryson’s lemma) Suppose that X is a normal topological space, F0 and F1

are some closed non-intersecting sets. Then there exists a continuous function f : X → [0, 1]
such that f |F0 = 0 and f |F1 = 1.
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Proof. The normality of X implies that, for any closed F and its open neighborhood U ,
F ⊆ U , there exists another neighborhood V such that F ⊆ V ⊆ V ⊆ U (see the above
proof of Theorem 1.55). We will denote this by V ⊂⊂ U .

Define Vq, for rational q of the form q = m/2k, m odd, by induction over k (i.e., first for
0 and 1, then for 1/2, then for 1/4 and 3/4, then for 1/8, 3/8, 5/8, 7/8 and so on) in such
a way that Vq1 ⊂⊂ Vq2 if q1 < q2. For this purpose define V0 and V1 to be open sets U and
V from the beginning of the proof, i.e., F0 ⊆ V0, F1 ⊆ X \ V1, V0 ⊂⊂ V1. Suppose that, by
the induction supposition, the sets Vq are defined for q up to 2k as the denominator of q.
Consider

F := V i

2k
, U := V i+1

2k
,

and define V 2i+1

2k+1
:= V (as in the beginning of the proof, for these F and U). And so on.

The constructed Vq are open and have the following properties:

1) F0 ⊂ V0,

2) V1 = X \ F1,

3) if q1 < q2, then Vq1 ⊂⊂ Vq2 .

Define, for any s ∈ [0, 1], the set Vs as Vs :=
⋃
q≤s

Vq. Then Vs is open for any s (as a union of

open sets) and satisfies 1) – 3). Indeed, 1) and 2) are evident, and to prove 3), for s1 < s2,we
find q1 = m1/2

k and q2 = m2/2
k such that s1 < q1 < q2 < s2, where k is sufficiently large.

Then Vs1 ⊆ Vq1 ⊂⊂ Vq2 ⊆ Vs2 and Vs1 ⊂⊂ Vs2 .
Now define f : X → [0, 1] by f |F0 = 0 and f(x) := sup{s | x 6∈ Vs}. Let us prove that f

is continuous. Let x0 and ε > 0 be arbitrary. Let s0 = f(x0). Consider

U(x0) := Vs0+ ε
4
\ Vs0− ε4 .

This is an open neighborhood of x0 and, for any x ∈ U(x0), one has

x ∈ Vs0+ ε
4
, x 6∈ Vs0− ε4 .

Thus,

s0 −
ε

4
≤ f(x) ≤ s0 +

ε

4
, |f(x)− f(x0)| ≤ ε

2
< ε.

Problem 1.60. A closed subset of a closed set is closed in the entire Homespace.
Problem 1.61. (Tietze’s theorem about extension) [Mishchenko, Fomenko, pp. 78–79]

HomeSuppose that X is a normal topological space, F ⊂ X is a closed subset and f : F → R is
a continuous function. Then f can be extended to a continuous function g : X → R. If f is
bounded, then g can be chosen to be bounded by the same constant.

Definition 1.62. The support of a function f : X → R is

supp f := {x ∈ X | f(x) 6= 0}.

Theorem 1.63. Suppose that X is a normal topological space and {Uα} its finite open cover.
Then there exist continuous functions ψα : X → [0, 1] ⊂ R such that
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1) suppψα ⊂ Uα,

2)
∑

α ψα(x) ≡ 1.

This system (not uniquely determined) of functions {ψα} is called a partition of unity subor-
dinated to {Uα}.
Remark 1.64. It is sufficient to ask local finiteness of {Uα}: every point has a neighborhood
such that it intersects only finitely many sets from {Uα}.
Proof of theorem. Using Theorem 1.55 let us find new covers Wα ⊂⊂ Vα ⊂⊂Uα. By the Uryson
lemma we can find continuous functions

θα : X → [0, 1], θα|Wα
≡ 1, θα|(X\Vα) ≡ 0.

Thus, supp θα ⊆ V α ⊆ Uα and θα|Wα > 0. Define θ :=
∑

α θα. It is a finite sum of continuous
functions, hence, itself a continuous function. Since {Wα} is a cover and θ ≥ θα > 0 on Wα,
then θ > 0 everywhere. Hence we can define ψα := θα

θ
. Evidently, 1) and 2) are satisfied.

Definition 1.65. A topological space X is compact, if each its open cover has a finite
sub-cover (i.e. there is a finite number of elements, which still cover X).

Problem 1.66. Prove thatClass any closed interval [a, b] is compact.
Problem 1.67. ProveHome that a closed subset of a compact space is compact itself.
Problem 1.68. Prove thatHome a compact subset of a Hausdorff space is closed.

Theorem 1.69. Any compact Hausdorff space is normal.

Proof. Let F ⊂ X be closed and x 6∈ F . Let us prove that there exist non-intersecting open
neighborhoods U(x) and V (F ). Since X is Hausdorff, for any y ∈ F , there exist Vy 3 y and
Uy 3 x such that Vy ∩ Uy = ∅. The neighborhoods Vy form a cover of F and we can find its
finite sub-cover Vy1 , . . . , VyN , since F is compact (see Problem 1.67). Define:

V (F ) := Vy1 ∪ · · · ∪ VyN , U(x) :=
N⋂
j=1

Uyj .

They are as desired.
Let now F1 ⊂ X and F2 ⊂ X be closed. According to the first part of the proof, we can

find for each x ∈ F1 open non-intersecting sets U(x) 3 x and V (x) ⊃ F2. Then {U(x)} is

an open cover of F1 and we can find its finite sub-cover U(x1), . . . , U(xn). The sets
n⋃
i=1

U(xi)

and
n⋂
i=1

V (xi) are demanded non-intersecting neighborhoods of F1 and F2.

Problem 1.70. Prove thatHome a continuous image of a compact is compact.
Problem 1.71. Let f : X → R1 be aClass continuous function on a compact space X. Then f
is bounded and reaches its maximal and minimal value.

Theorem 1.72. A continuous bijective mapping of a compact space onto a Hausdorff space
is a homeomorphism.

Proof. Let f : X → Y be a continuous bijection, where X is a compact and Y is Hausdorff.
To prove the statement, it is sufficient to prove that the image of any closed subset F ⊂ X
is a closed subset in Y . Since X is compact, then F is compact as well (see Problem 1.67).
Thus, f(F ) is also compact. But Y is Hausdorf. Thus, f(F ) is closed (see Problem 1.68).

Problem 1.73. A cartesianClass product of compact spaces is compact.
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2 Manifolds and tangent vectors

Definition 2.1. A smooth manifold of dimension m is a second countable (has a countable
base) Hausdorff topological space M , equipped with a smooth atlas, i.e., its open cover {Uα}
and a collection of homeomorphisms ϕα, which map Uα onto open subsets Vα ⊂ Rm (the
dimension m of M is denoted by dimM). They introduce on each Uα local coordinates .
They are restricted to satisfy the following compatibility property : the change of coordinate
maps (or overlap maps , or transition functions) ϕαϕ

−1
β : ϕβ(Uα∩Uβ)→ ϕα(Uα∩Uβ) should

be smooth as vector-valued functions, defined on an open subset in Rm. A pair (Uα, ϕα) is
called a chart.

A smooth structure is a maximal smooth atlas (not absolutely rigorous definition). These
are all charts, that are compatible with all charts of some smooth atlas.

Problem 2.2. Prove that Homefor compact manifolds the replacement of “second countable”
by “separable” (has a countable dense set) gives the same concept (in general, “second
countable” is a stronger condition).

Reminder: a map f : U → Rn, where U is an open subset of Rm, is called differentiable
at u ∈ U iff there is a linear map Df(u) : Rm → Rn such that

lim
‖h‖→0

‖f(u+ h)− f(u)−Df(u)(h)‖
‖h‖

= 0.

Existence of partial derivatives of coordinate functions at u is not sufficient and existence of
continuous partial derivatives is not necessary!!!

Smooth = sufficiently many times (typically infinitely many) differentiable.

Remark 2.3. We have inserted the restriction of the same m for all charts into the definition,
but in fact there is a theorem which shows that if we have a homeomorphism ϕ : U ≈ V ,
where U ⊆ Rn and V ⊆ Rm are some open sets, then m = n.

Remark 2.4. If we do not demand compatibility, a manifold is called topological.

Problem 2.5. Find an example Classof a manifold and two non-compatible smooth structures
on it, i.e., two smooth atlases (Ui, ϕi) and (Vj, ψj) such that {(Ui, ϕi), (Vj, ψj)} is not a
smooth atlas.
Problem 2.6. Prove that Classthe sphere Sn and the projective space RP n are smooth mani-
folds.
Problem 2.7. Are the Homeboundary of a square and 8 smooth manifolds (subspaces of R2) ?

Definition 2.8. A 2n-dimensional manifold is called complex analytical, if all transition
functions are complex analytical.

Problem 2.9. Prove Homethat S2 is a complex analytical manifold.

Definition 2.10. 21.09.2023A function f : M → R is called smooth, if, for any point P ∈M and some
chart (Uα, ϕα) with P ∈ Uα, the function f ◦ ϕ−1

α : Vα → R, defined on an open set in Rm,
is smooth.

Problem 2.11. Prove Homethat this definition does not depend on the choice of a chart (from
the same maximal atlas).
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Definition 2.12. A continuous mapping f : M → N of smooth manifolds is called smooth,
if for any point P ∈ M and some charts (Uα, ϕα), P ∈ Uα, and (U ′β, ϕ

′
β), f(P ) ∈ U ′β, (these

are charts on M and N , respectively) the mapping ϕ′β ◦ f ◦ ϕ−1
α : Vα → V ′β ⊂ Rn defined on

an open set in Rm, is smooth, where dimM = m and dimN = n.
This mapping is called local or coordinate representative maps for f

Problem 2.13. VerifyHome that if a mapping is smooth w.r.t. some pair of charts, then it is
smooth w.r.t. any other (compatible) pair.

Definition 2.14. A bijective smooth mapping f : M → N of smooth manifolds is called a
diffeomorphism , if f−1 is smooth.

Problem 2.15. VerifyHome that the following formulas

yk =
xk√

ε2 − (x1)2 − (x2)2 − · · · − (xn)2
, k = 1, . . . , n,

xk =
ε yk√

1 + (y1)2 + (y2)2 + · · ·+ (yn)2
, k = 1, . . . , n,

define a diffeomorphism Bε(0) ⊂ Rn and Rn.
Problem 2.16. FindClass an example of smooth homeomorphism, which is not a diffeomor-
phism.

Lemma 2.17. For any smooth manifold M , there exists an atlas such that all Vα (images
of coordinate maps) are open balls (hence by Problem 2.15, to the entire space Rm.)

Proof. Let (Uα, ϕα) be an atlas of M . For any x ∈ M , we can choose a chart Uα(x) 3 x.
Choose a small ε(x) such that Bε(x)(ϕα(x)(x)) ⊆ Vα(x) ⊆ Rm. Then

(Ũx, ϕ̃x), x ∈M, Ũx := ϕ−1
α(x)(Bε(x)(ϕα(x)(x))), ϕ̃x := ϕα(x)|Ũx ,

is the desired atlas.

Remark 2.18. For any finite atlas of a compact manifold, there exists a subordinated
partition of unity, because this manifold is normal as a topological space.

We will suppose all manifolds to be smooth and will call them simply “manifolds”.

Theorem 2.19. For any finite atlas of a compact manifold M , there exists a subordinated
smooth partition of unity.

Proof. Remark that it is sufficient to find a smooth partition of unity for a finite refinement
o the initial cover by charts (then we simply take some finite sums of functions as the desired
partition).

Second, observe that Lemma 2.17 gives rise to a refinement of the initial atlas (we leave
finitely many charts by compactness). Moreover, we can do this for some smaller atlas w.r.t
the initial one (as in Theorem 1.55).

Thus, we need to prove the statement for an atlas (Wβ, τβ) such that

τβ(Wβ) = B1(0) ⊂ Rm, W ε
β := τ−1

β (B1−ε(0)) is still a cover of M

10



(these ε’s are distinct, but we can take the minimum over this finite set of charts).
Define the following smooth function on Rm:

h(x) :=

e
− 1

(1− ε/2)2 − ‖x‖2
, for ‖x‖2 < (1− ε/2)2,

0, for ‖x‖2 ≥ (1− ε/2)2.

Then
supph = B1−ε/2(0), 0 ≤ h(x) ≤ 1, h(x) > 0 on B1−ε(0).

Define

χβ :=

{
h(τβ(x)), for x ∈ Wβ,

0, for x 6∈ Wβ.

Then χβ ∈ C∞(M), 0 ≤ χ ≤ 1, suppχβ ⊂ Wβ and χβ > 0 on W ε
β . Hence, ψ :=

∑
β χβ > 0

and ψβ := χβ/ψ is a desired C∞-partition of unity.

Problem 2.20. Prove Homethe existence of a subordinated smooth partition of unity for any
locally finite atlas of a (non-compact) manifold. [Lee, Thm. 1.72].

Theorem 2.21. Let f : Rn → R be a smooth function such that grad f =
(
∂f
∂x1
, . . . , ∂f

∂xn

)
6= ~0

at any point of M = f−1(y0). Then M is a smooth manifold. Some n− 1 of x1, . . . , xn can
be taken as local coordinates (i.e., the corresponding projection is a chart). (Which ones —
depends on point.) In particular, dimM = n− 1.

Proof. Apply the implicit mapping theorem. Namely, suppose that

~x0 = (x1
0, . . . , x

n
0 ) ∈M, grad f~x0 =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)∣∣∣∣
~x0

6= ~0.

Without loss of generality one can assume that ∂f
∂xn

∣∣
~x0
6= 0. By the implicit mapping theorem,

there is a neighborhood V of (x1
0, . . . , x

n−1
0 ) in Rn−1, an interval (xn0 − ε, xn0 + ε) ∈ R1 and

C∞-function g : V → R1 such that

1. f(x1, . . . , xn−1, g(x1, . . . , xn−1)) ≡ 0 on V ,

2. g(x1
0, . . . , x

n−1
0 ) = xn0 ,

3. g(x1, . . . , xn−1) ∈ (xn0 − ε, xn0 + ε) for (x1, . . . , xn−1) ∈ V ,

4. any point (x1, . . . , xn) ∈M ∩ (V × (xn0 − ε, xn0 + ε)) is defined by xn = g(x1, . . . , xn−1).

Define a chart:

U := M ∩ (V × (xn0 − ε, xn0 + ε)), ϕ : U → Rn−1, ϕ(x1, . . . , xn) := (x1, . . . , xn−1) ∈ V.

Then, by 1) and 4), the inverse mapping for ϕ is

ϕ−1(x1, . . . , xn−1) = (x1, . . . , xn−1, g(x1, . . . , xn−1)).

Verify that the atlas is smooth. Without loss of generality, suppose that ~x0 is contained in
(U,ϕ) and also in (Ũ , ϕ̃), where ϕ̃ : (x1, . . . , xn) 7→ (x2, . . . , xn). Then, on ϕ(U ∩ Ũ) we have

ϕ̃ϕ−1(x1, . . . , xn−1) = ϕ̃(x1, . . . , xn−1, g(x1, . . . , xn−1)) = (x2, . . . , xn−1, g(x1, . . . , xn−1)),

i.e., a smooth transition function.
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Definition 2.22. (Tensor definition of a tangent vector) A (tangent) vector ξ at a
point P ∈M to a manifold M is a correspondence which, to each chart (Uα, ϕα) (i.e., a local
coordinate system (x1

α, . . . , x
m
α ) containing P ) puts in correspondence an n-tuple of numbers

(ξ1
α, . . . , ξ

m
α ). This correspondence is restricted to satisfy the tensor transformation law : if

to another chart (Uβ, ϕβ) local coordinate system (x1
β, . . . , x

m
β )) ξ put in correspondence an

n-tuple (ξ1
β, . . . , ξ

m
β ), then

ξiβ =
∂xiβ

∂xjα
ξjα, (1)

where the summation over repeated up and down indexes j is supposed (the Einstein sum-
mation convention).

Problem 2.23.Class (a justification of the definition) Suppose that γ : (−1; 1) → M is a
smooth mapping and γ(0) = P . Then the correspondence

ξγ : (x1, . . . , xn) 

(
dx1

dt
, . . . ,

dxn

dt

)∣∣∣∣
t=0

is a vector at P , where, for a local coordinate system (x1, . . . , xn), the mapping γ is defined
as (x1(t), . . . , xn(t)).
Problem 2.24.Home Any tangent vector at P is uniquely defined by its components for any
coordinate system. Moreover, any such n-tuple defines a vector.

Hence, the set of tangent vectors at a point P (tangent space TP (M)) is a finite dimen-
sional R-linear space of dimension dimM . The operations do not depend on the choice of
local coordinate system by (1).

Definition 2.25. (Definition of tangent vector via curves) Consider two smooth curves
γ1 : (−1, 1)→M and γ2 : (−1, 1)→M such that

� γi(0) = P

� for some (hence, any) coordinate system (x1, . . . , xm) in a neighborhood of P the
following holds:

m∑
k=1

[
xk(γ1(t))− xk(γ2(t))

]2
= o(t2), (t→ 0).

Such curves are called (tangentially) equivalent : γ1 ∼ γ2.
All curves satisfying the first condition form non-intersecting equivalence classes called

tangent vectors to M at point P .

Problem 2.26.Home Verify that the above equivalence is really an equivalence relation.

Definition 2.27. (Definition of a tangent vector via differentiation operators) A
linear map D : C∞(M) → R, i.e., a linear functional on the space of smooth functions, is
called a differentiation operator at some point P ∈M , if

� its values are determined only by values of functions in an arbitrary small neighborhood
of P . More precisely, if f, g ∈ C∞(M) satisfy f ≡ g over some neighborhood U of P ,
then D(f) = D(g) (they say “operator is defined on germs of functions”);

12



� the Leibniz property

D(fg) = f(P )D(g) + g(P )D(f) is fulfilled for any f, g ∈ C∞(M).

Such operator is called a tangent vector to M at point P .
Evidently, they form a linear space.

Problem 2.28. HomeSuppose that (x1, . . . , xn) is a local coordinate system in a neighborhood
of P ∈ M , P = (x1

0, . . . , x
n
0 ), and ξ ∈ TPM (in the tensor sense) has components ξi. Then

the mapping

f 7→
n∑
i=1

∂f

∂xi
(x1

0, . . . , x
n
0 )ξi

(directional derivative w.r.t. ξ) does not depend on the choice of a local coordinate system
and defines a differentiation operator.

Theorem 2.29. These three definitions are equivalent in the sense that the following natural
correspondences

a curve → its tangent vector in a coordinate system→

→ the directional derivative w.r.t. this vector

gives rise to a bijection of the tangent spaces in three senses (the second map is a linear
isomorphism of linear spaces).

Proof. Let us prove the first bijection. Keeping in mind Problem 2.23 we see that to prove
that Γ (defined in the problem) is well defined on equivalence classes, it is sufficient to verify
in one coordinate system that γ1 ∼ γ2 imples ξγ1 = ξγ2 . Indeed,

0 = lim
t→0

m∑
k=1

[
xk(γ1(t))− xk(γ2(t))

t

]2

=

=
m∑
k=1

[
lim
t→0

(xk(γ1(t))− xk(P ))− (xk(γ2(t))− xk(P ))

t

]2

,

so ξγ1 = ξγ2 . The same calculation shows that two curves are equivalent iff they have the
same tangent vector in their intersection point P . Thus, Γ is well defined and injective. Fix
a coordinate system xi in a neighborhood of P . Define a map ∆ (may be depending on the
choice of coordinates) in the inverse direction by sending a vector ξ with coordinates ξi in
this system, to a “straight line”, i.e. to the following curve: xi(t) = xi(P ) + t · ξi. Then
d xi

d t

∣∣∣
P0

= ξi and Γ ◦∆ = Id. Hence, Γ is a surjection.

Problem 2.30. HomeProve the second equivalence in the above theorem ([Mishchenko,
Fomenko], pp 125–127).

Definition 2.31. 28.09.2023Suppose that f : M → N is a smooth map and P ∈M . The tangent map
of f at P is a map of tangent spaces dfP : TPM → Tf(P )N , defined in one of the following
equivalent ways (corresponding to three ways of defining of a tangent vector).

13



First way. Suppose that (UM , ϕM : UM → V M ⊂ Rm) is a chart of M in a neighborhood
of P , (UN , ϕN : UN → V N ⊂ Rn) is a chart of N in a neighborhood of f(P ), (x1, . . . , xm)
and (y1, . . . , yn) are the corresponding local coordinate systems. The local representative
map of f , namely a map ϕN ◦ f ◦ (ϕM)−1 : V M → V N can be described as a collection of
functions

y1 = f 1(x1, . . . , xm), . . . , yn = fn(x1, . . . , xm).

Suppose that ξ ∈ TPM puts in correspondence an m-tuple (ξ1, . . . , ξm) to the system
(x1, . . . , xm) (or ξ has coordinates (ξ1, . . . , ξm) w.r.t. this system). Then we define its image
η = (dfP )ξ to be a vector with coordinates

ηj =
∂f j

∂xi
ξi

(assuming the summation) w.r.t. the system (y1, . . . , yn).
Second way. Denote by [γ] the equivalence class of a curve γ. Define:

(dfP )[γ] := [f ◦ γ].

Third way. Consider a differentiation operator ξ at P ∈ M . Then the result of the
action of the differentiation operator (dfP )ξ onto g ∈ C∞(N) is given by the following formula

((dfP )ξ)(g) := ξ(g ◦ f).

Problem 2.32.Home Verify the equivalence of these three definitions.
Clearly the tangent map is linear.

Definition 2.33. Consider a smooth map f : M → N , f(P0) = Q0. A point P0 ∈ M is
called a regular point of f if the tangent map

dfP0 : TP0M → TQ0N

is an epimorphism (surjection). A point Q0 ∈ N is called a regular value of f if any
P ∈ f−1Q0 is a regular point of f .

Theorem 2.34. (Sard’s Lemma) (has to be proved in Advanced Calculus course) Suppose
that f : M → N is a smooth map, M is a compact manifold. Then the set G ⊂ N of all
regular values of f is an open dense set.

Remark 2.35. For non-compact: N \G has zero measure.

Definition 2.36. A smooth map f : M → N is called an immersion, if, for each point
P ∈M , its tangent map dfP : TPM → Tf(P )N is a monomorphism (injective linear map). If
moreover f : M ↔ f(M) is a bijection and f(M) is closed in N , then f is called embedding.

Problem 2.37.Home Give an example of immersion, which is bijective on its image, but is not
an embedding.

Definition 2.38. An embedding, which is a homeomorphism on its image is called a strong
embedding.

Problem 2.39.Class For compact manifolds an embedding is always strong.
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Definition 2.40. A subset L ⊂ M, dimM = m is called a smooth submanifold, if there
exists an atlas (Uα, ϕα) of the manifold M such that {Uα ∩L} is a smooth atlas of L, where
chart mappings are of the form (this is an additional condition for ϕα)

ϕα|Uα∩L : Uα ∩ L→ Vα ∩ Rl, Rl ⊂ Rm, l < m.

