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1 Some concepts from topology

We start from metric spaces.

Definition 1.1. A metric p on a set X is a mapping p : X x X — [0, 00), restricted to
satisfy:

L. p(x,y) =0 & z=y Var,y€ X (identity axiom);
2. p(z,y) = ply,z) Vr,y € X (symmetry axiom);
-

3

plx,z) < p(z,y) + ply,z) Vzx,y,z € X (triangle axiom).

A pair (X, p), where X is a set and p is a metric on X, is called a metric space. Sometimes
we write simply X.

A subset Y C X is automatically a metric space itself.
Definition 1.2. Diameter of Y is diamY := sup p(z,y). If diamY < oo, then Y is
z,yeY
bounded. A ball (ball neighborhood) is

B.(z) :={y € X | p(y,r) < e}.

The distance between Y C X and Z C X is

Y,Z):= inf )

pY,2) = Inf ply,2)

Definition 1.3. If p(y,Y) = 0, then y is an adherent point of Y. The closure of a subset
Y is Y :={the set of all adherent points of Y'}. Evidently, Y C Y. A subset Y is closed, if
Y =Y.

Definition 1.4. A point x is an interior point of a subset Y, if there exists € > 0 such that
B.(z) CY (in particular, z € Y). The interior of Y is the set IntY C Y of all its interior
points. A subset Y is open, if Y = IntY.
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Problem 1.5. Suppose, X is a metric space. Then Y C X is open iff (if and only if) Class

X\ Y isclosed. In fact, IntY = X \ X\ Y.
Theorem 1.6. Suppose, X is a metric space. Then
1 O X is open;

2 O 9 is open;
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3 O the union |J U, of any collection of open subsets U, C X is open;
acA

k
4 O the intersection (| U; of a finite collection of open subsets U; C X is open;
i=1

1 C o is closed;
2 C X 1is closed;

3 C the intersection (| F, of any collection of closed subsets F, C X is closed;
a€A

k
4 C the union |J F; of a finite collection of closed subsets F; C X is closed.
i=1
Proof. Properties 1 O and 2 O are evident. Let us prove 3 O. Suppose, U := |J U, and

a€A
x € U. Then. for some «, we have v € U, and B, € U,. Then B,y € U, C U.

k
Let us prove 4 O. Suppose, U := (| U;, x € U. Then there are ¢; (1 = 1,...,k) such

i=1

that x € B.,(x) C U;. Take € := min{ey,...,ex}. Take B.(z) C B, (z) C U; Vi. Hence,
B.(x) CU.

Finally, by Problem 1.5, k O & k C V k. m

Problem 1.7. Show that the finiteness condition is essential.
Problem 1.8. Prove that B.(x) is open.
Problem 1.9. Prove that IntY is open, i.e., Int(IntY) = Int Y.

Problem 1.10. Prove that Y is closed, i.e., Y =Y.

Definition 1.11. A topology on a set X is a system 7 of its subsets (these subsets are called
open), restricted to satisfy the following axioms:

1) X er;
2) ger,

3) if U, € 7 forall & € A, then |J U, € ;

aEA

k
4) if Uy,..., Uy € 7, then N U; € 7.

=1

Then (X, 1) is called a topological space. Any set of the form F' = X \ U, where U € 7, is
called closed.

Problem 1.12. Verify 1 C — 4 C for closed sets in a topological space.
Example 1.13. Any metric space is a topological space.

Problem 1.14. Find an example of a topological space (X, 7), which is not related to any
metric (this is called: topology is not metrizable).
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Definition 1.15. An (open) neighborhood of a point x € X (respectively, of a subset Y C X)
in a topological space is any open set, where x (respectively, Y) is contained.

An adherent point of Y C X is a point x € X such that any its neighborhood has a
non-empty intersection with Y. The closure of Y is the set Y of all adherent points of Y (in
particular, Y C Y).

A point x € Y is called an interior point of Y, if there exists a neighborhood U of x such
that x € U C Y. The set Int Y of all interior points of Y is called the interior of Y.

Problem 1.16. Y C X is closed iff Y =Y.
Problem 1.17. Y is closed.

Problem 1.18. Y C X isopen iff Y = IntY.
Problem 1.19. IntY is open.

Definition 1.20. Suppose Y C X, where (X, 7) is a topological space. The system of sets
7 :={UNY |U € 7} is called the induced topology (by 7 on Y).

Problem 1.21. Verify the axioms for 7.
Problem 1.22. Suppose that (X, px) is a metric space. Then one can introduce a topology
on Y C X in two ways:

1) px generates Tx, which then induces 7y,

2) px after the restriction on Y gives py, which generates 7,, .

Prove that 7 = 7,,.

Definition 1.23. A subset Y C X is called (everywhere) dense, if Y = X.

Problem 1.24. Let Y7 C X and Y5 C X be dense open sets. Then Y =Y; NY5 is a dense
open set.

Definition 1.25. A map f : X — Y of topological spaces is called continuous at a point
xo € X, if, for any neighborhood of its image V' (f(x¢)), there exists a neighborhood U(zy)
such that f(U(xg)) C V(f(zo)). A map is called continuous, if it is continuous at each point.

Theorem 1.26. The next properties are equivalent:

1) amap f: X =Y is continuous;

2) for any open set V- CY, its full pre-image f~1(V) is open in X;

3) for any closed set F C 'Y its full pre-image f~(F) is closed in X.

Proof. Since f~YY\V) = 1Y)\ f~1(V) = X\ f~}(V), properties 2) and 3) are equivalent.
Suppose, 1) is fulfilled, i.e., f is continuous, and V' C Y is an open set. Then either the

pre-image of V' is empty, hence open, or there is some point x, i.e., f(z) € V. Then, by

definition, for any such z, there exists a neighborhood U(x) such that f(U(z)) C V| i.e.,

U(x) C f~(V). Thus, any point of f~!(V) is interior.

Conversely, suppose 2) is fulfilled. Then, for V' = V(f(z)), one can take U(xq) = f~1(V)
as the desired open neighborhood (see Def. 1.25). [
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Problem 1.27. Suppose, X = F1UF5,, where I} and F; are closed subsets, and f : X — Y
is a map. Then f is continuous iff f|p, : F; — Y and f|g, : F5, — Y are continuous.
Problem 1.28. Let f, : X — R be a sequence of continuous functions, which is uniformly
convergent on X to some function f. Then f is continuous.

Problem 1.29. Let X and Y be metric spaces. Prove that f : X — Y is continuous
at zo as a map of topological spaces iff, for any sequence {z,} with nh_)rglo T, = xo we have

Tim f(e) = f()
Definition 1.30. A map f: X — Y is called a homeomorphism, if

1) f is a bijection;

2) fand f~! (inverse mapping) are continuous.

Problem 1.31. Give an example of a continuous bijection, which is not a homeomorphism.

Definition 1.32. A base of a topology T is a system of open sets B such that any 7—open
set is as a union of some of them.

Problem 1.33. What conditions need to be imposed on an arbitrary system of subsets
B, to obtain some topology by taking their arbitrary unions?

Definition 1.34. Suppose that (X,7x) and (Y, 7y) are topological spaces. Consider in
X x Y the following base of topology:

B:={VxW|Verx, Wermn}
The resulting topological space is called the cartesian product of X and Y.

Problem 1.35. Verify (with the help of the previous problem) that X x Y is really a
topological space.

Problem 1.36. Prove that X xY and Y x X are homeomorphic.

Problem 1.37. Prove that (X xY) x Z and X x (Y x Z) are homeomorphic.
Problem 1.38. Let (X, px) and (Y, py) be metric spaces. Define on X x Y the following
distances:

pmaX((mla yl)? (:)32, yQ)) = maX{pX(xla x2)7 pY(yla y?)}v

pa((,10), (02, 12)) 2= 7/ P, 02) + 33,92,

p+((z1,91), (w2, 92)) = px(x1,22) + py (Y1,Y2).

Prove:

1) That these are metrics.

2) That the corresponding topologies on X X Y coincide.
Problem 1.39. Prove that (a,b), [a,b) and [a, b] (subsets of real line) are pair-wise non-
homeomorphic.



1.1 Connectedness and arc connectedness

Definition 1.40. A topological space X is called disconnected, if one of the following (evi-
dently equivalent to each other) conditions is fulfilled:

e X is equal to a union of its two non-intersecting non-empty open subsets.
e X has a non-empty subset A # X, which is open and closed simultaneously.

e X is equal to a union of its two non-intersecting non-empty open and closed simulta-
neously subsets.

Otherwise X is connected.

Definition 1.41. A topological space X is called arc connected, if, for any two points
xo,x1 € X, there exists a continuous map (path) f:[0,1] — X, f(0) = o, f(1) = z1.

Problem 1.42. Any interval [a,b] C R is connected and arc connected.

Theorem 1.43. Suppose, X = |JX,, each X, is connected, and (1 Xo # &. Then X is

connected.

Proof. Suppose that X is disconnected, X = AU B, AN B = &, A and B are non-empty
closed-open sets. Then, for each a, we have X, = (X, N A) U (X, N B). By the definition
of the induced topology, these sets are closed-open in X,. Since X, is connected, one of
them should be empty. Hence, each X, belongs entirely either to A, or to B, which do not
intersect. Since A and B are non-empty and X is the union of X, then at least one of X,,
say X, is contained in A and some other, X,, € B. Then X, C X,, N X,, = 9. A

contradiction. ]

Theorem 1.44. Suppose that, for any two points x and y of a topological space X, there
exists a connected subset Py, such that x € Py, and y € P,y. Then X is connected.

Proof. Suppose that X is disconnected: X = AU B, AN B =0, A and B are non-empty
closed-open subsets. Then there exist some a € A, b € B and a corresponding P,,. Then
Py = (PpyNA)U(PyNB). The subsets P,y N A and Py, N B are closed-open in P,;, and non-

empty (the first one contains a, the second one — b). A contradiction with connectedness
of Pab- ]

Problem 1.45. The image of a connected space under a continuous mapping is connected.
Theorem 1.46. An arc connected space is connected.

Proof. By the previous problem, the set f(]0, 1]) is connected, where f = f, ., is the function
from Def. 1.41. Taking Py, ., := f([0,1]), apply Theorem 1.44. O

Problem 1.47. Find an example of connected space, which is not arc-connected.
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1.2 Compact, Hausdorff and normal spaces

Definition 1.48. A topological space X is called Hausdorff, if, for any z,y € X, = # y,
there exist their neighborhoods U(x) and U(y) such that U(z) NU(y) = @.

Problem 1.49. Give an example of non-Hausdorff topological space.
Problem 1.50. Prove that the Cartesian product of Hausdorff spaces is a Hausdorff space.
Problem 1.51. Prove that in any Hausdorft space each point is a closed set.

Definition 1.52. A topological space X is called normal, if it is Hausdorff and, for any
two non-intersecting closed sets F; and F3, there exist their non-intersecting neighborhoods
U12F1 andUQQF2, UlmUQIQ.

Problem 1.53. Verify that any metric space is normal.

Definition 1.54. A cover {Vz}sep is a refinement of a cover {U, }aea, if, for any f, there
exists o = a(f) such that V3 C U,.

Theorem 1.55. Suppose that X is a normal topological space and {gl}fil is a finite open
cover. Then there exists its refinement of the form {V;}X., such that V; C U;.

Proof. Consider the following closed sets

N
Fy = (X\UUZ) C Uy, FR=X\U,
=2

and, by normality, neighborhoods
Vio2kR, W2F, Vinhi=g.

Each point of fl has an open neighborhood \71, which does not intersect V;. Hence this
point can not be an adherent point of V; and

V1Qﬁ1:®, WCV1C(X\ﬁ1):U1.

Also, (V1,Us, ..., Uy) is a cover of X by the construction of F;. At next steps we replace Us
by V5 and so on. O

Problem 1.56. Let f : X — X be a continuous self-map of a Hausdorff space. Prove
that the set of fixed points Fy := {z € X | f(z) = z} is closed.

Problem 1.57. Prove that X is Hausdorff iff the diagonal A := {(z,y) |z =y} C X x X
is closed in X x X.

Problem 1.58. Prove that if amap f: X — Y, where Y is Hausdorff, is continuous, then
its graph I'y := {(z, f(z)) |r € X} C X x Y is closed in X x Y.

Lemma 1.59. (Uryson’s lemma) Suppose that X is a normal topological space, Fy and Fy
are some closed non-intersecting sets. Then there ezists a continuous function f: X — [0, 1]
such that f|g, =0 and f|g, = 1.



Proof. The normality of X implies that, for any closed F' and its open neighborhood U,
F' C U, there exists another neighborhood V' such that FF C V C VCcu (see the above
proof of Theorem 1.55). We will denote this by V € U.

Define V,, for rational ¢ of the form ¢ = m/2*, m odd, by induction over k (i.e., first for
0 and 1, then for 1/2, then for 1/4 and 3/4, then for 1/8, 3/8, 5/8, 7/8 and so on) in such
a way that V,, ©V,, if ¢ < g». For this purpose define V, and V; to be open sets U and
V' from the beginning of the proof, i.e., Fy C Vg, F} € X \ Vi, Vo © V. Suppose that, by
the induction supposition, the sets V, are defined for ¢ up to 2* as the denominator of g.
Consider

F = E, U .= Vﬂ,
ok ok

and define V% :=V (as in the beginning of the proof, for these F' and U). And so on.
2
The constructed V, are open and have the following properties:
1) FO C %7
2) V1 =X\ £,
3) if 1 < qo, then V,, € V,,.
Define, for any s € [0, 1], the set V; as Vs := |J V,. Then V; is open for any s (as a union of
q<s
open sets) and satisfies 1) — 3). Indeed, 1) and 2) are evident, and to prove 3), for s; < so,we
find ¢, = ml/QlC and g = m2/2k such that s; < ¢1 < ¢2 < s9, where k is sufficiently large.
Then V;, CV,, €V, CV,, and V;, CV,,.

Now define f: X — [0,1] by f|r, =0 and f(z) := sup{s |z & V;}. Let us prove that f
is continuous. Let xy and € > 0 be arbitrary. Let so = f(z¢). Consider

U(wo) = Vigrs \ Voo .

This is an open neighborhood of xy and, for any « € U(zy), one has

r € Viore, T & W_%
Thus,
o= S <f@<so+ g Ifl@) - fo)l <5 <e
[
Problem 1.60. A closed subset of a closed set is closed in the entire space. Home

Problem 1.61. (Tietze’s theorem about extension) [Mishchenko, Fomenko, pp. 78-79]
Suppose that X is a normal topological space, F' C X is a closed subset and f : FF — R is Home
a continuous function. Then f can be extended to a continuous function g : X — R. If f is
bounded, then g can be chosen to be bounded by the same constant.

Definition 1.62. The support of a function f: X — R is
supp f = {z € X | f(z) # 0}.

Theorem 1.63. Suppose that X is a normal topological space and {U,} its finite open cover.
Then there exist continuous functions v, : X — [0,1] C R such that
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1) supp o C Uy,
2) >4 Yalr) =1

This system (not uniquely determined) of functions {1} is called a partition of unity subor-
dinated to {U,}.

Remark 1.64. It is sufficient to ask local finiteness of {U,}: every point has a neighborhood
such that it intersects only finitely many sets from {U,}.

Proof of theorem. Using Theorem 1.55 let us find new covers W, €V, €U,. By the Uryson
lemma we can find continuous functions

Qa X = [0, 1], 90|WQ = 1, 9a|(X\Va) = 0.

Thus, supp b, C V., C U, and Oolw, > 0. Define 6 := " _ 6,. It is a finite sum of continuous
functions, hence, itself a continuous function. Since {W,} is a cover and 0 > 6, > 0 on W,

then 6 > 0 everywhere. Hence we can define 1, := %‘*. Evidently, 1) and 2) are satisfied. [

Definition 1.65. A topological space X is compact, if each its open cover has a finite
sub-cover (i.e. there is a finite number of elements, which still cover X).

Problem 1.66. Prove that any closed interval [a, b] is compact.
Problem 1.67. Prove that a closed subset of a compact space is compact itself.
Problem 1.68. Prove that a compact subset of a Hausdorff space is closed.

Theorem 1.69. Any compact Hausdorff space is normal.

Proof. Let FF C X be closed and x ¢ F'. Let us prove that there exist non-intersecting open
neighborhoods U(x) and V' (F'). Since X is Hausdorff, for any y € F', there exist V, 3 y and
U, > x such that V,, N U, = 0. The neighborhoods V}, form a cover of F' and we can find its
finite sub-cover V,,,...,V,,, since F' is compact (see Problem 1.67). Define:

s Vyn o

N
V(F):=V, U---UV,,,  Ux):=(U,.
j=1

They are as desired.

Let now F; C X and F» C X be closed. According to the first part of the proof, we can
find for each z € F; open non-intersecting sets U(z) > x and V(x) D Fy. Then {U(x)} is
an open cover of F; and we can find its finite sub-cover U(xy),...,U(z,). The sets |J U(x;)

i=1
and () V(x;) are demanded non-intersecting neighborhoods of F; and F5. O
i=1
Problem 1.70. Prove that a continuous image of a compact is compact.
Problem 1.71. Let f: X — R! be a continuous function on a compact space X. Then f
is bounded and reaches its maximal and minimal value.

Theorem 1.72. A continuous bijective mapping of a compact space onto a Hausdorff space
18 a homeomorphism.

Proof. Let f: X — Y be a continuous bijection, where X is a compact and Y is Hausdorff.
To prove the statement, it is sufficient to prove that the image of any closed subset F' C X
is a closed subset in Y. Since X is compact, then F' is compact as well (see Problem 1.67).
Thus, f(F) is also compact. But Y is Hausdorf. Thus, f(F’) is closed (see Problem 1.68). [

Problem 1.73. A cartesian product of compact spaces is compact.
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Figure 1: Transition function.

2 Manifolds and tangent vectors

Definition 2.1. A smooth manifold of dimension m is a second countable (has a countable
base) Hausdorff topological space M, equipped with a smooth atlas, i.e., its open cover {U,}
and a collection of homeomorphisms ¢,, which map U, onto open subsets V, C R™ (the
dimension m of M is denoted by dim M). They introduce on each U, local coordinates.
They are restricted to satisfy the following compatibility property: the change of coordinate
maps (or overlap maps, or transition functions) goagpgl c08(UaNUz) = ¢a(UyNUp) should
be smooth as vector-valued functions, defined on an open subset in R™ (see Fig. 1). A pair
(Ua, pa) is called a chart.

A smooth structure is a maximal smooth atlas (not absolutely rigorous definition). These
are all charts, that are compatible with all charts of some smooth atlas.

Reminder: a map f : U — R", where U is an open subset of R™, is called differentiable
at u € U iff there is a linear map D f(u) : R™ — R" such that

Gt ) Fw) = DI B

= 0.
IR —0 7]

Existence of partial derivatives of coordinate functions at u is not sufficient and existence of
continuous partial derivatives is not necessary!!!
Smooth = sufficiently many times (typically infinitely many) differentiable.

9
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Remark 2.2. We have inserted the restriction of the same m for all charts into the definition,
but in fact there is a theorem which shows that if we have a homeomorphism ¢ : U ~ V/,
where U C R™ and V' C R™ are some open sets, then m = n.

Remark 2.3. If we do not demand compatibility, a manifold is called topological.

Problem 2.4. Find an example of a manifold and two non-compatible smooth structures
on it, i.e., two smooth atlases (U;, ;) and (Vj, ;) such that {(U;, i), (V;,4;)} is not a
smooth atlas.

Problem 2.5. Prove that the sphere S™ and the projective space RP"™ are smooth mani-
folds.

Problem 2.6. Are the boundary of a square and 8 smooth manifolds (subspaces of R?) ?

Definition 2.7. A 2n-dimensional manifold is called complex analytical, if all transition
functions are complex analytical.

Problem 2.8. Prove that S? is a complex analytical manifold.

Definition 2.9. A function f : M — R is called smooth, if, for any point P € M and some
chart (Uy, p,) with P € U,, the function f o p,!:V, — R, defined on an open set in R™,
is smooth.

Problem 2.10. Prove that this definition does not depend on the choice of a chart (from
the same maximal atlas).

Definition 2.11. A continuous mapping f : M — N of smooth manifolds is called smooth,
if for any point P € M and some charts (Ua, o), P € Us, and (Up, ¢), f(P) € Ug, f(Ua) C
Uj (these are charts on M and N, respectively) the mapping ¢} o f o otV — Vs CR?
defined on an open set in R™, is smooth, where dim M = m and dim N = n.

This mapping is called local or coordinate representative maps for f (see Fig. 2).

Problem 2.12. Verify that if a mapping is smooth w.r.t. some pair of charts, then it is
smooth w.r.t. any other (compatible) pair.

Definition 2.13. A bijective smooth mapping f : M — N of smooth manifolds is called a
diffeomorphism , if f~! is smooth.

