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Abstract. The purpose of the present paper is to prove for finitely generated
groups of type I the following conjecture of A. Fel’shtyn and R. Hill [8], which
is a generalization of the classical Burnside theorem.

Let G be a countable discrete group, φ one of its automorphisms, R(φ)

the number of φ-conjugacy classes, and S(φ) = #Fix(bφ) the number of φ-
invariant equivalence classes of irreducible unitary representations. If one of
R(φ) and S(φ) is finite, then it is equal to the other.

This conjecture plays a important role in the theory of twisted conju-
gacy classes (see [12], [6]) and has very important consequences in Dynamics,
while its proof needs rather sophisticated results from Functional and Non-
commutative Harmonic Analysis.

We begin a discussion of the general case (which needs another definition

of the dual object). It will be the subject of a forthcoming paper.
Some applications and examples are presented.

1. Introduction and formulation of results

Definition 1.1. Let G be a countable discrete group and φ : G → G an
endomorphism. Two elements x, x′ ∈ G are said to be φ-conjugate or twisted
conjugate iff there exists g ∈ G with

x′ = gxφ(g−1).

We shall write {x}φ for the φ-conjugacy or twisted conjugacy class of the element
x ∈ G. The number of φ-conjugacy classes is called the Reidemeister number of
an endomorphism φ and is denoted by R(φ). If φ is the identity map then the
φ-conjugacy classes are the usual conjugacy classes in the group G.

If G is a finite group, then the classical Burnside theorem (see e.g. [13, p. 140])
says that the number of classes of irreducible representations is equal to the number
of conjugacy classes of elements of G. Let Ĝ be the unitary dual of G, i.e. the set
of equivalence classes of unitary irreducible representations of G.

Remark 1.2. If φ : G → G is an epimorphism, it induces a map φ̂ : Ĝ → Ĝ,
φ̂(ρ) = ρ◦φ (because a representation is irreducible if and only if the scalar operators
in the space of representation are the only ones which commute with all operators
of the representation). This is not the case for a general endomorphism φ, because
ρφ can be reducible for an irreducible representation ρ, and φ̂ can be defined only
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as a multi-valued map. But nevertheless we can define the set of fixed points Fix φ̂

of φ̂ on Ĝ.

Therefore, by the Burnside’s theorem, if φ is the identity automorphism of any
finite group G, then we have R(φ) = # Fix(φ̂).

To formulate our theorem for the case of a general endomorphism we first need
an appropriate definition of the Fix(φ̂).

Definition 1.3. Let Rep(G) be the space of equivalence classes of finite dimen-
sional unitary representations of G. Then the corresponding map φ̂R : Rep(G) →
Rep(G) is defined in the same way as above: φ̂R(ρ) = ρ ◦ φ.

Let us denote by Fix(φ̂) the set of points ρ ∈ Ĝ ⊂ Rep(G) such that φ̂R(ρ) = ρ.

Theorem 1.4 (Main Theorem). Let G be a finitely generated discrete group
of type I, φ one of its endomorphism, R(φ) the number of φ-conjugacy classes,
and S(φ) = # Fix(φ̂) the number of φ-invariant equivalence classes of irreducible
unitary representations. If one of R(φ) and S(φ) is finite, then it is equal to the
other.

Let μ(d), d ∈ N, be the Möbius function, i.e.

μ(d) =

⎧⎨⎩
1 if d = 1,
(−1)k if d is a product of k distinct primes,
0 if d is not square− free.

Theorem 1.5 (Congruences for the Reidemeister numbers). Let φ : G → G be
an endomorphism of a countable discrete group G such that all numbers R(φn) are
finite and let H be a subgroup of G with the properties

φ(H) ⊂ H

∀x ∈ G ∃n ∈ N such that φn(x) ∈ H.

If the pair (H, φn) satisfies the conditions of Theorem 1.4 for any n ∈ N, then one
has for all n, ∑

d|n
μ(d) · R(φn/d) ≡ 0 mod n.

These theorems were proved previously in a special case of Abelian finitely
generated plus finite group [8, 9].

The interest in twisted conjugacy relations has its origins, in particular, in the
Nielsen-Reidemeister fixed point theory (see, e.g. [12, 6]), in Selberg theory (see,
eg. [14, 1]), and Algebraic Geometry (see, e.g. [11]).

Concerning some topological applications of our main results, they are already
obtained in the present paper (Theorem 8.5). The congruences give some neces-
sary conditions for the realization problem for Reidemeister numbers in topological
dynamics. The relations with Selberg theory will be presented in a forthcoming
paper.

Let us remark that it is known that the Reidemeister number of an endomor-
phism of a finitely generated Abelian group is finite iff 1 is not in the spectrum of
the restriction of this endomorphism to the free part of the group (see, e.g. [12]).
The Reidemeister number is infinite for any automorphism of a non-elementary
Gromov hyperbolic group [5].
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To make the presentation more transparent we start from a new approach
(E.T.) for Abelian (Section 2) and compact (Section 3) groups. Only after that
we develop this approach and prove the main theorem for finitely generated groups
of type I in Section 5. A discussion of some examples leading to conjectures is
the subject of Section 6. Then we prove the congruences theorem (Section 7) and
describe some topological applications (Section 8).
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2. Abelian case

Let φ be an automorphism of an Abelian group G.

Lemma 2.1. The twisted conjugacy class H of e is a subgroup. The other ones
are cosets gH.

Proof. The first statement follows from the equalities

hφ(h−1)gφ(g−1) = ghφ((gh)−1, (hφ(h−1))−1 = φ(h)h−1 = h−1φ(h).

For the second statement suppose a ∼ b, i.e. b = haφ(h−1). Then

gb = ghaφ(h−1) = h(ga)φ(h−1), gb ∼ ga.