Such an atlas (Uα, ϕα) is called normal. Thus, dimL = l, and (m− l) is its codimension.

Problem 2.41. ClassProve that L is closed under the conditions of this definition.
Problem 2.42. HomeSuppose that f : M → N is smooth and Q0 ∈ N is a regular value of
f . Then MQ0 := f−1(Q0) is a smooth submanifold dimMQ0 = dimM − dimN . As a local
coordinates in some neighborhood on MQ0 one can take some (m − n) coordinates of M .
Hint: similarly to Theorem 2.21.
Problem 2.43. HomeFind an example of embedding such that its image is not a submanifold
(and even a manifold).

Theorem 2.44. A subset A ⊂ N is a submanifold iff it is the image of some manifold M
under a strong embedding.

Proof. If A ⊂ N is a submanifold, thrn the identical inclusion is a homeomorphism on its
image, and by the definition of a submanifold it is am immersion (to calculate its rank use
the local representative w.r.t. a normal atlas.)

Conversely, let f : M → N be a strong embedding. The property of A = f(M) to be
a submanifold is local: to observe this, consider an open cover {Ni} of A in N and take
Ai = A ∩ Ni. Consider a family of charts Ψ = {ψi : Ni → Rn} of N , which cover A. Let
Φ = {ϕi : Mi → Rm}i∈Λ be an atlas of M such that f(Mi) ⊂ Ni (if necessary, pass to a
refinement). More precisely, we take a refinement of Ni such that (conserving the notation)
each Mi = f−1(A ∩Ni) is covered by a chart of M .

The localization reduces the situation to the following one: U := {Vi} = ϕi(Mi) ⊂ Rm,
f = fi = ψifϕ

−1
i : U ↪→ Rn is a C∞-embedding. We need to find locally a diffeomorphism,

such that the image of new embedding is contained in Rn−m. By the inverse mapping
theorem there exist (in a sufficiently small neighborhood) some coordinates (xi1 , . . . , xim),
1 ≤ i1 ≤ · · · ≤ im ≤ n, and a smooth map g : Rm

x → Rn−m
x such that the image of f = fi is

the graph of g. Thus we can introduce in Rn new coordinates:

(xi1 , . . . , xim , xj1 − (g(xi1 , . . . , xim))j1 , . . . , xjn−m − (g(xi1 , . . . , xim))jn−m),

and obtain that f(U) is just some coordinate plane.
To obtain a normal atlas from these charts (passing from local to global) we need to

guarantee that (after a passage to smaller charts, if necessary) Ni contains only f(Mi) and
not f(Mj) for j 6= i (we conserve the notation for smaller charts obtained by the inverse
mapping theorem). This can be done using the homeomorphism property. Indeed, if any
sub-neighborhood of Ni, containing A ∩Ni contains f(x), x 6∈Mi, this means that f(Mi) is
not open in f(M). Hence, f−1 is not continuous.

Also, to obtain a normal atlas, we need to add some charts of N which cover the open
set N \ f(M) (and hence do not intersect f(M)). Here we use the condition on f(M) to be
closed.

Problem 2.45. ClassExplain, why the above argument does not work for 8 ⊂ R2 and (0, 1) ⊂
R1 ⊂ R2 (both are images of (0, 1)).
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Remark 2.46. Generally, there are distinct opinions whether (0, 1)×{0} ⊂ R2 is a subman-
ifold or not. The better answer is “not”. Otherwise we need to consider a “normal collection
of charts” instead of “normal atlas”.

Theorem 2.47. (Very weak Whitney embedding theorem) Let M be a smooth com-
pact manifold. Then there exists a positive integer K and a strong embedding f : M → RK.

Proof. Suppose that {Uα, ϕα}Lα=1 is a finite atlas of M , (x1
α, . . . , x

m
α ) is a local coordinate

system in Uα such that ϕα : Uα ≈ Bα = B1(aα) ⊂ Rm, where Br(b) is the ball of radius r
centered in b. Take a sufficiently small ε such that {U ε

α := ϕ−1
α (Bε

α)} still cover M , where
Bε
α := B1−ε(aα) (this is possible by normality). Now choose

fα ∈ C∞(Rm), fα(Rm) = [0, 1], fα(P ) = 1⇔ P ∈ Bε
α, supp fα ⊆ Bα.

Define gkα : M → R, for k = 1, . . . ,m and α = 1, . . . , L, by

gkα(P ) :=

{
fα(ϕα(P ))xkα(P ), for P ∈ Uα;

0, for P 6∈ Uα.

Then gkα(P ) = xkα(P ), when P ∈ U ε
α. Thus, m · L functions gkα define a C∞-map

g : M → Rm·L.

Define now:

ϕ : M → RK = Rm·L+L, ϕ(P ) := ( g(P )︸︷︷︸
m·L functions

; fα(ϕα(P ))︸ ︷︷ ︸
L functions

).

Then rk dϕ ≥ rk dg. If P ∈ U ε
α, then

rk dg|P ≥ rk

(
∂gkα(P )

∂xjα

)
≥ rk

(
∂xkα(P )

∂xjα

)
= m.

Since evidently rk dϕ ≤ m, we have rk dϕ ≡ m. Thus, ϕ is an immersion.
Now prove that ϕ is injective, i.e. it is a bijection onto its image. Let P 6= Q. Then one

can find α such that P ∈ U ε
α. Hence, fα(ϕα(P )) = 1. If in this situation fα(ϕα(Q)) < 1,

then we are done. If fα(ϕα(Q)) = 1, then Q ∈ U ε
α, and gkα(P ) = xkα(P ), gkα(Q) = xkα(Q).

Since P 6= Q, there exists some coordinate with xk0α (P ) 6= xk0α (Q). Thus, gk0α (P ) 6= gk0α (Q)
and ϕ(P ) 6= ϕ(Q).

Since M is compact and ϕ(M) ⊆ RK is Hausdorff, by Theorem 1.72, ϕ is a homeomor-
phism onto its image. Also, the image is closed (as a compact set in a Hausdorff space). So,
ϕ is a strong embedding.

We formulate without proofs:

Theorem 2.48. (Weak Whitney theorem) In the previous theorem one can take a not
necessary compact manifold and K = 2 · dimM + 1.

Theorem 2.49. (Strong Whitney theorem) In the previous theorem one can take K =
2 · dimM .
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3 Tangent bundle

Definition 3.1. 05.10.2023Let dimM = m. Define the tangent bundle N = TM of M . As a set,
N is formed by all couples (P, ξ), where P ∈ M and ξ ∈ TPM , i.e. ξ is a tangent vector
at P . Topology and a structure of a smooth manifold are defined by some bijective maps
of some subsets of N onto some open subsets of R2m. These maps are declared to be
homeomorphisms and charts (hence, dimN = 2m). Namely, if (U,ϕ) is some chart of M ,
then the corresponding subset of N is the set of all couples (P, ξ) with P ∈ U , and the
corresponding map Φ to R2m is defined as

Φ(P, ξ) = (x1, . . . , xm; ξ1, . . . , ξm),

where

ϕ(P ) = (x1, . . . , xm), ξ = ξ1 ∂

∂x1
+ · · ·+ ξm

∂

∂xm
,

i. e. ξ as a tangent vector (the first definition) puts in correspondence the collection ξi to the
coordinate system (x1, . . . , xm) (or has coordinates ξi w.r.t. it). Then the local coordinate
changes are the same as on M (for the first m coordinates) and with the help of the Jacobi
matrix of the appropriate change (for the last m coordinates). In particular, the transition
functions are smooth.

Problem 3.2. ClassCheck the details explicitly.
Problem 3.3. ClassIf M is a Ck-manifold, then T∗M is a Ck−1-manifold.

4 Manifolds with boundary

Introduce the following notation:

Rn
+ ⊂ Rn, Rn

+ := {(x1, . . . , xn) ∈ Rn | xn ≥ 0},

Rn−1
0 := {(x1, . . . , xn) ∈ Rn | xn = 0}.

We will say that a continuous function f : Rn
+ → R1 is differentiable in the following

situation. For interior points (xn > 0) we will conserve the usual notion. For boundary
points (~x0 ∈ Rn−1

0 , or xn = 0) we will demand the property:

f(~x) = f(~x0) +
n∑
i=1

fi · (xi − xi0) + o(~x− ~x0), lim
~x→~x0
xn≥0

o(~x− ~x0)

‖~x− ~x0‖
= 0.

Then fi = ∂f
∂xi

(~x0), (i = 1, 2, . . . , n− 1), and

fn = lim
h→+0

f(x1
0, . . . , x

n−1
0 , xn0 + h)− f(x1

0, . . . , x
n−1
0 , xn0 )

h
(2)

(one-side partial derivative).

Definition 4.1. A second countable Hausdorff topological space M is called a manifold with
boundary, if there exists its open cover {Uα} and coordinate homeomorphisms ϕα : Uα →
Vα ⊂ Rn

+, where Vα ⊂ Rn
+ are open subsets, such that the transition maps

ϕβϕ
−1
α : Vαβ = ϕa(Uα ∩ Uβ)→ Vβα = ϕb(Uα ∩ Uβ)

are smooth in the above sense.
We call a point P ∈M interior point, if xnα(P ) > 0 and boundary point, if xnα(P ) = 0.

17



Problem 4.2.Home Is the notion of an interior point of a manifold related to the notion of an
interior point from topology?

Lemma 4.3. The definitions of boundary and interior points do not depend on the choice
of (compatible) charts.

Proof. Suppose the opposite: in a neighborhood of P ∈ M two charts induce local coor-
dinate systems (x1, . . . , xn) and (y1, . . . , yn) from Rn

+,x and Rn
+,y, and we have xn(P ) > 0,

but yn(P ) = 0. For these charts we have the corresponding coordinate homeomorphisms
of a (maybe smaller) neighborhood U 3 P onto V ⊂ Rn

x and Ṽ ⊂ Rn
+,y, respectively (tak-

ing the intersection we can suppose that both homeomorphisms are defined on the same
neighborhood). We have the corresponding transition map, i.e. a smooth homeomorphism
ϕ : V → Ṽ , yk = ϕk(x1, . . . , xn), satisfying

1. yn = ϕn(x1, . . . , xn) ≥ 0,

2. yn(P ) = ϕn(x1
0, . . . , x

n
0 ) = 0.

Thus, yn = ϕn has its minimum at (x1
0, . . . , x

n
0 ). Since V is open in Rn

x, the point (x1
0, . . . , x

n
0 )

is interior and the necessary conditions of a local extreme:

∂ϕn

∂xi

∣∣∣∣
(x10,...,x

n
0 )

= 0, (i = 1, . . . , n).

But then det

∥∥∥∥ ∂ϕj∂xi

∣∣∣
(x10,...,x

n
0 )

∥∥∥∥ = 0 and a smooth inverse does not exist, because for the above

definition of one-side partial derivative (2) the differentiation rule still works (multiplication
of Jacobi matrices).

Definition 4.4. We call the boundary ∂M of a manifold with boundary M the set of all its
boundary points.

Theorem 4.5. The boundary of a manifold of dimension m is a manifold of dimension
m− 1.

Proof. Take restrictions of charts to the boundary.

Problem 4.6.Home Check all axioms.

5 Orientation

Definition 5.1. A manifold is called oriented, if an atlas is chosen such that all transition
mappings have positive Jacobians. If it is possible to find such atlas on a manifold M , then
M is called orientable.

Problem 5.2.Class A path changing the orientation is a closed path (γ(0) = γ(1)) such that
there exists a collection of charts U1, . . . , Uk, which cover this path, each chart intersects
only with its two neighboring charts, the intersections are connected, and all Jacobians of
transition maps are positive, except for one. Prove that a manifold is not orientable iff there
exists a changing the orientation path for it.

18



Problem 5.3. ClassA local orientation is a choice of orientation (i.e., a basis) in each tangent
space. A local orientation is locally constant, if, for each connected chart U the standard
basis ∂i defines a local orientation (over this chart), which is either the same as the local
orientation in all points, or is the opposite to it in all points. Prove that a (connected)
manifold is orientable iff it has a locally constant local orientation.
Problem 5.4. ClassA connected orientable manifold can be oriented exactly in two ways.
Problem 5.5. HomeProve that spheres Sn, for any n , and the torus T 2 are orientable.
Problem 5.6. HomeProve that any complex analytical manifold is orientable (as a real mani-
fold).
Problem 5.7. ClassProve that a Möbius strip and the projective plane RP 2 are non-orientable
manifolds.

Theorem 5.8. The boundary ∂M of an orientable manifold M is an orientable manifold.

Proof. Suppose that an atlas {Uα, (x1
α, . . . , x

n
α)} (xnα ≥ 0) defines an orientation of M , i.e.,

det

∥∥∥∥∂xiα∂xjβ

∥∥∥∥n
i,j=1

> 0. On ∂M one can take an atlas of the form Wα = Uα ∩ ∂M with local

coordinates (x1
α, . . . , x

n−1
α ). Let us prove that it gives an orientation on ∂M , i.e., for any

P ∈ Wα ∩Wβ, we have det

∥∥∥∥∂xiα∂xjβ

∥∥∥∥n−1

i,j=1

> 0. Since on Wα ∩Wβ we have xnα = xnβ ≡ 0, then

∂xnα
∂xiβ
≡ 0, i = 1, . . . , n− 1. Thus, we have at P :

0 < det

∥∥∥∥∥∂xiα∂xjβ

∥∥∥∥∥
n

i,j=1

= det

∥∥∥∥∥∂xiα∂xjβ

∥∥∥∥∥
n−1

i,j=1

· ∂x
n
α

∂xnβ
. (3)

Also at P :

∂xnα
∂xnβ

= lim
h→+0

xnα(x1
β(P ), . . . , xnβ(P ) + h)− xnα(x1

β(P ), . . . , xnβ(P ))

h
=

= lim
h→+0

xnα(x1
β(P ), . . . , xnβ(P ) + h)

h
.

Since the expression under lim is positive, the limit is non-negative. Also, by (3), it is

non-zero, hence it is positive: ∂xnα
∂xnβ

∣∣∣
P
> 0. Now (3) implies det

∥∥∥∥∂xiα∂xjβ

∥∥∥∥n−1

i,j=1

> 0.

Example 5.9. The inverse is false: the Möbius strip is not orientable, while its boundary
S1 is orientable.

Definition 5.10. If M is oriented, we will call canonical the orientation constructed in the
above proof.

6 Riemannian metric

Definition 6.1. A Riemannian metric on a manifold M is the correspondence g, which
associates with each local coordinate system (x1

α, . . . , x
m
α ) on Uα a collection of m2 smooth

functions gαij : Uα → R restricted to satisfy:
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1) at each point x ∈ U the matrix ‖gij‖ is symmetric (non-degenerated) positively definite;

2) the tensor law is fulfilled: the functions gβkl, associated with a coordinate system
(x1

β, . . . , x
m
β ), satisfy at each point of the intersection of coordinate neighborhoods Uα∩Uβ

one has

gβkl = gαij
∂xiα
∂xkβ

∂xjα
∂xlβ

(with summation over the repeated indexes).

The couple (M, g) is called a Riemannian manifold.12.10.2022

Problem 6.2.Home It is sufficient to verify the first condition at each point P ∈ M only for
one chart.

Definition 6.3. For our study of tensors it is convenient to introduce the following nota-
tion developing the Einstein one. We will denote the local coordinate systems by (U,ϕ),
(U ′, ϕ′), (U ′′, ϕ′′), etc. and the corresponding coordinates by (x1, . . . , xm), (x1′ , . . . , xm

′
),

(x1′′ , . . . , xm
′′
) etc. So, roughly speaking, xi

′
is in fact x′i

′
. Also, as above, a summation over

repeated indexes is supposed. In this notation the tensor transform laws for a vector and
for a Riemannian metric will take the form:

ξi
′
= ξi

∂xi
′

∂xi
, gi′j′ = gij

∂xi

∂xi′
∂xj

∂xj′
.

Lemma 6.4. A Riemannian metric g induces an inner product of (tangent) vectors ~ξ, ~η ∈
TPM by the equality

〈~ξ, ~η〉 := g(~ξ, ~η) := gijξ
iηj.

Proof. Everything is evident, except for independence on local coordinates (i.e., that the
product is well defined): gijξ

iηj = gi′j′ξ
i′ηj

′
. This can be done directly dy the definition of

a Riemannian metric and by the first definition of a tangent vector.

Problem 6.5.Home Do this verification in full detail.

Definition 6.6. A bilinear form is a Riemannian metric without condition 1).

Problem 6.7.Home Prove the equivalence of definitions of a bilinear form at a point via the
tensor law and as a form on the tangent space (in the linear-algebraic sense).

Definition 6.8. Suppose that f : N → M is a smooth map and g is a bilinear form (on
tangent vectors to) M . Define the value of its pull-back or inverse image f ∗g on vectors
~ξ, ~η ∈ TPN by

(f ∗g)(~ξ, ~η) := g((dfP )~ξ, (dfP )~η).

In coordinates one can define the pull-back as follows. Suppose that (x1, . . . , xn) are some
coordinates in a neighborhood of P , (y1, . . . , ym) are some coordinates in a neighborhood of
f(P ), and (f 1(x1, . . . , xn), . . . , fm(x1, . . . , xn)) is the corresponding coordinate form (a local
representative map) of f . Then (in coordinates (x1, . . . , xn))

(f ∗g)ij := gkl
∂fk

∂xi
∂f l

∂xj
.
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Problem 6.9. HomeVerify that these two definitions are equivalent.
Problem 6.10. ClassProve that if i : N → M is an immersion and g is a Riemannian metric
on M , then i∗g is a Riemannian metric on N . Why this fails to be true for a general smooth
map?

Definition 6.11. Let i : N ↪→ M be an inclusion of a submanifold N into a Riemannian
manifold (M, g). Then i∗g is called the induced Riemannian metric on the submanifold N .

Theorem 6.12. Each compact manifold M can be equipped with a Riemannian metric.

Proof. Let F : M → Rp be an embedding from Theorem 2.47. Then F ∗gRp is a Riemannian
metric on M .

Problem 6.13. HomeProve this theorem directly with the help of a partition of unity (without
a usage of an embedding).

7 Lie groups, matrix groups

Definition 7.1. A smooth manifold G is called a Lie group if it is a group such that
the multiplication map µ : G × G → G, (g, h) 7→ gh, and the inverse map (inversion)
inv : G→ G, inv(g) = g−1, are C∞ maps.

Example 7.2. The group GL(n,R) of all invertible real n × n matrices is a Lie group
(general linear group). Indeed, a global chart on GL(n,R) is given by the n2 functions xij,
where xij(A) is ij-th entry (or matrix element) of A. Multiplication is clearly smooth. For
the inversion map one has A−1 = adj(A)/ det(A), where adj(A) is the adjoint matrix (whose
entries are the cofactors). Thus, A−1 depends smoothly on the entries of A. Similarly, the
group GL(n,C) of all invertible complex n× n matrices is a Lie group.

Problem 7.3. HomeLet H be an open subgroup of G. Prove that H is closed. Hint: prove that
the cosets gH, g ∈ G, are open. Deduce that the complement G \H is also open and hence
H is closed.

Theorem 7.4. If G is a connected Lie group and U is a neighborhood of the identity element
e, then U generates the group (every element of G is a (finite) product of elements of U).

Proof. We will prove that even the smaller neighborhood V := inv(U) ∩ U generates G,
where V is symmetric (inv(V ) = V ). For any open W1 and W2 in G, the set W1W2 =
{w1w2 : w1 ∈ W1 and w2 ∈ W2} is an open set being a union of the open sets ∪g∈W1gW2. In
particular, the inductively defined sets V n = V V n−1, n = 1, 2, . . . , are open. We have

e ∈ V ⊆ V 2 ⊆ · · · ⊆ V n ⊆ · · · .

Evidently each V n is symmetric and so also is the union V ∞ := ∪∞n=1V
n. Also, V ∞ is closed

under multiplication. Thus V ∞ is an open subgroup. Hence, it is also closed (Problem 7.3).
Since G is connected, G = B∞.

We will need the following intuitively clear statement.

Lemma 7.5. Suppose that L is a submanifold of M , K is a submanifold of N , f : M → N
is a smooth map such that f(L) ⊆ K. Then f : L→ K is smooth.
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Proof. This can be easily verified in normal atlases.

Problem 7.6.Home Do this.

Lemma 7.7. If H is an abstract subgroup of a Lie group G that is also a manifold and has
a cover by normal charts, then H is a closed Lie subgroup.

Proof. The multiplication and the inversion on H are smooth by Lemma 7.5. It remains
to prove that H is closed. Let g0 ∈ H be arbitrary. Suppose that (U,ϕ) is a normal chart
and e ∈ U , where e is the unity element. Define δ : G × G → G to be δ(g1, g2) = g1

−1g2

and choose an open set V such that e ∈ V ⊂ V ⊂ U . By continuity of the map δ we can
find an open neighborhood O of e such that O × O ⊂ δ−1(V ). Now if {hi} is a sequence in
H converging to g0 ∈ H, then g−1

0 hi → e and g−1
0 hi ∈ O for all sufficiently large i. Since

h−1
j hi = (g−1

0 hj)
−1g−1

0 hi, we have h−1
j hi ∈ V for sufficiently large i, j. For any sufficiently

large fixed j, we have

lim
i→∞

h−1
j hi = h−1

j g0 ∈ V ⊂ U.

Since (U,ϕ) is a normal chart, U ∩H is closed in U . Thus since each h−1
j hi is in U ∩H , we

have h−1
j g0 ∈ U ∩H ⊂ H for all sufficiently large j. Hence, g0 in H and we are done.

Definition 7.8. Let O(n) ⊂M(n,R) be the orthogonal (matrix) group:

O(n) = {A ∈M(n,R) : ATA = I},

where I = e is the unity matrix.
Let U(n) ⊂M(n,C) be the unitary (matrix) group:

U(n) = {A ∈M(n,C) : A
T
A = I}.

Let SL(n,K) ⊂M(n,K) be the special linear group:

SL(n,K) = {A ∈M(n,K) : det(A) = 1}.

We define the special orthogonal and the special unitary (matrix) groups as

SO(n) = O(n) ∩ SL(n,R), SU(n) = U(n) ∩ SL(n,C).

Consider K2n and a non-degenerate skew-symmetric K-bilinear form, having the canonical
form in the standard base:

(v, w)Sp =
n∑
i=1

viwn+i −
n∑
j=1

vn+jwj.

Then the symplectic (matrix) groups are given by

Sp(2n,K) := {A ∈M(2n,K) : (Av,Aw)Sp = (v, w)Sp}.