Problem 2.14. Verify that the following formulas

k
k x

VI @R =@ @)

k
k= 2 , k=1,...
VI G2+ @22+ + (y)?
define a diffeomorphism B.(0) C R™ and R".
Problem 2.15. Find an example of smooth homeomorphism, which is not a diffeomor-
phism.

Lemma 2.16. For any smooth manifold M, there exists an atlas such that all V,, (images
of coordinate maps) are open balls (hence by Problem 2.14, to the entire space R™.)

10



Figure 2: Coordinate representative map.

Proof. Let (Uy, pq) be an atlas of M. For any x € M, we can choose a chart Uy 3 .
Choose a small e(x) such that B, (@a@) (%)) € Va) € R™. Then

Uz, @), x €M, Uy = @;(11)(B€(z)(90a(z)(x>)>v P = 90&(I)|I717
is the desired atlas. O

Definition 2.17. If a space has an atlas with images R" (without restrictions on its tran-
sition functions), it is called locally Euclidean.

Remark 2.18. For any finite atlas of a compact manifold, there exists a subordinated
partition of unity, because this manifold is normal as a topological space.

We will suppose all manifolds to be smooth and will call them simply “manifolds”.

Theorem 2.19. For any finite atlas of a compact manifold M, there exists a subordinated
smooth partition of unity.

Proof. Remark that it is sufficient to find a smooth partition of unity for a finite refinement
o the initial cover by charts (then we simply take some finite sums of functions as the desired
partition).

Second, observe that Lemma 2.16 gives rise to a refinement of the initial atlas (we leave
finitely many charts by compactness). Moreover, we can do this for some smaller atlas w.r.t
the initial one (as in Theorem 1.55).

11



Thus, we need to prove the statement for an atlas (Wjs, 73) such that
73(W3) = B1(0) C R™, Wg = 7'5_1(31—5(0)) is still a cover of M

(these ¢’s are distinct, but we can take the minimum over this finite set of charts).
Define the following smooth function on R™:

1
W) =de (1=e/22 =Nz for |2)2 < (1 —¢/2)2,
0, for ||z|* > (1 —¢/2)%
Then
supp h = Bi_/2(0), 0 <h(zx) <1, h(z) > 0 on B;_.(0).
Define

o h(tg(x)), for z € Wy,
Xo= 0, for o & Wp.

Then x5 € C*(M), 0 < x <1, suppxs C Ws and x5 > 0 on W5. Hence, ¢ :=3 ;x5 >0
and g := xp/v is a desired C*-partition of unity. O]

For compact manifolds the replacement of “second countable” by “separable” (has a
countable dense set) gives also a good result (in general, “second countable” is a stronger
condition). A more extended approach gives the following:

Recall that an open cover {Vj3} of a topological space X is called locally-finite, if for any
x € X there exists a neighborhood U > X such that V3N U # @ only for finitely many S.

Definition 2.20. A topological space X is called paracompact if any its open cover admits
a locally-finite refinement.

Definition 2.21. A compact exhaustion of a space X is a sequence of its compact subsets
K; (1=0,1,...) such that X = U, K; and

Ki C Int(KHl).
In particular, starting some step all K; contain an open set.

Theorem 2.22 (*). Suppose that X is a connected Hausdorff locally Fuclidean space. Then
the following properties are equivalent:

1. X is second countable;
2. X 18 paracompact;
3. X admits a compact exhaustion.

(A proof can be find e.g. in
https://www.hiroleetanaka.com/pdfs/2014-fall-230a-lecture-02-addendum. pdf)
Home Problem 2.23. Prove the existence of a subordinated smooth partition of unity for any
locally finite atlas of a (non-compact) manifold. [Lee, Thm. 1.72].
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Theorem 2.24. Let f : R™ — R be a smooth function such that grad f = (%, ceey ;Tfn) #+ 0
at any point of M = f~ (yo). Then M is a smooth manifold. Somen —1 of x',... x" can
be taken as local coordinates (i.e., the corresponding projection is a chart). (Which ones —

depends on point.) In particular, dim M =n — 1.
Proof. Apply the implicit mapping theorem. Namely, suppose that

of 8]‘)

o'’ D

£ 0.

Ty = (2g,...,70) € M, grad fz, = <

—

Zo

Without loss of generality one can assume that gg—ﬁ |fo = (0. By the implicit mapping theorem,
there is a neighborhood V' of (zf,..., 207 ") in R*™1 an interval (a7 — &, 2% +¢) € R! and
C°-function ¢ : V — R! such that

Lo f(a',. . 2™ gzt .., 2" ) =0on V,
2. g(xd, ... a0 = ap,

3. gz, .Y € (ap — e a2l +e) for (2F,... 2" eV,

4. any point (z!,...,2") € M N(V x (x5 — e, 2 +¢)) is defined by 2" = g(x!,... 2" ).
Define a chart:

U=Mn(Vx(zg—e,20+¢), ¢:U—=R" o' . .. 2" =" . .,a" eV

Then, by 1) and 4), the inverse mapping for ¢ is

Verify that the atlas is smooth. Without loss of generality, suppose that &y is contained in

(U, ¢) and also in (U, ), where @ : (z!,...,2") — (22,...,2"). Then, on p(UNU) we have

oot 2" ) =gt a2t

i.e., a smooth transition function. O

Definition 2.25. (Tensor definition of a tangent vector) A (tangent) vector £ at a
point P € M to a manifold M is a correspondence which, to each chart (U,, ¢,) (i.e., a local
coordinate system (z!,... 2™) containing P) puts in correspondence an n-tuple of numbers

ar

(€L)...,&m). This correspondence is restricted to satisfy the tensor transformation law: if
to another chart (Ug, ¢g) local coordinate system (z,...,x3)) £ put in correspondence an
n-tuple (£, ...,&7), then
. Ol
B
6=, 0
Y

where the summation over repeated up and down indexes j is supposed (the Einstein sum-
mation convention).
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Problem 2.26. (a justification of the definition) Suppose that v : (=1;1) — M is a
smooth mapping and v(0) = P. Then the correspondence

dx! dx™
1 n
at, . —_ ., —
g’Y ( )W ( dt dt ) o
is a vector at P, where, for a local coordinate system (z',... 2"), the mapping v is defined

as (z'(t),...,a"(t)).
Problem 2.27. Any tangent vector at P is uniquely defined by its components for any
coordinate system. Moreover, any such n-tuple defines a vector.

Hence, the set of tangent vectors at a point P (tangent space Tp(M)) is a finite dimen-
sional R-linear space of dimension dim M. The operations do not depend on the choice of
local coordinate system by (1).

Definition 2.28. (Definition of tangent vector via curves) Consider two smooth curves
7 :(=1,1) = M and v, : (—1,1) — M such that
e 7(0) =P
e for some (hence, any) coordinate system (z',...,2™) in a neighborhood of P the
following holds:

ST 0) = ()] = o?),  (t—0).

m
k=1

Such curves are called (tangentially) equivalent: v ~ vo.
All curves satisfying the first condition form non-intersecting equivalence classes called
tangent vectors to M at point P.

Problem 2.29. Verify that the above equivalence is really an equivalence relation.

Definition 2.30. (Definition of a tangent vector via differentiation operators) A
linear map D : C*°(M) — R, i.e., a linear functional on the space of smooth functions, is
called a differentiation operator at some point P € M, if

e its values are determined only by values of functions in an arbitrary small neighborhood
of P. More precisely, if f,g € C*(M) satisfy f = g over some neighborhood U of P,
then D(f) = D(g) (they say “operator is defined on germs of functions”);

e the Leibniz property
D(fg) = f(P)D(g) + g(P)D(f) is fulfilled for any f,g € C*(M).

Such operator is called a tangent vector to M at point P.
Evidently, they form a linear space.

Problem 2.31. Suppose that (z!,...,2") is a local coordinate system in a neighborhood
of Pe M, P=(x,...,2), and £ € TpM (in the tensor sense) has components £'. Then
the mapping

[ Za—i(xé,...,xg)ﬁz
i=1

(directional derivative w.r.t. £) does not depend on the choice of a local coordinate system
and defines a differentiation operator.

14



Theorem 2.32. These three definitions are equivalent in the sense that the following natural
correspondences

a curve — its velocity vector in a coordinate system —

— the directional derivative w.r.t. this vector

give rise to bijections of the tangent spaces in three senses (the second map is a linear
isomorphism of linear spaces).

Proof. Let us prove the first bijection. Keeping in mind Problem 2.26 we see that to prove
that I' (defined in the problem) is well defined on equivalence classes, it is sufficient to verify
in one coordinate system that v; ~ 7, imples §,, = &,,. Indeed,

S [xk(%(t)) — xk(%(t))r _

0 = lim
t—0

; =

t—0 t ’

_ Z {hm 1(1)) = 24(P)) = (2" (7a(t)) = xk(P))T

so &, = &,. The same calculation shows that two curves are equivalent iff they have the
same velocity vector in their intersection point P. Thus, I' is well defined and injective. Fix
a coordinate system z’ in a neighborhood of P. Define a map A (may be depending on the
choice of coordinates) in the inverse direction by sending a vector & with coordinates &' in
this system, to a “straight line”, i.e. to the following curve: z'(t) = z*(P) +t - &'. Then

ddxti = ¢ and I'o A = Id. Hence, I is a surjection. ]
Py

Problem 2.33. Prove the second equivalence in the above theorem ([Mishchenko,
Fomenko|, pp 125-127).

Definition 2.34. Suppose that f : M — N is a smooth map and P € M. The tangent map
of f at P is a map of tangent spaces dfp : TpM — Typ)N, defined in one of the following
equivalent ways (corresponding to three ways of defining of a tangent vector).

First way. Suppose that (UM o™ : UM — VM C R™) is a chart of M in a neighborhood
of P, (UN, N : UN — VNN C R") is a chart of N in a neighborhood of f(P), (z!,...,z™)
and (y',...,y") are the corresponding local coordinate systems. The local representative
map of f, namely a map ¢~ o f o (M)t : VM — V¥ can be described as a collection of
functions

yt = fat ™),y = (2™,
Suppose that & € TpM puts in correspondence an m-tuple (£',...,€™) to the system

(z!,...,2™) (or € has coordinates (£!,...,&™) w.r.t. this system). Then we define its image
n = (dfp)¢ to be a vector with coordinates

- 0f
j— 2 i
8$i€
(assuming the summation) w.r.t. the system (y',...,y").
Second way. Denote by [y] the equivalence class of a curve 7. Define:
(dfp)n] = [f o],

15
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Third way. Consider a differentiation operator & at P € M. Then the result of the
action of the differentiation operator (dfp)€ onto g € C*°(NN) is given by the following formula

((dfp)€)(g) :=&(g 0 f)-

Problem 2.35. Verify the equivalence of these three definitions.
Clearly the tangent map is linear.

Definition 2.36. Consider a smooth map f: M — N, f(P) = Qo. A point Py € M is
called a regular point of f if the tangent map

dfpo : TPOM — TQON

is an epimorphism (surjection). A point Qo € N is called a regular value of f if any
P € f71Qy is a regular point of f.

Theorem 2.37. (Sard’s Lemma) (has to be proved in Advanced Calculus course) Suppose
that f : M — N 1is a smooth map, M s a compact manifold. Then the set G C N of all
reqular values of f is an open dense set.

Remark 2.38. For non-compact: N \ G has zero measure.

Definition 2.39. A smooth map f : M — N is called an immersion, if, for each point
P € M, its tangent map dfp : TpM — TypyN is a monomorphism (injective linear map). If
moreover f : M < f(M) is a bijection and f(M) is closed in N, then f is called embedding.

Problem 2.40. Give an example of immersion, which is bijective on its image, but is not
an embedding.

Definition 2.41. An embedding, which is a homeomorphism on its image is called a strong
embedding.

Problem 2.42. For compact manifolds an embedding is always strong.

Definition 2.43. A subset L C M, dim M = m is called a smooth submanifold, if there
exists an atlas (Uy,, ¢q) of the manifold M such that {U, N L} is a smooth atlas of L, where
chart mappings are of the form (this is an additional condition for ¢, )

90a|UamL3UaﬂL—>VaﬂRl, R! ¢ R™, l<m

(see Fig. 3). Such an atlas (U,, ) is called normal. Thus, dim L = [, and (m — 1) is its
codimension.

Problem 2.44. Prove that L is closed under the conditions of this definition.

Problem 2.45. Suppose that f : M — N is smooth and Qg € N is a regular value of
f. Then Mg, := f~(Qo) is a smooth submanifold dim Mg, = dim M — dim N. As a local
coordinates in some neighborhood on Mg, one can take some (m — n) coordinates of M.
Hint: similarly to Theorem 2.24.

Problem 2.46. Find an example of embedding such that its image is not a submanifold
(and even a manifold).

Theorem 2.47. A subset A C N is a submanifold iff it is the image of some manifold M
under a strong embedding.

16
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Proof. If A C N is a submanifold, thrn the identical inclusion is a homeomorphism on its
image, and by the definition of a submanifold it is am immersion (to calculate its rank use
the local representative w.r.t. a normal atlas.)

Conversely, let f : M — N be a strong embedding. The property of A = f(M) to be
a submanifold is local: to observe this, consider an open cover {N;} of A in N and take
A; = AN N;. Consider a family of charts W = {¢; : N; — R"} of N, which cover A. Let
O = {p; : M; = R™}icp be an atlas of M such that f(M;) C N; (if necessary, pass to a
refinement). More precisely, we take a refinement of N; such that (conserving the notation)
each M; = f~'(AN N,) is covered by a chart of M.

The localization reduces the situation to the following one: U := {V;} = ¢;(M;) C R™,
f=fi=vifo;': U R"is a C*®-embedding. We need to find locally a diffeomorphism,
such that the image of new embedding is contained in R®™. By the inverse mapping
theorem there exist (in a sufficiently small neighborhood) some coordinates (z%, ..., z"),
1< <+ <4y <n, and a smooth map g : R”" — R}~ such that the image of f = f; is
the graph of g. Thus we can introduce in R™ new coordinates:

(x“, ot i — (g(:c“, . ,xim))jl, L pInem (g(:c“, . 7:zzim))j""”),

and obtain that f(U) is just some coordinate plane.

To obtain a normal atlas from these charts (passing from local to global) we need to
guarantee that (after a passage to smaller charts, if necessary) N; contains only f(M;) and
not f(M;) for j # i (we conserve the notation for smaller charts obtained by the inverse
mapping theorem). This can be done using the homeomorphism property. Indeed, if any
sub-neighborhood of Nj;, containing A N N; contains f(x), x & M;, this means that f(M;) is
not open in f(M). Hence, f~! is not continuous.

Also, to obtain a normal atlas, we need to add some charts of N which cover the open
set N\ f(M) (and hence do not intersect f(M)). Here we use the condition on f(M) to be
closed. O

Problem 2.48. Explain, why the above argument does not work for 8 C R? and (0,1) C Class
R! C R? (both are images of (0, 1)).

17



Remark 2.49. Generally, there are distinct opinions whether (0,1) x {0} C R? is a subman-
ifold or not. The better answer is “not”. Otherwise we need to consider a “normal collection
of charts” instead of “normal atlas”.

Theorem 2.50. (Very weak Whitney embedding theorem) Let M be a smooth com-
pact manifold. Then there exists a positive integer K and a strong embedding f : M — RX.

Proof. Suppose that {U,, p,}Z_, is a finite atlas of M, (zl,...,2™) is a local coordinate

ageY

system in U, such that ¢, : U, = B, = Bi(a,) C R™, where B,(b) is the ball of radius r
centered in b. Take a sufficiently small £ such that {US := ¢ *(BZ)} still cover M, where
B¢ := B;y_.(a,) (this is possible by normality). Now choose

fa € C*®R™),  foR™)=[0,1],  fu(P)=1% P€B;,  suppfaC Ba.

Define ¢* : M - R, for k=1,...,mand a =1,...,L, by

(P = {ga«oa(P))xiz(P), ior Pe Uy
; or P& U,.

Then ¢*(P) = 2% (P), when P € US. Thus, m - L functions g* define a C*°-map

g: M — R™E,
Define now:

p: M= RE=R™E o(P):=( g(P) ;falpa(P))).

m-L functions L functions

Then rkdy > rkdg. If P € U, then

k k
rk dg|p >tk (895—(].13)) > 1k (M) =m

), oxl,

Since evidently rk dp < m, we have rkdy = m. Thus, ¢ is an immersion.

Now prove that ¢ is injective, i.e. it is a bijection onto its image. Let P # (). Then one
can find « such that P € UZ. Hence, fo(¢o(P)) = 1. If in this situation f,(pa(Q)) < 1,
then we are done. If f,(¢.(Q)) = 1, then Q € US, and ¢~ (P) = z%(P), ¢%(Q) = 25(Q).
Since P # @, there exists some coordinate with x%(P) # z%(Q). Thus, g™ (P) # ¢ (Q)
and ¢(P) # ¢(Q).

Since M is compact and ¢(M) C RE is Hausdorff, by Theorem 1.72, ¢ is a homeomor-
phism onto its image. Also, the image is closed (as a compact set in a Hausdorff space). So,
@ is a strong embedding. O

We formulate without proofs:

Theorem 2.51. (Weak Whitney theorem) In the previous theorem one can take a not
necessary compact manifold and K = 2 -dim M + 1.

Theorem 2.52. (Strong Whitney theorem) In the previous theorem one can take K =
2-dim M.

18



3 Tangent bundle

Definition 3.1. Let dim M = m. Define the tangent bundle N = T M of M. As a set,
N is formed by all couples (P,€), where P € M and £ € TpM, i.e. £ is a tangent vector
at P. Topology and a structure of a smooth manifold are defined by some bijective maps
of some subsets of N onto some open subsets of R?™. These maps are declared to be
homeomorphisms and charts (hence, dim N = 2m). Namely, if (U, ¢) is some chart of M,
then the corresponding subset of N is the set of all couples (P,&) with P € U, and the
corresponding map ® to R?™ is defined as

O(P &) = (..., 2™ & &™),

where

o(P) = (2o, =6

Y ’ Ox! Oz’

i. e. £ as a tangent vector (the first definition) puts in correspondence the collection £ to the
coordinate system (x!,... ™) (or has coordinates £ w.r.t. it). Then the local coordinate
changes are the same as on M (for the first m coordinates) and with the help of the Jacobi
matrix of the appropriate change (for the last m coordinates). In particular, the transition
functions are smooth.

Problem 3.2. Check the details explicitly.
Problem 3.3. If M is a C*-manifold, then 7, M is a C*~'-manifold.

4 Manifolds with boundary

Introduce the following notation:
R? C R", R” = {(z',...,2") € R" | 2" > 0},
Ry~ = {(z',...,2") € R" | 2" = 0}.
We will say that a continuous function f : R% — R' is differentiable in the following

situation. For interior points (2™ > 0) we will conserve the usual notion. For boundary
points (Zy € Ry~ or 2™ = 0) we will demand the property:

PETEINS oY SETE FOTt R O
=1 21 >0 0

Then f; = 2L(), (i=1,2,...,n—1), and

ozt
flxd, ... ,ngl,xg +h)— f(xh,... ,ngl,xg)

h——+0 h

(2)
(one-side partial derivative).

Definition 4.1. A second countable Hausdorff topological space M is called a manifold with
boundary, if there exists its open cover {U,} and coordinate homeomorphisms ¢, : U, —
Vo C R%, where V, C R} are open subsets, such that the transition maps

08¢0 Vap = Pa(Ua NUs) = Via = p1(Ua N Up)

are smooth in the above sense.
We call a point P € M interior point, if x7(P) > 0 and boundary point, if 7 (P) = 0.
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Problem 4.2. Is the notion of an interior point of a manifold related to the notion of an
interior point from topology?

Lemma 4.3. The definitions of boundary and interior points do not depend on the choice
of (compatible) charts.

Proof. Suppose the opposite: in a neighborhood of P € M two charts induce local coor-
dinate systems (z',...,2") and (y',...,y") from R%} , and R"} , and we have 2"(P) > 0,
but y™"(P) = 0. For these charts we have the corresponding coordinate homeomorphisms
of a (maybe smaller) neighborhood U 3 P onto V C R? and V C R?% ,, respectively (tak-
ing the intersection we can suppose that both homeomorphisms are defined on the same
neighborhood). We have the corresponding transition map, i.e. a smooth homeomorphism
0V =V, yf =kt ... a7, satisfying

1Loy" = (zt,...,2") >0,
2. y"(P) = ¢"(x},...,xf) = 0.

Thus, y™ = ¢" has its minimum at (z{, ..., z3). Since V is open in R?, the point (z}, ..., z¥)
is interior and the necessary conditions of a local extreme:

o™
. =0, 1=1,...,n
xR ( )
(@dse-sxl)
But then det ‘gif o : = 0 and a smooth inverse does not exist, because for the above
TGyee ey Ty
definition of one-side partial derivative (2) the differentiation rule still works (multiplication
of Jacobi matrices). O

Definition 4.4. We call the boundary OM of a manifold with boundary M the set of all its
boundary points.