Remark 7.9. One can prove that Sp(2n,K) ⊂ SL(2n,K), but this is not so easy (see e.g.
https://homepages.wmich.edu/~mackey/detsymp.pdf).
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Problem 7.10. HomeProve that A ∈ Sp(2n,K) iff ATJA = J , where J =

(
0 I
−I 0

)
.

Problem 7.11. ClassProve that the matrix groups from Definition 7.8 are Lie groups and closed
Lie subgroups of GL(n,K). HomeUse Lemma 7.7 and Example 7.2.

Example 7.12. Another important example is abelian Lie groups. One can prove that any
connected compact abelian group is n-torus Tn. It also “comes from matrix groups” in the
sense that

Tn ∼= S1 × · · · × S1, S1 ∼= U(1).

Problem 7.13. HomeProve that a direct product of Lie groups is a Lie group.
Since our matrix groups G are realized as submanifolds of the full matrix algebra i :

G ↪→M(n,K) ∼= Kn2
(i.e., as surfaces), we have a natural inclusion of tangent space TPG ⊂

Ti(P )M(n,K) ∼= Kn2
. In this sense one should understand the following problems.

Problem 7.14. ClassProve that the conditions in right column define TeG for the corresponding
G in left Homecolumn:

G Conditions
O(n) AT = −A
SO(n) AT = −A
U(n) A

T
= −A

Sp(2n,K) JATJ = A

Remark 7.15. In fact a choice of a base gives rise to an isomorphism between the algebra
of linear mappings V → V , where V is a K-vector space of dimension n, and the algebra
M(n,K). So the above Lie groups (and some other) can be considered in a more general
setting (see Ch. 5 of [Lee] ).

8 Tensors: first definitions and properties

19.10.2023Definition 8.1. A tensor field of type (p, q) on a manifold M of dimension n is a corre-
spondence, which to each coordinate system (x) = (x1, . . . , xn) on an open set U puts in

correspondence a system of np+q smooth functions T
i1...ip
j1...jq

on U , called components, such that
for any two coordinate systems (x) and (x′) the components on U ∩U ′ satisfy the tensor law

T
i′1...i

′
p

j′1...j
′
q

= T
i1...ip
j1...jq

∂xi
′
1

∂xi1
. . .

∂xi
′
p

∂xip
· ∂x

j1

∂xj
′
1
. . .

∂xjq

∂xj
′
q
.

Definition 8.2. Consider two tensor fields T and S of type (p, q). Their sum T + S is
defined by

(T + S)
i1...ip
j1...jq

:= T
i1...ip
j1...jq

+ S
i1...ip
j1...jq

.

Lemma 8.3. T + S is a tensor of type (p, q).

Problem 8.4. HomeVerify this.

Definition 8.5. If T
i1...ip
j1...jq

is a tensor field on M and f ∈ C∞(M), then evidently the product

of function and tensor f · T : (x1, . . . , xn) f · T i1...ipj1...jq
is a tensor field of type (p, q).
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Problem 8.6.Class Prove that any tensor of type (1, 1), which is invariant under orthogonal
coordinate changes, is a scaling of δij (i.e. is equal to λδij).

Problem 8.7.Home Prove that any tensor with p+q = 3 invariant w.r.t. any coordinate changes
is equal to 0.
Problem 8.8.Class Prove that a tensor field of type (1, 1) gives a linear operator in each point.

Problem 8.9.Home Prove that Ci
i , C

i
jC

j
i , C

i
jC

j
kC

k
i , can be expressed in terms of coefficients of

the polynomial det(C − λE) .
Problem 8.10.Class For a smooth function f , grad f is a tensor of type (0, 1).

Definition 8.11. A tensor field of type (0, 1) is called a covector field.

By a problem above dxi = gradxi is a covector (over a coordinate neighborhood).
Problem 8.12.Home Covectors are linear functionals on vectors (at each point).

Problem 8.13.Home The bases { ∂
∂xi
} in TPM and {dxj} in T ∗PM are dual to each other.

Consider a C∞(M)-linear map L(v1, . . . , vq; a
1, . . . , ap) which arguments are q vector and

p covector fields, and taking values in C∞(M). Consider the following correspondences

T 7→ LT , LT (v1, . . . , vq; a
1, . . . , ap) := T

i1...ip
j1...jq

vj11 . . . vjqq · a1
i1
. . . apip ,

and

L 7→ TL, TL : (x1, . . . , xn) (TL)
i1...ip
j1...jq

:= L

(
∂

∂xj1
, . . . ,

∂

∂xjq
; dxi1 , . . . , dxip

)
.

Problem 8.14.Class

1. Explain, how it is possible to substitute locally defined fields at the place of globally
defined.

2. LT is a multilinear function and does not depend on the choice of coordinate system.

3. TL satisfies (p, q)-tensor law.

4. These maps are inverse to each other.

Definition 8.15. A field S of type (p, q) is obtained from a field T of type (p, q) by a
transposition of upper (similarly – for lower) indexes with numbers (positions) a and b, if

S
i1...ia...ib...ip
j1...jq

= T
i1...ib...ia...ip
j1...jq

.

The result is a tensor field. This is evident if we consider multilinear maps.
Problem 8.16.Home Show by example that a transposition of an upper and a lower indexes is
not a tensor operation. Consider the case of a tensor of type (1, 1) (linear operator). Conclude
in particular that the property of a matrix of an operator to be symmetric Ci

j = Cj
i depends

on coordinate system.

Definition 8.17. A contraction of a tensor T of type (p, q) in the upper index number a
and the lower index number b is a tensor S of type (p− 1, q − 1), defined by

S
i1...ip−1

j1...jq−1
:=
∑
i

T
i1...ia−1iia...ip−1

j1...jb−1ijb...jq−1
.
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This is really a tensor field of type (p− 1, q − 1), because

LS(v1, . . . , vq−1; a1, . . . , ap−1) =

=
∑
i

LT

(
v1, . . . , va−1,

∂

∂xi
, va, . . . , vq−1; a1, . . . , ab−1, dxi, ab, . . . , ap−1

)
,

and ∑
i

∂xi
′

∂xi
∂xi

∂xi′
= 1,

hence the right-hand side does not depend on the choice of coordinate system.

Example 8.18. A contraction Ci
i of a tensor of type (1, 1) is the trace of a linear operator.

Definition 8.19. The tensor product T ⊗ S of a tensor field T of type (p, q) and a tensor
field S of type (r, t) is a tensor field of type (p+ r, q + t), defined by

(T ⊗ S)
i1,...,ip+r
j1,...,jq+t

:= T
i1,...,ip
j1,...,jq

· Sip+1,...,ip+r
jq+1,...,jq+t

.

The corresponding multilinear map LT⊗S is simply the product of LT and LS. Hence, it is
a multilinear map (for appropriate variables). Thus, T ⊗ S is really a tensor field.

Problem 8.20. HomeSuppose that a tensor field X is of type (1, 0) and W is of type (0, 1).
Find the rank of X ⊗W .
Problem 8.21. ClassProve that locally, for any coordinate system, one has the following pre-
sentation

T = T
i1...ip
j1...jq

∂

∂xi1
⊗ . . .⊗ ∂

∂xip
⊗ dxj1 ⊗ . . .⊗ dxjq .

The coefficients are determined uniquely.

Definition 8.22. A tensor field bij of type (0, 2) is non-degenerate (or non-singular), if
det ‖bij‖ 6= 0.

Problem 8.23. HomeVerify that this condition does not depend on coordinate system.

Problem 8.24. HomeProve that the components of its inverse matrix bjk (i.e., bjkbki = δji ),
form a tensor of type (2, 0).

Definition 8.25. The operation of index raising of a tensor T of type (p, q) with the help
of b is the composition of tensor product with b and contraction. The result S is a tensor of
type (p+ 1, q − 1). For example, for the first index:

S
i1...ip+1

j1,...,jq−1
:= bi1iT

i2...ip+1

i j1,...,jq−1
.

Similarly one can define the index lowering :

S
i1...ip−1

j1,...,jq+1
:= bj1iT

i i1...ip−1

j2,...,jq+1
.

Definition 8.26. Define the symmetrization of a tensor field T of type (0, q) as

Sym (T )j1,...,jq = T(j1,...,jq) =
1

q!

∑
σ∈Sq

Tjσ(1),...,jσ(q) ,

and the antisymmetrization as

Alt (T )j1,...,jq = T[j1,...,jq ] =
1

q!

∑
σ∈Sq

(−1)σ Tjσ(1),...,jσ(q) .
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Evidently these maps are tensor operations (as a compositions of tensor operations). The
result of the symmetrization (resp., antisymmetrization) is a symmetric (resp., alternating)
tensor field of the same type, i.e. its components do not change under a transposition of two
neighboring indices (resp., change the sign under a transposition of two neighboring indices).
Problem 8.27.Home Prove that the antisymmetrization is a linear map, which is a projection
onto the subspace of alternating tensors and all symmetric tensors belong to its kernel.

Lemma 8.28. An alternating tensor field Ti1...in on M , dimM = n (i.e., a field of max-
imal degree) is defined by only one its component (essential) T12...n. The other non-zero
components differ from it by a sign ±1. More precisely,

Ti1...in = Tσ(12...n) = (−1)σT12...n.

The essential component of T at a point in some other coordinate system is obtained by
multiplication by the Jacobian of the appropriate coordinate change.

Proof. The first statement follows from the definition. The second one:

T1′...n′ = Ti1...in ·
∂xi1

∂x1′
. . .

∂xin

∂xn′
=

(∑
σ

(−1)σ
∂xσ(1)

∂x1′
. . .

∂xσ(n)

∂xn′

)
T12...n = det

∥∥∥∥ ∂xi∂xi′

∥∥∥∥ · T12...n.

Definition 8.29. Define the exterior product (or wedge product)R = T∧P of two alternating
tensors Ti1...ik and Pi1...iq by formula

Ri1...ik+q = const · T[i1...ikPik+1...ik+q ] =
1

k! q!

∑
σ∈Sk+q

(−1)σTσ(i1...ikPik+1...ik+q).

Up to scaling this is a composition of tensor product and antisymmetrization.

For alternating tensors of type (0, q) one can use the language of differential forms. We
have by the definition of exterior product (for any putting of brackets)

dxi1 ∧ . . . ∧ dxiq =
∑
σ∈Sq

(−1)σdxσ(i1 ⊗ . . .⊗ dxiq).

Problem 8.30.Home Verify this (first solve the next problem).
Problem 8.31.Home Prove the associativity of the exterior product.
Problem 8.32.Class Prove that the exterior products dxi1 ∧ . . . ∧ dxiq , i1 < i2 < · · · < iq form
a base of the space of alternating tensors of type (0, q) (at a point). Find the dimension of
this space.
Problem 8.33.Home Find the dimension of the space of symmetric tensors of type (0, q) (at a
point). Using Problems 8.32 and 8.27 study whether the space of all tensors of type (0, q)
(at a point) is a direct sum of symmetric and alternating tensors.

Then the decomposition of an alternating tensor w.r.t. the above base is:

T = Ti1...iqdx
i1 ⊗ . . .⊗ dxiq =

∑
i1<···<iq

∑
σ∈Sq

Tσ(i1)...σ(iq)dx
σ(i1) ⊗ . . .⊗ dxσ(iq) =

=
∑

i1<···<iq

∑
σ∈Sq

(−1)σTi1...iqdx
σ(i1) ⊗ . . .⊗ dxσ(iq) =

∑
i1<···<iq

Ti1...iqdx
i1 ∧ . . . ∧ dxiq . (4)
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This is called a representation of an alternating tensor as a differential form. Since the
above products form a base, the decomposition (4) is unique.
Problem 8.34. HomeVerify that the exterior product of differential forms can be found in the
following way: multiply the expressions and then order the differentials (keeping in mind
sign changes).
Problem 8.35. Class(a corollary of Lemma 8.28) The expression

√
det ‖gij‖dx1∧ . . .∧dxn is a

tensor w.r.t. coordinate changes with positive Jacobian, where gij is a Riemannian metric.

This tensor is called a volume form. Later we will introduce the concept of integration
and will calculate the volume of a Riemannian manifold using its volume form.
Problem 8.36. HomeRepresent the trace of a matrix as a result of tensor operations.
Problem 8.37. HomeRepresent the determinant of a matrix as a result of tensor operations.
Problem 8.38. ClassFind the type of tensors formed by coefficients of

1. vector product,

2. mixed (triple) product

of vectors in R3. Prove that these tensors are obtained from each other by index raising and
lowering.

9 Fiber bundles

9.1 General definitions

26.10.2023First, consider the case of topological spaces.

Definition 9.1. A (locally trivial) fiber bundle is a 5-tuple ξ = (E,B, p, F,G), where E,
B, F are topological spaces, p : E → B is a continuous surjection, G is a topological group
being a subgroup of Homeo(F ) (homeomorphism group as an abstract group), such that
there is an open cover Uα of B and homeomorphisms Φα : p−1(Uα) → Uα × F restricted to
satisfy

1) the diagram

p−1(Uα)
Φα //

p
##

Uα × F

p1
{{

Uα

is commutative, where p1 is the projection on the first factor (this implies that each fiber
Eb = p−1(b) is homeomorphic to F );

2) over an intersection Uαβ = Uα ∩ Uβ we have by 1) the commutative diagram

Uαβ × F
Φα◦(Φβ)−1

//

p1 $$

Uαβ × F

p1zz
Uαβ
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which gives rise to a map

Φαβ : Uαβ → Homeo(F ), Φαβ(P )(f) = p2(Φα ◦ (Φβ)−1(P, f)), (5)

and the condition is: Φαβ(P ) ∈ G ⊆ Homeo(F ) for each P ∈ Uαβ;

3) Φαβ : Uαβ → G is continuous.

In this situation E is the total space, B is the base, F is the typical fiber, G is the structure
group, and p is the projection of ξ. The couple (Uα,Φα) is called a local trivialization.

Remark 9.2. Sometimes it is more convenient (cf. the tangent bundle) to have local triv-
ializations “of second type”: they are defined by two homeomorphisms ϕα : Uα → Vα and
Φα : p−1(Uα)→ Vα × F in such a way that the diagram

p−1(Uα)
Φα //

p

��

Vα × F
p1

��
Uα

ϕα // Vα.

commutes. If Vα = Uα and ϕα = Id we obtain the above definition.

At the first glance this seems a distinct definition, but this is not the case:

Problem 9.3.Home Reformulate in detail the items of the above definition to the case of “second
type”. Using another trivializations, namely

p−1(Uα)
Φα //

p

��

Vα × F
p1

��

ϕ−1
α ×Id// Uα × F

p1

��
Uα

ϕα // Vα
(ϕα)−1

// Uα,

prove that the two definitions are equivalent.

Definition 9.4. For a smooth fiber bundle we require in addition: E, B, F are smooth
manifolds, G ⊆ Diffeo(F ) (diffeomorphism group) and all mappings are smooth.

Problem 9.5.Home Suppose that we do not require E to be a smooth manifold in the previous
definition. Nevertheless it will be automatically smooth if other conditions are fulfilled (cf.
the construction of tangent bundle).

Example 9.6. The simplest examples are given by trivial bundles E = F × B → B, in
particular, B → B, F = pt.

Definition 9.7. Let ξ1 = (E1,M1, π1, F,G) and ξ2 = (E2,M2, π2, F,G) be two smooth fiber

bundles with local trivializations {(Uα, Fα)} and {(Ũβ, Φ̃β)} respectively. A pair (ĥ, h) is a
bundle morphism along h if

1) h : M1 →M2, ĥ : E1 → E2 are smooth maps;
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2) ĥ maps (E1)P to (E2)h(P ), i.e., the following diagram is commutative:

E1
ĥ //

π1
��

E2

π2
��

M1
h //M2.

3) if Uα ∩ h−1(Ũβ) 6= ∅, there exists a smooth map hαβ : Uα ∩ h−1(Ũβ) → G such that for

each P ∈ Uα ∩ h−1(Ũβ) one has(
Φ̃β ◦ ĥ ◦ Φ−1

α

)
(P, f) = (h(P ), hαβ(P )f) for all f ∈ F.

(this implies that ĥ : (E1)P → (E2)h(P ) is a diffeomorphism)

The notions of an identity morphism and an inverse morphism are evident. An invertible
morphism is an isomorphism.

Definition 9.8. A smooth sectionof a smooth bundleξ = (E,M, p, F,G) is a smooth map
s : M → E such that p ◦ s = IdM . The set of all smooth sections is denoted by Γ(ξ) or
Γ∞(ξ).

For a topological fiber bundle one defines a continuous section in the same way. A local
section is defined only on an open set U .

Remark 9.9. Sometimes the set of sections is empty (see Problem 9.26 below).

9.2 Cocycle approach

Evidently one has:

Lemma 9.10. The above defined functions Φαβ : Uαβ → G have the following properties
(called cocycle properties):

Φαα(P ) = e ∈ G for P ∈ Uα,
Φαβ(P ) = (Φβα(P ))−1 for P ∈ Uα ∩ Uβ,

Φαβ(P )Φβγ(P )Φγα(P ) = e for P ∈ Uα ∩ Uβ ∩ Uγ.

Definition 9.11. An open cover Uα of a topological space X (resp., a manifold M) and a
system of continuous (smooth in the case of manifolds) functions gαβ : Uαβ → G, where G is
a topological group (a Lie group in the case of manifolds) acting effectively on a topological
space F by homeomorphisms (respectively, on a smooth manifold M by diffeomorphisms) is
called a cocycle if it has the properties from Lemma 9.10, i.e.,

gαα(P ) = e ∈ G for P ∈ Uα,
gαβ(P ) = (gβα(P ))−1 for P ∈ Uα ∩ Uβ,

gαβ(P )gβγ(P )gγα(P ) = e for P ∈ Uα ∩ Uβ ∩ Uγ.

Here by an action we call a group homomorphism λ : G → Homeo(F ) such that the map
G× F → F , (g, f) 7→ λ(g)(f) is continuous. The action is effective if Kerλ = {e}, i.e., λ is
a monomorphism. So, in most part of situations we can think about G as about a subgroup
of Homeo(G). Similarly, one defines in the smooth case.
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Definition 9.12. If p : X → X/ ∼ is a surjective map, where ∼ is an equivalence relation
on a topological space X, then the quotient topology on Y = X/ ∼ is defined as follows.
A subset U ⊆ Y is open iff p−1(U) is open in X. Roughly speaking this is the maximal
topology such that p is continuous.

Theorem 9.13. Suppose that M and F are smooth manifolds, G is a Lie group, λ is an
action of G on F , Uα is an open cover of M , gαβ : Uαβ → G is a cocycle. Then there exists
a fiber bundle ξ over M with typical fiber F and structure group G such that for some local
trivialization atlas {(Uα, )} one has over Uαβ = Uα ∩ Uβ

Φα ◦ Φ−1
β (P, f) = (P, λ(gαβ(P ))(f)).

Proof. On the disjoint union Σ := tα{α} ×Uα × F define an equivalence relation (Problem
9.14) by

{α} × Uα × F 3 (α, P, f) ∼ (β, P ′, f ′) ∈ {β} × Uβ × F ⇔ P = P ′ and f = λ(gαβ(P ))(f ′).

Take E := Σ/ ∼ with the quotient topology and the natural projection Π : Σ → E. Let
π : E →M be the projection induced by (α, P, f) 7→ P (Problem 9.15). Since

Π−1Π({α} × Uα × F ) = tβ{β} × (Uα ∩ Uβ)× F

is open, the sets Π({α}×Uα×F ) = π−1(Uα) are open and one can define local trivializations
in a natural way:

Φα[(α, P, f)] := (P, f) for [(α, P, f)] ∈ π−1(Uα).

We need to verify that the map is well defined: if (α, P, f) ∼ (α,Q, f ′) then P = Q (this
follows immediately from the definition of ∼) and f = f ′ (this follows from the first cocycle
property f = λ(gαα(P ))(f ′) = f ′). In fact this means that Π is injective on each {α}×Uα×F .
Let us find transition functions. Suppose that P ∈ Uα ∩ Uβ. Then Φ−1

β (P, f) = [(β, P, f)].
Since P ∈ Uα ∩ Uβ, then [(β, P, f)] = [(α,Q, f ′)]. By the definition of ∼, Q = P and
f ′ = λ(gαβ(P ))(f). Hence, Φα ◦ Φ−1

β (P, f) = (P, λ(gαβ(P ))(f)). It remains to verify some
details (Problems 9.16, 9.17).

Problem 9.14.Home Using the cocycle properties prove that this is an equivalence relation
(axioms of identity, reflexivity and transitivity)
Problem 9.15.Home Prove that π is well defined.
Problem 9.16.Home Prove that E is second countable and Hausdorff.
Problem 9.17.Home Prove that all the necessary maps in the proof are smooth. Then E is a
manifold by Problem 9.5.
Problem 9.18.Home Formulate and prove a similar theorem for the topological case.

Remark 9.19. We will not discuss the conditions for two cocycles to determine isomorphic
fiber bundles in the general case.

Problem 9.20.Class Consider the Möbius band EM as the following quotient space of R ×
(−1, 1):

EM = (R× (−1, 1))/ ∼, where (x, t) ∼ (x+ 2πn, (−1)nt), n ∈ Z.

For
S1 = R/ ≈, where x ≈ x+ 2πn, n ∈ Z,
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define π : EM → S1 by π([x, t]) = [x]. Prove that this is a fiber bundle. Find an appropriate
cocycle with G = Z2, F = (−1, 1).
Problem 9.21. ClassUsing the same cocycle on S1 and λ : Z2 → Diffeo(S1), λ(−1)(z) = −z
(as complex numbers) take F = S1 and obtain a fiber bundle (twisted torus). Prove that it
is not isomorphic to the trivial bundle S1 × S1 → S1 as a bundle with structure group Z2,
but isomorphic to the trivial bundle as a bundle with structure group U(1) = S1.

9.3 Coverings

Definition 9.22. In some sense the most simple case is that of discrete F (typically, finite
or countable). These fiber bundles are called coverings.

Problem 9.23. ClassProve that π : R→ S1, S1 ⊂ C, π(t) = e2πit, is a covering with F = Z.
Problem 9.24. ClassProve that π : S1 → S1, S1 ⊂ C, π(z) = z2, is a covering with F = Z2 =
Z/2Z.
Problem 9.25. HomeFind appropriate cocycles for these two examples.
Problem 9.26. HomeIn the above examples there is no sections.

Remark 9.27. Let us note without proving that each path γ(t) in the base B of a covering
has a unique (up to the choice of starting point) covering path γ̃(t) in E such that pγ̃(t) = γ(t)
at any t. This is not a section! (cf. Problem 9.26). Think about this.

9.4 Vector bundles

02.11.2023
Definition 9.28. Consider an n-dimensional vector space V over K (R or C). Let G =
Aut(V ) = GL(V ) ∼= GL(n,K) acting on V in a natural way. Then ξ = (E, π,B, V,G) is a
vector bundle (topological or smooth).

Theorem 9.29. Consider vector bundles π : E → M and π′ : E ′ → M with the same
typical fiber V and cocycles (transition maps) Φαβ : Uαβ → GL(V ) and Φ′αβ : Uαβ → GL(V ),
respectively, for the same cover {Uα}. These bundles are isomorphic iff there are smooth
functions fα : Uα → GL(V ) such that

Φ′αβ(P ) = fα(P )Φαβ(P )(fβ(P ))−1, P ∈ Uαβ. (6)

Proof. If f : E → E ′ is an isomorphism, define fα(P )(v) := p2(Φ′α ◦ f ◦ (Φα)−1(P, v)). Then

fα(P )Φαβ(P )(fβ(P ))−1(v) = p2(Φ′α ◦ f ◦ (Φα)−1)(Φα ◦ (Φβ)−1)(P, (Φβ ◦ f−1 ◦ (Φ′β)−1)(P )v)

= p2(Φ′α ◦ (Φ′β)−1)(P, v) = Φ′αβ(P )(v)

and we have (6).
If we have (6), define

f̃α : Uα × V → Uα × V, (P, v) 7→ (P, fα(P )v).

Then define locally (for e ∈ π−1(Uα)) a bundle map f : E → E ′ by

f(e) =
(

(Φ′α)−1 ◦ f̃α ◦ Φα

)
(e).

One can verify that f is well defined globally (using (6)) and defines a vector bundle isomor-
phism.

31



Problem 9.30.Home Complete the proof.

Example 9.31. The tangent bundle TM is an example of a vector bundle.

Our main example (generalizing the above one) is the tensor bundle of type (p, q) over
M . We consider a slightly general construction, considering not only E = TM as the initial
bundle. So we consider a real rank k vector bundle ξ = (E, π,M, . . . ).

Definition 9.32. The total space (as a set) is T rs (ξ) = tP∈MT rs (EP ), where T rs (EP ) is the
kr+s-dimensional real vector space of all (r, s) tensors on the k-dimensional linear space EP .
For each local trivialization (U,Φ) of ξ, Φ : π−1U → U × Rk, define the local trivialization

Φr
s : tP∈UT rs (EP )→ U × T rs (Rk),

Lp2Φrs(τ)(a
1, . . . , ar, v1, . . . , vs) = Lτ (Φ

∗a1, . . . ,Φ∗ar, dΦ−1v1, . . . , dΦ−1vs)

for any smooth covector fields ai and vector fields vj on Φ(U).

Problem 9.33.Home Verify the details (similarly to the construction of TM).

Remark 9.34. In other words we define smooth sections of T rs (ξ) to be such maps P 7→
τP ∈ T rs (EP ) that P 7→ LτP (a1, . . . , ar, v1, . . . , vs) is smooth for any smooth covector fields
ai and vector fields vj (see Subsection 9.7 for more detail).

9.5 Principal bundles

Definition 9.35. If F = G and λ(g)f = gf , a bundle is called a principal bundle.

Problem 9.36.Home In this case one has a canonical right action of G on E with orbits eG
being fibers.

Note that the same cocycle can define bundles with distinct fibers. In particular, a
GL(n,K)-valued cocycle defines a vector bundle and a principal bundle.
Problem 9.37. (Hopf’s bundle)Class Consider S2n−1 as the subset of Cn given by S2n−1 =

{z ∈ Cn : ‖z‖ = 1}, where z = (z1, . . . , zn) and ‖z‖ =
∑
zizi. Let S1 = U(1) act on S2n−1

by (a, z) 7→ az = (az1, . . . , azn). The quotient (the space of orbits) is CP n−1. We obtain the
Hopf map πn : S2n−1 → CP n−1. Prove that this is a principal U(1)-bundle (Hopf bundle).

9.6 Operations on vector bundles

Definition 9.38. The Whitney sum π1⊕ π2 : E1⊕E2 →M of vector bundles π1 : E1 →M
and π2 : E2 → M is defined in the following way. As a set E1 ⊕ E2 = tP∈M(E1)P ⊕ (E2)P
and for charts (Φ1)α : (π1)−1(Uα) → Uα × Kk1 and (Φ2)α : (π2)−1(Uα) → Uα × Kk2 of local
trivializations of π1 and π2, respectively we define

(Φ1)α ⊕ (Φ2)α : (vP , wP ) 7→ (P, p2((Φ1)α(vP )), p2((Φ2)α(wP ))), vP ∈ (E1)P , wP ∈ (E2)P .

Problem 9.39.Home Verify that this is a structure of a (smooth or topological) vector bundle.
Problem 9.40.Home Prove that the Whitney sum can be defined using cocycles in the following
way. Suppose that {gαβ} is a cocycle for π1 and {hαβ} is a cocycle for π2 for the same cover.
Then

gαβ ⊕ hαβ : Uα ∩ Uβ → GL(Kk1 ⊕Kk2), (gαβ ⊕ hαβ)(P ) : (v, w) 7→ (gαβ(P )v, hαβ(P )w)
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is a cocycle for π1 ⊕ π2.
Recall that the tensor product V ⊗W of linear spaces V and W is the quotient space

of the space V � W of formal K-linear combinations of elements v � w by the subspace
generated by elements:

� (v1 + v2)� w − v1 � w − v2 � w,

� v � (w1 + w2)− v � w1 − v � w2,

� (sv)� w − s(v � w),

� v � (sw)− s(v � w),

where v, v1, v2 ∈ V , w,w1, w2 ∈ W , s ∈ K. The class of v � w is denoted by v ⊗ w.
Problem 9.41. HomeLet f1 : V1 → W1 and f2 : V2 → W2 be linear maps of finite-dimensional
vector spaces. Then the formula (f1 ⊗ f2)(v1 ⊗ v2) = f1(v1) ⊗ f2(v2) defines a well-defined
linear map f1 ⊗ f2 : V1 ⊗ V2 → W1 ⊗W2. If f1 and f2 are isomorphisms then so is f1 ⊗ f2.

If V has a base e1, . . . , en and W has a base f1, . . . , fm, then V ⊗W has the base ei⊗ fj.
The formula (v � ϕ)(w) = ϕ(w)v, where v ∈ V , w ∈ W , ϕ ∈ W ∗, defines an isomorphism
V ⊗W ∗ ∼= HomK(W,V ) (still for finite-dimensional spaces).
Problem 9.42. HomeVerify the details and find the matrix of the operator (for the above bases).

Definition 9.43. The tensor product bundle π : E1⊗E2 →M of vector bundles π : E1 →M
and π2 : E → M with typical fibers V1 and V2 has the total space (as a set) E1 ⊗ E2 =
tP∈M(E1)P ⊗ (E2)P . Consider local trivializations Φα of E1 and Ψα of E2 over the same
cover {Uα}. Then the local trivializations for the tensor product are defined as

Φα ⊗Ψα : (E1 ⊗ E2)|Uα → Uα × (V1 ⊗ V2),

e 7→ (P, [(p2 ◦ Φα)⊗ (p2 ◦Ψα)](e)), e ∈ (E1 ⊗ E2)P = (E1)P ⊗ (E2)P ,

(isomorphisms by Problem 9.41).

Problem 9.44. HomeComplete the definition as for TM .
Problem 9.45. HomeProve that alternatively the tensor product bundle can be defined by the
product cocycle P 7→ Φαβ(P )⊗Ψαβ(P ).
Problem 9.46. ClassVerify that the tensor product does not depend on the choice of local
trivializations, i.e., we obtain isomorphic bundles. Understand the refinement of cocycles.

Remark 9.47. This should be done each time when we define some bundle in a similar way,
but we do this once.

Definition 9.48. The pull-back f ∗E of a vector bundle π : E → M by a smooth map
f : N → M has the total space tQ∈NEf(Q). If {(Uα,Φa)} is a bundle atlas (of local
trivializations) for E, Φα : π−1(Uα) → Uα × V , then {(U ′α,Φ′a)} is a bundle atlas for f ∗E,
where

U ′α = f−1Uα, Φ′α(e) = Φα(e), e ∈ (f ∗E)Q = Ef(Q), Q ∈ f−1Uα.

Alternatively the pull-back can be defined with the help of the cocycle Φαβ ◦ f for the
cover {f−1Uα}. Evidently this is the same bundle.
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Problem 9.49.Home Let π1 : E1 → M and π2 : E2 → M be vector bundles and let ∆ : M →
M×M be diagonal map P 7→ (P, P ). Then one can define πE1×E2 : E1×E2 →M×M . Verify
that this is a vector bundle. Prove that the Whitney sum E1 ⊕ E2 is naturally isomorphic
to the pull-back ∆∗πE1×E2 .

Definition 9.50. If π : E → M is a vector bundle over M with local trivializations
{(Uα,Φa)} and transition maps Φαβ : Uαβ → GL(V ), its dual bundle E∗ with typical fiber V ∗

has the total space (as a set) E∗ = tP∈M(EP )∗ and local trivializations Φ∗α : E∗|Uα → Uα×V ∗
defined by

(p2(Φ∗α(a)))(v) = a((Φα)−1(P, v)), a ∈ (E∗)P = (EP )∗, v ∈ V, (Φα)−1(P, v) ∈ EP .

Problem 9.51.Home If we fix a base in V , then Φαβ : Uαβ → GL(n,K). Prove that, for the
dual base in V ∗, Φ∗αβ : Uαβ → GL(n,K) is defined by P 7→ ((Φαβ(P ))T )−1.

Problem 9.52.Class Prove that T rs (E) ∼= (⊗rE)⊗ (⊗sE∗).

9.7 Tensor fields as sections of vector bundles

Denote the linear space of tensor fields of type (r, s) over M by Tr
s(M).

Suppose that τ ∈ Γ(T rs (TM)) is a smooth section and (U,ϕ) is a chart on M . Define

T (τ)i1...irj1...js
(P ) = Lτ(P )

(
dxi1 , . . . , dxir ,

∂

∂xj1
, . . . ,

∂

∂xjs

)
.

Theorem 9.53. The above defined T induces the identification Γ(T rs (TM)) ∼= Γ((⊗rTM)⊗
(⊗sT ∗M)) ∼= Tr

s(M).

Proof. By the definition of T rs (TM), the map T is well defined and T is an isomorphism
locally . Also the global injectivity is immediate. To prove the global surjectivity one can
use a partition of unity.

Problem 9.54.Home Complete the argument with a partition of unity.

10 Covariant differentiation

Problem 10.1.Home Show that the partial differentiation of components of a tensor field on
Rn is not a tensor operation.

We wish to define on tensor fields on Rn a tensor operation ∇ : T (p, q) → T (p, q + 1),
which coincides in Cartesian coordinates with the partial differentiation. For this purpose we
start by an attempt to write down the result of partial differentiation in other coordinates.

Consider first the case of a vector field T i. Suppose that xi are Cartesian coordinates in
Rn, and xi

′
is some other coordinate system. Then for the desired ∇ we should have

(∇T )ij =
∂T i

∂xj
, (∇T )i

′

j′ =
∂xi

′

∂xi

∂xj

∂xj′
(∇T )ij.

Then

(∇T )i
′

j′ =
∂xi

′

∂xi

∂xj

∂xj′
∂

∂xj

(
∂xi

∂xk′
T k
′
)

=
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=
∂xi

′

∂xi
∂xj

∂xj′
∂xi

∂xk′
∂T k

′

∂xm′
∂xm

′

∂xj
+
∂xi

′

∂xi

∂xj

∂xj′
T k
′ ∂

∂xj

(
∂xi

∂xk′

)
=

= δi
′

k′ δ
m′

j′
∂T k

′

∂xm′
+ T k

′ ∂xi
′

∂xi
∂2xi

∂xj′∂xk′
,

hence,

(∇T )i
′

j′ =
∂T i

′

∂xj′
+ T k

′
Γi
′

k′j′ , Γi
′

j′k′ =
∂xi

′

∂xi
· ∂2xi

∂xj′∂xk′
.

For a covector field Ti one should have (∇T )ij = ∂Ti
dxj

and (∇T )i′j′ = ∂xi

∂xi′
∂xj

∂xj′
(∇T )ij. Then

(∇T )i′j′ =
∂xi

∂xi′
∂xj

∂xj′
∂

∂xj

(
∂xk

′

∂xi
Tk′

)
=

=
∂xi

∂xi′
∂xj

∂xj′
∂xk

′

∂xi
∂Tk′

∂xm′
∂xm

′

∂xj
+
∂xi

∂xi′
∂xj

∂xj′
Tk′

∂

∂xj

(
∂xk

′

∂xi

)
=

= δk
′

i′ δ
m′

j′
∂Tk′

∂xm′
+ Tk′

∂2xk
′

∂xj∂xi
· ∂x

i

∂xi′
∂xj

∂xj′
,

or

(∇T )i′j′ =
∂Ti′

∂xj′
+ Tk′Γ̄

k′

i′j′ , Γ̄k
′

i′j′ =
∂2xk

′

∂xj∂xi
· ∂x

i

∂xi′
∂xj

∂xj′
.

Lemma 10.2. One has Γ̄k
′

i′j′ = −Γk
′

i′j′.

Proof. Let us differentiate the equality ∂xi
′

∂xi′′
· ∂xi

′′

∂xk′
= δi

′

k′ in xm
′
:

0 =
∂2xi

′′

∂xm′∂xk′
· ∂x

i′

∂xi′′
+
∂xi

′′

∂xk′
· ∂2xi

′

∂xm′′∂xi′′
· ∂x

m′′

∂xm′
= Γi

′

m′k′ + Γ̄i
′

m′k′ . �

Theorem 10.3. There exists a tensor operation ∇ on M = Rn, defined on a field T
i1...ip
j1...jq

by

(∇T )
i′1...i

′
p

j′1...j
′
q ;m
′ =

∂

∂xm′
(T

i′1...i
′
p

j′1...j
′
q
) +

p∑
s=1

T
i′1...i

′
s−1r

′i′s+1...i
′
p

j′1...j
′
q

Γ
i′s
r′m′ −

q∑
s=1

T
i′1...i

′
p

j′1...j
′
s−1r

′j′s+1...j
′
q
Γr
′

j′sm
′ ,

and the functions Γ have the following transformation law

Γi
′′

j′′k′′ =
∂xi

′′

∂xi′
∂xj

′

∂xj′′
∂xk

′

∂xk′′
Γi
′

j′k′ +
∂xi

′′

∂xi′
∂2xi

′

∂xj′′∂xk′′
.

Proof. The explicit form of ∇ can be found similarly to vector and covector cases (Problem
10.4).

Find the transformation law for Γ.

∇k′T
i′ := (∇T )i

′

k′ =
∂T i

′

∂xk′
+ T r

′
Γi
′

r′k′ ,

∇k′′T
i′′ =

∂T i
′′

∂xk′′
+ T r

′′
Γi
′′

r′′k′′ =
∂xk

′

∂xk′′
∂

∂xk′

(
∂xi

′′

∂xi′
T i
′
)

+
∂xr

′′

∂xr′
T r
′
Γi
′′

r′′k′′ =
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=
∂xk

′

∂xk′′
∂xi

′′

∂xi′
∂T i

′

∂xk′
+ T i

′ ∂xk
′

∂xk′′
∂2xi

′′

∂xk′∂xi′
+ T r

′ ∂xr
′′

∂xr′
Γi
′′

r′′k′′ .

On the other hand,

∇k′′T
i′′ =

∂xk
′

∂xk′′
∂xi

′′

∂xi′
∇k′T

i′ =
∂xk

′

∂xk′′
∂xi

′′

∂xi′

(
∂T i

′

∂xk′
+ T r

′
Γi
′

r′k′

)
.

Hence

T r
′ ∂xk

′

∂xk′′
∂xi

′′

∂xi′
Γi
′

r′k′ = T r
′ ∂xk

′

∂xk′′
∂2xi

′′

∂xk′∂xr′
+ T r

′ ∂xr
′′

∂xr′
Γi
′′

r′′k′′ .

Since T i is an arbitrary field,

Γi
′′

r′′k′′ = Γi
′

r′k′
∂xr

′

∂xr′′
∂xk

′

∂xk′′
∂xi

′′

∂xi′
− ∂xr

′

∂xr′′
∂xk

′

∂xk′′
∂2xi

′′

∂xk′∂xr′
.

As it was established in the proof of Lemma 10.2,

− ∂xr
′

∂xr′′
∂xk

′

∂xk′′
∂2xi

′′

∂xk′∂xr′
=

∂2xk
′

∂xr′′∂xk′′
∂xi

′′

∂xk′
=

∂2xi
′

∂xr′′∂xk′′
∂xi

′′

∂xi′
.

Problem 10.4.Home Find the explicit form of ∇ for general fields.

Definition 10.5. An operation ∇ of covariant differentiaition09.11.2023 (or affine connection) ∇ is
defined on a manifold M , if, for each chart, a collection of smooth functions Γijk, i, j, k =
1, . . . , dimM , such that for distinct charts we have equality

Γi
′

j′k′ =
∂xi

′

∂xi
∂xj

∂xj′
∂xk

∂xk′
Γijk +

∂xi
′

∂xi
∂2xi

∂xj′∂xk′
.

Then the action of ∇ on a tensor field is defined by

(∇T )
i1...ip
j1...jq ;m

=
∂

∂xm
(T

i1...ip
j1...jq

) +

p∑
s=1

T
i1...is−1ris+1...ip
j1...jq

Γisrm −
q∑
s=1

T
i1...ip
j1...js−1rjs+1...jq

Γrjsm,

Remark 10.6. As one can see from the above calculations considered “in the inverse direc-
tion”, ∇ is a tensor operation.

Remark 10.7. The existence of a connection will follow from the existence of a Riemannian
connection (a theorem below).

Definition 10.8. The torsion tensor of an affine connection Γijk is the tensor, determined
in each coordinate system by the equality Ωi

jk := Γijk − Γikj.

Lemma 10.9. Ω is really a tensor field of type (1, 2).

Problem 10.10.Home Verify this.
Problem 10.11.Class Proof that ∇ commutes with contraction.

Definition 10.12. A connection Γ is called symmetric, if Ω = 0.

Lemma 10.13. A connection ∇ has the properties:
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1) the operation ∇ is linear over R;

2) the operation ∇ is a tensor operation;

3) the covariant derivative of a function (i.e., of a tensor of tupe (0, 0)) coincides with its
gradient: ∇kf = ∂f

∂xk
;

4) the operation ∇ on a vector and on a covector field has the form:

∇kT
i =

∂T i

∂xk
+ T jΓijk,

∇kTi =
∂Ti
∂xk
− TjΓjik;

5) for arbitrary tensor fields T and S one has the Leibniz formula:

∇(T ⊗ S) = (∇T )⊗ S + T ⊗ (∇S).

Proof. All the properties are evident except of 5). Verify it, for instance, for vector fields:

∇k(T
iSj) =

∂

∂xk
(T iSj) + T rSjΓirk + T iSrΓjrk =

= (
∂

∂xk
T i)Sj + T i

∂

∂xk
(Sj) + T rSjΓirk + T iSrΓjrk =

= (
∂T i

∂xk
+ T rΓirk)S

j + T i(
∂Sj

∂xk
+ P rΓjrk) =

= (∇kT
i)Sj + T i(∇kS

j).

Problem 10.14. HomeDo the calculation for arbitrary fields.

Theorem 10.15. The above properties 1) – 5) uniquely define the covariant differentiation.
More precisely, one can find in a unique way functions Γijk, which satisfy the transformation
law from the definition of a connection, and the action of ∇ on arbitrary field will be given
by the formula from the same definition.

Proof. Denote ei := ∂
∂xi

and ej = d xj. Then Γijk can be determined uniquely from

∇kei = Γjikej, ∇ke
i = −Γijke

j. (7)

Remark that while obtaining the transformation law of Γijk in Theorem 10.3, we used only
the relation as in item 4). Thus, the same calculation gives now the desired transformation
law.

It remains to obtain the formula of differentiation of arbitrary fields. Do this for a field
of type (1, 1). Locally we have

T = T ij ei ⊗ ej.

Then
∇kT

l
m = (∇T )lm;k = (∇(T ij ei ⊗ ej))lm;k =
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=
(
(∇T ij )⊗ ei ⊗ ej + T ij (∇ei)⊗ ej + T ijei ⊗ (∇ej)

)l
m;k

=

=
∂T lm
∂xk

+
(
T ij (Γ

r
iker)⊗ ej

)l
m
−
(
T ijei ⊗ (Γjrke

r)
)l
m

=

=
∂T lm
∂xk

+ T imΓlik − T ljΓ
j
mk.

Problem 10.16.Home Do the calculation in the general case.

Definition 10.17. An affine symmetric connection ∇ on a Riemannian manifold (M, g) is
called Riemannian (or metric compatible, or Levi-Civita connection) if ∇g = 0.

Problem 10.18.Class Prove that in this case ∇ commutes with the operations of rising and
lowering of indexes.

Theorem 10.19. On any Riemannian manifold (M, g) there exists a unique Levi-Civita
connection. Its coefficients (Christoffel symbols) are

Γijk =
1

2
gir
(
∂gkr
∂xj

+
∂gjr
∂xk
− ∂gjk
∂xr

)
. (8)

Proof. Prove that the Christoffel symbols of a Levi-Civita connection should satisfy (8).
Then the uniqueness will be proved. We have by the definition that

0 = ∇kgij =
∂gij
∂xk
− grjΓrik − girΓrjk.

Using the lowering of the first index Γijk := girΓ
r
jk and cyclic permutation we obtain:

∂gij
∂xk

= Γjik + Γijk,

∂gki
∂xj

= Γikj + Γkij,

∂gjk
∂xi

= Γkji + Γjki.

Add the first two equalities to each other and subtract the third one. Keeping in mind the
symmetry Γijk = Γikj, we obtain

∂gij
∂xk

+
∂gki
∂xj
− ∂gki
∂xj

= Γjik + Γijk + Γikj + Γkij − Γkji − Γjki =

= Γjki + Γijk + Γijk + Γkji − Γkji − Γjki = 2Γijk = 2girΓ
r
jk.

Multiplying by the inverse matrix for gij, we arrive to

Γrjk =
1

2
gir
(
∂gij
∂xk

+
∂gki
∂xj
− ∂gkj

∂xi

)
.

To prove the existence, simply define the coefficients bu the formulas (8).
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Problem 10.20. HomeVerify that this is a connection, i.e., verify the transformation law for
the above Γrjk.

Definition 10.21. A coordinate system is Euclidean w.r.t. a metric, if gij in this system
are constant (hence, in some other coordinate system are δij (in the entire neighborhood!)).

A coordinate system is Euclidean w.r.t. a connection, if in it one has Γijk ≡ 0.

Problem 10.22. HomeProve the equivalence of these two properties for the Levi-Civita con-
nection.

11 Parallel transport and geodesics

The parallel transport is a way to compare (tangent) vectors in distinct points. E.g., on plane
“the Euclidean coordinates of vectors should be constant”= their partial derivatives vanish.
In the general situation it is natural to require the vanishing of its covariant derivative.
But (for more complicated manifolds) this is too restrictive. We arrive to the requirement:
components of a field are covariant constant “along a curve” = “parallel transport along a
curve”. The result may depend on the choice of a curve connecting two points. Let us pass
to precise definitions.