Theorem 4.5. The boundary of a manifold of dimension m s a manifold of dimension
m — 1.

Proof. Take restrictions of charts to the boundary. O

Problem 4.6. Check all axioms.

5 Orientation

Definition 5.1. A manifold is called oriented, if an atlas is chosen such that all transition
mappings have positive Jacobians. If it is possible to find such atlas on a manifold M, then
M is called orientable.

Problem 5.2. A path changing the orientation is a closed path (7(0) = (1)) such that
there exists a collection of charts Uy, ..., U, which cover this path, each chart intersects
only with its two neighboring charts, the intersections are connected, and all Jacobians of
transition maps are positive, except for one. Prove that a manifold is not orientable iff there
exists a changing the orientation path for it.
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Problem 5.3. A local orientation is a choice of orientation (i.e., a basis) in each tangent
space. A local orientation is locally constant, if, for each connected chart U the standard
basis 0; defines a local orientation (over this chart), which is either the same as the local
orientation in all points, or is the opposite to it in all points. Prove that a (connected)
manifold is orientable iff it has a locally constant local orientation.

Problem 5.4. A connected orientable manifold can be oriented exactly in two ways.
Problem 5.5. Prove that spheres S™, for any n , and the torus 7 are orientable.
Problem 5.6. Prove that any complex analytical manifold is orientable (as a real mani-
fold).

Problem 5.7. Prove that a Mobius strip and the projective plane RP? are non-orientable
manifolds.

Theorem 5.8. The boundary OM of an orientable manifold M is an orientable manifold.

Proof. Suppose that an atlas {U,, (z.,...,2")} (z > 0) defines an orientation of M, i.e.,

«
n

det g:”—;” > 0. On OM one can take an atlas of the form W, = U, N OM with local
78 1l 5=1
coordinates (zl,...,2"71). Let us prove that it gives an orientation on dM, i.e., for any
S n—1
P e W, N Ws, we have det am—i* > 0. Since on W, N Wp we have zj = zj3 = 0, then
8l 5=1
gzg =0,i=1,...,n—1. Thus, we have at P:
5
o, ||" oui || oan
0<det 2= —det| 2| . ZEe (3)
Oy i Oy el Zg
Also at P:
Oz 1o Zal@p(P), -, 25(P) + ) — ag(@p(P), ..., 23(P))
= 1m —_=
Ox} h—+0 h
(2L (P), ..., 2%(P)+ h
1 Y O (o R
h—+0 h

Since the expression under lim is positive, the limit is non-negative. Also, by (3), it is
n—1
oz,

o > 0. O

non-zero, hence it is positive: 22| > 0. Now (3) implies det
P

azg

4,j=1

Example 5.9. The inverse is false: the Mobius strip is not orientable, while its boundary
S1 is orientable.

Definition 5.10. If M is oriented, we will call canonical the orientation constructed in the
above proof.
6 Riemannian metric

Definition 6.1. A Riemannian metric on a manifold M is the correspondence g, which
associates with each local coordinate system (z.,...,2™) on U, a collection of m? smooth
functions g% : Uy — R restricted to satisty:
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1) at each point x € U the matrix | g;;|| is symmetric (non-degenerated) positively definite;

2) the tensor law is fulfilled: the functions g,fl, associated with a coordinate system
(:13%, ..., T}3'), satisfy at each point of the intersection of coordinate neighborhoods U, NUp
one has . :

. Ozt 0z,

ij k l

Oxj Oz

Gu=9
(with summation over the repeated indexes).

The couple (M, g) is called a Riemannian manifold.

Problem 6.2. It is sufficient to verify the first condition at each point P € M only for
one chart.

Definition 6.3. For our study of tensors it is convenient to introduce the following nota-
tion developing the Einstein one. We will denote the local coordinate systems by (U, ¢),
(U, "), (U",¢"), ete. and the corresponding coordinates by (z!,...,2™), (z',...,z™),
(¥, ..., 2™") ete. So, roughly speaking, 2% is in fact z’ v Also, as above, a summation over
repeated indexes is supposed. In this notation the tensor transform laws for a vector and

for a Riemannian metric will take the form:

7

¢ = g o’ 02" 0
- axl ) gl] - glj 81’1/ a];]/ .

Lemma 6.4. A Riemannian metric g induces an inner product of (tangent) vectors 5,77 €
TpM by the equality o
<€7 ﬁ> = g(ga ﬁ) = gijgzn]'

Proof. Everything is evident, except for independence on local coordinates (i.e., that the
product is well defined): g;;&' = gy &' n’. This can be done directly dy the definition of
a Riemannian metric and by the first definition of a tangent vector. m

Problem 6.5. Do this verification in full detail.
Definition 6.6. A bilinear form is a Riemannian metric without condition 1).

Problem 6.7. Prove the equivalence of definitions of a bilinear form at a point via the
tensor law and as a form on the tangent space (in the linear-algebraic sense).

Definition 6.8. Suppose that f : N — M is a smooth map and ¢ is a bilinear form (on
tangent vectors to) M. Define the value of its pull-back or inverse image f*g on vectors
¢,i€ TpN by ) )

(f*9)(& M) = g((dfp)S, (dfp)).

In coordinates one can define the pull-back as follows. Suppose that (z',...,z") are some
coordinates in a neighborhood of P, (y!,...,4y™) are some coordinates in a neighborhood of
f(P),and (fY(z!,...,2"),..., f™(z', ..., 2")) is the corresponding coordinate form (a local

representative map) of f. Then (in coordinates (z!,...,2"))

ey offoff
(f g)ij = gkl%@-
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Problem 6.9. Verify that these two definitions are equivalent.

Problem 6.10. Prove that if i : N — M is an immersion and ¢ is a Riemannian metric
on M, then *¢g is a Riemannian metric on N. Why this fails to be true for a general smooth
map?

Definition 6.11. Let ¢ : N — M be an inclusion of a submanifold /N into a Riemannian
manifold (M, g). Then i*g is called the induced Riemannian metric on the submanifold N.

Theorem 6.12. Fach compact manifold M can be equipped with a Riemannian metric.

Proof. Let F': M — RP be an embedding from Theorem 2.50. Then F*ggry is a Riemannian
metric on M. O

Problem 6.13. Prove this theorem directly with the help of a partition of unity (without
a usage of an embedding).

7 Lie groups, matrix groups

Definition 7.1. A smooth manifold G is called a Lie group if it is a group such that
the multiplication map p : G X G — G, (g,h) — gh, and the inverse map (inversion)
inv:G — G, inv(g) = g, are C™ maps.

Example 7.2. The group GL(n,R) of all invertible real n x n matrices is a Lie group
(general linear group). Indeed, a global chart on GL(n,R) is given by the n? functions a:é,
where 2%(A) is ij-th entry (or matrix element) of A. Multiplication is clearly smooth. For
the inversion map one has A™! = adj(A)/ det(A), where adj(A) is the adjoint matrix (whose
entries are the cofactors). Thus, A~' depends smoothly on the entries of A. Similarly, the
group GL(n,C) of all invertible complex n X n matrices is a Lie group.

Problem 7.3. Let H be an open subgroup of GG. Prove that H is closed. Hint: prove that
the cosets gH, g € G, are open. Deduce that the complement G\ H is also open and hence
H is closed.

Theorem 7.4. If G is a connected Lie group and U is a neighborhood of the identity element
e, then U generates the group (every element of G is a (finite) product of elements of U ).

Proof. We will prove that even the smaller neighborhood V := inv(U) N U generates G,
where V' is symmetric (inv(V) = V). For any open W and W5 in G, the set WiW, =
{wywy : wy € Wy and wy € Wh} is an open set being a union of the open sets Ugenw, gWs. In
particular, the inductively defined sets V" = VV" 1 n=1,2,..., are open. We have

eceVCV?C...CV"C---.

Evidently each V" is symmetric and so also is the union V> := U2, V™. Also, V* is closed

under multiplication. Thus V*° is an open subgroup. Hence, it is also closed (Problem 7.3).
Since G is connected, G = B*. n

We will need the following intuitively clear statement.

Lemma 7.5. Suppose that L is a submanifold of M, K is a submanifold of N, f: M — N
is a smooth map such that f(L) C K. Then f: L — K is smooth.
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Proof. This can be easily verified in normal atlases. O
Problem 7.6. Do this.

Lemma 7.7. If H is an abstract subgroup of a Lie group G that is also a manifold and has
a cover by normal charts, then H is a closed Lie subgroup.

Proof. The multiplication and the inversion on H are smooth by Lemma 7.5. It remains
to prove that H is closed. Let gy € H be arbitrary. Suppose that (U, ¢) is a normal chart
and e € U, where e is the unity element. Define § : G X G — G to be §(g1,92) = g1 ' go
and choose an open set V such that e € V C V C U. By continuity of the map ¢ we can
find an open neighborhood O of e such that O x O C 67*(V). Now if {h;} is a sequence in
H converging to go € H, then gy 'h; — e and gy 'h; € O for all sufficiently large i. Since
h;lhi = (g5 "hj) gy ' hi, we have h;lhi € V for sufficiently large i,j. For any sufficiently
large fixed j, we have
lim hi'hi =h;'go eV CU.

Since (U, ¢) is a normal chart, U N H is closed in U. Thus since each hj’lhi isin UNH , we
have hj_lgo € UN H C H for all sufficiently large j. Hence, go in H and we are done. O

Definition 7.8. Let O(n) C M(n,R) be the orthogonal (matriz) group:
O(n) ={Ae€ M(n,R): ATA =1},

where I = e is the unity matrix.
Let U(n) € M(n,C) be the unitary (matriz) group:

U(n) = {A€ M(n,C): A" A=1I}.
Let SL(n,K) C M(n,K) be the special linear group:
SL(n,K)={A € M(n,K): det(A) = 1}.
We define the special orthogonal and the special unitary (matrix) groups as
SO(n) = O(n) N SL(n,R), SU(n) =U(n) N SL(n,C).

Consider K?" and a non-degenerate skew-symmetric K-bilinear form, having the canonical
form in the standard base:

(’U, w)Sp _ Zvi nti Zvn—i—jwj.
i=1 Jj=1
Then the symplectic (matriz) groups are given by
Sp(2n,K) :={A € M(2n,K): (Av, Aw)s, = (v,w)sp}-

Remark 7.9. One can prove that Sp(2n,K) C SL(2n,K), but this is not so easy (see e.g.
https://homepages.wmich.edu/ "mackey/detsymp.pdf).
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Problem 7.10. Prove that A € Sp(2n,K) iff ATJA = J, where J = (_OI é)

Problem 7.11. Prove that the matrix groups from Definition 7.8 are Lie groups and closed
Lie subgroups of GL(n,K). Use Lemma 7.7 and Example 7.2.

Example 7.12. Another important example is abelian Lie groups. One can prove that any
connected compact abelian group is n-torus T". It also “comes from matrix groups” in the
sense that
T =S x ... x S, St~ U(1).

Problem 7.13. Prove that a direct product of Lie groups is a Lie group.

Since our matrix groups G are realized as submanifolds of the full matrix algebra ¢ :
G — M(n,K) 2 K" (ie., as surfaces), we have a natural inclusion of tangent space TpG C
TipyM(n,K) = K", In this sense one should understand the following problems.

Problem 7.14. Prove that the conditions in right column define 7,G for the corresponding
G in left column:

G Conditions

O(n) AT =—-A

SO(n) AT = —A

U(n) A =-A

Sp(2n,K) | JATJ = A

Remark 7.15. In fact a choice of a base gives rise to an isomorphism between the algebra
of linear mappings V' — V', where V is a K-vector space of dimension n, and the algebra
M (n,K). So the above Lie groups (and some other) can be considered in a more general
setting (see Ch. 5 of [Lee] ).

8 Tensors: first definitions and properties

Definition 8.1. A tensor field of type (p,q) on a manifold M of dimension n is a corre-
spondence, which to each coordinate system () = (z',...,2") on an open set U puts in
correspondence a system of n?*t? smooth functions T]?Z' on U, called components, such that

for any two coordinate systems (z) and (z’) the components on U NU’ satisfy the tensor law

Oxla

" Oxda

, , .
i _ vy ozt Ox'» Qx)t

7104

Definition 8.2. Consider two tensor fields 7" and S of type (p,q). Their sum T + S is

defined by o o
T B N S

J1---Jq Ji---Jq°

(T + 8)2

j1~~jq
Lemma 8.3. T + S is a tensor of type (p,q).

Problem 8.4. Verify this.

Definition 8.5. If 7%

Ji---Jq
of function and tensor f-T : (z',...

is a tensor field on M and f € C*°(M), then evidently the product
) T

i s a tensor field of type (p,q).
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Problem 8.6. Prove that any tensor of type (1,1), which is invariant under orthogonal
coordinate changes, is a scaling of 5; (i.e. is equal to Aé;).

Problem 8.7. Prove that any tensor with p+¢ = 3 invariant w.r.t. any coordinate changes
is equal to 0.

Problem 8.8. Prove that a tensor field of type (1, 1) gives a linear operator in each point.

Problem 8.9. Prove that C!, C’;Of , O}CZC{“, can be expressed in terms of coefficients of
the polynomial det(C' — AE) .
Problem 8.10. For a smooth function f, grad f is a tensor of type (0,1).

Definition 8.11. A tensor field of type (0, 1) is called a covector field.

By a problem above dx’ = grad x’ is a covector (over a coordinate neighborhood).
Problem 8.12. Covectors are linear functionals on vectors (at each point).
Problem 8.13. The bases {;2} in TpM and {d2?} in T;M are dual to each other.
Consider a C°°(M)-linear map L(vy,...,v,;a', ..., a?) which arguments are ¢ vector and

p covector fields, and taking values in C°°(M). Consider the following correspondences

o1 e itp ) g j 1 p
T~ Ly, Ly(v, ... vg5a7, ... aP) = Tj" ot ag . ay
and
LT Ty : (2 a™) ~s (T = L 9 9 dx" dx'
L, L ey L)ji.gg " FIRTRARRRIE sy .

Problem 8.14.

1. Explain, how it is possible to substitute locally defined fields at the place of globally
defined.

2. Lr is a multilinear function and does not depend on the choice of coordinate system.
3. T}, satisfies (p, q)-tensor law.
4. These maps are inverse to each other.

Definition 8.15. A field S of type (p,q) is obtained from a field T' of type (p,q) by a

transposition of upper (snmlarly — for lower) inderes with numbers (positions) a and b, if
521..4@...21,...@;7 o 11...217...@(1...117'

Ji--Jq J1---Jq

The result is a tensor field. This is evident if we consider multilinear maps.
Problem 8.16. Show by example that a transposition of an upper and a lower indexes is
not a tensor operation. Consider the case of a tensor of type (1, 1) (linear operator). Conclude
in particular that the property of a matrix of an operator to be symmetric C’; = Cg depends
on coordinate system.

Definition 8.17. A contraction of a tensor T of type (p,q) in the upper index number a
and the lower index number b is a tensor S of type (p — 1,q — 1), defined by

21 7fp 1., TZl 1a—10g---lp—1
Jqul' E:Jljbﬂ]b]ql
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This is really a tensor field of type (p — 1,q — 1), because

.41 -1\ _
Lg(vi,...,v4-15a,...,aP ") =
_ I 9 o1 b1 g g p—1
= {00 Vet i Ve Vg3 @y a7 dat e ,
i
and L
ox" Ox'
oxt Ozt

hence the right-hand side does not depend on the choice of coordinate system.
Example 8.18. A contraction C? of a tensor of type (1, 1) is the trace of a linear operator.

Definition 8.19. The tensor product T ® S of a tensor field T of type (p,q) and a tensor
field S of type (r,t) is a tensor field of type (p + r,q + t), defined by

(T® 5)7417 7Zp+7 = Tlh : . Si.erlw-,i‘p-Q—r

Ja+t Ja Ja+1s--Jq+t
The corresponding multilinear map Lpgg is simply the product of Ly and Lg. Hence, it is
a multilinear map (for appropriate variables). Thus, T'® S is really a tensor field.

Problem 8.20. Suppose that a tensor field X is of type (1,0) and W is of type (0,1). Home
Find the rank of X ® W.

Problem 8.21. Prove that locally, for any coordinate system, one has the following pre- Class

sentation 5
21...1
T= Th J:au@"' O i

The coefficients are determined uniquely.

@, .. @ dr.

Definition 8.22. A tensor field b;; of type (0,2) is non-degenerate (or non-singular), if

det 1] 0.

Problem 8.23. Verify that this condition does not depend on coordinate system. Home
Problem 8.24. Prove that the components of its inverse matrix * (i.e., b*b,; = ¢7), Home
form a tensor of type (2,0).

Definition 8.25. The operation of index raising of a tensor T' of type (p,q) with the help
of b is the composition of tensor product with b and contraction. The result S is a tensor of
type (p+ 1,q — 1). For example, for the first index:

i1.0pt1 i1dri2.-ipt1
Sjlvn,jqfl =b THL wJg—1"

Similarly one can define the indezx lowering:

11...0p—1 b 211.. zp 1
P SRR LRy I I

Definition 8.26. Define the symmetrization of a tensor field T' of type (0, q) as

Sym (T)jla“-v.]q T(]l ,]q ' Z .70'(1)» 7]a(q)7

T o€Sy

and the antisymmetrization as

Alt (T)j [Jl: wJa) T ql Z .70(1): Jo(q)

oESy
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Evidently these maps are tensor operations (as a compositions of tensor operations). The
result of the symmetrization (resp., antisymmetrization) is a symmetric (resp., alternating)
tensor field of the same type, i.e. its components do not change under a transposition of two
neighboring indices (resp., change the sign under a transposition of two neighboring indices).
Problem 8.27. Prove that the antisymmetrization is a linear map, which is a projection
onto the subspace of alternating tensors and all symmetric tensors belong to its kernel.

Lemma 8.28. An alternating tensor field T;, ; on M, dim M = n (i.e., a field of maz-
imal degree) is defined by only one its component (essential) Tyo. . The other non-zero
components differ from it by a sign +1. More precisely,

711171 = T0(12.A.n) = (_1>UT12...11-

The essential component of T at a point in some other coordinate system is obtained by
multiplication by the Jacobian of the appropriate coordinate change.

Proof. The first statement follows from the definition. The second one:

orh Oxin o o(1) 0 o(n)
Ty = Thyoi e o = (Z(—l)" ) T = det

axz‘/ : T12n

’ ox’

[l

Definition 8.29. Define the exterior product (or wedge product) R = T AP of two alternating

tensors T;, ;, and P, ; by formula

1 g
= const - ﬂi1...ikp1;k+1...ik+q} = W Z (_1) To’(i1.‘.’ik‘Pik+1~~-7;k+q)'

’ O'ES}H_Q

R

i1 enipgg

Up to scaling this is a composition of tensor product and antisymmetrization.

For alternating tensors of type (0,¢q) one can use the language of differential forms. We
have by the definition of exterior product (for any putting of brackets)

dz" A ... Nda't = Z (-1)%dz"" @ ... @ da'.

o€Sy

Problem 8.30. Verify this (first solve the next problem).

Problem 8.31. Prove the associativity of the exterior product.

Problem 8.32. Prove that the exterior products dz* A ... Adz', iy < iy < -+ < i, form
a base of the space of alternating tensors of type (0,¢q) (at a point). Find the dimension of
this space.

Problem 8.33. Find the dimension of the space of symmetric tensors of type (0,¢) (at a
point). Using Problems 8.32 and 8.27 study whether the space of all tensors of type (0, q)
(at a point) is a direct sum of symmetric and alternating tensors.

Then the decomposition of an alternating tensor w.r.t. the above base is:

T = Til...z‘qdl'il ®...0dr'" = Z Z To(il)...a(iq)dl’g(il) ®...Q dz"ld =

i1<<iqg 0E€ESy

= Y, DD de ™ @ @dal) = YT, g dat AL Ndat (4)

€Sy i< <ig
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This is called a representation of an alternating tensor as a differential form. Since the
above products form a base, the decomposition (4) is unique.
Problem 8.34. Verify that the exterior product of differential forms can be found in the Home
following way: multiply the expressions and then order the differentials (keeping in mind
sign changes).
Problem 8.35. (a corollary of Lemma 8.28) The expression \/det ||g;;||dz* A... Adz™ is a Class
tensor w.r.t. coordinate changes with positive Jacobian, where g;; is a Riemannian metric.

This tensor is called a volume form. Later we will introduce the concept of integration
and will calculate the volume of a Riemannian manifold using its volume form.