Let a manifold M be equipped with an affine connection ∇. Suppose that two points P
and Q of M are connected by a smooth curve γ : [0, 1]→ M , γ(0) = P , γ(1) = Q. On this
curve we have the velocity field ξ along γ (use the third definition of a tangent vector).

Definition 11.1. The covariant derivative of a tensor field T of type (p, q) along a curve γ
is a tensor field ∇γ̇(T ), defined as the contraction of the tensor product of the velocity field
with the covariant derivative of T :

(∇γ̇(T ))
i1,...,ip
j1,...,jq

:= ξk∇kT
i1,...,ip
j1,...,jq

.

Of course this is not a “field on manifold” as in our initial definition, because it is defined
only at points of the curve.

Definition 11.2. A vector field T is called parallel along γ with respect ∇, if ∇γ̇(T ) ≡ 0.

Rewrite these equations in local coordinates (x1, . . . , xn). If

γ(t) = (x1(t), . . . , xn(t)), ξk =
dxk(t)

dt
,

the equations will take the form:

ξk∇kT
i =

dxk(t)

dt

(
∂T i

∂xk
+ T rΓirk

)
= 0,

dxk(t)

dt

∂T i

∂xk
+ T rΓirk

dxk(t)

dt
=
dT i

dt
+ T rΓirk

dxk(t)

dt
= 0.

Definition 11.3. The last equality is called the parallel transport equation of a vector along
a curve.
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The problem of parallel transport is as follows. Given a smooth curve γ, connecting
points P and Q of a manifold M equipped with a connection ∇, and a vector v ∈ TPM .
Find a vector w ∈ TQM , such that there is a covariant constant vector field V (t) with
V (0) = v and V (1) = w. The problem can be solved consequently for pieces of γ lying
in one coordinate neighborhood, we may assume without loss of generality, that the entire
curve lies in one coordinate neighborhood.

We arrived to a problem of solving of a system of ordinary differential equations of the
first order for functions V i(t) with the initial value V i(0) = vi (Cauchy problem). The
system has a derivatives-free right side. Hence, a solution of this problem exists, is unique
and extendable up to Q, i.e., t = 1.

Definition 11.4. The vector w = V (1) ∈ TQM is called parallel to v ∈ TPM along γ.

Lemma 11.5. Let (M, g) be a Rimannian manifold. A symmetric affine connection ∇ on
M is a Levi-Civita connection if and only if the corresponding parallel transport conserves
the inner product of vectors w.r.t. g.

Proof. Suppose, ∇ is a Levi-Civita connection, 〈., ., 〉 the inner product defined by g, V (t)
and W (t) are vector fields satisfying the parallel transport equations along γ : [0, 1] → M .
We need to show that d

dt
〈V (t),W (t)〉 ≡ 0. Indeed, for S denoting contraction,

d

dt
〈V (t),W (t)〉 =

dxk

dt

∂

∂xk
〈V (t),W (t)〉 = ξk∇k

(
gijV

iW j
)

=

= ξk∇k(SS(g ⊗ V ⊗W )) = ξk(SS∇k(g ⊗ V ⊗W )) =

= SS(ξk∇kg ⊗ V ⊗W + g ⊗ ξk∇kV ⊗W + g ⊗ V ⊗ ξk∇kW ) = 0.

Conversely, if this equality is true for any parallel vector fields along any curve, then for
arbitrary vectors ξ, V and W one has

SS(ξk∇kg ⊗ V ⊗W ) = ξkV iW j∇kgij = 0.

Taking the basic vectors we arrive to ∇kgij = 0.

Remark 11.6. The parallel transport can be defined for piece-wise smooth curves as the
composition of transports over smooth parts.

Definition 11.7. A curve γ on a manifold M equipped with an affine connection ∇ is called
a geodesic, if its velocity field is parallel along γ, i.e., ∇γ̇(γ̇) = 0.

In some local coordinates (x1, . . . , xn) we obtain the following equations:

dxk

dt

(
∇kξ

i
)

= 0, i = 1, . . . , n,

where ξi = dxi

dt
. Hence,

dxk

dt

(
∂

∂xk
ξi + Γirkξ

r

)
= 0,

d2xi

dt2
+ Γirk

dxr

dt

dxk

dt
= 0, i = 1, . . . , n. (9)
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Lemma 11.8. Suppose that P ∈ M , v ∈ TPM . Then there exists locally a unique geodesic
γ(t) such that γ(0) = P and γ̇(0) = v. It depends smoothly on this initial data.

Proof. In local coordinates in a neighborhood of P the problem of finding of the desired
geodesic becomes a problem of solving of the Cauchy problem for the appropriate system
of n ordinary differential equations of the second order, resolved with respect to the highest
derivative. From an ODE course we know that this solution locally exists, is unique and
depends smoothly on the initial data.

Problem 11.9. HomeThe velocity field of a geodesic of a Levi-Civita connection has constant
length (i.e. its parametrization is a scaling of the arc length one).

Problem 11.10. HomeIf two geodesics are tangent to each other in some point (with the same
velocity), then they coincide.

Problem 11.11. HomeA parallel transport of a vector v along a geodesic conserves the angle
between v and the curve (i.e., the velocity vector).

Lemma 11.12. (geometric meaning of Christoffel symbols) For basic vector fields ei := ∂
∂xi

of a coordinate system one has ∇ei(ej) = Γrjier (an expansion of a vector w.r.t. this base).
Equivalently the result of an infinitely small parallel transport of the frame {eα} in the ith

direction has the coefficients Γαβi in the initial base.

Proof. By definition

(∇ei(ej))
k = (ei)

s (∇s(ej))
k = δsi

(
∂(ej)

k

∂xs
+ Γkrs(ej)

r

)
=

= δsi

(
∂(δkj )

∂xs
+ Γkrsδ

r
j

)
= δsi

(
Γkrsδ

r
j

)
= Γkji.

Problem 11.13. ClassDescribe geometrically the parallel transport for the Levi-Civita connec-
tion on a surface in R3 (projection).

Problem 11.14. HomeDeduce that a curve on a surface in R3 is a geodesics iff its normal (the
second derivative for the natural parametrization = parametrization by the arc length) is
orthogonal to tangent plane.

Problem 11.15. ClassFind geodesics on the standard sphere S2 (without direct calculation).

Problem 11.16. HomeFind geodesics on the standard sphere S2 (direct calculation).

Problem 11.17. HomeFind geodesics on the pseudosphere = the upper half-plane with coordi-

nates (x, y) and the metric ds2 = dx2−dy2
x2

.

Problem 11.18. ClassProve that if two surfaces in R3 are tangent to each other (tangent planes
coincide) along a curve then two respective parallel transports along this curve coincide.

Problem 11.19. ClassFind the rotation angle for the parallel transport of a vector along the
circle being the base of the standard round cone. Hint: the cone is locally isometric to the
plane.

Problem 11.20. HomeFind the rotation angle for the parallel transport of a vector along the
circle being a parallel of the standard sphere. Hint: use the previous two problems.
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Theorem 11.21.16.11.2023 Let (M, g) be a Riemannian manifold. For any point P0 ∈M , there exist
a neighborhood U and a number ε > 0 such that any two points of U are connected by a
unique (up to a scaling of its parameter) geodesic of length less then ε. This geodesic depends
smoothly on its ends.

Proof. By Lemma 11.8 one can define, for some neighborhood V of (P0, 0) in the tangent
bundle TM of the form

V = {(P, v) ∈ TM |P ∈ U, ‖v‖ < ε}

(where U is some neighborhood of P0), a smooth map

E : V →M ×M, (P, v) 7→ (P, expP (v)),

where expP maps a vector v to the point γ(1) of a unique geodesic starting in P in the
direction v (i.e. γ̇(0) = v). Since the existence theorem is local, only geodesics with small
v (solutions of the corresponding Cauchy problem for the system of ODE) are proved to be
extendable till t = 1.

Calculate the Jacobian of E in (P0, 0). For this purpose, along with the coordinates
(x1, . . . , xn; v1, . . . , vn) in a neighborhood of (P0, 0) in TM , where v = vi ∂

∂xi
, consider coor-

dinates (x1
1, . . . , x

n
1 ;x1

2, . . . , x
n
2 ) in U × U ⊂M ×M . For the tangent map dE one has:

∂xi1
∂xj

= δij,
∂xi1
∂vj

= 0, dP0 expP0
([v · t]) =

dγv
dt

∣∣∣∣
0

= v

according to the second definition of a tangent vector. Thus, the Jacobi matrix dP0E is equal

to

(
I ∗
0 I

)
, where I is the identity matrix and the Jacobian is equal to 1.Hence, by the

implicit mapping theorem, the map E maps diffeomorphicaly some neighborhood V ′ of the
point (P0, 0) ∈ TM onto a neighborhood W ′ of the point (P0, P0) in M ×M . Passing to
some smaller neighborhoods if necessary, one can assume that W ′ = U ′ × U ′ and U ′ is a
subset of a ball of diameter ε w.r.t. g (the lower bound of lengths of curves connecting its
center P0 with any its point is less then ε/2). Then U ′ is the desired neighborhood of P0.
Indeed, let P and Q be two arbitrary points of U ′. Consider a geodesic γ starting from the
point P ′ in the direction of v, where (P ′, v) = E−1(P,Q). Then, by the definition of E, we
have P ′ = P and γ(1) = Q. Thus, the points P and Q are connected by the geodesic γ and
γ smoothly depends on P and Q. Find its length. As it is proved above, the parameter of a
geodesic can differ from the arc length only by a scaling, which is equal to ‖v‖ for the case
under consideration. Then the length of γ from 0 to 1 is equal to 1 · ‖v‖ < ε. It remains
to verify the uniqueness. Suppose, that P and Q are connected by a geodesic of length less
then ε. Then it is a solution of the appropriate initial value problem and is unique, because
the length of its velocity vector at 0 is less then ε · t, where γ(t) = Q (otherwise E is not a
bijection).

Problem 11.22.Home Prove that in coordinates determined by exp, all Γijk vanish in P0.

12 Differentiation and integration of differential forms

Consider some symmetric affine connection ∇ on a manifold M (for example, the Levi-
Civita connection for some Riemannian metric) and a differential form ω of degree k, i.e.,
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an alternating (antisymmetric) tensor field of type (0, k). Denote the space of such forms
by Ωk(M). Then one can define the exterior derivative or gradient dω of the form ω by the
following formula

dω := ±(k + 1)!

k!
Alt∇ω,

or, in local coordinates,

(dω)j1...jk+1
= ± 1

k!

∑
σ∈Sk+1

(−1)σ∇σ(jk+1)ωσ(j1)...σ(jk).

where we denote σ(jk) := jσ(k) and ± is chosen to have

±(−1)σ = sgn

(
1 . . . k, k + 1

σ(k + 1)σ(1) . . . σ(k)

)
,

i.e., ± = (−1)k. By the definition of ∇, dω is a differential form of degree k + 1.

Lemma 12.1. The gradient dω does not depend on the choice of a symmetric connection.
Namely,

(dω)j1...jk+1
=

k+1∑
s=1

(−1)s+1∂ωj1...js−1js+1...jk+1

∂xjs
.

Proof. By the definition of ∇,
(dω)j1...jk+1

=

=
(−1)k

k!

∑
σ∈Sk+1

(−1)σ

[
∂ωσ(j1)...σ(jk)

∂xσ(jk+1)
−

k∑
r=1

ωσ(j1)...σ(jr−1)ασ(jr+1)...σ(jk)Γ
α
σ(jr)σ(jk+1)

]
=

=
(−1)k

k!

∑
σ∈Sk+1

(−1)σ
∂ωσ(j1)...σ(jk)

∂xσ(jk+1)
−

− (−1)k

k!

∑
over even σ∈Sk+1

(−1)σ
k∑
r=1

[
Γασ(jr)σ(jk+1) − Γασ(jk+1)σ(jr)

]
ωσ(j1)...σ(jr−1)ασ(jr+1)...σ(jk) =

(since ∇ is symmetric)

=
(−1)k

k!

∑
σ∈Sk+1

(−1)σ
∂ωσ(j1)...σ(jk)

∂xσ(jk+1)
=

=
(−1)k

k!

k+1∑
s=1

∑
τ∈Sk

sgn

(
1 . . . k + 1

τ(1) . . . τ(s− 1)τ(s+ 1) . . . τ(k + 1)s

)
∂ωτ(j1)...τ(js−1)τ(js+1)...τ(jk+1)

∂xjs
=

=
1

k!

k+1∑
s=1

∑
τ∈Sk

(−1)s−1(−1)τ
∂ωτ(j1)...τ(js−1)τ(js+1)...τ(jk+1)

∂xjs
=

(since ω is alternating)

=
1

k!

k+1∑
s=1

∑
τ∈Sk

(−1)s−1(−1)τ (−1)τ
∂ωj1...js−1,js+1...jk+1

∂xjs
=
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=
1

k!
· k!

k+1∑
s=1

(−1)s+1∂ωj1...js−1,js+1...jk+1

∂xjs
.

Problem 12.2.Home The exterior derivative of a differential form can be obtained by “direct
differentiation”. Namely, prove that for

ω =
∑

i1<···<ik

ωi1...ikdx
i1 ∧ . . . ∧ dxik

one has (keeping in mind that, for a function f , ∇f = df and a tensor of type (0, 1) is always
(anti)symmetric)

dω =
∑

i1<···<ik

d(ωi1...ik) ∧ dxi1 ∧ . . . ∧ dxik =
∑

i1<···<ik

∑
i0

∂(ωi1...ik)

∂xi0
dxi0 ∧ dxi1 ∧ . . . ∧ dxik .

Theorem 12.3. Let ω(1) and ω(2) be differential forms of degrees p and q respectively. Then

d(ω(1) ∧ ω(2)) = dω(1) ∧ ω(2) + (−1)pω(1) ∧ dω(2).

Proof. Since the both sides of the desired equality are linear in ω, it is sufficient to verify it
in one chart for forms

ω(1) = f dxi1 ∧ . . . ∧ dxip , ω(2) = g dxj1 ∧ . . . ∧ dxjq .

Then by Problem 12.2

d(ω(1) ∧ ω(2)) = d(fg dxi1 ∧ . . . ∧ dxip ∧ dxj1 ∧ . . . ∧ dxjq) =

=
∂f

∂xk
g dxk∧dxi1∧. . .∧dxip∧dxj1∧. . .∧dxjq +f

∂g

∂xk
dxk∧dxi1∧. . .∧dxip∧dxj1∧. . .∧dxjq =

=

(
∂f

∂xk
dxk ∧ dxi1 ∧ . . . ∧ dxip

)
∧
(
g dxj1 ∧ . . . ∧ dxjq

)
+

+(−1)p
(
f dxi1 ∧ . . . ∧ dxip

)
∧
(
∂g

∂xk
dxk ∧ dxj1 ∧ . . . ∧ dxjq

)
=

= dω(1) ∧ ω(2) + (−1)pω(1) ∧ dω(2).

Theorem 12.4. For any differential form ω one has d(dω) = 0.

Proof. Once again it is sufficient to verify this for a form ω = f dxi1 ∧ . . . ∧ dxip . Moreover,
if the theorem is proved for ω(1) and ω(2), then it is true for its exterior product. Indeed,

dd(ω(1) ∧ ω(2)) = d(dω(1) ∧ ω(2) + (−1)pω(1) ∧ dω(2)) =

= ddω(1) ∧ ω(2) + (−1)p+1dω(1) ∧ dω(2) + (−1)pdω(1) ∧ dω(2) + (−1)p+pω(1) ∧ ddω(2) = 0.
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It remains to verify the statement for f and dxi. One has

d(df) = d

(
∂f

∂xk
dxk
)

=
∂2f

∂xi ∂xk
dxi ∧ dxk =

∑
i<k

(
∂2f

∂xi ∂xk
− ∂2f

∂xk ∂xi

)
dxi ∧ dxk = 0.

For dxi, apply the last calculation to f = xi:

dd(dxi) = d(ddxi) = d(0) = 0.

Definition 12.5. A differential form ω is closed, if dω = 0, i.e., ω ∈ Ker d. A differential
form ω is exact, if ω = dω1 for some ω1, i.e., ω ∈ Im d.

By the previous lemma, the linear map d has the property Im d ⊂ Ker d. So, if

Zk(M) := Ker(d : Ωk(M)→ Ωk+1(M))

is the space of closed k-forms and

Bk(M) := Im(d : Ωk−1(M)→ Ωk(M))

is the space of exact k-forms, then Bk(M) ⊆ Zk(M) and one can define the de Rham
cohomology of degree k as the quotient linear space Hk(M) = Zk(M)/Bk(M).

Immediately from the definition one has the following statement.

Theorem 12.6. 1) Let Ω ∈ Ωk(M). Consider the equation:

dω = Ω. (10)

It has a solution iff Ω is closed and the cohomology class [Ω] = 0 ∈ Hk(M) (⇔ Ω is
exact).

2) Any two ω1 solutions ω2 of (10) differ by a closed form: d(ω1 − ω2) = 0. The set of all
solutions is the coset of the subspace Zk−1(M) containing any solution ω.

3) The space Zk(M) is isomorphic to the direct sum of Bk(M) and Hk(M). �

As a particular case (up to Problem 12.8) of the pull-back of a form, one can define the
pull-back of a differential form:

Definition 12.7. Let f : M → N be a smooth map of smooth manifolds and ω ∈ Ωk(N)
be a differential form.The pull-back or the inverse image f ∗ω of this form is the following
multilinear map of vector fields on M :

f ∗ω(~v1, . . . , ~vk) := ω(dPf(~v1), . . . , dPf(~vk)), ~vi ∈ TPM.

Problem 12.8. HomeVerify that the obtained form is a differential form (i.e., antisymmetric).
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Lemma 12.9. Suppose that (x1, . . . , xm) is a local coordinate system in a neighborhood of
P ∈ M and (y1, . . . , yn) is a local coordinate system in a neighborhood of f(P ) ∈ N , so the
corresponding local representative map of f : M → N is defined by some functions

y1 = f 1(x1, . . . , xm), . . . , yn = fn(x1, . . . , xm),

and a form ω ∈ Ωk(N) has locally the expansion

ω =
∑

i1<···<ik

ωi1...ik(y
1, . . . , yn)dyi1 ∧ . . . ∧ dyik .

Then the pull-back of ω has locally the form

f ∗(ω) =
∑

i1<···<ik

ωi1...ik(f
1(x1, . . . , xm), . . . , fn(x1, . . . , xm))×

×df i1(x1, . . . , xm) ∧ . . . ∧ df ik(x1, . . . , xm). (11)

Proof. One has

f ∗(ω)(~v1, . . . , ~vk) = ω(dPf(~v1), . . . , dPf(~vk)) =

=

( ∑
i1<···<ik

ωi1...ik(y
1, . . . , yn)dyi1 ∧ . . . ∧ dyik

)
(dPf(~v1), . . . , dPf(~vk)) =

=
∑

i1<···<ik

ωi1...ik(y
1, . . . , yn) k!Alt[i1,...,ik]

{
dyi1(dPf(~v1)) . . . dyik(dPf(~vk))

}
=

=
∑

i1<···<ik

ωi1...ik(y
1, . . . , yn) k!Alt[i1,...,ik]

{
∂f i1

∂xj1
(~v1)j1 . . .

∂f ik

∂xjk
(~v1)jk

}
=

=
∑

i1<···<ik

ωi1...ik(y
1, . . . , yn) k!Alt[i1,...,ik]

{
df i1(~v1) . . . df ik(~v1)

}
=

=

( ∑
i1<···<ik

ωi1...ik(y
1, . . . , yn)df i1 ∧ . . . ∧ df ik

)
(~v1, . . . , ~vk).

Theorem 12.10. The operation of pull-back has the following properties:

1) for f : M → N and g : N → K one has (gf)∗ = f ∗g∗;

2) f ∗dN = dMf
∗, where dN and dM are the exterior derivatives on N and M , respectively;

3) f ∗(Ker dN) ⊆ Ker dM and f ∗(Im dN) ⊆ Im dM , hence f ∗ gives rise to a map of cohomolo-
gies

f ∗ : Hk(N)→ Hk(M).
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Proof. The first equality is an immediate consequence of Lemma 12.9. To prove the second
one, note that by the same lemma, Theorems 12.4 and 12.3, and Problem 12.2 we have

f ∗(dω) = f ∗

(
d

( ∑
i1<···<ik

ωi1...ik(y
1, . . . , yn)dyi1 ∧ . . . ∧ dyik

))
=

= f ∗

( ∑
i1<···<ik

n∑
s=1

∂ωi1...ik
∂ys

(y1, . . . , yn)dys ∧ dyi1 ∧ . . . ∧ dyik
)

=

=
∑

i1<···<ik

n∑
s=1

∂ωi1...ik
∂ys

(f 1(x1, . . . , xm), . . . , fn(x1, . . . , xm))df s ∧ df i1 ∧ . . . ∧ df ik =

=
∑

i1<···<ik

d(ωi1...ik(f
1(x1, . . . , xm), . . . , fn(x1, . . . , xm)) ∧ df i1 ∧ . . . ∧ df ik =

= d

( ∑
i1<···<ik

ωi1...ik(f
1(x1, . . . , xm), . . . , fn(x1, . . . , xm))df i1 ∧ . . . ∧ df ik

)
= df ∗(ω).

To prove the third relations, note (using the second one) that, if dNω = 0, then dMf
∗ω =

f ∗dNω = 0. Similarly, if ω(1) = dNω, then

f ∗(ω(1)) = f ∗dNω = dMf
∗ω.

Problem 12.11. HomeProve that cohomologies of diffeomorphic manifolds coincide.

Definition 12.12. A differential form Ω of degree k on M × I does not depend on dt, if its
value on any system of vectors of the form ( ∂

dt
, ~v1, . . . , ~vk−1) is 0.

Lemma 12.13. Locally this is equivalent to the following: in the local expansion of Ω w.r.t.
the basis dxi1 ∧ . . . ∧ dxik there is no summands containing dt.

Proof. By the definition of action of form on vectors.

Problem 12.14. HomeWrite down this in detail.

Lemma 12.15. Any differential form Ω on M × I can be represented in the form Ω =
Ω(1) + Ω(2) ∧ dt, where Ω(1) and Ω(2) do not depend on dt. This representation is unique.