Problem 8.36. Represent the trace of a matrix as a result of tensor operations. Home
Problem 8.37. Represent the determinant of a matrix as a result of tensor operations. = Home
Problem 8.38. Find the type of tensors formed by coefficients of Class

1. vector product,
2. mixed (triple) product

of vectors in R3. Prove that these tensors are obtained from each other by index raising and
lowering.

9 Fiber bundles

9.1 General definitions

First, consider the case of topological spaces. 31.10.2024

Definition 9.1. A (locally trivial) fiber bundle is a 5-tuple & = (E, B,p, F,G), where E,
B, F are topological spaces, p : E — B is a continuous surjection, G is a topological group
being a subgroup of Homeo(F') (homeomorphism group as an abstract group), such that
there is an open cover U, of B and homeomorphisms ®,, : p‘l(Ua) — U, x F restricted to
satisfy

1) the diagram

is commutative, where p; is the projection on the first factor (this implies that each fiber
Ey, = p~1(b) is homeomorphic to F);

2) over an intersection U,s = U, N Uz we have by 1) the commutative diagram

(I)ao((bﬁ)_l
Ua,@ x F Ua,@ x F

Usns
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which gives rise to a map
Cop : Uap — Homeo(F),  @ug(P)(f) = p2(Pa o (P5) 7 (P, f)), ()
and the condition is: ®,3(P) € G C Homeo(F') for each P € U,g;
3) ®op: Uyp — G is continuous.

In this situation E is the total space, B is the base, F' is the typical fiber, G is the structure
group, and p is the projection of €. The couple (U,, ®,) is called a local trivialization.

Remark 9.2. Sometimes it is more convenient (cf. the tangent bundle) to have local triv-
ializations “of second type”: they are defined by two homeomorphisms ¢, : U, — V, and
P, :p 1 (U,) = V, X F in such a way that the diagram

p U Uy) 2=V, x F

o lpl

U,—> >V,

commutes. If V, = U, and ¢, = Id we obtain the above definition.

At the first glance this seems a distinct definition, but this is not the case:
Problem 9.3. Reformulate in detail the items of the above definition to the case of “second
type”. Using another trivializations, namely

-1
pH(Ua) Loy, x PR XIdUa x F

| bk

U, —2 v, — -1,

prove that the two definitions are equivalent.

Definition 9.4. For a smooth fiber bundle we require in addition: E, B, F' are smooth
manifolds, G C Diffeo(F') (diffeomorphism group) and all mappings are smooth.

Problem 9.5. Suppose that we do not require E to be a smooth manifold in the previous
definition. Nevertheless it will be automatically smooth if other conditions are fulfilled (cf.
the construction of tangent bundle).

Example 9.6. The simplest examples are given by trivial bundles E = F x B — B, in
particular, B — B, F = pt.

Definition 9.7. Let { = (Fy, My, 7, F,G) and & = (Es, My, ma, ', G) be two smooth fiber
bundles with local trivializations {(U,, F,)} and {(Ug, ®s)} respectively. A pair (h,h) is a
bundle morphism along h if

1) h: My — My, b E; — E5 are smooth maps;
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2) h maps (E1)p to (E2)npy, i.e., the following diagram is commutative:

El—h>E2

M1 —h> Mg.

3) if Uy N~ (Us) # @, there exists a smooth map hgg : Uy N h~1(Us) — G such that for
each P € U, N h~(Ugs) one has

(55 oho @;1) (P, f) = (W(P), hag(P)f) for all f € F.

(this implies that h: (E1)p — (E2)n(p) is a diffeomorphism)

The notions of an identity morphism and an inverse morphism are evident. An invertible
morphism is an isomorphism.

Definition 9.8. A smooth sectionof a smooth bundle¢ = (E, M,p, F,G) is a smooth map
s : M — FE such that pos = Idy. The set of all smooth sections is denoted by I'(¢) or

)
For a topological fiber bundle one defines a continuous section in the same way. A local
section is defined only on an open set U.

Remark 9.9. Sometimes the set of sections is empty (see Problem 9.26 below).

9.2 Cocycle approach
Evidently one has:

Lemma 9.10. The above defined functions ®.5 : Uyg — G have the following properties
(called COCYCLE PROPERTIES ):

b,.(P) = e€q for PeU,,
Dos(P) = (Ppa(P))! for P €U, NUs,
Pos(P)Ppy(P)Pyo(P) = e for PeU,NUzNU,.
Definition 9.11. An open cover U, of a topological space X (resp., a manifold M) and a
system of continuous (smooth in the case of manifolds) functions gas : Uy — G, where G is
a topological group (a Lie group in the case of manifolds) acting effectively on a topological

space F' by homeomorphisms (respectively, on a smooth manifold M by diffeomorphisms) is
called a cocycle if it has the properties from Lemma 9.10, i.e.,

Jaa(P) = e€ G for P e U,,
Jap(P) = (gﬁa(P))_l for P € Uy N Up,
9a8(P)gpy(P)gya(P) = efor P e Uy NUsgNU,.
Here by an action we call a group homomorphism A : G — Homeo(F') such that the map
GxF — F,(g,f)— Ag)(f) is continuous. The action is effective if Ker A = {e}, i.e., A is

a monomorphism. So, in most part of situations we can think about G as about a subgroup
of Homeo(G). Similarly, one defines in the smooth case.
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Definition 9.12. If p: X — X/ ~ is a surjective map, where ~ is an equivalence relation
on a topological space X, then the quotient topology on Y = X/ ~ is defined as follows.
A subset U C Y is open iff p7'(U) is open in X. Roughly speaking this is the maximal
topology such that p is continuous.

Theorem 9.13. Suppose that M and F are smooth manifolds, G is a Lie group, A\ is an
action of G on F', U, 1s an open cover of M, gopg : Uag — G is a cocycle. Then there exists
a fiber bundle & over M with typical fiber I and structure group G such that for some local
trivialization atlas {(Uy, )} one has over U,p = U, N Up

®o 0 @5 (P, f) = (P, Agas(P))(f))-

Proof. On the disjoint union ¥ := U,{a} x U, x F define an equivalence relation (Problem
9.14) by

{a} x Uy x F3 (a, P, f) ~ (B, P, f) € {B} xUs x F & P =P and f = Agag(P))([f").

Take E := ¥/ ~ with the quotient topology and the natural projection II : ¥ — E. Let
7 B — M be the projection induced by (o, P, f) — P (Problem 9.15). Since

D' ({a} x Uy x F) =Us{B8} x (U, NUg) x F

is open, the sets II({a} x U, x F) = 771(U,) are open and one can define local trivializations
in a natural way:

Col(a, P, f)] = (P, f) for [(a, P, f)] € 77 (Ua).

We need to verify that the map is well defined: if (o, P, f) ~ (o, @, f') then P = @ (this
follows immediately from the definition of ~) and f = f’ (this follows from the first cocycle
property f = Agaa(P))(f") = f'). In fact this means that IT is injective on each {a} x U, X F..
Let us find transition functions. Suppose that P € U, N Ug. Then @El(P, H=1B,Pf)
Since P € U, N Ug, then [(B,P, f)] = [(o, @, f')]. By the definition of ~, @ = P and
" = Mgag(P))(f). Hence, @, o égl(P, ) = (P, A(9ap(P))(f)). It remains to verify some
details (Problems 9.16, 9.17). O

Problem 9.14. Using the cocycle properties prove that this is an equivalence relation
(axioms of identity, reflexivity and transitivity)

Problem 9.15. Prove that « is well defined.

Problem 9.16. Prove that F is second countable and Hausdorff.

Problem 9.17. Prove that all the necessary maps in the proof are smooth. Then FE is a
manifold by Problem 9.5.

Problem 9.18. Formulate and prove a similar theorem for the topological case.

Remark 9.19. We will not discuss the conditions for two cocycles to determine isomorphic
fiber bundles in the general case.

Problem 9.20. Consider the Mobius band FEj; as the following quotient space of R X
(—1,1):
Ey =R x (-1,1))/ ~, where (z,t) ~ (z + 27n, (—1)"t), n € Z.
For
S' =R/ =, where z ~ z +27n, n € Z,
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define 7 : Eyy — S by 7([z,t]) = [z]. Prove that this is a fiber bundle. Find an appropriate
cocycle with G = Z,, F = (—1,1).

Problem 9.21. Using the same cocycle on S* and A : Zy — Diffeo(S!), A\(=1)(z) = —z
(as complex numbers) take F' = S and obtain a fiber bundle (twisted torus). Prove that it
is not isomorphic to the trivial bundle S* x S* — S! as a bundle with structure group Zs,
but isomorphic to the trivial bundle as a bundle with structure group U(1) = S*.

9.3 Coverings

Definition 9.22. In some sense the most simple case is that of discrete F' (typically, finite
or countable). These fiber bundles are called coverings.

Problem 9.23. Prove that 7: R — S', S C C, 7(t) = > is a covering with F = Z.
Problem 9.24. Prove that 7: S* — S, S' C C, m(2) = 22, is a covering with F' = Z, =
Z7]27.

Problem 9.25. Find appropriate cocycles for these two examples.

Problem 9.26. In the above examples there is no sections.

Remark 9.27. Let us note without proving that each path ~(¢) in the base B of a covering
has a unique (up to the choice of starting point) covering path ¥(t) in E such that py(t) = v(t)
at any ¢t. This is not a section! (cf. Problem 9.26). Think about this.

9.4 Vector bundles

Definition 9.28. Consider an n-dimensional vector space V over K (R or C). Let G =
Aut(V) = GL(V) = GL(n,K) acting on V' in a natural way. Then { = (E, 7, B,V,G) is a
vector bundle (topological or smooth).

Theorem 9.29. Consider vector bundles w7 : E — M and « : E' — M with the same
typical fiber V' and cocycles (transition maps) ®op : Usg — GL(V) and @5 : Usg — GL(V),
respectively, for the same cover {U,}. These bundles are isomorphic iff there are smooth
functions f, : Uy — GL(V') such that

Pp(P) = fa(P)Pas(P)(f5(P))™", P € Usp. (6)

Proof. If f: E — E'is an isomorphism, define f,(P)(v) := py(®’, o f o (Py) (P, v)). Then

fa(P)®as(P)(f5(P)) ™" (v) = p2(®y 0 f o (Pa) ™) (Pa 0 (P5) ) (P, (Pg o f 71 o (D)) (P)v)
= pa(P;, 0 (Pf))(Pv) = Ds(P)(v)

and we have (6).
If we have (6), define

fa Uy XV = Uy, xV, (Pv)— (P, fo(P)v).
Then define locally (for e € 77*(U,)) a bundle map f: E — E' by

fle) = (@) o fuo ®a) (e).

One can verify that f is well defined globally (using (6)) and defines a vector bundle isomor-
phism. O
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Problem 9.30. Complete the proof.
Example 9.31. The tangent bundle T'M is an example of a vector bundle.

Our main example (generalizing the above one) is the tensor bundle of type (p,q) over
M. We consider a slightly general construction, considering not only £ = TM as the initial
bundle. So we consider a real rank k vector bundle £ = (F,m, M,...).

Definition 9.32. The total space (as a set) is T7(§) = Upen/ T2 (Ep), where TT(Ep) is the
k" ts-dimensional real vector space of all (r, s) tensors on the k-dimensional linear space Fp.
For each local trivialization (U, ®) of &, ® : 77U — U x R, define the local trivialization

D" UpepTT(Ep) — U x TT(RY),
Lm(pgm(al, oA, vg) = L (®Fat, . @, dD Ty, . L dD T )
for any smooth covector fields a’ and vector fields v; on ®(U).

Problem 9.33. Verify the details (similarly to the construction of TM).

Remark 9.34. In other words we define smooth sections of 77 () to be such maps P
7p € TT(Ep) that P +— L. (a',...,a",vy,...,v,) is smooth for any smooth covector fields
a* and vector fields v; (see Subsection 9.7 for more detail).

9.5 Principal bundles
Definition 9.35. If F'= G and A(g)f = ¢f, a bundle is called a principal bundle.

Problem 9.36. In this case one has a canonical right action of G on E with orbits eG
being fibers.

Note that the same cocycle can define bundles with distinct fibers. In particular, a
GL(n, K)-valued cocycle defines a vector bundle and a principal bundle.
Problem 9.37. (Hopf’s bundle) Consider S**~! as the subset of C" given by S?"~! =
{z € C": ||z|]| = 1}, where z = (2',...,2") and |z|| = 3 212", Let S' = U(1) act on S**
by (a,2) + az = (az',...,az™). The quotient (the space of orbits) is CP"~!. We obtain the
Hopf map m, : S*"~! — CP"~!. Prove that this is a principal U(1)-bundle (Hopf bundle).

9.6 Operations on vector bundles

Definition 9.38. The Whitney sum m @& my : B4 & Es — M of vector bundles my : By — M
and 7y : Ey — M is defined in the following way. As a set Ey @ Ey = Upep(E1)p @ (E2)p
and for charts (@), : (1) (Us) = Uy x KF and (®y), @ (m2) 1 (Us) — Uy x KF2 of local
trivializations of 7, and s, respectively we define

(®1)a © (P2)a : (vp, wp) = (P, pa((P1)alvr)), p2((P2)alwr))),  vp € (Er)p, wp € (Ez)p.

Problem 9.39. Verify that this is a structure of a (smooth or topological) vector bundle.
Problem 9.40. Prove that the Whitney sum can be defined using cocycles in the following
way. Suppose that {g.s} is a cocycle for m; and {h.s} is a cocycle for m for the same cover.
Then

9ap D hap - Us NUs = GLKM @ K™),  (gas © hap)(P) : (v,w) = (gap(P)v, hag(P)w)
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is a cocycle for m & 7.

Recall that the tensor product V @ W of linear spaces V' and W is the quotient space
of the space V' ® W of formal K-linear combinations of elements v ® w by the subspace
generated by elements:

o (V1+v)Ow—vOW—VvOW,
e 1O (W +wy) —vOw —vO ws,
e (sv)Ow—s(voOw),
° V0O (sw) —s(veOw),

where v,v1,v9 € V, w,wi,wy € W, s € K. The class of v ® w is denoted by v ® w.
Problem 9.41. Let f; : Vi — Wj and f, : Vo — W5 be linear maps of finite-dimensional Home
vector spaces. Then the formula (f; ® fo)(v1 ® v9) = fi(v1) ® fo(ve) defines a well-defined
linear map f1 ® fo: Vi ®@ Vo — W, @ Wy, If f1 and fy are isomorphisms then so is f1 ® fo.
If V has a base ey, ...,e, and W has a base fi,..., f,,, then V. ® W has the base ¢; ® f;.
The formula (v ® )(w) = p(w)v, where v € V, w € W, ¢ € W*, defines an isomorphism
V @ W* = Homg (W, V) (still for finite-dimensional spaces).
Problem 9.42. Verify the details and find the matrix of the operator (for the above bases). Home

Definition 9.43. The tensor product bundle 7 : E1® Ey — M of vector bundles 7 : F; — M
and my : E — M with typical fibers V] and V, has the total space (as a set) B} ® Fy =
Upen (F1)p @ (E2)p. Consider local trivializations @, of E; and ¥, of F; over the same
cover {U,}. Then the local trivializations for the tensor product are defined as

(I)a X \I/a : (El ®E2)|Ua — Ua X (Vvl ®‘/2),

e (P [(p20 ®a) ® (p20o Va)l(e)), €€ (Er® Ey)p = (E1)p® (Ea)p,
(isomorphisms by Problem 9.41).

Problem 9.44. Complete the definition as for T'M. Home
Problem 9.45. Prove that alternatively the tensor product bundle can be defined by the Home
product cocycle P — ®,5(P) ® V,p5(P).

Problem 9.46. Verify that the tensor product does not depend on the choice of local Class
trivializations, i.e., we obtain isomorphic bundles. Understand the refinement of cocycles.

Remark 9.47. This should be done each time when we define some bundle in a similar way;,
but we do this once.

Definition 9.48. The pull-back f*E of a vector bundle 7 : £ — M by a smooth map
f + N — M has the total space UgenEy). If {(Us,®,)} is a bundle atlas (of local
trivializations) for E, @, : 7~ 1(U,) — U, x V, then {(U/,®’)} is a bundle atlas for f*FE,
where

Uéz = f_lUOM (I),a(e) = (I)a(e)7 e € (f*E)Q = Ef(Q)a Q S f_an-

Alternatively the pull-back can be defined with the help of the cocycle ®,5 o f for the
cover {f~'U,}. Evidently this is the same bundle.
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Problem 9.49. Let m : By — M and 7y : E5 — M be vector bundles and let A : M —
M x M be diagonal map P — (P, P). Then one can define 7g, g, : E1 X Ey — M x M. Verify
that this is a vector bundle. Prove that the Whitney sum FE; & Fs is naturally isomorphic
to the pull-back A*7mg, «p,.

Definition 9.50. If 7 : £ — M is a vector bundle over M with local trivializations
{(Uq, ®,)} and transition maps @5 : Uys — GL(V), its dual bundle E* with typical fiber V*
has the total space (as a set) E* = Upep(Ep)* and local trivializations @7 : E*|y, — Uy xV*
defined by

(p2(22(a)))(v) = a((®a) ' (Pv)), a€ (E")p=(Ep), veEV, (a) ' (Pv) € Ep.

Problem 9.51. If we fix a base in V, then ®,5 : Uyp — GL(n,K). Prove that, for the
dual base in V*, ®%; : Uyg = GL(n,K) is defined by P — ((®as(P))") "

Problem 9.52. Prove that T (F) = (®"E) ®@ (*E*).

9.7 Tensor fields as sections of vector bundles

Denote the linear space of tensor fields of type (r, s) over M by T%(M).
Suppose that 7 € T'(T7(TM)) is a smooth section and (U, ¢) is a chart on M. Define

1.0y i1 (28 0 9
T(T)]ijs(P) = LT(p) (dl’ ,...,diL‘ ,%,...,%) .

Theorem 9.53. The above defined T induces the identification T(TT(TM)) 2 T(("TM) ®
(@°T*M)) = TH(M).

Proof. By the definition of T7(T'M), the map T is well defined and T is an isomorphism
locally . Also the global injectivity is immediate. To prove the global surjectivity one can
use a partition of unity. O

Problem 9.54. Complete the argument with a partition of unity.

10 Covariant differentiation

Problem 10.1. Show that the partial differentiation of components of a tensor field on
R"™ is not a tensor operation.

We wish to define on tensor fields on R™ a tensor operation V : T'(p,q) — T(p,q + 1),
which coincides in Cartesian coordinates with the partial differentiation. For this purpose we
start by an attempt to write down the result of partial differentiation in other coordinates.

Consider first the case of a vector field T¢. Suppose that 2’ are Cartesian coordinates in
R™, and z* is some other coordinate system. Then for the desired V we should have

oT" s 0x" Oz p
(VT) e (VT)5 = Dz w(VT)j.
Then 3 ' ,
g 0x" O0x) O (0" .\
V1) = 50 o007 000 (axk'T ) -

36



= 0z 0xd OzF ox™ Ox + Oxi OxJ'  Ox7 \ OxF
’ aTk/ Tk/ @:Ei/ (92:Ei

ox" 07 Ozt TY ox™  Ox" Oz’ T 9, <8x1) B

S 5’" -
or T on 0w 0nh
hence,
-/ aTl 7 v axi/ ani
VT Z-/ - Tk 11 sz ;) — - 3 .
(V) ox’ + Wi IR oxt o Qad Ok

For a covector field 7} one should have (VT);; = 2% and (VT = Ou’ 037 (7T, Then

ozt Oxd
J K’
(VT )y — dx' O 3. (8x | Tk/> _

ox? Ox7" OxI \ Ox'

B ozt 0xd 9zF 9T dx™ n oxt Ox? o (0¥ B
T 0x¥ 027 Ozt Ox™ Ox3 | Oxf Oz T O \ Ozt )

/ 8Tk 922*  Oxt I

= 8% o + Ty ———— :
v gam” TN 9ridat 9xt Dad
or ) o
oTy _ _ 0°x ox' O0x?
(VT)iyr = —= + T Th e
oxl J P 0xidxt Oxt Oxd
Lemma 10.2. One has f‘ffj/ = —Ff,/j,.
Proof. Let us differentiate the equality ngZ,, . % = ,i/, in 2™
2" ozt 9x" 0%z ox™" » _
0 = 7 7 7 + 7 7 7 T = F;n/ / —|— F:n/ /. |:|
Ox™ dx¥ Oz OxF  Jaxm"Ox"  Ox™ k k
O
Theorem 10.3. There exists a tensor operation V on M = R", defined on a field T;ll ]” by
q
0 : i
21 Z o 7’1 Z 1- ZS 1T ’LS+1 Zp 9 p r
<v1—1>31 qu o 8xm/ ]1 ]q + 27;1 Jq F ZT .75 1’ JS+1 JqF]sm !

and the functions I' have the following transformation law

=1 -/ -1/ -
ox’" oz ox¥ 8:70@ 02xt

7
FZ'H " = FZ 111 -y erra———
7"k k axZ/ 8x]//axk//

ozV Ox3" Oxk" 7

/

Proof. The explicit form of V can be found similarly to vector and covector cases (Problem
10.4).
Find the transformation law for T'.