Proof. Suppose that this lemma is proved for forms supported in one chart. Then consider a
partition of unity {ϕα} on M and the corresponding “cylindrical”partition of unity ϕ′α(x, t) =
ϕa(x) on M × I. Then

Ω =
∑
α

ϕ′αΩ =
∑
α

(Ω(1,α) + Ω(2,α) ∧ dt) =

(∑
α

Ω(1,α)

)
+

(∑
α

Ω(2,α)

)
∧ dt

is the desired representation. In turn, in one chart it is sufficient to group terms without dt
and terms with dt, and move dt on the last position (for the second group terms). We keep
in mind here Lemma 12.13.
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The uniqueness also may be verified in one chart. Indeed, if ω = Ω′1+Ω′2∧dt = Ω1+Ω2∧dt
and ψαΩ′1 = ψαΩ1, ψαΩ′2 = ψαΩ2 for each function ψα from a partition of unity, then
summarizing we obtain Ω′1 = Ω1 and Ω′2 = Ω2. In turn, over one chart Ω1 and Ω2 by
Lemma 12.13 can be determined only in the above way (grouping terms), because the ordered
products of dxi form a basis.

Lemma 12.16. Suppose that smooth maps f0 and f1 from a manifold M to a manifold N
are homotopic to each other, i.e., there exists a smooth map F such that

F : M × I → N, F (P, 0) = f0(P ), F (P, 1) = f1(P ) ∀P ∈M.

Then there exists a linear map D : Ω∗(N)→ Ω∗−1(M) such that for any ω one has

(f ∗0 − f ∗1 )(ω) = ±(dMD −DdN)(ω). (12)

Proof. For any ω on N , decompose F ∗(ω) = Ω1 + Ω2 ∧ dt according to the previous lemma.
Define

D(ω) :=

1∫
0

Ω2(t)dt. (13)

This is the integration of coefficients in t as in parameter (evidently the result does not
depend on coordinate system). Then D is well defined because of the uniqueness in the
previous lemma. Since f ∗0 = ϕ∗0F

∗, f ∗1 = ϕ∗1F
∗, where

ϕ0 : M →M × I, ϕ0(P ) = (P, 0), ϕ1 : M →M × I, ϕ1(P ) = (P, 1),

we have
f ∗0 (ω) = Ω1(0), f ∗1 (ω) = Ω1(1) (14)

(we substitute in F ∗Ω: dt = 0 and t = 0 or t = 1). Also,

F ∗dNω = dM×IF
∗ω = dM×I(Ω1 + Ω2 ∧ dt) = dMΩ1 ±

∂

∂t
Ω1(t) ∧ dt+ dMΩ2 ∧ dt

and

DdN(ω) =

1∫
0

(
± ∂

∂t
Ω1(t) + dMΩ2(t)

)
dt = ±(Ω1(1)− Ω1(0)) + dM

1∫
0

Ω2(t) dt. (15)

In the same time

dMD(ω) = dM

1∫
0

Ω2(t)dt. (16)

From (14), (15) and (16) we obtain (12).

Theorem 12.17. Suppose that smooth maps f0 and f1 from M to N are homotopic to each
other. Then f ∗0 = f ∗1 in cohomology.

Proof. Let a closed from ω on N represent a cohomology class [ω]. In particular, dNω = 0.
For the map D from the previous lemma, we have

(f ∗0 − f ∗1 )(ω) = ±(dMD −DdN)(ω) = dM(Dω).

This is 0 in the cohomology of M .
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Problem 12.18. Find the de Rham cohomology of manifolds:

1. Interval (a, b). Home

2. Circle S1. Class

3. HomeEucledean space Rn.

4. ClassSphere S2.

5. HomeThe plane R2 without one point. Hint: using homotopies reduce to case 2).

6. ClassThe plane R2 without two points.

Problem 12.19. Prove the Poincare lemma: any closed form on any manifold is locally
exact. Hint: reduce to the third case above.

Definition 12.20. 23.11.2023Suppose that M is a smooth oriented manifold, dimM = n, and ω ∈
Ωn(M) is a form of maximal degree with a compact support in one chart (U,ϕα) with
coordinates (x1

α, . . . , x
n
α). (We assume here and below by default a chart from an orienting

atlas.) Define the integral of ω over U by the formula∫
U

ω :=

∫
ϕα(U)⊂Rn

ωα12...n dx
1
α . . . dx

n
α. (17)

Lemma 12.21. This integral is well defined, i.e., the right-hand side of (17) does not depend
on the choice of local coordinates in U .

Proof. Suppose that (U,ϕβ) is another chart with the same U and local coordinates
(x1

β, . . . , x
n
β). Since both charts have the same orientation, the rule of changing of variables

in a multiple integral and Lemma 8.28 give∫
ϕβ(U)⊂Rn

ωβ12...n dx
1
β . . . dx

n
β =

∫
ϕα(U)⊂Rn

ωβ12...n ·

∣∣∣∣∣det

∥∥∥∥∥∂xiβ∂xjα

∥∥∥∥∥
∣∣∣∣∣ dx1

α . . . dx
n
α =

=

∫
ϕα(U)⊂Rn

ωβ12...n · det

∥∥∥∥∥∂xiβ∂xjα

∥∥∥∥∥ dx1
α . . . dx

n
α =

∫
ϕα(U)⊂Rn

ωα12...n dx
1
α . . . dx

n
α.

Problem 12.22. HomeSuppose that K ⊆M is a compact set and {Uα} is a locally finite open
cover of M . Then K ∩ Uα 6= ∅ only for finitely many α.

Definition 12.23. Suppose that M is a smooth oriented manifold, dimM = n, and ω ∈
Ωn(M) is a form of maximal degree with a compact support. For a locally finite atlas
{(Uα, ϕα)} and its subordinated partition of unity ψα, define the integral by∫

M

ω = I(M,ω, {(Uα, ϕα, ψα)}) :=
∑
α

∫
Uα

ψαω. (18)

By Problem 12.22, the sum is in fact finite.
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Lemma 12.24. This integral is well defined, i.e., the value does not depend on the choice
of {(Uα, ϕα, ψα)}.

Proof. If we have two distinct atlases, then take their union, and for each of them take zero
functions on the added sets to complete the corresponding partition of unity. Evidently, in
each of these two cases, the right-hand side of (18) will not change. So the proof is reduced
to a a verification of

I(M,ω, {(Uα, ϕα, ψα)}) = I(M,ω, {(Uα, ϕ′α, ψ′α)}).

The independence of each summand on the choice of coordinates, i.e., ϕα, was proved in the
previous lemma. So we need to prove that

I(M,ω, {(Uα, ϕα, ψα)}) = I(M,ω, {(Uα, ϕα, ψ′α)}).

Define γi := ψαi − ψ′αi , i = 1, . . . , N , (because, for a fixed form, by Problem 12.22, the sum
is in fact finite). Then

k∑
i=1

γα = 0, k = N. (19)

The proof is reduced to a verification (under the supposition of (19)) of

k∑
i=1

∫
Uαi

γiω = 0, k = N. (20)

We will prove it by induction over k. For k = 1 the statement is evident. Suppose that for
k = 1, . . . , N − 1 and arbitrary γi : M → R+ with supp γi ⊂ Uαi the equality (19) implies
(20). Find a continuous function χ : M → [0, 1] which is equal to 1 on supp γαN ⊂ αN and
suppχ ⊂ UαN . It exists because M is normal. Then

χγN ≡ γN , γN = −
N−1∑
i=1

γi = −
N−1∑
i=1

χγi, supp(χγi) ⊆ (UN ∩ Uαi).

Hence,
N∑
i=1

∫
Uαi

γiω =

∫
UN

γNω +
N−1∑
i=1

∫
Uαi

γiω = −
N−1∑
i=1

∫
Uαi

χγiω +
N−1∑
i=1

∫
Uαi

γiω =

=
N−1∑
i=1

∫
Uαi

(γi − χγi)ω. (21)

Since

N−1∑
i=1

(γi − χγi) =
N−1∑
i=1

γi − χ
N−1∑
i=1

γi =
N−1∑
i=1

γi + χγN =
N−1∑
i=1

γi + γN =
N∑
i=1

γi = 0,

we can apply to (21) the induction supposition.

Evidently we have:
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Proposition 12.25. The integral gives rise to an R-linear map

Ωn
comp(M,Or)→ R.

Problem 12.26. HomeProve that the change of orientation changes the sign of an integral but
not its absolute value.

Definition 12.27. In particular, we can define the volume of a compact oriented Riemannian
manifold as the absolute value of the integral of the volume form.

Problem 12.28. HomeProve that (under some reasonable restrictions) an integral of a form
can be calculated by integration of restrictions of the form to some sets each of which lies in
a chart and then summation of the results.

Theorem 12.29. (General Stokes Formula). Consider a smooth oriented manifold M with
boundary ∂M , dimM = n, and a compactly supported differential form ω ∈ On−1(M).
Consider the orientation of ∂M introduced in the proof of Theorem 5.8. Then

(−1)n
∫
M

dω =

∫
∂M

ω

(
=

∫
∂M

j∗ω

)
, (22)

where j : ∂M →M is the inclusion of the boundary.

Proof. As before, we may consider an atlas with charts with Vα = ϕα(Uα) = Rn
+ or Rn. Both

sides of (22) are linear in ω. Hence, it is sufficient to verify the equality for a form compactly
supported in one chart (using a partition of unity) . Moreover, it is sufficient to verify for
forms (using the expansion w.r.t. a local base)

ω = f(x1, . . . , xn) dx1 ∧ . . .∧ dxk−1 ∧ dxk+1 ∧ . . .∧ dxn, dω = (−1)k−1 ∂f

∂xk
dx1 ∧ . . .∧ dxn,

where f : Rn
+ → R is a smooth compactly supported function (for the case of Rn

+). We have
xn ≥ 0 and ∂M is characterized by xn = 0. Consider first the case of k ≤ n− 1, i.e., k 6= n.
Locally the inclusion of the boundary has the form:

j : ∂M →M, j(x1, . . . , xn−1) = (x1, . . . , xn−1, 0),

and dxn = 0. Hence j∗ω = 0 (see also (11)). For the right-hand side of (22) we have∫
Rn+

dω =

∫
Rn+

(−1)k−1 ∂f

∂xk
dx1 . . . dxn =

= (−1)k−1

∫
Rn−1
+


+∞∫
−∞

∂f

∂xk
dxk

 dx1 . . . dxk−1dxk+1dxn =

= (−1)k−1

∫
Rn−1
+

{
f(x1, . . . , xk−1,+∞, xk+1, . . . , xn)−

−f(x1, . . . , xk−1,−∞, xk+1, . . . , xn)
}
dx1 . . . dxk−1dxk+1dxn =
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= (−1)k−1

∫
Rn−1
+

{
0− 0

}
dx1 . . . dxk−1dxk+1dxn = 0

(the above passage from the multiple integral to the iterated (Fubini’s theorem) is correct
because of compactness of the support and the vanishing “at infinity” by the same reason).

Consider now the case of k = n. We have∫
Rn+

dω =

∫
Rn+

(−1)n−1 ∂f

∂xn
dx1 . . . dxn =

= (−1)n−1

∫
Rn−1
0


+∞∫
0

∂f

∂xn
dxn

 dx1 . . . dxn−1 =

= (−1)n−1

∫
Rn−1
0

{
f(x1, . . . , xn−1,+∞)− f(x1, . . . , xn−1, 0)

}
dx1 . . . dxn−1 =

= (−1)n
∫

Rn−1
0

f(x1, . . . , xn−1, 0) dx1 . . . dxn−1 = (−1)n
∫

Rn−1
0

ϕ∗ω

(with the same usage of compactness as above).
In the case of Rn we have that the chart does not intersect ∂M and j∗ω = 0. So the

right-hand side of (22) vanishes. The left-hand side of (22) vanishes by the same calculation,
as in the case k < n above.

Problem 12.30.Class The general Stokes formula implies Green’s formula from vector calculus∮
∂D

P (x, y)dx+Q(x, y)dy =

∫∫
D

(
∂Q(x, y)

∂x
− ∂P (x, y)

∂y

)
dxdy.

Problem 12.31.Home The general Stokes formula implies divergence (Gauss–Ostrogradsky)
theorem from vector calculus∫∫

∂V

©P (x, y, z)dy ∧ dz +Q(x, y, z)dz ∧ dx+R(x, y, z)dx ∧ dy =

=

∫∫∫
V

(
∂P (x, y, z)

∂x
+
∂Q(x, y, z)

∂y
+
∂R(x, y, z)

∂z

)
Problem 12.32.Home The general Stokes formula implies the classical Stokes formula from
vector calculus: for a piece Σ of a surface,∮

∂Σ

P (x, y, z)dx+Q(x, y, z)dy +R(x, y, z)dz =

=

∫∫
Σ

(
∂R

∂y
− ∂Q

∂z

)
dy ∧ dz +

(
∂P

∂z
− ∂R

∂x

)
dz ∧ dx+

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy.

Problem 12.33. Denote ~F = (P,Q,R) = P~i+Q~j +R~k.
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a) HomeLet d~r = (dx, dy, dz). Understand why∫
γ

~F · d~r =

∫
γ

Pdx+Qdy +Rdz.

b) ClassLet ~n be the unit normal field on a surface Σ. Understand why∫∫
Σ

~F · ~n dS =

∫∫
Σ

Pdy ∧ dz +Qdz ∧ dx+Rdx ∧ dy.

Problem 12.34. Obtain from the general Stokes formula the vector calculus formulas:
a) Classclassical Stokes:∫∫

Σ

rot ~F · ~n dS =

∫∫
Σ

(~∇× ~F ) · ~n dS =

∮
∂Σ

~F · d~r,

b) HomeGauss-Ostrogradsky:∫∫∫
V

div ~F dx dy dz =

∫∫∫
V

~∇ · ~F dx dy dz =

∫∫
∂V

©~F · ~n dS.

13 Riemann Curvature Tensor

We will consider symmetric connections. Consider locally in coordinates (x1, . . . , xn) the
action of ∇k∇l −∇l∇k on a vector field T i (so the result is a tensor field of type (1,2)). We
have

∇lT
i =

∂T i

∂xl
+ T rΓirl,

∇k∇lT
i =

∂2T i

∂xk ∂xl
+
∂T r

∂xk
Γirl + T r

∂Γirl
∂xk

+ Γisk

(
∂T s

∂xl
+ T rΓsrl

)
− Γslk

(
∂T i

∂xs
+ T rΓirs

)
,

(∇k∇l −∇l∇k)T
i =

= T r
(
∂Γirl
∂xk
− ∂Γirk

∂xl

)
+
∂T r

∂xk
Γirl −

∂T r

∂xl
Γirk +

∂T s

∂xl
Γisk −

∂T s

∂xk
Γisl + T rΓiskΓ

s
rl − T rΓislΓsrk =

= T r
(
∂Γirl
∂xk
− ∂Γirk

∂xl
+ ΓiskΓ

s
rl − ΓislΓ

s
rk

)
.

Denote

Ri
q,kl :=

∂Γiql
∂xk
−
∂Γiqk
∂xl

+ ΓiskΓ
s
ql − ΓislΓ

s
qk, (23)

and obtain that
(∇k∇l −∇l∇k)T

i = T q Ri
q,kl.

Lemma 13.1. Functions Ri
q,kl form a tensor of type (1, 3).

Proof. For any vector field T , the functions (∇k∇l −∇l∇k)T
i, i.e., T q Ri

q,kl, form a tensor
field of type (1, 2). Since Ri

q,kl = (eq)
sRi

s,kl, we have

Ri′

q′,k′l′ = (eq′)
s′ Ri′

s′,k′l′ = (eq′)
sRi

s,kl

∂xk

∂xk′
∂xl

∂xl′
∂xi

′

∂xi
= (eq′)

s′ ∂x
s

∂xs′
Ri
s,kl

∂xk

∂xk′
∂xl

∂xl′
∂xi

′

∂xi
=

= δs
′

q′
∂xs

∂xs′
Ri
s,kl

∂xk

∂xk′
∂xl

∂xl′
∂xi

′

∂xi
= Ri

s,kl

∂xs

∂xq′
∂xk

∂xk′
∂xl

∂xl′
∂xi

′

∂xi
= Ri

q,kl

∂xq

∂xq′
∂xk

∂xk′
∂xl

∂xl′
∂xi

′

∂xi
.
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Definition 13.2. The tensor Ri
q,kl is called the Riemann curvature tensor of a symmetric

connection ∇.

Pass to the invariant definition of R.

Definition 13.3. Recall that the commutator of vector fields X and Y is the vector field

[X, Y ]k := X i ∂Y
k

∂xi
− Y i ∂X

k

∂xi
.

For any symmetric connection,

∇XY
k −∇YX

k = X i

(
∂Y k

∂xi
+ Y jΓkji

)
− Y i

(
∂Xk

∂xi
+XjΓkji

)
= [X, Y ]k, (24)

in particular, the operation is a tensor one (the result is a vector field).

Definition 13.4. Define the curvature operator by

R(X, Y )Z := ∇X∇Y (Z)−∇Y∇X(Z)−∇[X,Y ](Z).

It maps a triple of vector fields X, Y and Z to some fourth vector field. The notation
R(X, Y )Z, not R(X, Y, Z), reflects the roles of variables.

Theorem 13.5. The map R is 3-linear over functions. Thus, it defines a tensor field of
type (1, 3).

Proof. If T is a 3-linear map of vector fields valued in vector fields, then the map

T̃ (X, Y, Z;ω) := ω(T (X, Y, Z))

will be 4-linear map of 3 vector and 1 covector field arguments valued in functions, i.e., a
tensor field of type (1, 3).

3-linearity at a point (i.e., over R) is evident. It remains to verify linearity for functions,
i.e., R(X, Y )(fZ) = f ·R(X, Y )Z and two similar identities (Problem 13.6 ).

Problem 13.6.Class Verify the linearity of R(X, Y )(Z) for functions.

Lemma 13.7. The definitions are equivalent.

Proof. For local basic vector fields ei = ∂
∂xi

we have

R(ei, ej)Z
k = ∇ei∇ejZ

k −∇ej∇eiZ
k +∇[ei,ej ]Z

k = ∇i∇jZ
k −∇j∇iZ

k,

because ∇eiZ
k = (ei)

m∇mZ
k = δmi ∇mZ

k = ∇iZ
k and hence

[ei, ej] = ∇ei∇ej −∇ej∇ei = ∇iej −∇jei = Γljiel − Γlijel = 0, (25)

using (24). Linearity completes the proof.

Theorem 13.8. ∗ (symmetries of the Riemann curvature tensor)30.11.2023

1) anti-symmetric in X and Y : R(X, Y )Z +R(Y,X)Z = 0, or Ri
j,kl +Ri

j,lk = 0;
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2) Jacobi identity: R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0, or Ri
j,kl +Ri

k,lj +Ri
l,kj = 0;

3) for any Levi-Civita connection 〈R(X, Y )Z,W 〉+〈R(X, Y )W,Z〉 = 0, or Rij,kl+Rji,kl = 0,
where Rij,kl = girR

r
j,kl;

4) for any Levi-Civita connection 〈R(X, Y )Z,W 〉 = 〈R(Z,W )X, Y 〉, or Rij,kl = Rkl,ij.

The proof of this statement can be found in [Lee, Theorem 13.19].

We proceed with Levi-Civita connections.

Problem 13.9. HomeFor any Levi-Civita connection one has

Riqkl = girR
r
qkl =

1

2

(
∂2gil
∂xq∂xk

+
∂2gqk
∂xi∂xl

− ∂2gik
∂xq∂xl

− ∂2gql
∂xi∂xk

)
+ gmp(Γ

m
qkΓ

p
il − ΓmqlΓ

p
ik).

Definition 13.10. A Riemannian manifold (M, g) is flat, if the curvature tensor is identically
zero.

Theorem 13.11. A manifold is flat iff it is locally euclidean in metric (gij = const) or
connection (Γijk = 0) sense.

Problem 13.12. HomeProve this. In one direction this follows from Problem 13.9. For the
other direction, see Theorem 13.18 in [Lee].

Keeping in mind the definition, the following statement about the geometric meaning of
the Riemann curvature tensor is not surprising:

Problem 13.13. HomeLet (x1, . . . , xn) be some coordinates in a neighborhood of P ∈M , where
(M,∇) is a manifold equipped with a symmetric connection (not necessary Levi-Civita),
xi(P ) = 0, ∀ i. Suppose that ξ ∈ TPM is an arbitrary vector and ξε = ξε(i, j) is the result
of its parallel transport around coordinate square in xi, xj with sides of length ε (i.e., formed
by segments of four coordinate curves in the xi, xj-plane - see figure).
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xj

xi

Then

lim
ε→0

ξkε − ξk

ε2
= Rk

l,ijξ
l.

(see Theorem 5.11 in http://math.uchicago.edu/∼may/REU2016/REUPapers/Wan.pdf or
Theorem 12.47 in [Lee] )

This observation immediately implies the “if” direction of the following statement:

Theorem 13.14. A Riemannian manifold is flat if and only if results of parallel transport
along two homotopic curves are the same (equivalently, the result of parallel transport along
a contractible loop is the same as the initial vector).

Proof. To prove the “only if” consider two homotopic curves γ0, γ1 : (−ε, 1 + ε) → M (we
need an extension to an open interval because the direct product with [0, 1] should be a
manifold) with the properties γ0(0) = γ1(0) = P0, γ0(1) = γ1(1) = P1, such that a homotopy
G : (−ε, 1+ε)× [0, 1]→M satisfies this for each t (we suppose s ∈ (−ε, 1+ε) and t ∈ [0, 1]).
Consider the vector field ξt(s) being the velocity field of G(s, t) for fixed t (in particular,
ξ0(s) and ξ1(s) are the velocity fields of γ0 and γ1), and the vector field ηs(t) being the
velocity field of G(s, t) for fixed s. For a given v ∈ TP0M , define the vector field vs(t), where
vs(t) is the result of the parallel transport of v along γt(s) = G(s, t) for fixed t to the point
with parameter s. (Note, that in the definition of a parallel transport we have not asked the
regularity of a curve (non-vanishing of the velocity) but only its smoothness) Then the field
vs(t) is parallel along G(s, t) for fixed s.

Indeed,

∇ξt(s)∇ηs(t)v
i
s(t)−∇ηs(t)∇ξt(s)v

i
s(t)−∇[ξt(s),ηs(t)]v

i
s(t) = Ri

j,klv
j
s(t)ξ

k
t (s)ηls(t).

By the definition of vs(t), the second summand in the l.h.s. vanishes. By the supposition,
the r.h.s. vanishes too. The third summand in the l.h.s. vanishes by the following argument:
if G(t, s) = (x1(t, s), . . . , xn(t, s)), then

[ξt(s), ηs(t)]
k = ξt(s)

j ∂ηs(t)
k

∂xj
− ηs(t)j

∂ξt(s)
k

∂xj
=

=
∂xj

∂s

∂

∂xj

(
∂xk

∂t

)
− ∂xj

∂t

∂

∂xj

(
∂xk

∂s

)
=
∂2xk

∂s∂t
− ∂2xk

∂t∂s
= 0.
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Thus, the field ∇ηs(t)vs(t) is parallel along γt(s) and vanishes for s = 0 (since v0(t) ≡ v).
Hence, ∇ηs(t)vs(t) = 0 for any s, in particular, for s = 1.

Then, since G(1, t) ≡ P1, we have η1(t) ≡ 0 and

0 = ∇η1(t)v
i
1(t) =

d

dt
vi1(t) + Γimkη

m
1 (t)vk1(t) =

d

dt
vi1(t),

i.e., v1 does not depend on t.

14 Lie algebra of a Lie group

Definition 14.1. Denote by X(G) the space of vector fields on G. A vector field X ∈ X(G)
is called left invariant iff (Lg)∗X = X for all g ∈ G, where (Lg)∗X = (d(Lg)) ◦X ◦ L−1

g and
Lg : G→ G is the left translation. So the definition can be reformulate as (dLg)xXx = Xgx.
So X ∈ X(G) is left invariant iff the following diagram commutes for every g ∈ G:

TG
d(Lg) // TG

G

X

OO

Lg // G

X

OO .

Similarly, for right translations. The (evidently linear) space of left invariant vector fields
will be denoted by XL(G) and of right invariant vector fields will be denoted by XR(G).

Lemma 14.2. Suppose, f : M → N is a smooth map. Then (df)[X, Y ] = [(df)X, (df)Y ].

Proof.
(df)[X, Y ]f(P )(g) = [X, Y ]P (g ◦ f) = Xp(Y (g ◦ f))− Yp(X(g ◦ f)) =

= Xp((df)Y (g) ◦ f)− Yp((df)X(g) ◦ f) =

= (df)Xf(p)((df)Y (g))− (df)Yf(p)((df)X(g)) = [(df)X, (df)Y ]f(P )(g).

From Lemma 14.2 we obtain:

Lemma 14.3. XL(G) is closed under the Lie bracket operation.

Definition 14.4. For a vector v ∈ TeG, define a smooth left (resp. right) invariant vector
field Lv (resp. Rv) such that Lv(e) = v (resp. Rv(e) = v) by

Lv(g) = d(Lg)ev, Rv(g) = d(Rg)ev. (26)

Problem 14.5. HomeShow that v 7→ Lv (resp. v 7→ Rv) gives a linear isomorphism TeG ∼=
XL(G) (resp., TeG ∼= XR(G)).

Definition 14.6. A vector space (a) over a field K is called Lie algebra if it is equipped
with a bilinear map (a)× (a)→ (a) denoted (v, w) 7→ [v, w] such that

[v, w] = −[w, v]

and such that we have the Jacobi identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

for all x, y, z ∈ (a).
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Evidently,

Proposition 14.7. If G is a Lie group of dimension n, then XL(G) is an n-dimensional
Lie algebra for the Lie bracket of vector fields.

The above isomorphism transfers the Lie algebra structure to TeG.

Proposition 14.8. For a fixed A ∈ GL(V ), the map LA : GL(V ) → GL(V ) given by
B 7→ A ◦ B has tangent map given by (B,X) 7→ (A ◦ B,A ◦X), where (B,X) ∈ GL(V ) ×
L(V, V ) ∼= T (GL(V )).

Also, the left invariant vector field X̃ corresponding to X ∈ L(V, V ) has the form X̃(A) =
(A,AX).

Proof. In local coordinates (which are global here) the tangent map is defined by multipli-
cation by the Jacobi matrix, which is

∂(AX)νµ
∂Xρ

σ
= Aτµδ

ρ
τδ
ν
σ = Aρµδ

ν
σ,

∂(AX)νµ
∂Xρ

σ
V σ
ρ = Aρµδ

ν
σV

σ
ρ = AρµV

ν
ρ = (AV )νµ.

The second statement is now evident, because (X,AX) is a left-invariant (by the first
statement) with X at e, and such a field is unique.

The exponential map and related topics were discussed in detail in the course on Lie
groups and Lie algebras, so we omit this topic here.

14.1 The Maurer-Cartan form

Definition 14.9. Define g-valued 1-forms (i.e. smooth fiber-wise R-linear maps TG → g)
ωG and ωright

G by

ωG(Xg) = d(Lg−1)gXg, ωright
G (Xg) = d(Rg−1)gXg,

where Xg ∈ TgG is the value of a vector field X at g ∈ G. These forms are called the left
Maurer-Cartan form and right Maurer-Cartan form respectively.

Problem 14.10.Home Explain the smoothness.

Theorem 14.11. The tangent bundle of a Lie group is trivial. More specifically, the maps

trivL : TG→ G× g, trivL(vg) = (g, ωG(vg)), vg ∈ TgG,

trivR : TG→ G× g, trivR(vg) = (g, ωright
G (vg)), vg ∈ TgG,

give two examples of trivializations of TG.

Proof. Evidently we have smooth bundle maps and they are invertible with

triv−1
L (g, v) = Lv(g), triv−1

R (g, v) = Rv(g).

Indeed, by (26)

trivL(Lv(g)) = (g, d(Lg−1)gd(Lg)ev) = (g, v), LωG(vg)(g) = d(Lg)ed(Lg−1)g(vg) = vg,

and similarly for trivR.
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Problem 14.12. HomeComplete the remaining details.

Theorem 14.13. For any v ∈ g, g ∈ G one has

trivR ◦ triv−1
L (g, v) = (g,Adg(v)),

where Adg : g→ g, Adg(v) = d(Rg−1Lg)v.

Proof. trivR ◦ triv−1
L (g, v) = (g, d(Rg−1)d(Lg)v) = (g,Adg(v)).

Consider the Maurer-Cartan form in the case of matrix groups. Suppose that G is a Lie
subgroup of GL(n) and consider the coordinate functions xij on GL(n) defined by xij(A) = aij,
where A = ‖aij‖. We have the associated 1- forms dxij. Restrict both the functions xij and
the forms dxij to G, denoting these restrictions by the same symbols. Then the (left) Maurer-
Cartan form can be expressed as

ωG = ‖xij‖−1‖dxij‖.

Indeed, vg ∈ TgG ⊆ Tg GL(n) has the expansion

vg =
∑
i,j

vij
∂

∂xij

∣∣∣∣
g

.

Then, by Proposition 14.8

‖xij‖−1‖dxij‖(vg) = ‖gij‖−1‖vij‖ = d(Lg−1)gvg = ωG(vg),

where g = ‖gij‖.
Problem 14.14. ClassFind the explicit form of the Maurer-Cartan form of G = SO(2).

15 Ehresmann and Koszul connections

07.12.2023
Definition 15.1. Let π : E → M be a smooth vector bundle with typical fiber F of
dimension k. Denote VyE := (dπy)

−1(0p), where π(y) = p. The vertical bundle on π : E →
M is the real vector bundle πV : VE → E with total space

VE := ty∈EVyE ⊂ TE

and projection map πV := πTE|VE. A vector bundle atlas on VE is given by charts of the
form

(πV , dϕ ◦ dΦ) : π−1
V (π−1(U) ∩ Φ−1(V ))→ (π−1(U) ∩ Φ−1(V ))× Rk,

where (π,Φ) is a bundle chart on E over U and (V, ϕ) is a chart in F .

Problem 15.2. HomeVerify this.

Definition 15.3. A smooth rank k distribution on an n-manifold M is a (smooth) rank k
vector subbundle of the tangent bundle.

Definition 15.4. A (linear Ehresmann) connection on a vector bundle π : E → M is a
smooth distribution H on the total space E such that
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1) H is complementary to the vertical bundle: TE = H⊕ VE;

2) H is homogeneous: d(µr)y(Hy) = Hry for all y ∈ E, r ∈ R, where µr : E → E is the
multiplication map given by µr : y → ry.

The subbundle H is called the horizontal distribution (or horizontal subbundle).

Definition 15.5. For a general bundle (not necessarily a vector bundle), we have the same
definition, but only with the property 1).

Definition 15.6. For y ∈ E, an individual element w ∈ TyE is horizontal if w ∈ Hy and
vertical if w ∈ VyE. A vector field (i.e. a section) X ∈ X(E) = Γ(TE) is said to be a
horizontal vector field (resp. vertical vector field) if X(y) ∈ Hy (resp. X(y) ∈ VyE) for all
y ∈ E.

Problem 15.7.Home Let f : N → M be a smooth map and π : E → M a fiber bundle.
Prove that the pull-back f ∗E (Definition 9.48) can be naturally identified with {(p, e) ∈
N × E : f(p) = π(e)}
Problem 15.8.Home Let f : N → M be a smooth map and π : E → M a fiber bundle with

typical fiber F . Prove that Vf ∗E → f ∗E is bundle isomorphic to f̃ ∗VE → f ∗E, where
f̃ := pr2|f∗E : f ∗E → E, pr2 : N × E → E and f ∗E = {(p, e) ∈ N × E : f(p) = π(e)} (cf.
the previous problem). See the diagram:

Vf ∗E

p
$$

f̃ ∗VE //

��

VE
πV

��
f ∗E

f̃ //

��

E

π
��

N
f //M

Proposition 15.9. For a vector bundle E, the vertical vector bundle VE is isomorphic to
the vector bundle π∗E (as bundles over E). Sometimes they say that VE is isomorphic to
E along π.

Proof. If (v, w) ∈ π∗E = {(p, e) ∈ E × E : π(p) = π(e)}, i.e. π(v) = π(w), or v, w ∈ Ep
for some p, then π(v + tw) is constant in t. Thus we can define a map from π∗E to TE by
(v, w) 7→ d

dt

∣∣
0

(v+ tw). This map evidently maps into VE ⊂ TE. We obtain a vector bundle
isomorphism

j : π∗E ∼= VE, j : (v, w) 7→ jvw :=
d

dt

∣∣∣∣
0

(v + tw) = wv.

Problem 15.10.Home Prove that j is an isomorphism, i.e. surjective and injective.
Problem 15.11.Home Prove that H ∼= π∗TM .
Problem 15.12.Class Let E → M be a a vector bundle. Suppose that for each p ∈ M there
is a subspace E ′p ⊂ Ep. Then E ′ = ∪p∈ME ′p is the total space of rank l vector subbundle if
and only if for each p ∈M , there is an open neighborhood U of p on which smooth sections
σ1, . . . , σ2 are defined such that for each q ∈ U the set {σ1(q), . . . σl(q)} is a basis of E ′q.
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Theorem 15.13. Every vector bundle admits a connection.

Proof. For a trivial bundle pr1 : M × V → M and a fixed v ∈ V define iv : M → M × V
by iv(p) := (p, v). For each p ∈ M , define H(p,v) := d(iv)p(TpM). Evidently these maps
are linear injections smoothly depending on p. Then one can apply the previous problem to
obtain that the subspaces H(p,v) form a subbundle H of TE. Also,

d(pr1)(H(p,v)) = d(pr1)d(iv)p(TpM) = d(pr1 ◦ iv)p(TpM) = d(Id)p(TpM) = TpM

and hence TE = V ⊕ H. For any a ∈ R we have µa ◦ iv = iav and d(µa) ◦ d(iv) = d(iav).
Thus

d(µa)(H(p,v)) = d(µa)(d(iv)(TpM)) = d(iav)(TpM) = H(p,av) = Ha(p,v).

Consider a general vector bundle π : E → M with a trivializing locally finite cover
{Uα} of M . Choose a connection Hα on each π−1(Uα). Let {ρα} be a partition of unity
subordinated to {Uα}. For each y ∈ E, define

Ly : Tπ(y)M → TyE, Ly(v) :=
∑

{α : π(y)∈Uα}

ρα(π(y))wα,

where wα is the unique vector in Hα such that (dπ)wa = v. Evidently Ly is linear and
(dπ)y ◦ Ly = IdTpM . This implies (using Problem 15.12) that y 7→ Ly(Tπ(y)M) determines a
subbundle H with the property 1).

Problem 15.14. HomeVerify the property 2).
Problem 15.15. HomeProve the above statement using a Riemannian metric (to be constructed
first) and the orthogonal complement.

Definition 15.16. For a smooth fiber bundle π : E → M and a smooth map f : N → M ,
we call a map σ : N → E a section of E along f if π ◦ σ = f . The set of these sections is
denoted Γf (E).

If σ : N → E is a section of E along f , then σ′ : N → f ∗E, p 7→ (p, σ(p)) ∈ N × E, is a
section of the pull-back f ∗E.
Problem 15.17. HomeProve that all sections of f ∗E are of this form.

Definition 15.18. Let σ : N → E be a section of E along a map f : N → M . We say
that σ is a parallel section if (dσ)v is horizontal for all v ∈ TN . If s is a section of E and
γ : [a, b]→M is a curve, then we say that s is parallel along γ if s ◦ γ is parallel.

Proposition 15.19. Suppose that H is a connection on π : E → M , f : N → M is a
smooth map, f̃ = pr2|f∗E : f ∗E → E. Then f ∗H = (df̃)−1H is a distribution, which defines
a connection on f ∗E → N (the pull-back connection):

f ∗H � � // Tf ∗E
df̃ //

��

TE

dπ
��

TN
df // TM

(see also Problem 15.25 below).
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Proof. By the definition of f̃ , we have (f ∗H)(q,y) = (df̃(q,y))
−1Hy, where (q, y) ∈ f ∗E.

Note that the natural bundle isomorphism (d(pr1), d(pr2)) : T (N × E) ∼= TN × TE
maps T (f ∗E) to {(v, w) ∈ TN × TE : (df)v = (dπ)w}. Indeed, a class of curve (γ1, γ2) :
I → N × E in TN × TE defines a vector (v, w) ∈ Tf ∗E iff (γ1(t), γ2(t)) ∈ f ∗E for any
t, i.e. f ◦ γ1(t) = π ◦ γ2(t), or equivalently (df)v = (dπ)w. Also, by the definitions,
under this isomorphism (Vf ∗E)(q,y) corresponds to {0q} × VyE and (f ∗H)(q,y) corresponds
to {(v, w) ∈ TqN ×Hy : (df)v = (dπ)w}.

By Problem 15.8, df̃ is an isomorphism of vertical distributions. (This also follows from

the above identification.) Then f ∗H = (df̃)−1H is a smooth family of subspces (f ∗H)(q,y)

complementary to (Vf ∗E)(q,y). Hence, this is a distribution (by Problem 15.12) and this
distribution is complementary to Vf ∗E. It remains to verify that the distribution is homo-
geneous. The multiplication µ∗a on f ∗E ⊂ N × E is defined as µ∗a(q, y) = (q, µay). Then
(dµ∗a)(q,y)(v, w) = (v, (dµa)w). Hence, by the above description of (f ∗H)(q,y) and the homo-
geneity of H, we obtain the homogeneity of f ∗H,

Problem 15.20.Home Prove that if s is parallel with respect to the pull-back connection on
f ∗E, then σs is parallel, where σs : N → E, σs(x) = s(x) ∈ Ef(x) = (f ∗E)x.
Problem 15.21.Class Let [0, b] be an interval and let t ∈ [0, b]. Suppose that π : E → [0, b] is

a vector bundle with some connection. Let ∂̃ denote the horizontal lift of ∂
∂t

.

1) For an integral curve γ : [0, a]→ E of ∂̃, show that π◦γ is an integral curve of ∂
∂t

. Deduce
that γ(a) ∈ Ea.

2) Prove that for any t0 < b there exists ε = ε(t0) > 0 such that all integral curves of ∂̃
originating in the fiber Et0 are defined at least on [t0, ε).

3) Then 1) and 2) imply that all integral curves of ∂̃ have domain [0, b].

The following theorem does not work in the general situation, but for curves this works
fortunately.

Theorem 15.22. Suppose that π : E → M is a vector bundle with a connection H and
γ : [a, b]→ M is a smooth curve. Then for each u ∈ Eγ(a) there is a unique parallel section
σγ,u along γ such that σγ,u(a) = u. Also, the map Pγ : Eγ(a) → Eγ(b), Pγ(u) = σγ,u(b), is a
linear isomorphism.

Proof. One may assume a = 0 and apply Problem 15.21 with γ∗E instead of E and γ∗H
instead of H. We obtain an integral curve γu of ∂̃ (an γ∗H-horizontal lift of ∂

∂t
) in γ∗E with

γu(0) = (0, u) ∈ γ∗E defined on [0, b]. By 1) in Problem 15.21, pr1 ◦γu is an integral curve of
∂
∂t

and pr1 ◦γu(t) = t. Let σγ,u := pr2 ◦γu on [0, b]. Then σγ,u is a parallel section of E →M
along γ because γ̇u is horizontal (see Problem 15.20 and the identification in Proposition
15.19). It is unique as an integral curve (Cauchy problem for ODE).

Now prove that the above defined Pγ is linear. First, note that (rσγ,u)˙ = d(µr) ◦ σ̇γ,u is
horizontal, because d(µr) preserves H. Then rσγ,u is parallel and Pγ(ru) = rPγ(u). So, Pγ is
homogeneous. Now prove that Pγ = j−1

0 ◦ d(Pγ) ◦ j0 (see the proof of Proposition 15.9 for a
similar definition), i.e. a composition of linear maps. For v0 ∈ T0Eγ(0), define ω(t) = tv such
that v0 = ω̇(0) for an appropriate v ∈ Eγ(0). This means that v is v0 under “an appropriate
identification”. More precisely,

j0(v) =
d

dt

∣∣∣∣
0

(0 + tv) = v0, v = j−1
0 (v0).
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By the (third) definition of the tangent map,

(dPγ)0v0 =
d

dt

∣∣∣∣
0

(Pγ ◦ ω).

Since Pγ ◦ ω(t) = Pγ(tv) = tPγ(v) (using the homogeneity proved first), we have

(dPγ)0v0 = j0(Pγ(v)) = j0 ◦ Pγ ◦ j−1
0 v0

and Pγ = j−1
0 ◦ dPγ ◦ j0 is linear.

Finally, evidently Pγ has the inverse Pγ− , where γ−(t) := γ(b − t), so it is a linear
isomorphism.

Problem 15.23. HomeVerify that Pγ− is the inverse to Pγ.

Definition 15.24. The map Pγ from the previous theorem is called parallel translation or
parallel transport along γ from γ(a) to γ(b). For t1, t2 ∈ [a, b], let P (γ)t2t1 := Pγ|[t1,t2] : Eγ(t1) →
Eγ(t2) if t2 ≥ t1 and P (γ)t2t1 := P−1

γ|[t2,t1] : Eγ(t1) → Eγ(t2) if t1 ≥ t2.
The curve σγ,u is a parallel lift or horizontal lift of the curve γ.
A parallel transport along a piece-wise smooth curve is defined by stages as a composition.

Denote the vector bundle isomorphism from VE to E along π by p, 14.12.2023i.e. p : VE → E is
the composition in the upper row of diagram (cf. Proposition 15.9):

VE j−1
// π∗E //

��

E

π
��

E π //M.

In the notation of Proposition 15.9 p : wy 7→ w and for each y, it gives the canonical
identification of TyEp with Ep, and on each fiber, it is the inverse of j. If we have a connection
on π : E →M , then we have an associated connector, which is the map κ : TE → E defined
by

κ(v) := p(pV(v)) = j−1
y (pV(v)),

where v ∈ TyE and pV : TE = VE ⊕ H → V is the canonical projection. It is a vector
bundle homomorphism along π : E →M :

TE
pV //

))

κ

%%VE j−1
//

##

π∗E //

��

E

π
��

E
π //M.

(27)

Problem 15.25. ClassProve that dπ : TE → TM is a vector bundle. In particular, the addition
and scalar multiplication on a fiber (dπ−1)(x) of dπ : TE → TM are defined by

u� v := (dα)(u, v) for u, v ∈ TE with (dπ)u = (dπ)v = x,

c} v := (dµc)v for v ∈ TE and c ∈ K,

where α(y1, y2) := y1 + y2 for (y1, y2) ∈ E ⊕ E and µcy := cy for y ∈ E and c ∈ K.
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Lemma 15.26. Suppose that f : RK → Rk is a smooth map such that f(av) = af(v) for all
v ∈ RK and a ∈ R. Then f is linear. Similarly for C.

Proof. One has (Df)(0)v = d
dt

∣∣
t=0

f(tv) = d
dt

∣∣
t=0

tf(v) = f(v). Thus f = (Df)(0) and f is
linear. Similarly, in the complex case, f is R-linear and by f(iv) = if(v) it is C-linear.

Applying this lemma to each chart we obtain the following statement.

Corollary 15.27. Suppose that π1 : E1 → M and π2 : E2 → M2 are K-vector bundles,
f̂ : E1 → E2 is a fiber bundle morphism over f : M1 → M2. If f̂ is homogeneous on each
fiber, i.e. f̂(av) = af̂(v) for all v ∈ E1 and a ∈ K, then f̂ is linear on fibers, i.e. it is a
vector bundle morphism.

Lemma 15.28. Let µr : E → E be multiplication by r. Then for any p ∈M and y, w ∈ Ep,
we have

(dµr)(jyw) = jry(rw) = rjryw.

Proof. Indeed

(dµr)(jyw) =
d

dt

∣∣∣∣
t=0

µr(y + tw) =
d

dt

∣∣∣∣
t=0

(ry + trw)

= jry(rw) = rjryw.

Theorem 15.29. Let κ be a connector of a connection on a vector bundle π : E → M .
Then κ is a vector bundle homomorphism from dπ : TE → TM to π : E → M along the
map πTM : TM →M

TE
κ //

dπ
��

E

π
��

TM
πTM //M.

(28)

Proof. In the diagram

TE κ //

dπ

��

""

E

π

��

E
π

  
TM

πTM //M

the left triangle is commutative by the definition of dπ and the right one by (27). Thus
(28) is commutative. It remains to verify that κ is linear on fibers. Let Xp = (dπ)Zy, where
π(y) = p, Zy ∈ TyE, Xp ∈ TpM . Decompose Zy = Hy+Vy, where Hy ∈ Hy, Vy ∈ VyE. Since

(dπ)Vy = 0, we have Xp = (dπ)Hy and Hy is the horizontal lift X̃y of Xp. Also, Vy = jyw

for a unique w ∈ Ep (by Propositions 15.9). Thus Zy = X̃y + jyw and κ(Zy) = w by the
definition. By Lemma 15.28 and homogeneity of H we have

(dµr)Zy = (dµr)X̃y + (dµr)jyw = X̃ry + jryrw.

Hence κ((dµr)Zy) = rw = r κ(Zy) or κ(r}Zy) = r κ(Zy) (in the notation of Problem 15.25).
Corollary 15.27 completes the proof.
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Problem 15.30. HomeProve that the addition� in TE → TM can be described in the following

(similar) form. We have, as above, Zy = X̃y + jyw for some w ∈ Ep if (dπ)Zy = Xp and X̃y

is the horizontal lift of Xp. Suppose, that for another vector Uy′ from the same fiber over

Xp we have in the same way Uy′ = X̃y′ + jy′w
′. Then the sum of these vectors will be given

by X̃y+y′ + jy+y′(w + w′), where X̃y+y′ is the horizontal lift of Xp to the point y + y′.
Problem 15.31. ClassUsing Problem 15.11 and Theorem 15.29 prove that (πTE, κ) : TE →
E⊕E is a vector bundle isomorphism along the tangent bundle projection πTM : TM →M ,
i.e. we have a commutative diagram with fiberwise linear isomorphism in the upper row:

TE
(πTE ,κ)//

dπ
��

E ⊕ E
π⊕π
��

TM
πTM //M.