-/

or’

VT = (VT)i, = 5T + 71T,
8T"” az? o (o 8@0
V //Tl TT FZ// " = - Tl FZ// " =
N b D D (axz' ) o b
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02" 02" OT" T ozt 9%z n 0"
- 0z¥ Ozt OV Oxk" Oxk dx ox"’

Fl//k//
On the other hand,

ox¥ ox" oz* oxt" (0T B
VTV —V iy T 1., ).
k a k” a i k' a k! a i (axk/ + r'k )
Hence y v o
0z ozt , 0 o0“x? /81:
T Fl, =T —— 4+ T" FZ// .
o2k ox Th o2 0z or” T dar Tk

Since T" is an arbitrary field,

/ !/ =1 / / =1
ox” Oz* O ox" Ox* 9%t

F,Lv// Fi/
! — Lot 8$TU 8xk// axi/ - axrl/ 8$k“ axklaxrl .

As it was established in the proof of Lemma 10.2,

’ / -1 / 11 . .y
ox” 0xF 9%zt o*z*  Oxt 0%zt oxt

Oz QK" Ox¥ Oz Ox"OxF" OxF  Qa" OxK" Oxt

Problem 10.4. Find the explicit form of V for general fields.

Definition 10.5. An operation V of covariant differentiation (or affine connection) V is
defined on a manifold M, if, for each chart, a collection of smooth functions Fék, 1,7,k =
.,dim M, such that for distinct charts we have equality

Oz 07 Ox* iy ox’ 0%
Oxt dxd’ dxk' ™ I gt Oad Ok
Then the action of V on a tensor field is defined by

-/
F;’k‘/ -

0
.. zp o 11 zp 01 ... 0s— 1mg+1 zp Zs 271 .. zp r
<VT)91 Jgim a m J1 -Jq + Z le -Jq F z :le Js—1TJs+1-- JqFJsm’

Remark 10.6. As one can see from the above calculations considered “in the inverse direc-
tion”, V is a tensor operation.

Remark 10.7. The existence of a connection will follow from the existence of a Riemannian
connection (a theorem below).

Definition 10.8. The torsion tensor of an affine connection I' ik is the tensor, determined

in each coordinate system by the equality ij = ij — ij.
Lemma 10.9. Q is really a tensor field of type (1,2).

Problem 10.10. Verify this.
Problem 10.11. Proof that V commutes with contraction.

Definition 10.12. A connection I' is called symmetric, if Q = 0.

Lemma 10.13. A connection V has the properties:
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1) the operation V is linear over R;
2) the operation V is a tensor operation;

3) the covariant dem'vative of a function (i.e., of a tensor of tupe (0,0)) coincides with its
gradient: Vi f =

axk ;

4) the operation ¥V on a vector and on a covector field has the form:

7 aTZ %
Vil = 2o + TT,
oT; -
Vil = o~ T

5) for arbitrary tensor fields T and S one has the Leibniz formula:

VIT®S)=(VTI)@S+T®(VS).
Proof. All the properties are evident except of 5). Verify it, for instance, for vector fields:

VKI'S) = S (T'87) + 175, + TiS'TY, =

0 ;0
(ak)9+Tak
oT" - ;0
(ak+TnQ?+T%
= (ViTHS9 + TH(V.5%).

(S7) +TrST%, + T'S'TY, =

S o
-+ P I7,) =

Problem 10.14. Do the calculation for arbitrary fields.

Theorem 10.15. The above properties 1) — 5) uniquely define the covariant differentiation.
More precisely, one can find in a unique way functions F]k, which satisfy the transformation
law from the definition of a connection, and the action of V on arbitrary field will be given
by the formula from the same definition.

Proof. Denote e; : a - and e/ = da?. Then I'} “x can be determined uniquely from

Remark that while obtaining the transformation law of Fé . in Theorem 10.3, we used only
the relation as in item 4). Thus, the same calculation gives now the desired transformation
law.

It remains to obtain the formula of differentiation of arbitrary fields. Do this for a field
of type (1,1). Locally we have ‘ }

T = sz e; ®el.
Then
ViTl, = (VT) = (V(Tle; @ ¢))!

mk_
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= ((VT;)@)ez@eJ +7¥(V€Z)®€J+,—T;ez®<vej))l =

m;k
ann 1T i\ ! 7 i G
= Ok + (Tg( wer) ® @])m - (Tjei ® (I e ))m =
8T’rln i lTJ
= ok Tolie — 13T

Home Problem 10.16. Do the calculation in the general case.

Definition 10.17. An affine symmetric connection V on a Riemannian manifold (M, g) is

called Riemannian (or metric compatible, or Levi-Civita connection) if Vg = 0.

Class Problem 10.18. Prove that in this case V commutes with the operations of rising and

lowering of indexes.

Theorem 10.19. On any Riemannian manifold (M, g) there ezists a unique Levi-Clivita

connection. Its coefficients (Christoffel symbols) are

1 ir <agkr agjr ag]k)

iA_
]k_2

oxJ oxk ox"

Proof. Prove that the Christoffel symbols of a Levi-Civita connection should satisfy (8).

Then the uniqueness will be proved. We have by the definition that

99ij . .
0= Vyigi; = 8_:132’ = 9rilip, = Gir L

Using the lowering of the first index I';;, := g;, 1}, and cyclic permutation we obtain:

0gi;
% = L'jir + Dij,
OGri
ag;j = Likj + Triy,
Jg;
&;Zk = Diji + Tjgi-

Add the first two equalities to each other and subtract the third one. Keeping in mind the

symmetry I, = T'};, we obtain

99ij | Ogki  Ogii
ai,z + ang - ang = Uik + Dijie + Ding + Trij — Ugji — Ujra =

= iji + Fijk —+ Fijk + iji — iji - iji = QFUk = 291rrgk

Multiplying by the inverse matrix for g;;, we arrive to

ro_ L <agij n Ogri 39kj)

ik 9 oxk ~ OxJ oxt

To prove the existence, simply define the coefficients bu the formulas (8).
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Problem 10.20. Verify that this is a connection, i.e., verify the transformation law for Home
the above I';.

Definition 10.21. A coordinate system is Fuclidean w.r.t. a metric, if g;; in this system
are constant (hence, in some other coordinate system are d;; (in the entire neighborhood!)).
A coordinate system is Buclidean w.r.t. a connection, if in it one has T, = 0.

Problem 10.22. Prove the equivalence of these two properties for the Levi-Civita con- Home
nection.

11 Parallel transport and geodesics

The parallel transport is a way to compare (tangent) vectors in distinct points. E.g., on plane
“the Euclidean coordinates of vectors should be constant”= their partial derivatives vanish.
In the general situation it is natural to require the vanishing of its covariant derivative.
But (for more complicated manifolds) this is too restrictive. We arrive to the requirement:
components of a field are covariant constant “along a curve” = “parallel transport along a
curve”. The result may depend on the choice of a curve connecting two points. Let us pass
to precise definitions.

Let a manifold M be equipped with an affine connection V. Suppose that two points P
and @ of M are connected by a smooth curve v : [0,1] — M, v(0) = P, (1) = . On this
curve we have the velocity field £ along « (use the third definition of a tangent vector).

Definition 11.1. The covariant derivative of a tensor field T' of type (p,q) along a curve ~y
is a tensor field V(7"), defined as the contraction of the tensor product of the velocity field
with the covariant derivative of T

(V;)/(T))ilyn.,ip — gkva?hu.,iP

jl"“)jq ]17--~,jq'

Of course this is not a “field on manifold” as in our initial definition, because it is defined
only at points of the curve.

Definition 11.2. A vector field 7" is called parallel along v with respect V, if V;(T') = 0.

Rewrite these equations in local coordinates (2, ..., z"). If
1 n k da*(t)
v(t) = (z(t),...,2"(1)), &= prat
the equations will take the form:
. daR(t) (0T 4
k i T
EVi dt (8xk * rk> ’
daz*(t) OT! o dak(t) AT - dx(t)
T =—+ 71T =0.
dt Oxk Rt a g
Definition 11.3. The last equality is called the parallel transport equation of a vector along

a Ccurve.
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The problem of parallel transport is as follows. Given a smooth curve 7, connecting
points P and @) of a manifold M equipped with a connection V, and a vector v € TpM.
Find a vector w € TpM, such that there is a covariant constant vector field V(¢) with
V(0) = v and V(1) = w. The problem can be solved consequently for pieces of 7 lying
in one coordinate neighborhood, we may assume without loss of generality, that the entire
curve lies in one coordinate neighborhood.

We arrived to a problem of solving of a system of ordinary differential equations of the
first order for functions V(t) with the initial value V¢(0) = v* (Cauchy problem). The
system has a derivatives-free right side. Hence, a solution of this problem exists, is unique
and extendable up to @, i.e., t = 1.

Definition 11.4. The vector w = V(1) € Ty M is called parallel to v € TpM along .

Lemma 11.5. Let (M, g) be a Rimannian manifold. A symmetric affine connection V on
M is a Levi-Civita connection if and only if the corresponding parallel transport conserves
the inner product of vectors w.r.t. g.

Proof. Suppose, V is a Levi-Civita connection, (.,.,) the inner product defined by g, V()
and W (t) are vector fields satisfying the parallel transport equations along v : [0,1] — M.
We need to show that < (V(t), W(t)) = 0. Indeed, for S denoting contraction,

d dz* 9 .
%W(t), W(t)) = %%W(t), W (t)) = V5, (9, VW) =
= "VL(SS(g @V @ W) = E¥(SSVi(g @ V @ W)) =
=SSV RV AW+ gV VoW +9g@V @V, W) = 0.

Conversely, if this equality is true for any parallel vector fields along any curve, then for
arbitrary vectors £, V and W one has

SS("Vig @V @ W) = FViiv,g;, = 0.
Taking the basic vectors we arrive to Vyg;; = 0. O]

Remark 11.6. The parallel transport can be defined for piece-wise smooth curves as the
composition of transports over smooth parts.

Definition 11.7. A curve v on a manifold M equipped with an affine connection V is called
a geodesic, if its velocity field is parallel along 7, i.e., V;(§) = 0.

In some local coordinates (x!,...,2™) we obtain the following equations:

k
%(vke)zo, i=1,....n,

. i
where &' = ddit. Hence,

dz* o0 -
3 FZ T — 0
dt (&Ek * Tkg) ’
d?xt - dx” dx*
— b —— = =1,....n.

dt2 + rk dt dt 07 7 ) , <9>
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Lemma 11.8. Suppose that P € M, v € TpM. Then there exists locally a unique geodesic
v(t) such that v(0) = P and §(0) = v. It depends smoothly on this initial data.

Proof. In local coordinates in a neighborhood of P the problem of finding of the desired
geodesic becomes a problem of solving of the Cauchy problem for the appropriate system
of n ordinary differential equations of the second order, resolved with respect to the highest
derivative. From an ODE course we know that this solution locally exists, is unique and
depends smoothly on the initial data. O

Problem 11.9. The velocity field of a geodesic of a Levi-Civita connection has constant
length (i.e. its parametrization is a scaling of the arc length one).

Problem 11.10. If two geodesics are tangent to each other in some point (with the same
velocity), then they coincide.

Problem 11.11. A parallel transport of a vector v along a geodesic conserves the angle
between v and the curve (i.e., the velocity vector).

Lemma 11.12. (geometric meaning of Christoffel symbols) For basic vector fields e; := %
of a coordinate system one has V., (e;) = I'j;e, (an expansion of a vector w.r.t. this base).
Equivalently the result of an infinitely small parallel transport of the frame {es} in the it

direction has the coefficients IS, in the initial base.

Proof. By definition

€, k
(Vo) = (e (V) =t (%525 4 rheyr) =

9
=4 (W + F’?ﬁj) =07 (D507) = I
Il

Problem 11.13. Describe geometrically the parallel transport for the Levi-Civita connec-
tion on a surface in R? (projection).

Problem 11.14. Deduce that a curve on a surface in R? is a geodesics iff its normal (the
second derivative for the natural parametrization = parametrization by the arc length) is
orthogonal to tangent plane.

Problem 11.15. Find geodesics on the standard sphere S? (without direct calculation).
Problem 11.16. Find geodesics on the standard sphere S? (direct calculation).
Problem 11.17. Find geodesics on the pseudosphere = the upper half-plane with coordi-
nates (x,y) and the metric ds* = dmz;gdyQ.

Problem 11.18. Prove that if two surfaces in R? are tangent to each other (tangent planes
coincide) along a curve then two respective parallel transports along this curve coincide.
Problem 11.19. Find the rotation angle for the parallel transport of a vector along the
circle being the base of the standard round cone. Hint: the cone is locally isometric to the
plane.

Problem 11.20. Find the rotation angle for the parallel transport of a vector along the
circle being a parallel of the standard sphere. Hint: use the previous two problems.
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Theorem 11.21. Let (M, g) be a Riemannian manifold. For any point Py € M, there exist
a neighborhood U and a number ¢ > 0 such that any two points of U are connected by a
unique (up to a scaling of its parameter) geodesic of length less then . This geodesic depends
smoothly on its ends.

Proof. By Lemma 11.8 one can define, for some neighborhood V' of (F,0) in the tangent
bundle T'M of the form

V={(Pv)eTM|PeU, || <ce}
(where U is some neighborhood of F), a smooth map
E:V - MxM, (P,v) — (P, expp(v)),

where expp maps a vector v to the point v(1) of a unique geodesic starting in P in the
direction v (i.e. 4(0) = v). Since the existence theorem is local, only geodesics with small
v (solutions of the corresponding Cauchy problem for the system of ODE) are proved to be
extendable till t = 1.

Calculate the Jacobian of E in (Fp,0). For this purpose, along with the coordinates
(z',...,2"v!,...,v") in a neighborhood of (Py,0) in TM, where v = v'22, consider coor-
dinates (z1,...,2};23,...,25) in U x U C M x M. For the tangent map dFE one has:

i i
ox} o ox
OxI I ovi

Ay
= O’ dPO eXpPO([U ’ t]) - dt =v
0

according to the second definition of a tangent vector. Thus, the Jacobi matrix dp, E is equal

0 I
implicit mapping theorem, the map F maps diffeomorphicaly some neighborhood V' of the
point (P, 0) € T'M onto a neighborhood W’ of the point (P, Py) in M x M. Passing to
some smaller neighborhoods if necessary, one can assume that W/ = U’ x U’ and U’ is a
subset of a ball of diameter € w.r.t. g (the lower bound of lengths of curves connecting its
center Py with any its point is less then £/2). Then U’ is the desired neighborhood of .
Indeed, let P and @ be two arbitrary points of U’. Consider a geodesic 7 starting from the
point P’ in the direction of v, where (P’,v) = E~*(P,Q). Then, by the definition of E, we
have P’ = P and 7(1) = Q. Thus, the points P and @) are connected by the geodesic v and
~ smoothly depends on P and (). Find its length. As it is proved above, the parameter of a
geodesic can differ from the arc length only by a scaling, which is equal to ||v|| for the case
under consideration. Then the length of v from 0 to 1 is equal to 1- ||v|| < e. It remains
to verify the uniqueness. Suppose, that P and @) are connected by a geodesic of length less
then €. Then it is a solution of the appropriate initial value problem and is unique, because
the length of its velocity vector at 0 is less then ¢ - t, where y(t) = @ (otherwise E is not a
bijection). O

I . . . . o
to ( * ), where [ is the identity matrix and the Jacobian is equal to 1.Hence, by the

Problem 11.22. Prove that in coordinates determined by exp, all F;k vanish in F.

12 Differentiation and integration of differential forms

Consider some symmetric affine connection V on a manifold M (for example, the Levi-
Civita connection for some Riemannian metric) and a differential form w of degree k, i.e.,
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an alternating (antisymmetric) tensor field of type (0, k). Denote the space of such forms
by QF(M). Then one can define the exterior derivative or gradient dw of the form w by the
following formula

kE+ 1)!
do =+ L ) AV,
or, in local coordinates,
1 g
(dw>j1~~jk+1 = iﬁ Z (1) Vo (jis1)Wo(ir) ..o (i)
’ UGSk+1

where we denote o(ji) := j,) and % is chosen to have

1...kkE+1
(1) = ’
(71)7 = sen (a(k +1)o(1). .a(k)) ’
i.e., £ = (—1). By the definition of V, dw is a differential form of degree k + 1.

Lemma 12.1. The gradient dw does not depend on the choice of a symmetric connection.

Namely,
k1 Ows o s
s+1 J1--Js—1)s+1--Jk+1
(dw)j1~~-jk+1 = ;(_1) " OxJs =
Proof. By the definition of V,
(dw)j1~~jk+1 -
(—1)* aw”(]l) o(j a
- k! 25: (_1) O Ur+1) . Zwa (1)--0(Gr—1)ao (jrs1)-- U(Jk)FU(jr)U(ij) -
TESK+1
_(=DF Z (_1)Jawa(j1)...a(jk) B
k! O Tk+1)
O'ES)H_l
k
(_1)k o
! Z Z [ o (Jr+1) Fa(]k+l) Gr) | Wo(ir)...o(r—1)ao(Gri1)-..0(Gr) =
over even UESk+1 r=1

(since V is symmetric)

_ (_1)k Z (_1)Jaw0(jl)--~0'(jk) _

k! OxoUnk+1)
O'ESk+1
k1
= (—1)k Z Z e 1...k+1 OWr (j1)..ct (G- 1) (s 1)o7 Gk 1) _
k! oy (1) ...7(s = D)71(s+1)...7(k+ 1)s OxJs
S=1T k
k+1
3wT<m>...T<j571>T(js+1)...7<jk+1>
— 5l Z Z Ois -
s=1 T€S
(since w is alternating)
ktl Ows
_ T J1---Js—1)s+1---Jk+1
Tk Z Z )7(=1) Ois -
s=1 T7€Sy
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k+1

1 Z Ow;
= — . k‘ 1 s+1 J1eJs—1,Js+1-- jk+1
k" s:l( ) ax]s

O

Home Problem 12.2. The exterior derivative of a differential form can be obtained by “direct

differentiation”. Namely, prove that for

Z Wiy dT™ AN dp'

i1 <<y

one has (keeping in mind that, for a function f, Vf = df and a tensor of type (0, 1) is always
(anti)symmetric)

> dwig) Nt AL Adat = Y Z a;; i) o A dait A A da.

1< <ip 11<-<tg 10
Theorem 12.3. Let w(yy and w) be differential forms of degrees p and q respectively. Then
d(W(l) VAN w(g)) = dW(l) AN w(2) + (—l)pW(l) VAN dW(Q)

Proof. Since the both sides of the desired equality are linear in w, it is sufficient to verify it
in one chart for forms

= fdx" A ... ANdx™, w(g):gd:cjl/\.../\dqu.
Then by Problem 12.2
d(way Awe) = d(fgdz™ A...Ada' Nda' AL Adele) =

9 A . , A 9 , , A A
= a—fkgdﬂ“/\dx“/\. S AdxP ANdZIP AL Ndx? - f a—jk de" Adx A, Ada AdzT A Adads =
x

(aafk dz® A dz A /\dxip> /\(gdle/\.../\d:vjq)—i—
x

+(=1)? (fdz" A... Ada™) A (ggk dx® A da?t A ./\de4> =
T
= dway A wey + (=1)Pway A dw)

Theorem 12.4. For any differential form w one has d(dw) = 0.

Proof. Once again it is sufficient to verify this for a form w = fdz™ A ... A dz'. Moreover,
if the theorem is proved for w(;) and wy), then it is true for its exterior product. Indeed,

dd(wa) ANwi) = d(dway A we) + (=DPwa) Adwe) =
= ddw(l) N w(z) + (—1)p+1dw(1) A dw(g) + (—1)pdw(1) A dW(g) + (_1)p+pw(1) A ddw(Q) =0.
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It remains to verify the statement for f and dz’. One has

d(df)=d (ﬁ d:ck) O dr' Ndz* =) ( O O ) dz' A dz* = 0.

ok = Or OzF o OxiOzk  Oxk Or

For da', apply the last calculation to f = x':
dd(dz) = d(dda) = d(0) = 0.
]

Definition 12.5. A differential form w is closed, if dw = 0, i.e., w € Kerd. A differential
form w is ezact, if w = dw; for some wy, i.e., w € Imd.
By the previous lemma, the linear map d has the property Imd C Kerd. So, if

ZF(M) == Ker(d : Q"(M) — Q*1(M))
is the space of closed k-forms and
B¥(M) :=Im(d : Q"1 (M) — QF(M))

is the space of exact k-forms, then B*¥(M) C Z%(M) and one can define the de Rham
cohomology of degree k as the quotient linear space H*(M) = Z*(M)/B*(M).

Immediately from the definition one has the following statement.
Theorem 12.6. 1) Let Q € QF(M). Consider the equation:
dw = €. (10)

It has a solution iff Q is closed and the cohomology class [Q] = 0 € HY(M) (& Q is
exact).

2) Any two wy solutions we of (10) differ by a closed form: d(wy — we) = 0. The set of all
solutions is the coset of the subspace Z*~Y(M) containing any solution w.

3) The space Z*¥(M) is isomorphic to the direct sum of B¥(M) and H*(M). O

As a particular case (up to Problem 12.8) of the pull-back of a form, one can define the
pull-back of a differential form:

Definition 12.7. Let f : M — N be a smooth map of smooth manifolds and w € Q¥(N)
be a differential form.The pull-back or the inverse image f*w of this form is the following
multilinear map of vector fields on M:

frw(, ..., 0) == w(dpf(),...,dpf(Tk)), v; € TpM.
Problem 12.8. Verify that the obtained form is a differential form (i.e., antisymmetric).
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Lemma 12.9. Suppose that (x',... ™) is a local coordinate system in a neighborhood of
Pe M and (y',...,y") is a local coordinate system in a neighborhood of f(P) € N, so the
corresponding local representative map of f : M — N s defined by some functions

y! :fl(azl,...,xm),...,y":f"(xl,...,q;m),

and a form w € Q¥(N) has locally the expansion

W= Z Wiy (U Yy dy A LA dy

11 <o <tp

Then the pull-back of w has locally the form

Fw= > wia(ff@h . am), e ™)X

i< <,
xdf' (. 2™ AL ARt ™). (11)
Proof. One has
[Hw) (@1, 0) = wldp f(01), ..., dp f(Uk)) =

= ( Z Wiy i (Y Y)Y A LA dyi'“) (dpf(Uh),....dpf(Uk)) =

11 <<t

= Z Wiy (YY) KAWL Ly (dp f(6))) . dy™* (dp f(01)) } =

1< <i
n i JOS  Of™
- . Z ' wilu.ik(yla e Y ) k! Alt[ b g {%(Ul)jl T Ok (Ul)Jk} =
11 <<l
= Y wia Wy RARE L df @) L dft (o) ) =
11 < <ig
= ( > 7wy AL A ) (Ty, ..., ).
i< <lig

Theorem 12.10. The operation of pull-back has the following properties:

1) for f: M — N and g: N — K one has (gf)* = f*g*;

2) f*dy =dyf*, where dy and dy; are the exterior derivatives on N and M, respectively;

3) f*(Kerdy) C Kerdy and f*(Imdy) C Imdyy, hence f* gives rise to a map of cohomolo-
gies

f*: HY(N) = H*(M).
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Proof. The first equality is an immediate consequence of Lemma 12.9. To prove the second
one, note that by the same lemma, Theorems 12.4 and 12.3, and Problem 12.2 we have

f(dw) = < ( Z Wiy ( ,...,y”)dyil/\.../\dyik>>:
11 < <lp
( Z Z aw“ ““ Loy dy Ady™ AL A dyi’“> =

i1 <<t s=1

= ) Za“’“ S (Nt a™, M ) A A A LA =

11 < <i s=1

= ) dlwia (™), e AT AL A =

:d( > wilmik(fl(xl,..‘,mm),...,f"(xl,...,xm))df“/\.../\dfi’“> = df*(w).

To prove the third relations, note (using the second one) that, if dyw = 0, then dy; f*w =
[*dyw = 0. Similarly, if w(;) = dyw, then

[fway) = ffdyw = dy frw.

Problem 12.11. Prove that cohomologies of diffeomorphic manifolds coincide. Home

Definition 12.12. A differential form €2 of degree k on M x I does not depend on dt, if its

value on any system of vectors of the form (%, U1y ..., Ugp_1) is O.

Lemma 12.13. Locally this is equivalent to the following: in the local expansion of ) w.r.t.
the basis dz'* A ... A\ dx'™ there is no summands containing dt.

Proof. By the definition of action of form on vectors. m

Problem 12.14. Write down this in detail. Home

Lemma 12.15. Any differential form € on M x I can be represented in the form ) =
Quy + Q) A dt, where Q) and Qo) do not depend on dt. This representation is unique.

Proof. Suppose that this lemma is proved for forms supported in one chart. Then consider a
partition of unity {¢,} on M and the corresponding “cylindrical” partition of unity ¢/ (z,t) =
@wa(x) on M x I. Then

Q= Z%Q Z Qi) + Q2. A dt) (ZQM> + (ZQ@Q)> A dt

is the desired representation. In turn, in one chart it is sufficient to group terms without dt
and terms with dt, and move dt on the last position (for the second group terms). We keep
in mind here Lemma 12.13.
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The uniqueness also may be verified in one chart. Indeed, if w = Q] +QLAdt = Q1 +QaAdE
and 1, = V1, V) = 1,5 for each function 1, from a partition of unity, then
summarizing we obtain ) = ; and Q), = Q. In turn, over one chart ©; and y by
Lemma 12.13 can be determined only in the above way (grouping terms), because the ordered
products of dz’ form a basis. O

Lemma 12.16. Suppose that smooth maps fo and fi from a manifold M to a manifold N
are homotopic to each other, i.e., there exists a smooth map F such that

F:MxI—=N, F(P0)=f(P), F(P1)=f(P) VPeM.
Then there exists a linear map D : Q*(N) — Q*~1(M) such that for any w one has
(fo = f)(w) = £(dy D — Ddy)(w). (12)

Proof. For any w on N, decompose F*(w) = €1 4+ Qs A dt according to the previous lemma.

Define .

D(w) = / (£ dt. (13)

This is the integration of coefficients in ¢ as in parameter (evidently the result does not
depend on coordinate system). Then D is well defined because of the uniqueness in the
previous lemma. Since f; = @i F*, fi = ¢ F™*, where

SOO:M_>MX[7 ()00<P):(P70>7 ngiM—)MX[, Spl(P):(P71>7
we have
folw) =4(0),  fi(w) =(1) (14)
(we substitute in F*Q: dt =0and t =0ort =1). Also,

0
F*dNW = dMX[F*W = dM><I<Ql + QQ VAN dt) = dMQl + an(t) A dt + dMQQ A dt

and
1

Dy (w) = / (:t%@l(t)+dMQQ(t)> dt = +£(Q(1) — 1(0)) + das / Oo(t)dt.  (15)

In the same time .

Ao D(w) = dar / Qs (t)dt. (16)
From (14), (15) and (16) we obtain (12). O

Theorem 12.17. Suppose that smooth maps fo and f; from M to N are homotopic to each
other. Then fi = f; in cohomology.

Proof. Let a closed from w on N represent a cohomology class [w]. In particular, dyw = 0.
For the map D from the previous lemma, we have

(fo = i) (w) = £(du D — Ddy)(w) = dy(Dw).
This is 0 in the cohomology of M. O]
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Problem 12.18. Find the de Rham cohomology of manifolds:
1. Interval (a,b).
2. Circle St.

Eucledean space R™.

= W

Sphere S2.
5. The plane R? without one point. Hint: using homotopies reduce to case 2).
6. The plane R? without two points.

Problem 12.19. Prove the Poincare lemma: any closed form on any manifold is locally
exact. Hint: reduce to the third case above.

Definition 12.20. Suppose that M is a smooth oriented manifold, dim M = n, and w €
Q" (M) is a form of maximal degree with a compact support in one chart (U, y,) with
coordinates (z,...,2"). (We assume here and below by default a chart from an orienting

atlas.) Define the integral of w over U by the formula

/w = / Wy L dxl .. dal (17)

U Pa (U) CRn

Lemma 12.21. This integral is well defined, i.e., the right-hand side of (17) does not depend
on the choice of local coordinates in U.

Proof. Suppose that (U,ppg) is another chart with the same U and local coordinates
(xé, e ,xg) Since both charts have the same orientation, the rule of changing of variables
in a multiple integral and Lemma 8.28 give

o'
/ B dx}; codr = / W - |det a—; dl ... da? =
«
pg(U)CR™ pa(U)CR™
O’
= / w?, - det a—mf del ... da" = / Wy o drl . da"
«

va(U)CR™ wa(U)CR™

]

Problem 12.22. Suppose that K C M is a compact set and {U,} is a locally finite open
cover of M. Then K NU, # @ only for finitely many «.

Definition 12.23. Suppose that M is a smooth oriented manifold, dim M = n, and w €
0" (M) is a form of maximal degree with a compact support. For a locally finite atlas
{(Ua, ¢a)} and its subordinated partition of unity v, define the integral by

[0 = 1000, {(Uaspasba)}) = > [ v (18)

M

By Problem 12.22, the sum is in fact finite.
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Lemma 12.24. This integral is well defined, i.e., the value does not depend on the choice

of {(Ua, Pa, V) }-

Proof. 1f we have two distinct atlases, then take their union, and for each of them take zero
functions on the added sets to complete the corresponding partition of unity. Evidently, in
each of these two cases, the right-hand side of (18) will not change. So the proof is reduced
to a a verification of

I(M,w,{(Ua; Pa; ¥a) }) = I(M,w,{(Ua; o, V1) })-

The independence of each summand on the choice of coordinates, i.e., ¢,, was proved in the
previous lemma. So we need to prove that

](Mv W, {<Ua7 Pos 77Z)a)}) = ](Mv W, {<Ua7 Pos 77Z):1)})

Define v; := 9o, — ¥, i =1,..., N, (because, for a fixed form, by Problem 12.22, the sum
is in fact finite). Then

k
> Ya=0 k=N (19)
=1

The proof is reduced to a verification (under the supposition of (19)) of

k
Z/’yiw:O, k= N. (20)
i=1

=10,

We will prove it by induction over k. For k = 1 the statement is evident. Suppose that for
k=1,...,N —1 and arbitrary v; : M — R, with supp~; C U,, the equality (19) implies
(20). Find a continuous function x : M — [0, 1] which is equal to 1 on supp s, C an and
supp X C U,, . It exists because M is normal. Then

N-—1 N-—1
XINEN, W ==Y %=— Y X%  supp(xn) € (Uy NUa,).
=1 =1

Hence,
N N-1 N-1 N-1
Z/%wz/wwntz/%wz—Z/X%erZ/%w:
=17, O =g, =g, =g,
N-1
= Z /(% — XVi)w- (21)
=17,
Since
N-1 N-1 N-1 N-1 N-1 N
D i=xmw) =D XD %= vtxw=Y vitw=> %=0
i=1 i=1 i=1 i=1 i=1 i=1
we can apply to (21) the induction supposition. ]

Evidently we have:
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Proposition 12.25. The integral gives rise to an R-linear map

Q" (M,0r) - R

comp

Problem 12.26. Prove that the change of orientation changes the sign of an integral but Home
not its absolute value.

Definition 12.27. In particular, we can define the volume of a compact oriented Riemannian
manifold as the absolute value of the integral of the volume form.

Problem 12.28. Prove that (under some reasonable restrictions) an integral of a form Home
can be calculated by integration of restrictions of the form to some sets each of which lies in
a chart and then summation of the results.

Theorem 12.29. (General Stokes Formula). Consider a smooth oriented manifold M with
boundary OM, dim M = n, and a compactly supported differential form w € O""Y(M).
Consider the orientation of OM introduced in the proof of Theorem 5.8. Then

o foefye (L)

where j : OM — M is the inclusion of the boundary.

Proof. As before, we may consider an atlas with charts with V,, = ¢, (U,) = R’ or R". Both
sides of (22) are linear in w. Hence, it is sufficient to verify the equality for a form compactly
supported in one chart (using a partition of unity) . Moreover, it is sufficient to verify for
forms (using the expansion w.r.t. a local base)

of

w=flz', ... ") de" A ANdeFTE AP TEA L AN da™, dw = (—1)F~ 1(9 -
x

dr' A ... Ada™,

where f : R? — R is a smooth compactly supported function (for the case of R’). We have
™ > 0 and OM is characterized by " = 0. Consider first the case of Kk <n — 1, i.e., k # n.
Locally the inclusion of the boundary has the form:

j:OM — M, gt 2" = (2., 2" 0),

and dz™ = 0. Hence j*w = 0 (see also (11)). For the right-hand side of (22) we have

kl n
/dw / 8mk 2t da” =

a
= (—1)*! / 5 fk dz* 3 dx' ... da"tda" T da" =
x
R\
_( 1)kz 1 / {f(ﬂfl, ,xk_1,+oo,a7k+1, ,ilfn)—
R}
—f(zt, ... 2"t —o0, 2P ,x")} det ... de*tda e



= (—1)" / {O - 0} da' ... da"tda"da™ =0
R}

(the above passage from the multiple integral to the iterated (Fubini’s theorem) is correct
because of compactness of the support and the vanishing “at infinity” by the same reason).
Consider now the case of £ = n. We have

/dw = /(—1)"1% de'. .. dx" =
R R?

= (—1)"’1 / gxf nAdrt . da™ T =

—1
Ry 0

= (-1 /{f(a:l,...,x”_l,—l—oo)—f(a:l,...,x"_l,O)}da:l...d:)s"_l:

Ry !
=(-1)" / flt, e 0)det . da™ T = (—1)" / ©'w
Ry !

n—1
RO

(with the same usage of compactness as above).

In the case of R™ we have that the chart does not intersect M and j*w = 0. So the
right-hand side of (22) vanishes. The left-hand side of (22) vanishes by the same calculation,
as in the case k < n above. [

Class Problem 12.30. The general Stokes formula implies Green’s formula from vector calculus

fép Pz, y)d:p+Qxydy—// (‘9@“’ apéz’y))dmy.

Home Problem 12.31. The general Stokes formula implies divergence (Gauss—Ostrogradsky)
theorem from vector calculus

#P(:p, y,2)dy AN dz + Q(x,y, z)dz Ndx + R(x,y, z)dx N dy =

ov _ ///V (aP(gzxy,z) N GQ(g,yy,z) N aR(g;%z))

Home Problem 12.32. The general Stokes formula implies the classical Stokes formula from
vector calculus: for a piece X of a surface,

74 P(x,y, 2)dz + Q(a, y, 2)dy + R(z, y, =)dz —
ox

// %—Q—Q dy N\ dz + a—P—% dz N\ dx + 8_@_8_P dx N dy.
0z dz O or Oy

Problem 12.33. Denote F = (P,Q, R) = Pi + Qj + Rk.
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a) Let dr = (dx,dy,dz). Understand why

/ﬁ-dF:/de+Qdy+Rdz.
v

v

b) Let 7 be the unit normal field on a surface ¥. Understand why

//ﬁ-ﬁdsz//deAdz+deAdx+Rdx/\dy.
by by

Problem 12.34. Obtain from the general Stokes formula the vector calculus formulas:
a) classical Stokes:

//rotﬁ-ﬁdsz//(ﬁxﬁ)-ﬁdsz]{ F - dF,
by P ox

b) Gauss-Ostrogradsky:

/// divﬁdxdydz:// ﬁ-ﬁdxdydzz#ﬁ-ﬁds.
1% \%4 ov

13 Riemann Curvature Tensor

We will consider symmetric connections. Consider locally in coordinates (z!,...,z") the
action of V;V; — V,V}, on a vector field T" (so the result is a tensor field of type (1,2)). We

have

ViT = S T,
; o*T arr . LOT ;. (0T° s , [OT" -
ViViT" = Ok ol T Dk L, +T axkl + (@ +T Frl) — T (% +T Frs) ;
(ViV, =V Vi) T =
r aril arz‘k or” ) or” ) ore ) ors ) 1 s e TS
=T (amk - Ol ) Oxk Frl - Ol Frk + Wrsk - %Fsl +T Fskzrrl =T Fslrrkz =
T 8F?rl aFZ’k 7 s i TS
=T (% - Ol + Fskrrl - Fslrrk) :
Denote , .
% arfﬂ ar;k 7 s i TS
.kl = W - Ol + Fsqul - Fsqulw (23)

and obtain that A A
(ViV, = V|V T" =T1 R;,kr

Lemma 13.1. Functions Rf],kl form a tensor of type (1,3).

Proof. For any vector field T, the functions (V;V, — V,V) T, i.e., TY R;kl, form a tensor
field of type (1,2). Since R ;; = (e,)® R.;;, we have

k I .. s k I .
Rl KU = (%’)8/ Ri/, wr = (eq) ikzl_axr _8:(:/ _8:6- = (%’)Sl_ax/ ikz_ax/ _8:1:, _&U- =
E : MOk Oxl Oxt oxs M oxk ozl Ozt
. . -/
_ 5 Ox* _, OxF 9a' 0" . Ox® O0xF 02l Ox" R Ox? Oz* Oz Ox'
— 5% — —

@ Qs "M gk xl Ol Sk oxd Oxk 9zt Ox G gpd Ok Azl Ot
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Definition 13.2. The tensor R, is called the Riemann curvature tensor of a symmetric
connection V.

Pass to the invariant definition of R.

Definition 13.3. Recall that the commutator of vector fields X and Y is the vector field

Yk Xk
XYF=X—0o Yy
X, Y] oxt ozt

For any symmetric connection,

k k
VxV* - Vy Xk = X @Li - YJ’F;) -y’ (ai + XjF;%-) =X Y (24

x ox’
in particular, the operation is a tensor one (the result is a vector field).

Definition 13.4. Define the curvature operator by
R(X, Y)Z = Vva(Z) - VyVX(Z) - V[X,y](Z)

It maps a triple of vector fields X, Y and Z to some fourth vector field. The notation
R(X,Y)Z, not R(X,Y, Z), reflects the roles of variables.

Theorem 13.5. The map R is 3-linear over functions. Thus, it defines a tensor field of
type (1,3).

Proof. If T is a 3-linear map of vector fields valued in vector fields, then the map

T(X,Y, Z:w) == w(T(X,Y, 2))

will be 4-linear map of 3 vector and 1 covector field arguments valued in functions, i.e., a
tensor field of type (1,3).

3-linearity at a point (i.e., over R) is evident. It remains to verify linearity for functions,
e, R(X,Y)(fZ) = f-R(X,Y)Z and two similar identities (Problem 13.6 ). O

Problem 13.6. Verify the linearity of R(X,Y)(Z) for functions.
Lemma 13.7. The definitions are equivalent.
)

Proof. For local basic vector fields e; = 57 we have

R(ej,e;) 2" =V Ve, 28 =V N o, Z8 + V0028 = VN, 28 — V¥, 2,
because V., Z* = (e;)"V,, 2% = 6"V, Z% = V;Z* and hence
[€Z', Gj] = VEZV@J. - Vejvei = Viej - Vjez- = Fé-iel — Féjel = O, (25)
using (24). Linearity completes the proof. O
Theorem 13.8. X (symmetries of the Riemann curvature tensor)

1) anti-symmetric in X and Y: R(X,Y)Z + R(Y,X)Z =0, or Rj-’kl + R;lk =0;
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2) Jacobi identity: R(X,Y)Z + R(Y,Z)X + R(Z,X)Y =0, or R}, + R ;; + Rj1,; = 0;

3) for any Levi-Civita connection (R(X,Y)Z, W)+ (R(X,Y)W,Z) =0, or Riju+Rji i =0,

where Rijr = Gir I} 3

4) for any Levi-Cwita connection (R(X,Y)Z, W) = (R(Z,W)X,Y), or Ri;u = Ryij-

The proof of this statement can be found in [Lee, Theorem 13.19].
We proceed with Levi-Civita connections.

Problem 13.9. For any Levi-Civita connection one has

1 02 g;1 %Gy DG gy m m
( e OOk T g (T — TR,

RZ‘ = irRr = i '
gkl = Girfigy oozt | Oridrl  Oxidrt  Oridrk

T2

Definition 13.10. A Riemannian manifold (M, g) is flat, if the curvature tensor is identically
Zero.

Theorem 13.11. A manifold is flat iff it is locally euclidean in metric (g;; = const) or
connection (T = 0) sense.

Problem 13.12. Prove this. In one direction this follows from Problem 13.9. For the
other direction, see Theorem 13.18 in [Lee].

Keeping in mind the definition, the following statement about the geometric meaning of
the Riemann curvature tensor is not surprising:

Problem 13.13. Let (2',...,2") be some coordinates in a neighborhood of P € M, where
(M, V) is a manifold equipped with a symmetric connection (not necessary Levi-Civita),
2'(P) =0, Vi. Suppose that & € TpM is an arbitrary vector and &, = £.(4, j) is the result
of its parallel transport around coordinate square in 2%, 27 with sides of length ¢ (i.e., formed
by segments of four coordinate curves in the z*, z/-plane - see figure).
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Then .
lim & —¢
e—0 52
(see Theorem 5.11 in http://math.uchicago.edu/~may/REU2016/REUPapers/Wan.pdf or
Theorem 12.47 in [Lee] )
This observation immediately implies the “if” direction of the following statement:

k l
= Ry ;¢

Theorem 13.14. A Riemannian manifold is flat if and only if results of parallel transport
along two homotopic curves are the same (equivalently, the result of parallel transport along
a contractible loop is the same as the initial vector).