Now we introduce the Koszul definition of connection (covariant derivative) for a vector
bundle π : E →M , which generalizes an affine connection.

Definition 15.32. Let π : E → M and f : N → M be as above. A covariant derivative
along f is a map∇f : TN×Γf (E)→ Γf (E) (we write∇f (v, σ) = ∇f

vσ) having the properties

(i) ∇f is fiberwise linear in the first argument:

∇f
au+bvσ = a∇f

uσ + b∇f
vσ,

for all σ ∈ Γf (E), a, b ∈ R, u, v ∈ TpN for some p ∈ N ;

(ii) ∇f
u(σ1 + σ2) = ∇f

u(σ1) +∇f
u(σ2) for any u ∈ TN and any σ1, σ2 ∈ Γf (E);

(iii) for v ∈ TpN , h ∈ C∞(N,K), and σ ∈ Γf (E), the Leibniz law is fulfilled:

∇f
v(hσ)|p = h(p)∇f

vσ + v(h)σ(p);

(iv) for a vector field p 7→ v(p) from X(N), the map p 7→ ∇f
v(p)σ is smooth for all σ ∈ Γf (E);

(v) if g : S → N and f : N →M are smooth, then

∇f◦g
u (σ ◦ g) = ∇f

(dg)uσ,

u ∈ TS:
E

π
��

S

σ◦g
66

g
// N

σ

==

f
//M.

Problem 15.33. HomeProve that (ii) and (iii) give the linearity of ∇f over K in the second
argument .

A related notion (in fact a reduction for f = Id : M →M) is:

Definition 15.34. Let π : E → M be a smooth K-vector bundle. A covariant derivative
or Koszul connection is a map ∇ : X(M)× Γ(M,E)→ Γ(M,E) (we write ∇(X, s) = ∇Xs)
having the properties
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(i) ∇fXs = f∇Xs, for all s ∈ Γ(M,E), f ∈ C∞(M), X ∈ X(M);

(ii) ∇X1+X2s = ∇X1s+∇X2s for any s ∈ Γ(M,E), X1, X2 ∈ X(M);

(iii) ∇X(s1 + s2) = ∇Xs1 +∇Xs2 for all s1, s2 ∈ Γ(M,E), X ∈ X(M);

(iv) ∇X(hs) = h∇Xs+X(h)s for all s ∈ Γ(M,E), f ∈ C∞(M), X ∈ X(M).

Problem 15.35.Home Verify that this is a particular case.
Problem 15.36.Home Understand that an affine derivative of a vector field along a curve is a
particular case of the above definitions.

Theorem 15.37. Suppose that π : E → M is a vector bundle with a connection H and
associated connector κ. For any smooth map f : N →M define the map ∇f : TN×Γf (E)→
Γf (E) by the formula

∇f
vσ|p := κ((dσ)pv) for v ∈ TpN, σ ∈ Γf (E), (29)

For a vector field V on N define (∇f
V σ)(p) := ∇f

V (p)σ. Then ∇f satisfies Definition 15.32.
In particular, for f = IdM we obtain a Koszul connection.
Conversely, if ∇ is a Koszul connection on π : E → M , then we may define an (Ehres-

mann) connection by

Hy := {(ds)u− jy∇us|s ∈ Γ(M,E), s(π(y)) = y, u ∈ Tπ(y)M}

The initial Koszul connection can be restored by the formula ∇v(s) = κ((ds)pv), v ∈ TpM .

Proof. Since κ and dσ are smooth bundle morphisms, the properties (i) and (iv) of Definition
15.32 follow immediately from the definition (29).

If g : S → N and f : N →M are smooth and u ∈ TS, then for each σ ∈ Γf (E) we have

∇f◦g
u (σ ◦ g) = κ(d(σ ◦ g)u) = κ(d(σ)((dg)u)) = ∇f

(dg)uσ.

This gives (v) of Definition 15.32.
To prove (ii) use the formula for addition in terms of the tangent lift of α : (u, v) 7→ u+v,

u, v ∈ E. Consider σ1, σ2 ∈ Γf (E), u ∈ TpN , u = [γ] for a smooth curve γ inN with γ(0) = p.
Then

(dσ1)u� (dσ2)u = (dα)((dσ1)u, (dσ2)u) =
d

dt

∣∣∣∣
0

(σ1 ◦ γ + σ2 ◦ γ)

=
d

dt

∣∣∣∣
0

(σ1 + σ2) ◦ γ = d(σ1 + σ2)u.

Since κ is a bundle homomorphism along πTM we have

∇f
u(σ1 + σ2) = κ(d(σ1 + σ2)u) = κ((dσ1)u� (ds2)u) = ∇f

u(σ1) +∇f
u(σ2).

We have obtained (ii) of Definition 15.32.
Now, as above, let u ∈ TpN and σ : N → E is a section along a smooth map f : N →M .

We wish to find a formula for dµ : TR × TE → TE, where µ : R × E → E is the scalar
multiplication in the vector bundle E → M . For this purpose consider (a, y) ∈ R × E and
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(b d
dt

∣∣
a
, vy) ∈ TaR × TyE. Let us calculate first in two particular cases. Consider a smooth

curve c in E with c(0) = y and ċ(0) = vy, i.e. vy = [c]. Then

(dµ)(0a, vy) =
d

dt

∣∣∣∣
0

µ(a, c(t)) =
d

dt

∣∣∣∣
0

µa(c(t)) (30)

= (dµa)vy = a} vy,

where } is the scalar multiplication in the vector bundle structure of TE → TM as described
in Problem 15.25. Now let c be the curve in R given by c(t) := a + tb so that c(0) = a and
ċ(0) = b d

dt

∣∣
a
. Then

(dµ)

(
b
d

dt

∣∣∣∣
a

, 0y

)
=

d

dt

∣∣∣∣
0

µ(c(t), y) =
d

dt

∣∣∣∣
0

((a+ bt)y) (31)

=
d

dt

∣∣∣∣
0

(ay + tby) = jay(by).

From (31) and (32) we obtain

(dµ)

(
b
d

dt

∣∣∣∣
a

, vy

)
= a} vy + jay(by). (32)

Next suppose that h ∈ C∞(N) and c is a curve in N with c(0) = p and ċ(0) = u ∈ TpN .
Then

(dh)pu =
d

dt

∣∣∣∣
0

h(c(t))
∂

∂t

∣∣∣∣
h(c(0))

=
∂h

∂xi

∣∣∣∣
c(0)

dci

dt

∣∣∣∣
0

∂

∂t

∣∣∣∣
h(c(0))

= u(h)
∂

∂t

∣∣∣∣
h(p)

, (33)

where xi are some coordinates, c is given by xi = ci(t), and we write the partial derivative
to emphasize that this is a basic vector related to coordinate system t. To write the next
formula we need to introduce the following notation: let h×σ : N → R×E denote the map
(h× σ)(x) = (h(x), σ(x)). Since κ is a bundle morphism, using its definition, (32) and (33)
we obtain

∇f
u(hσ) = κ(d(hσ)u) = κ(d(µ ◦ (h× σ))u) = κ(d(µ) ◦ d(h× σ)(u))

= κd(µ)

(
u(h)

∂

∂t

∣∣∣∣
h(p)

, (dσ)u

)
= κ(h(p)} ((dσ)u) + jh(p)σ(p)(u(h)σ(p)))

= h(p)κ((dσ)u) + u(h)σ(p) = h(p)∇f
uσ + u(h)σp.

The remaining part to be proved as a problem.

Problem 15.38. ClassProve the remaining statements

We complete the study of Ehresmann connections by a brief mentioning of the following
important case. In the case of a principal smooth G-bundle E over M the Ehresmann
connection is supposed to be G-invariant, i.e. the second property (instead of homogeneity)
is formulated as

Heg = d(Rg)eHe,

where e ∈ E, g ∈ G and Rg is the right action of G on E (see the definition of a principal
bundle).
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16 Basic K-theory

21.12.2023 We will say (one of equivalent definitions) that a space X is paracompact if it is Hausdorff and
every open cover has a partition of unity subordinate to the cover, a collection of continuous
maps ϕβ : X → [0, 1] each having support contained in some set of the open cover, and such
that

∑
β ϕb = 1 with only finitely many of the ϕβ ’s nonzero near each point of X.

Definition 16.1. An inner product on a vector bundle p : E → B is a map 〈 , 〉 : E⊕E → K
which restricts in each fiber to an inner product, a positive definite symmetric bilinear form
for K = R and Hermitian form for K = C.

Proposition 16.2. An inner product exists for a vector bundle p : E → B if B is compact
Hausdorff or more generally paracompact.

Proof. Let Uα be an open cover of B for which there exist local trivializations hα : p−1(Uα)→
Uα × Kn. These can be used to pull back the standard inner product in Kn to an inner
product 〈 , :〉α on p−1(Uα). An inner product on all of E is then obtained by setting 〈v, w〉 =∑

α ϕα(x)〈v, w〉α, where ϕα is a partition of unity subordinated to {Uα} and x = p(v) =
p(w).

Proposition 16.3. If E → B is a vector bundle over a paracompact base B and E0 ⊂ E is
a vector subbundle, then there is a vector subbundle E⊥0 ⊂ E such that E0 ⊕ E⊥0 ∼= E.

Proof. Choose an inner product on E and let E⊥0 be the subspace of E which in each fiber
consists of all vectors orthogonal to vectors in E0. If the natural projection E⊥0 → B is a
vector bundle, then E0 ⊕ E⊥0 is isomorphic to E via the map (v, w) 7→ v + w.

To prove that E⊥0 → B is a vector bundle, note that this is a local property and we may
assume that E is the product B ×Kn. Since E0 is a vector bundle, for m := dimE, find m
independent local sections si : b 7→ si(b)) in a neighborhood U(b0) of arbitrary point b0 ∈ B.
Consider a base s1(b0), . . . , sm(b0), vm+1, . . . , vn of Kn and constant sections si : b 7→ vi,
i = m + 1, . . . , n. Then the sections s1, . . . , sm, sm+1, . . . , sn are still independent over some
(maybe smaller) neighborhood U ′(b0) ⊆ U(b0) (consider the continuity of the determinant).
Apply the Gram-Schmidt orthogonalization process to these sections in each fiber, using the
given inner product, to obtain new sections s′i. The explicit formulas for the Gram-Schmidt
process show that the s′i ’s are continuous, and the first m of them are a basis for E0 in each
fiber over U ′(b0). The sections s′i define a local trivialization h : p−1(U ′(b0))→ U ′(b0)×Kn

by the formula h(b, s′i(b)) = (b, ei), where {ei} is the canonical base of Kn. The map h takes
E0 to U ′(b0) × Km and E⊥0 to U ′(b0) × Kn−m, so h|E⊥0 is a local trivialization of E⊥0 over
U ′(b0) (see also Problem 15.12).

Proposition 16.4. For each vector bundle p : E → B over a compact Hausdorff space B
there exists a vector bundle E ′ → B such that E ⊕ E ′ is a trivial bundle.

Proof. Each point x ∈ B has an open trivializing neighborhood Ux. By Urysohn’s Lemma
there is a map ϕx : B → [0, 1] with ϕ(x) = 1 and suppϕx ⊂ Ux. The sets Vx = ϕ−1

x (0, 1],
x ∈ B, form an open cover of B. By compactness this cover has a finite subcover. Let the
corresponding Vx ’s and ϕx ’s be relabeled Vi and ϕi, i = 1, . . .m. In particular, Vi ⊂ Ux(i) for
some x(i). Define gi : E → Kn by gi(v) = ϕi(p(v))(πihi(v)), where hi is the restriction of a
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local trivialization over Ux(i), hi : p−1(Vi)→ Vi×Kn, and πi is the projection πi : Vi×Kn →
Kn. Since gi is a linear injection of each fiber over Vi, then

f : E → B ×KN , N = mn, f(e) = (p(e), g1(e), . . . , gm(e)),

is an injective morphism of vector bundles. By Proposition 16.3 there is a complementary
subbundle E ′ such that E ⊕ E ′ is isomorphic to B ×KN .

Definition 16.5. Denote the set of isomorphism classes of n-dimensional K-vector bundles
over B by VectnK(B).

Problem 16.6. HomeLet f : X → Y be a continuous map. Prove that the pull-back E 7→ f ∗E
gives a map f ∗ : VectnK(Y )→ VectnK(X), i.e. isomorphic bundles have isomorphic pull-backs.

Problem 16.7. HomeVerify that the operation ⊕ of Whitney’s sum gives an abelian semi-group
structure on VectnK(B). (Semi-group is a set with operation satisfying all axioms of group
except of the existence of inverse) So, you need to verify that

1) if E ∼= G and E ′ ∼= G′ then E ⊕ E ′ ∼= G⊕G′ (operation is well-defined);

2) E ⊕ E ′ ∼= E ′ ⊕ E (operation is abelian);

3) 0B ⊕ E ∼= E, where 0B = B × {0} is 0-dimensional trivial bundle (existence of unity);

4) (E ⊕ E ′)⊕ E ′′ ∼= E ⊕ (E ′ ⊕ E ′′) (associativity).

Problem 16.8. HomeProve that f ∗ : VectnK(Y )→ VectnK(X) is a homomorphism of semi-groups,
i.e. f ∗(E ⊕ E ′) ∼= f ∗E ⊕ f ∗E ′.

Theorem 16.9. Given a vector bundle p : E → B and homotopic maps f0, f1 : A → B,
then the induced bundles f ∗0 (E) and f ∗1 (E) are isomorphic if A is compact Hausdorff or more
generally paracompact.

Immediately we obtain:

Corollary 16.10. For homotopic maps f0, f1 : A → B of paracompact spaces f ∗0 = f ∗1 :
VectnK(B)→ VectnK(A).

Corollary 16.11. For a homotopy equivalence f : A → B of paracompact spaces f ∗ :
VectnK(B)→ VectnK(A) is an isomorphism of semigroups.

We obtain Theorem 16.9 immediately from the following statement.

Proposition 16.12. The restrictions of a vector bundle E → X × I over X × {0} and
X × {1} are isomorphic if X is paracompact.

We need two preliminary facts.

Lemma 16.13. A vector bundle p : E → X× [a, b] is trivial if its restrictions over X× [a, c]
and X × [c, b] are both trivial for some c ∈ (a, b).
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Proof. Denote these restrictions by E1 = p−1(X × [a, c]) and E2 = p−1(X × [c, b]) and by
h1 : E1 → X×[a, c]×Kn and h2 : E2 → X×[c, b]×Kn the corresponding isomorphisms. These
isomorphisms may not agree on p−1(X × {c}), but they can be made to agree by replacing
h2 by its composition with the “cylindrical” isomorphism X × [c, b]×Kn → X × [c, b]×Kn

which on each slice X × {t} ×Kn is given by

h1h
−1
2 |X×{c}×KnX × {c} ×Kn → X × {c} ×Kn.

Since h1 and h2 agree on E1 ∩ E2, they define a trivialization of E (see Problem 1.27).

Lemma 16.14. For a vector bundle p : E → X × I, there exists an open cover {Uα} of X
so that each restriction p−1(Uα × I)→ Uα × I is trivial.

Proof. For each x ∈ X and t ∈ I, we can find open neighborhoods Ut of x and εt > 0 such
that the bundle is trivial over Vt = Ut× (t− εt, t+ εt). This is an open cover of the compact
set {x} × I homeomorphic to I. Hence we can find a finite subcover Vi = Vti (i = 1, . . . , s).
Then for an appropriate partition 0 = t0 < t1 < · · · < tk = 1 and Ux := ∩iUti , the bundle is
trivial over each Ux× [tj, tj+1]. Thus by Lemma 16.13, it is trivial over Ux× I and Ux is the
desired cover.

Proof of Proposition 16.12. Suppose that X is compact Hausdorff and choose its compact
subcover {Ui}, i = 1, . . . ,m, of the cover constructed in Lemma 16.14. So E is trivial
over each Ui × I. Choose a partition of unity {ϕi} subordinated to {Ui}. For i ≥ 0, let
ψi := ϕ1 + · · ·+ ϕi. So, ψ0 = 0 and ψm = 1. Let Xi be the graph of ψi:

Xi = {(x, t) ∈ X × I : t = ψi(x)}

and let pi : Ei → Xi be the restriction of E over Xi. Since E is trivial over Ui × I, the
natural projection homeomorphism Xi → Xi−1 lifts to a homeomorphism ωi : Ei → Ei−1

which is the identity outside p−1(Ui×I) and which takes each fiber of Ei isomorphically onto
the corresponding fiber of Ei−1. Namely, on points in p−1(Ui × I) ∼= Ui × I ×Kn we define
ωi(x, ψi(x), v) = (x, ψi−1x, v). The composition ω = ω1ω2 · · ·ωm is then an isomorphism
from the restriction of E over X × {1} to the restriction over X × {0}.

The paracompact case we leave as a problem.

Problem 16.15.Home Similarly to the compact case, prove the paracompact one.
It is convenient to use a slightly broader definition of vector bundle which allows the

fibers of a vector bundle p : E → X to have different dimensions. The existence of local
trivializations implies that the dimensions of fibers are locally constant over X, but if X is
not connected the dimensions of fibers may be distinct over distinct components.

Denote the trivial n-dimensional bundle by εn → X.
In the remaining part of the lecture we deal only with compact Hausdorff base spaces.

Definition 16.16. Two vector bundles E1 and E2 over X are stably isomorphic (E1 ≈s E2)
if E1 ⊕ εn ∼= E2 ⊕ εn for some n.

We write E1 ∼ E2 if E1 ⊕ εm ∼= E2 ⊕ εn for some m and n.
Evidently, ≈s and ∼ are equivalence relations on VectK(X) (isomorphism classes without

restrictions on dimensions).

Problem 16.17.Home Verify that VectK(X)/ ≈s and VectK(X)/ ∼ are abelian semigroups.
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Theorem 16.18. If X is compact Hausdorff, then the set VectK(X)/ ∼ of ∼-equivalence
classes of vector bundles over X forms an abelian group with respect to ⊕.

Proof. We need to prove only the existence of inverses, i.e. that for each vector bundle
π : E → X there is a bundle E ′ → X such that E ⊕ E ′ ≡ εm for some m. If all the fibers
of E have the same dimension, this is Proposition 16.4. In the general case let Xi = {x ∈
X : dim(π1(x)) = i} (disjoint open sets in X). Their number is finite by compactness. So
first we add to E a bundle E ′ over each Xi as above to obtain εmi , and then a bundle E ′′

which is trivial of suitable dimension over each Xi to obtain εm over entire X.

Definition 16.19. This group is called the reduced K-group and is denoted K̃K(X).

Theorem 16.20. Let (S,+) be an (abelian) semigroup with the unit element 0S. Consider
the set S2 of formal differences s1 − s2 (or equivalently, couples (s1, s2)), s1, s2 ∈ S with the
equivalence relation s1 − s′1 = s2 − s′2 iff s1 + s′2 = s2 + s′1 and the addition

(s1 − s′1) + (s2 − s′2) = (s1 + s2)− (s′1 + s′2).

The quotient set with this addition is then an abelian group called the Grothendieck group of
S and denoted G(S). If S has the cancellation property (s1 + s2 = s1 + s3 implies s2 = s3),
the map s 7→ s− 0S is an injective homomorphism of semigroups.

Proof. First, note that the addition is well defined on the quotient (i.e. respects the equiva-
lence relation). Indeed, if s1 − s′1 is equivalent to t1 − t′1 and s2 − s′2 is equivalent to t2 − t′2,
i.e. s1 + t′1 = t1 + s′1 and s2 + t′2 = t2 + s′2 then

(s1 − s′1) + (s2 − s′2) = (s1 + s2)− (s′1 + s′2), (t1 − t′1) + (t2 − t′2) = (t1 + t2)− (t′1 + t′2),

(s1 + s2) + (t′1 + t′2) = (s1 + t′1) + (s2 + t′2) = (t1 + s′1) + (t2 + s′2) = (t1 + t2) + (s′1 + s′2),

(s1 + s2)− (s′1 + s′2) = (t1 + t2)− (t′1 + t′2).

Similarly one can prove that the class of 0S − 0S is the unity, the inverse to s1− s′1 is s′1− s1

and other axioms.
Since (s − 0S) + (t − 0S) = (s + t) − (0S + 0S) = (s + t) − 0S, the map s 7→ s − 0S is a

homomorphism (this doe not require the cancellation property). Now suppose that we have
this property and s− 0S = t− 0S, i.e. s+ 0S = t+ 0S, s = t. So the map is injective.

Problem 16.21. HomeComplete the proof.
Problem 16.22. HomeFind G(N), N = {0, 1, 2, . . . }.

Lemma 16.23. We have the cancellation property for VectK(X)/ ≈s.

Proof. If E1⊕E2 ≈s E1⊕E3 (i.e. E1⊕E2⊕εm ∼= E1⊕E3⊕εm for some m), choose a bundle
E ′1 such that E1⊕E ′1 ∼= εn for some n (Proposition 16.4). Then εn+m⊕E2

∼= εn+m⊕E3 and
E2 ≈s E3.

Problem 16.24. HomeProve that generally VectK(X) has no cancellation property. Hint: con-
sider a hypersurface with non-trivial tangent bundle and its sum with the normal bundle.

(Roughly speaking the cancellation property is fulfilled for bundles of large rank w.r.t.
dimension of base.)
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Definition 16.25. The K-group of X is defined as K(X) = G(VectK(X)/ ≈s).

Problem 16.26.Home Prove that G(VectK(X)) ∼= G(VectK(X)/ ≈s). So one can define KK(X)
without using of ≈s.

Theorem 16.27. If X and Y are homotopy equivalent then KK(X) ∼= KK(Y )

Proof. Quite similarly to Corollary 16.11 one obtains in this case that VectK(X) ∼= VectK(Y )
as semigroups. Then G(VectK(X)) ∼= G(VectK(Y )), hence KK(X) ∼= KK(Y ) by Problem
16.26.

There is a natural homomorphism KK(X) → K̃K(X) sending E − εn to the class of
E. This is well-defined since if E − εn = E ′ − εm in KK(X), then E ⊕ εm ∼= E ′ ⊕ εn i.e.

E ∼ E ′. This map KK(X) → K̃K(X) is obviously surjective, and its kernel consists of
elements E − εn with E ∼ ε0, hence E ⊕ εm ∼= en, E ≈s εn−m. So the kernel in KK(X)
consists of the elements of the form εn−εm and is isomorphic to Z. The restriction of vector
bundles to a basepoint x0 ∈ X defines a homomorphism γ : KK(X) → KK(x0) ∼= Z (cf.
Problem 16.22) which restricts to an isomorphism on the subgroup {εn−εm}. Thus we have

a splitting KK(X) ∼= Ker γ ⊕ Z ∼= K̃K(X)⊕ Z, depending on the choice of x0.
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