Proof. To prove the “only if” consider two homotopic curves 7o, 71 : (—¢,1 +¢) = M (we
need an extension to an open interval because the direct product with [0, 1] should be a
manifold) with the properties v4(0) = v1(0) = Py, 70(1) = 71(1) = Py, such that a homotopy
G : (—e,14¢) x[0,1] — M satisfies this for each ¢ (we suppose s € (—g,1+¢) and ¢ € [0, 1]).
Consider the vector field &(s) being the velocity field of G(s,t) for fixed ¢ (in particular,
&o(s) and &;(s) are the velocity fields of 79 and ~;), and the vector field 74(¢) being the
velocity field of G(s,t) for fixed s. For a given v € T M, define the vector field vy(t), where
vs(t) is the result of the parallel transport of v along v,(s) = G(s,t) for fixed ¢ to the point
with parameter s. (Note, that in the definition of a parallel transport we have not asked the
regularity of a curve (non-vanishing of the velocity) but only its smoothness) Then the field
vs(t) is parallel along G(s,t) for fixed s.
Indeed,

Veus) Vi Ve(t) = Vi) Veus Vi) = Vi) meoVi(t) = RS vl ()€ ()i (t).

By the definition of v(t), the second summand in the l.h.s. vanishes. By the supposition,
the r.h.s. vanishes too. The third summand in the l.h.s. vanishes by the following argument:
if G(t,s) = (z'(t,s),...,2"(t,s)), then

(s)mt)* = sy B0 @2

02 0 Oxk B oxi 0 [0z B 0%k B 0k 0
T 9s Oxd \ Ot ot 9xi \ ds ) 0sOt Otds
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Thus, the field V, vs(t) is parallel along 7;(s) and vanishes for s = 0 (since v(t) = v).
Hence, V,, vs(t) = 0 for any s, in particular, for s = 1.
Then, since G(1,t) = Py, we have n;(t) = 0 and

0= vm(t)vl(t) = 77U (t) + e (75)“1 (t) = _Ul(t>7
dt d

i.e., v; does not depend on ¢. O

14 Lie algebra of a Lie group

Definition 14.1. Denote by X(G) the space of vector fields on G. A vector field X € X(G)
is called left invariant iff (Ly), X = X for all g € G, where (Ly).X = (d(Lg)) o X o L and
L, : G — G is the left translation. So the definition can be reformulate as (dL,), X, = X,
So X € X(@G) is left invariant iff the following diagram commutes for every g € G:

M
K
GG
Similarly, for right translations. The (evidently linear) space of left invariant vector fields
will be denoted by X*(G) and of right invariant vector fields will be denoted by X*(G).
Lemma 14.2. Suppose, f: M — N is a smooth map. Then (df)[X,Y] = [(df)X, (df)Y].

Proof.
(@NIX, Y]y (9) = [X,Y]p(go f) = Xp(Y(go f)) = Yp(X(go f)) =
Xp((df)Y (g) o f) = Y,((df)X(g) o f) =
= (df) X5 ((df)Y (9)) — (df) Y ((df ) X (9)) = [(df) X, (df)Y](py(9)-

From Lemma 14.2 we obtain:
Lemma 14.3. X(G) is closed under the Lie bracket operation.

Definition 14.4. For a vector v € T.G, define a smooth left (resp. right) invariant vector
field LV (resp. R") such that L"(e) = v (resp. R"(e) =v) by

L*(g) = d(Lg)eU7 R’(g) = d<Rg)ev- (26)

Problem 14.5. Show that v +— LY (resp. v — RY) gives a linear isomorphism 7,G =
XE(G) (resp., T.G = XE(@)).

Definition 14.6. A vector space (a) over a field K is called Lie algebra if it is equipped
with a bilinear map (a) x (a) — (a) denoted (v, w) + [v,w] such that

[0, w] = —[w, V]
and such that we have the Jacobi identity
[z, [y, 2] + [y, [z, 2] + [z, [2, 4] = 0
for all z,y, z € (a).
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Evidently,

Proposition 14.7. If G is a Lie group of dimension n, then XY(G) is an n-dimensional
Lie algebra for the Lie bracket of vector fields.

The above isomorphism transfers the Lie algebra structure to T,.G.

Proposition 14.8. For a fired A € GL(V), the map Ly : GL(V) — GL(V) given by
B — Ao B has tangent map given by (B, X) +— (Ao B, Ao X), where (B, X) € GL(V) x
L(V,V)=T(GL(V)).

Also, the left invariant vector field X corresponding to X € L(V, V) has the form )?(A) =
(A, AX).

Proof. In local coordinates (which are global here) the tangent map is defined by multipli-
cation by the Jacobi matrix, which is

AAX), = A70P0Y = APHY a(AX)ZV” =AYV = APVY = (AV)Y
0XP I A 2o 0XP p_uffp_up_( )u'

The second statement is now evident, because (X, AX) is a left-invariant (by the first
statement) with X at e, and such a field is unique. ]

The exponential map and related topics were discussed in detail in the course on Lie
groups and Lie algebras, so we omit this topic here.

14.1 The Maurer-Cartan form

Definition 14.9. Define g-valued 1-forms (i.e. smooth fiber-wise R-linear maps TG — g)
we and Wi by

WG(Xg) = d(Lgfl)nga nght<Xg) = d(Rgfl)ng’

where X, € T,G is the value of a vector field X at g € G. These forms are called the left
Maurer-Cartan form and right Maurer-Cartan form respectively.

Problem 14.10. Explain the smoothness.
Theorem 14.11. The tangent bundle of a Lie group is trivial. More specifically, the maps
trivy : TG — G X g, trivy (vg) = (9, wa(vy)), vy € T,G,
trivg : TG — G x g, trive(v,) = (g,wgght(vg)), vy € T,G,
give two examples of trivializations of T'G.
Proof. Evidently we have smooth bundle maps and they are invertible with
triv;'(g,v) = L"(g), trivy' (g,v) = R'(g).
Indeed, by (26)

triv,(LY(g)) = (g, d(Lg‘l)gd(Lg>ev) = (g,v), Lwc(vg)(g) = d(Lg>ed(Lg—1)g<U9) = Uy,

and similarly for trivg. O]
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Problem 14.12. Complete the remaining details.
Theorem 14.13. For any v € g, g € G one has
trivg o triv; ! (g, v) = (g, Ad,(v)),
where Ady : g — g, Adg(v) = d(Ry-1Lg)v.
Proof. trivgotriv;'(g,v) = (g, d(R,-1)d(Ly)v) = (g, Ad,(v)). O

Consider the Maurer-Cartan form in the case of matrix groups. Suppose that G is a Lie
subgroup of GL(n) and consider the coordinate functions 2 on GL(n) defined by 2%(A) = af,
where A = [|a}]|. We have the associated 1- forms dz}. Restrict both the functions 2% and
the forms dwé- to G, denoting these restrictions by the same symbols. Then the (left) Maurer-
Cartan form can be expressed as

we = [|25] ldaj]).
Indeed, v, € T,G C T, GL(n) has the expansion

-0
v§:2v}8x§

.3

g

Then, by Proposition 14.8
2511~ ld5 1l (vg) = g5l w51l = d(Ly-1)gvg = wa(vy),

where g = ||g;||
Problem 14.14. Find the explicit form of the Maurer-Cartan form of G = SO(2).

15 Ehresmann and Koszul connections

Definition 15.1. Let # : £ — M be a smooth vector bundle with typical fiber F' of
dimension k. Denote V,E := (dm,) '(0,), where 7(y) = p. The vertical bundle on 7 : E —
M is the real vector bundle 7y, : VE — F with total space

VE := UyepV,E C TE

and projection map my := mre|lye. A vector bundle atlas on VE is given by charts of the
form

(my,dp o d®) : m, (7 HU)N O HV)) — (= 1 (U) N~ (V) x R,
where (7, ®) is a bundle chart on E over U and (V, ¢) is a chart in F'.
Problem 15.2. Verify this.

Definition 15.3. A smooth rank k distribution on an n-manifold M is a (smooth) rank k
vector subbundle of the tangent bundle.

Definition 15.4. A (linear Ehresmann) connection on a vector bundle 7 : F — M is a
smooth distribution H on the total space E such that
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1) H is complementary to the vertical bundle: TE = H & VE;

2) H is homogencous: d(u,)y(H,) = H,y for all y € E, r € R, where p, : E — E is the
multiplication map given by u, : y — ry.

The subbundle H is called the horizontal distribution (or horizontal subbundle).

Definition 15.5. For a general bundle (not necessarily a vector bundle), we have the same
definition, but only with the property 1).

Definition 15.6. For y € F, an individual element w € T, F is horizontal if w € H, and
vertical if w € VyE. A vector field (i.e. a section) X € X(E) = I'(T'E) is said to be a
horizontal vector field (resp. wvertical vector field) if X (y) € H, (resp. X(y) € V,E) for all
ye k.

Problem 15.7. Let f : N — M be a smooth map and 7 : £ — M a fiber bundle.
Prove that the pull-back f*FE (Definition 9.48) can be naturally identified with {(p,e) €
N X E: f(p) =m(e)}

Problem 15.8. Let f: N — M be a smooth map and 7 : E — M a fiber bundle with
typical fiber F'. Prove that Vf*E — f*FE is bundle isomorphic to f*VE — f*E, where
f=pralpeg: ffE— E pro: NxE — Eand f*E = {(p,e) € N x E: f(p) = 7n(e)} (cf.
the previous problem). See the diagram:

VI*E f*VE—>VE

S bk

FE—L R

L,k

N—M

Proposition 15.9. For a vector bundle E, the vertical vector bundle VE is isomorphic to
the vector bundle 7™ FE (as bundles over E). Sometimes they say that VE is isomorphic to
E along 7.

Proof. If (v,w) € m*E = {(p,e) € E x E: n(p) = w(e)}, i.e. w(v) = w(w), or v,w € E,
for some p, then (v + tw) is constant in t. Thus we can define a map from 7*F to TE by
(v,w) — & ‘0 (v+tw). This map evidently maps into VE C TE. We obtain a vector bundle
isomorphism

d
j: T E=ZVE, j:(v,w)HjUw::E (v +tw) = w,.
0

Problem 15.10. Prove that j is an isomorphism, i.e. surjective and injective.

Problem 15.11. Prove that H = 7*T'M.

Problem 15.12. Let E — M be a a vector bundle. Suppose that for each p € M there
is a subspace £}, C Ej,. Then E' = Uycn E], is the total space of rank [ vector subbundle if
and only if for each p € M, there is an open neighborhood U of p on which smooth sections
01,...,09 are defined such that for each ¢ € U the set {o1(q),...0i(q)} is a basis of E.
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Theorem 15.13. Every vector bundle admits a connection.

Proof. For a trivial bundle pri : M x V — M and a fixed v € V define i, : M — M x V
by i,(p) := (p,v). For each p € M, define H,,y := d(iy)p(T,M). Evidently these maps
are linear injections smoothly depending on p. Then one can apply the previous problem to
obtain that the subspaces H ;) form a subbundle H of TE. Also,

d(prl)(H(P,U)) = d(prl)d(iv)p(TpM) = d(pry o iv)p(TpM) = d(Id)p(TpM) =T,M

and hence TE =V @ H. For any a € R we have p, 0, = iq, and d(p,) © d(iy) = d(iay)-
Thus

d(pta)(Hpw)) = d(pta)(d(i)(TyM)) = d(ia)(TpM) = Hipav) = Hagpw)-

Consider a general vector bundle 7 : £ — M with a trivializing locally finite cover
{U,} of M. Choose a connection H* on each 7~1(U,). Let {p,} be a partition of unity
subordinated to {U,}. For each y € E, define

Ly:TeyM - T,E, L) =Y pa(r(y))wa,
{a: m(y)eUa}

where w, is the unique vector in H® such that (dr)w, = v. Evidently L, is linear and
(dm)y o Ly = Idg, . This implies (using Problem 15.12) that y — Ly (7%, M) determines a
subbundle ‘H with the property 1). O]

Problem 15.14. Verify the property 2).
Problem 15.15. Prove the above statement using a Riemannian metric (to be constructed
first) and the orthogonal complement.

Definition 15.16. For a smooth fiber bundle 7 : E — M and a smooth map f: N — M,
we call a map 0 : N — E a section of E along f if moo = f. The set of these sections is
denoted I';(E).

If o : N — E is a section of E along f, then ¢/ : N — f*E, p— (p,o(p)) € N X E, is a
section of the pull-back f*F.
Problem 15.17. Prove that all sections of f*F are of this form.

Definition 15.18. Let 0 : N — E be a section of E along a map f : N — M. We say
that o is a parallel section if (do)v is horizontal for all v € TN. If s is a section of E and
v : |a,b] — M is a curve, then we say that s is parallel along v if s o vy is parallel.

Proposition 15.19. Suppose that H is a connection on ® : £ — M, f : N — M is a
smooth map, f = pro

e [*E— E. Then f*H = (df)"'H is a distribution, which defines
a connection on f*E — N (the pull-back connection):

FHTFE- Y TR

L,

TN ¥,

(see also Problem 15.25 below).
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Proof. By the definition of f, we have (f*H) gy = (dfv(q’y))*lrr’-[y, where (q,y) € f*E.

Note that the natural bundle isomorphism (d(pri),d(prs2)) : T(N x E) = TN x TE
maps T(f*E) to {(v,w) € TN x TE: (df)v = (dr)w}. Indeed, a class of curve (y1,72) :
I - N x Ein TN x TE defines a vector (v,w) € Tf*E iff (7(t),72(t)) € f*E for any
t, i.e. fomy(t) = moy(t), or equivalently (df)v = (dm)w. Also, by the definitions,
under this isomorphism (Vf*E),,) corresponds to {0,} x V,E and (f*H)(q,) corresponds
to {(v,w) € T,N x H,: (df )v = (dm)w}.

By Problem 15.8, df is an isomorphism of vertical distributions. (This also follows from
the above identification.) Then f*H = (df)~'H is a smooth family of subspces ( T*H) ()
complementary to (Vf*E),). Hence, this is a distribution (by Problem 15.12) and this
distribution is complementary to Vf*FE. It remains to verify that the distribution is homo-
geneous. The multiplication pf on f*E C N x E is defined as p(q,y) = (¢, tay). Then
(dpl) (g (v, w) = (v, (dug)w). Hence, by the above description of (f*H)(,,) and the homo-

geneity of H, we obtain the homogeneity of f*H, O

Problem 15.20. Prove that if s is parallel with respect to the pull-back connection on
f*E, then oy is parallel, where o, : N = E, 04(x) = s(z) € Ep) = (f*E)a.
Problem 15.21. Let [0,b] be an interval and let ¢ € [0,b]. Suppose that = : E — [0,b] is

a vector bundle with some connection. Let 9 denote the horizontal lift of %.

1) For an integral curve v : [0,a] — E of 9, show that 7o is an integral curve of 2 Deduce
that v(a) € E,.

2) Prove that for any t, < b there exists ¢ = £(f) > 0 such that all integral curves of 0
originating in the fiber F;, are defined at least on [to, €).

3) Then 1) and 2) imply that all integral curves of & have domain [0, b].

The following theorem does not work in the general situation, but for curves this works
fortunately.

Theorem 15.22. Suppose that w : E — M is a vector bundle with a connection H and
v i la,b] = M is a smooth curve. Then for each u € E, ) there is a unique parallel section
Oy along v such that 0., (a) = u. Also, the map Py : Eya) — Eypy, Py(u) = 0,,(b), is a
linear isomorphism.

Proof. One may assume a = 0 and apply Problem 15.21 with v*E instead of £/ and v*H
instead of . We obtain an integral curve =, of 0 (an v*H-horizontal lift of %) in v*E with
Y(0) = (0,u) € v*E defined on [0,b]. By 1) in Problem 15.21, pry o, is an integral curve of
% and pryo~,(t) =t. Let 0., = praovy, on [0,b]. Then o,, is a parallel section of £ — M
along ~ because 7, is horizontal (see Problem 15.20 and the identification in Proposition
15.19). It is unique as an integral curve (Cauchy problem for ODE).

Now prove that the above defined P, is linear. First, note that (ro.,,) = d(i,) 0 &, is
horizontal, because d(f,) preserves H. Then ro.,,, is parallel and P, (ru) = rP,(u). So, P, is
homogeneous. Now prove that P, = j, Lo d(Py) o jo (see the proof of Proposition 15.9 for a
similar definition), i.e. a composition of linear maps. For vy € Ty E. (), define w(t) = tv such
that vy = w(0) for an appropriate v € E, ). This means that v is vy under “an appropriate
identification”. More precisely,

. d .
jo(v) = g7 (0 + tv) = vy, v =j;"(vo).
0
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By the (third) definition of the tangent map,

d

(dPy)ovo = — i

(Pyow).

Since P, ow(t) = P, (tv) = tP,(v) (using the homogeneity proved first), we have
(dPy)ovo = jo(Py(v)) =Jjoo P, OJ'EIUO

and P, = joto dP, o jo is linear.
Finally, evidently P, has the inverse P,-, where v~ (t) := ~(b — t), so it is a linear
isomorphism. O

Problem 15.23. Verify that P, - is the inverse to P,.

Definition 15.24. The map P, from the previous theorem is called parallel translation or
parallel transport along v from ~y(a) to (b). For t1,ts € [a,b], let P(¥): := Pyjtr.1a] © Bty —
By if ta >t and P(y)? 1= Py 1t By = By if 61 > 1.

The curve o, is a parallel lift or horizontal lift of the curve 7.

A parallel transport along a piece-wise smooth curve is defined by stages as a composition.

Denote the vector bundle isomorphism from VE to E along 7 by p, ie. p: VE — E is
the composition in the upper row of diagram (cf. Proposition 15.9):

i1

VE -1 - E E
E—"s M.

In the notation of Proposition 15.9 p : w, — w and for each y, it gives the canonical
identification of T, F,, with E,, and on each fiber, it is the inverse of j. If we have a connection
onm: E — M, then we have an associated connector, which is the map x : TE — E defined
by

k(v) == plpy(v)) =J, ' (pv(v)),
where v € T,E and py : TE = VE ®H — V is the canonical projection. It is a vector
bundle homomorphism along 7 : £ — M:

m

TE VE m™E E (27)
E—— M.

Problem 15.25. Prove that dn : T'E — T'M is a vector bundle. In particular, the addition
and scalar multiplication on a fiber (dm')(z) of dr : TE — TM are defined by

wB v = (do)(u,v) for u,v € TE with (dr)u = (dr)v = =,
c®v := (du.)v for v e TE and ¢ € K,
where a(y1,y2) == vy1 + yo for (y1,y2) € E® E and p.y := cy for y € E and ¢ € K.
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Lemma 15.26. Suppose that f : RE — R* is a smooth map such that f(av) = af(v) for all
v €RE and a € R. Then f is linear. Similarly for C.

Proof. One has (Df)(0)v = &,_, f(tv) = &,_,tf(v) = f(v). Thus f = (Df)(0) and f is
linear. Similarly, in the complex case, f is R-linear and by f(iv) =if(v) it is C-linear. [

Applying this lemma to each chart we obtain the following statement.

Qorollary 15.27. Suppose that my : E1 — My and 7 : Ey — MQ are K-vector bundles,
[ i Ev — Ejy is a fiber bundle morphism over [ : My — My. If f is homogeneous on each

fiber, i.e. f(av) = af(v) for all v € Ey and a € K, then f is linear on fibers, i.e. it is a
vector bundle morphism.

Lemma 15.28. Let ji, : E — E be multiplication by r. Then for anyp € M and y,w € I,
we have

(dpr) (Gyw) = jry(rw) = rjryw.
Proof. Indeed
(dpr) (Jyw) = 4 i (y + tw) = 4 (ry + trw)
dt|,_g dt|,_g
= Jry(rw) = rjw.

]

Theorem 15.29. Let k be a connector of a connection on a vector bundle w : E — M.
Then k is a vector bundle homomorphism from dr : TE — TM to n : E — M along the
map wpay c TM — M

TE—L>F (28)
dwl m
TM 22 M
Proof. In the diagram
TE o FE
dm E T
i —>”TM\ M

the left triangle is commutative by the definition of dm and the right one by (27). Thus
(28) is commutative. It remains to verify that « is linear on fibers. Let X, = (dr)Z,, where
n(y) =p, Z, € T,E, X, € T,M. Decompose Z, = H,+V,, where H, € H,, V,, € V,E. Since
(dr)V, = 0, we have X, = (dr)H, and H, is the horizontal lift X, of X,. Also, V, = j,w
for a unique w € E, (by Propositions 15.9). Thus Z, = )~(y + jy,w and k(Z,) = w by the
definition. By Lemma 15.28 and homogeneity of H we have

(dpr) Zy = (dp) X, + (dpe)jyw = Xy + jryrw.

Hence x((dp,) Z,) = rw = rk(Z,) or k(r® Z,) = rk(Z,) (in the notation of Problem 15.25).
Corollary 15.27 completes the proof. O
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Problem 15.30. Prove that the addition Hin T'E — T'M can be described in the following Home
(similar) form. We have, as above, Z, = )?y + jyw for some w € E, if (dr)Z, = X, and )N(y

is the horizontal lift of X,,. Suppose, that for another vector U, from the same fiber over

X, we have in the same way U, = )A(iy/ + jyw'. Then the sum of these vectors will be given

by )?yﬂ,/ + jy+y (W + '), where )Z'Hy/ is the horizontal lift of X, to the point y + ¥/'.

Problem 15.31. Using Problem 15.11 and Theorem 15.29 prove that (mpg, k) : TE — Class
E@ FE is a vector bundle isomorphism along the tangent bundle projection wp M : TM — M,

i.e. we have a commutative diagram with fiberwise linear isomorphism in the upper row:

(77 E,k)

TE——FE®FE

e

™ M

Now we introduce the Koszul definition of connection (covariant derivative) for a vector
bundle 7 : E — M, which generalizes an affine connection.

Definition 15.32. Let 7 : E — M and f : N — M be as above. A covariant derivative
along fisamap V/ : TN xT'(E) — I';(E) (we write V/ (v, o) = Vo) having the properties

(i) V7 is fiberwise linear in the first argument:
v£u+bvo- = (IVI{O' + bv{:a—?
for all 0 € T'(E), a,b € R, u,v € T,N for some p € N;
(ii) VI(o1 + 09) = Vi(01) + Vi(02) for any u € TN and any 04,09 € ['f(E);
(ili) for v € T,N, h € C*(N,K), and 0 € I';(E), the Leibniz law is fulfilled:

Vi(ho)l, = h(p)Vie + v(h)o(p);

(iv) for a vector field p — v(p) from X(N), the map p — ij(p)a is smooth for all o € I'¢(E);
(v) if g: S — N and f: N — M are smooth, then

ViH(oog) = v{dg)u0-7

E
=7

uwecTS:

Problem 15.33. Prove that (ii) and (iii) give the linearity of V/ over K in the second Home
argument .
A related notion (in fact a reduction for f =1d : M — M) is:

Definition 15.34. Let 7 : E — M be a smooth K-vector bundle. A covariant derivative
or Koszul connection is a map V : X(M) x I'(M, E) — I'(M, E) (we write V(X,s) = Vxs)
having the properties
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(i) Vyxs= fVxs, forall s e '(M,E), f € C*(M), X € X(M);

(i) Vx,4x,8 = Vx, 8+ Vx,s for any s € I'(M, E), X1, Xy € X(M);
(i) Vx(s1+ $2) = Vxs1 + Vxse for all 51,50 € I'(M, E), X € X(M);
(iv)
Home Problem 15.35. Verify that this is a particular case.

Home Problem 15.36. Understand that an affine derivative of a vector field along a curve is a
particular case of the above definitions.

v) Vx(hs) =hVxs+ X(h)s forall s e I'(M, E), f € C*(M), X € X(M).

Theorem 15.37. Suppose that m : E — M is a vector bundle with a connection H and
associated connector r. For any smooth map f : N — M define the map V' : TN xT'4(E) —
['¢(E) by the formula

Vio|, = k((do),w) forveT,N, oel'f(E), (29)

For a vector field V on N define (V{/U)(p) = V{/(p)a. Then V7 satisfies Definition 15.32.
In particular, for f = 1dy we obtain a Koszul connection.
Conversely, if V is a Koszul connection on w : E — M, then we may define an (Ehres-
mann) connection by

Hy = {(ds)u — j,Vus|s € I(M, E), s(m(y)) =y, u € Tr,) M}
The initial Koszul connection can be restored by the formula V,(s) = k((ds),v), v € T,,M.

Proof. Since k and do are smooth bundle morphisms, the properties (i) and (iv) of Definition
15.32 follow immediately from the definition (29).
Ifg:S— Nand f: N — M are smooth and u € T'S, then for each o € I'y(E) we have

Vi(0 0 g) = k(d(o 0 g)u) = w(d(0)((dg)u)) = V4,0

This gives (v) of Definition 15.32.

To prove (ii) use the formula for addition in terms of the tangent lift of v : (u,v) — u+wv,
u,v € E. Consider 01,05 € I'¢(E), u € T,N, u = [] for asmooth curve yin N with v(0) = p.
Then

(do)u B (dow)u = (da)((don)u, (dom)u) = % (oro7+307)

d
= —| (014 02) oy =d(o1 + 02)u.
dt|,

Since k is a bundle homomorphism along 77y, we have
Vi(o1 4+ 09) = k(d(o1 + 09)u) = k((doy)u B (dsy)u) = V(o)) + V(o).

We have obtained (ii) of Definition 15.32.

Now, as above, let v € T,N and 0 : N — E is a section along a smooth map f: N — M.
We wish to find a formula for dy : TR x TE — TFE, where 4 : R x E — FE is the scalar
multiplication in the vector bundle E — M. For this purpose consider (a,y) € R x E and
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(b4 .o Vy) € TLR X T, E. Let us calculate first in two particular cases. Consider a smooth
curve ¢ in E with ¢(0) =y and ¢(0) = vy, i.e. v, = [¢]. Then

Ha(c(t)) (30)

0

(@)(0u) = | nlaclt) = 5
= (dpa)vy = a®uy,

where © is the scalar multiplication in the vector bundle structure of TE — T'M as described
in Problem 15.25. Now let ¢ be the curve in R given by ¢(t) := a + tb so that ¢(0) = a and
¢0)=»b %‘a. Then

o (05| 0) = G| w0 = G| (e @1
= 8] (s o) =)
From (31) and (32) we obtain
) (b 5| ) = a0+ i) )

Next suppose that h € C*°(N) and c is a curve in N with ¢(0) = p and ¢(0) = u € T, N.
Then .
dc*
dt

4
dt|,

0

h(e(t)) = o

~ or

9
, Ot

0

(dh)yu = = ulh) | (33)

h(c(0)) h(c(0))
where z’ are some coordinates, c is given by z' = ¢'(t), and we write the partial derivative
to emphasize that this is a basic vector related to coordinate system t. To write the next
formula we need to introduce the following notation: let h x ¢ : N — R x E denote the map
(h x o)(z) = (h(z),o(zx)). Since « is a bundle morphism, using its definition, (32) and (33)
we obtain

c(0)

Vi(ho) = r(d(ho)u) = k(d(p o))u)
0

— wd(p) ( () o )

) k(d(p) o d(h x o)(u))
= k(h(p) ® ((do ))+.]hp)0 y(u(h)o(p)))
=h

o(h x =
(dU)
(v o(
= h(p)r((do)u) +u(h)o(p) = h(p)Vio + u(h)o,.

The remaining part to be proved as a problem. O

Problem 15.38. Prove the remaining statements

We complete the study of Ehresmann connections by a brief mentioning of the following
important case. In the case of a principal smooth G-bundle E over M the Ehresmann
connection is supposed to be G-invariant, i.e. the second property (instead of homogeneity)
is formulated as

Heg = d<Rg)eHev

where e € E, g € G and R, is the right action of G on E (see the definition of a principal
bundle).
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16 Basic K-theory

We will say (one of equivalent definitions) that a space X is paracompact if it is Hausdorff and
every open cover has a partition of unity subordinate to the cover, a collection of continuous
maps ¢z : X — [0, 1] each having support contained in some set of the open cover, and such
that > 5Py = 1 with only finitely many of the ¢g ’s nonzero near each point of X.

Definition 16.1. An inner product on a vector bundle p: E — Bisamap (,): EGE - K

which restricts in each fiber to an inner product, a positive definite symmetric bilinear form
for K = R and Hermitian form for K = C.

Proposition 16.2. An inner product exists for a vector bundle p : E — B if B is compact
Hausdorff or more generally paracompact.

Proof. Let U, be an open cover of B for which there exist local trivializations h, : p~1(U,) —
U, x K". These can be used to pull back the standard inner product in K" to an inner
product (,:), on p~(U,). An inner product on all of E is then obtained by setting (v, w) =
Y 0 Palx)(v, W), where ¢, is a partition of unity subordinated to {U,} and = = p(v) =

p(w). 0

Proposition 16.3. If E — B is a vector bundle over a paracompact base B and Ey C E s
a vector subbundle, then there is a vector subbundle Ey- C E such that Ey ® Ey < E.

Proof. Choose an inner product on E and let E- be the subspace of E which in each fiber
consists of all vectors orthogonal to vectors in Fy. If the natural projection Ej — B is a
vector bundle, then Ey @& Ej is isomorphic to E via the map (v, w) + v + w.

To prove that Ey — B is a vector bundle, note that this is a local property and we may
assume that F is the product B x K”. Since Fj is a vector bundle, for m := dim F, find m
independent local sections s; : b — s;(b)) in a neighborhood U (by) of arbitrary point by € B.
Consider a base s1(bg),- -, Sm(bo), Vms1,---,v, of K" and constant sections s; : b +— v,
t=m+1,...,n. Then the sections si,...,Sm, Sma1, - -, S, are still independent over some
(maybe smaller) neighborhood U’(by) C U(by) (consider the continuity of the determinant).
Apply the Gram-Schmidt orthogonalization process to these sections in each fiber, using the
given inner product, to obtain new sections s,. The explicit formulas for the Gram-Schmidt
process show that the s} ’s are continuous, and the first m of them are a basis for Ey in each
fiber over U’(by). The sections s, define a local trivialization h : p~1(U’(by)) — U’(by) x K"
by the formula (b, s;(b)) = (b, e;), where {e;} is the canonical base of K”. The map h takes
Ey to U'(by) x K™ and Ey to U'(by) x K"™™, 50 h|gs is a local trivialization of Ey over
U'(bo) (see also Problem 15.12). O

Proposition 16.4. For each vector bundle p : E — B over a compact Hausdorff space B
there exists a vector bundle E' — B such that E & E’ is a trivial bundle.

Proof. Each point x € B has an open trivializing neighborhood U,. By Urysohn’s Lemma
there is a map ¢, : B — [0, 1] with ¢(z) = 1 and supp ¢, C U,. The sets V, = ¢,;(0,1],
x € B, form an open cover of B. By compactness this cover has a finite subcover. Let the
corresponding V. ’s and ¢, ’s be relabeled V; and ;, i = 1,...m. In particular, V; C U, for
some z(i). Define ¢g; : E — K" by ¢;(v) = ¢;(p(v))(m;h;(v)), where h; is the restriction of a
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local trivialization over Uy, h; : p Y(V;) = V; x K", and 71; is the projection m; : V; x K" —
K"™. Since g; is a linear injection of each fiber over V;, then

f:E—=BxKNY N=mn, f(e)=(pe),qie),...,gm(e)),

is an injective morphism of vector bundles. By Proposition 16.3 there is a complementary
subbundle E’ such that F @ E’ is isomorphic to B x K. O

Definition 16.5. Denote the set of isomorphism classes of n-dimensional K-vector bundles
over B by Vecty(B).

Problem 16.6. Let f: X — Y be a continuous map. Prove that the pull-back £ — f*E Home
gives a map f* : Vectg(Y') — Vectg(X), i.e. isomorphic bundles have isomorphic pull-backs.
Problem 16.7. Verify that the operation @ of Whitney’s sum gives an abelian semi-group Home
structure on Vecty(B). (Semi-group is a set with operation satisfying all axioms of group

except of the existence of inverse) So, you need to verify that

1) if E=2Gand £ = G then E® E' = G & G (operation is well-defined);

2) E® E' = E' @ E (operation is abelian);

3) 0p @ E = E, where 0 = B x {0} is 0-dimensional trivial bundle (existence of unity);
4) (E@LE)® E"=E® (E' ® E") (associativity).

Problem 16.8. Prove that f* : Vectg(Y) — Vectg (X) is a homomorphism of semi-groups, Home
ie. f[f(E®E)= f*E® f*E.

Theorem 16.9. Given a vector bundle p : E — B and homotopic maps fo, f1 : A — B,
then the induced bundles f§(E) and f{(E) are isomorphic if A is compact Hausdorff or more
generally paracompact.

Immediately we obtain:

Corollary 16.10. For homotopic maps fo, f1 : A = B of paracompact spaces fi = fi :
Vectg (B) — Vectg(A).

Corollary 16.11. For a homotopy equivalence f : A — B of paracompact spaces f* :
Vectg (B) — Vectg (A) is an isomorphism of semigroups.

We obtain Theorem 16.9 immediately from the following statement.

Proposition 16.12. The restrictions of a vector bundle E — X x I over X x {0} and
X x {1} are isomorphic if X is paracompact.

We need two preliminary facts.

Lemma 16.13. A vector bundle p : E — X X [a, b] is trivial if ils restrictions over X X |[a, c|
and X X [c,b] are both trivial for some ¢ € (a,b).
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Proof. Denote these restrictions by E; = p~ (X X [a,c]) and Fy = p~1(X x [c,b]) and by
hy : By — X x[a,c]xK"and hy : By — X x[c, b] x K" the corresponding isomorphisms. These
isomorphisms may not agree on p~!(X x {c}), but they can be made to agree by replacing
hy by its composition with the “cylindrical” isomorphism X x [¢,b] x K" — X X [c, b] x K"
which on each slice X x {t} x K" is given by

hihy Y xxiaxrn X x {c} x K" = X x {c} x K™
Since hy and hy agree on Fj N Es, they define a trivialization of E (see Problem 1.27). [

Lemma 16.14. For a vector bundle p : E — X X I, there exists an open cover {U,} of X
so that each restriction p~' (U, x I) — U, x I is trivial.

Proof. For each x € X and t € I, we can find open neighborhoods U; of z and ¢, > 0 such
that the bundle is trivial over V; = U; X (t — 4, t + ;). This is an open cover of the compact
set {x} x I homeomorphic to I. Hence we can find a finite subcover V; =V;, (i =1,...,s).
Then for an appropriate partition 0 =ty <t; < --- <t =1 and U, := N;U;,, the bundle is
trivial over each U, x [t;,¢;+1]. Thus by Lemma 16.13, it is trivial over U, x I and U, is the
desired cover. ]

Proof of Proposition 16.12. Suppose that X is compact Hausdorff and choose its compact
subcover {U;}, i = 1,...,m, of the cover constructed in Lemma 16.14. So E is trivial
over each U; x I. Choose a partition of unity {¢;} subordinated to {U;}. For i > 0, let
Vi == o1+ -+ ;. So, Yo =0 and ¢, = 1. Let X, be the graph of 1);:

X, ={(zx,t) e X xI:t =;(x)}

and let p; : E; — X; be the restriction of E over X;. Since F is trivial over U; x I, the
natural projection homeomorphism X; — X;_; lifts to a homeomorphism w; : E; — E;_;
which is the identity outside p~!(U; x I') and which takes each fiber of E; isomorphically onto
the corresponding fiber of F;_;. Namely, on points in p~*(U; x I) 2 U; x I x K" we define
wi(x,Y;(x),v) = (x,1;_12,v). The composition w = wiws - - w,y, is then an isomorphism
from the restriction of E over X x {1} to the restriction over X x {0}.

The paracompact case we leave as a problem. O

Problem 16.15. Similarly to the compact case, prove the paracompact one.

It is convenient to use a slightly broader definition of vector bundle which allows the
fibers of a vector bundle p : E — X to have different dimensions. The existence of local
trivializations implies that the dimensions of fibers are locally constant over X, but if X is
not connected the dimensions of fibers may be distinct over distinct components.

Denote the trivial n-dimensional bundle by €™ — X.

In the remaining part of the lecture we deal only with compact Hausdorff base spaces.

Definition 16.16. Two vector bundles £ and Es over X are stably isomorphic (Ey /4 E3)
if By @®e™ = Ey @ e™ for some n.

We write By} ~ By if By & ™ = Ey @ ™ for some m and n.

Evidently, ~; and ~ are equivalence relations on Vectg (X) (isomorphism classes without
restrictions on dimensions).

Problem 16.17. Verify that Vectk(X)/ ~, and Vectg(X)/ ~ are abelian semigroups.
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Theorem 16.18. If X is compact Hausdorff, then the set Vectg(X)/ ~ of ~-equivalence
classes of vector bundles over X forms an abelian group with respect to @.

Proof. We need to prove only the existence of inverses, i.e. that for each vector bundle
7w E — X there is a bundle E' — X such that £ @® E' = ™ for some m. If all the fibers
of E have the same dimension, this is Proposition 16.4. In the general case let X; = {x €
X : dim(n!(z)) = 4} (disjoint open sets in X). Their number is finite by compactness. So
first we add to E' a bundle E’ over each X; as above to obtain €™ and then a bundle E”
which is trivial of suitable dimension over each X; to obtain €™ over entire X. O

Definition 16.19. This group is called the reduced K-group and is denoted f(K(X).

Theorem 16.20. Let (S,+) be an (abelian) semigroup with the unit element Og. Consider
the set S? of formal differences sy — so (or equivalently, couples (s1,82)), s1, 89 € S with the
equivalence relation s; — sy = sa — 84 iff s1 + sh, = so + s and the addition

(51— 81) + (52— s5) = (51 + s2) — (8] + 85).

The quotient set with this addition is then an abelian group called the Grothendieck group of
S and denoted G(S). If S has the cancellation property (s; + s2 = $1 + s3 implies so = s3),
the map s — s — Og is an injective homomorphism of semigroups.

Proof. First, note that the addition is well defined on the quotient (i.e. respects the equiva-
lence relation). Indeed, if s; — s} is equivalent to t; — | and sy — s} is equivalent to to — t5,
ie. s +1t) =t + ) and sy + th, = t5 + 5, then

(51— 81) + (52 = 53) = (51 + 52) — (51 + 83), (t1 =) + (ta —13) = (b + t2) — (t1 + 13),

(514 82) + (] +15) = (51 +17) + (82 + 1) = (b1 + 1) + (t2 + 55) = (t1 +2) + (57 + 55),
(51 + 82) — (S/1 + 5,2) = (tl + tz) — (tll + t;)

Similarly one can prove that the class of 0g — Og is the unity, the inverse to s; — s} is s} — s1
and other axioms.

Since (s —0g) + (t —0s) = (s +t) — (0g +0s) = (s +t) — Og, the map s — s — Og is a
homomorphism (this doe not require the cancellation property). Now suppose that we have
this property and s — 0g =t — Og, i.e. s+ 0g =1+ 0g, s =t. So the map is injective. O]

Problem 16.21. Complete the proof.
Problem 16.22. Find G(N), N = {0,1,2,...}.

Lemma 16.23. We have the cancellation property for Vectg(X)/ ~;.

Proof. f E1® Fy ~; E1® FE3 (i.e. B1®FEy®e™ = Ey® E3@e™ for some m), choose a bundle
Ej such that E; & E] = " for some n (Proposition 16.4). Then "™ @ Ey = " @ E3 and
E2 g Eg. Il

Problem 16.24. Prove that generally Vectyg(X) has no cancellation property. Hint: con-
sider a hypersurface with non-trivial tangent bundle and its sum with the normal bundle.

(Roughly speaking the cancellation property is fulfilled for bundles of large rank w.r.t.
dimension of base.)
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Definition 16.25. The K-group of X is defined as K(X) = G(Vectg(X)/ ;).

Problem 16.26. Prove that G(Vectk (X)) = G(Vectg(X)/ =5). So one can define Kx(X)
without using of ~;,.

Theorem 16.27. If X and Y are homotopy equivalent then Kx(X) = Kg(Y)

Proof. Quite similarly to Corollary 16.11 one obtains in this case that Vectyg (X) = Vectg(Y)
as semigroups. Then G(Vectg (X)) = G(Vectg(Y)), hence Kx(X) = Kx(Y) by Problem
16.26. ]

There is a natural homomorphism Kx(X) — Kg(X) sending E — " to the class of
E. This is well-defined since if £ — " = E' — ™ in Kg(X), then E @ e™ = E' @ e” ie.
E ~ E'. This map Kg(X) — Kg(X) is obviously surjective, and its kernel consists of
elements £ — & with £ ~ €% hence E @ e™ = ¢, E &, €"™. So the kernel in Kx(X)
consists of the elements of the form €” — ™ and is isomorphic to Z. The restriction of vector
bundles to a basepoint zy € X defines a homomorphism v : Kx(X) — Kg(zg) = Z (cf.
Problem 16.22) which restricts to an isomorphism on the subgroup {¢" —&™}. Thus we have
a splitting Kx(X) = Kery ® Z =~ Kg(X) @ Z, depending on the choice of .
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