�

Lemma 2.2. Suppose, u1, u2 ∈ G, χH is the characteristic function of H as a
set. Then

χH(u1u
−1
2 ) =

{
1, if u1, u2 are in one coset ,
0, otherwise .

Proof. Suppose, u1 ∈ g1H , u2 ∈ g2H , hence, u1 = g1h1, u2 = g2h2. Then

u1u
−1
2 = g1h1h

−1
2 g−1

2 ∈ g1g
−1
2 H.

Thus, χH(u1u
−1
2 ) = 1 if and only if g1g

−1
2 ∈ H and u1 and u2 are in the same class.

Otherwise it is 0. �

The following Lemma is well known.

Lemma 2.3. For any subgroup H the function χH is of positive type.

Proof. Let us take arbitrary elements u1, u2, . . . , un of G. Let us reenumerate
them in such a way that some first are in g1H , the next ones are in g2H , and so
on, till gmH , where gjH are different cosets. By the previous Lemma the matrix
‖pit‖ := ‖χH(uiu

−1
t )‖ is block-diagonal with square blocks formed by units. These

blocks, and consequently the whole matrix are positively semi-defined. �
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Lemma 2.4. In the Abelian case characteristic functions of twisted conjugacy
classes belong to the Fourier-Stieltjes algebra B(G) = (C∗(G))∗.

Proof. In this case the characteristic functions of twisted conjugacy classes
are the shifts of the characteristic function of the class H of e. Indeed, we have the
following sequence of equivalent properties:

a ∼ b, b = haφ(h−1) for some h, gb = ghaφ(h−1) for some h,

gb = hgaφ(h−1) for some h, ga ∼ gb.

Hence, by Corollary (2.19) of [4], these characteristic functions are in B(G). �

Let us remark that there exists a natural isomorphism (Fourier transform)

u �→ û, C∗(G) = C∗
r (G) ∼= C(Ĝ), ĝ(ρ) := ρ(g),

(this is a number because irreducible representations of an Abelian group are 1-
dimensional). In fact, it is better to look (for what follows) at an algebra C(Ĝ)
as an algebra of continuous sections of a bundle of 1-dimensional matrix algebras.
over Ĝ.

Our characteristic functions, being in B(G) = (C∗(G))∗ in this case, are
mapped to the functionals on C(Ĝ) which, by the Riesz-Markov-Kakutani theo-
rem, are measures on Ĝ. Which of these measures are invariant under the induced
(twisted) action of G ? Let us remark, that an invariant non-trivial functional gives
rise to at least one invariant space – its kernel.

Let us remark, that convolution under the Fourier transform becomes point-
wise multiplication. More precisely, the twisted action, for example, is defined as

g[f ](ρ) = ρ(g)f(ρ)ρ(φ(g−1)), ρ ∈ Ĝ, g ∈ G, f ∈ C(Ĝ).

There are 2 possibilities for the twisted action of G on the representation algebra
Aρ

∼= C : 1) the linear span of the orbit of 1 ∈ Aρ is equal to all Aρ, 2) and the
opposite case (the action is trivial).

The second case means that the space of interviewing operators between Aρ

and A
bφρ equals C, and ρ is a fixed point of the action φ̂ : Ĝ → Ĝ. In the first case

this is the opposite situation.
If we have a finite number of such fixed points, then the space of twisted invari-

ant measures is just the space of measures concentrated in these points. Indeed, let
us describe the action of G on measures in more detail.

Lemma 2.5. For any Borel set E one has g[μ](E) =
∫

E
g[1] dμ.

Proof. The restriction of measure to any Borel set commutes with the action
of G, since the last is point wise on C(Ĝ). For any Borel set E one has

g[μ](E) =
∫

E

1 dg[μ] =
∫

E

g[1] dμ.

�

Hence, if μ is twisted invariant, then for any Borel set E and any g ∈ G one
has ∫

E

(1 − g[1]) dμ = 0.
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Lemma 2.6. Suppose, f ∈ C(X), where X is a compact Hausdorff space, and
μ is a regular Borel measure on X, i.e. a functional on C(X). Suppose, for any
Borel set E ⊂ X one has

∫
E

f dμ = 0. Then μ(h) = 0 for any h ∈ C(X) such that
f(x) = 0 implies h(x) = 0. I.e. μ is concentrated off the interior of supp f.

Proof. Since the functions of the form fh are dense in the space of the refered
to above h’s, it is sufficient to verify the statement for fh. Let us choose an arbitrary

ε > 0 and a simple function h′ =
n∑

i=1

aiχEi such that |μ(fh′) − μ(fh)| < ε. Then

μ(fh′) =
n∑

i=1

∫
Ei

aif dμ =
n∑

i=1

ai

∫
Ei

f dμ = 0.

Since ε is an arbitrary one, we are done. �

Applying this lemma to a twisted invariant measure μ and f = 1 − g[1] we
obtain that μ is concentrated at our finite number of fixed points of φ̂, because
outside of them f �= 0. If we have an infinite number of fixed points, then the
space is infinite–dimensional (we have an infinite number of measures concentrated
in finite number of points, each time different) and Reidemeister number is infinite
as well. So, we are done.

3. Compact case

Let G be a compact group, hence Ĝ is a discrete space. Then C∗(G) = ⊕Mi,
where Mi are the matrix algebras of irreducible representations. The infinite sum
is in the following sense:

C∗(G) = {fi}, i ∈ {1, 2, 3, ...} = Ĝ, fi ∈ Mi, ‖fi‖ → 0(i → ∞).

When G is finite and Ĝ is finite this is exactly Peter-Weyl theorem.
A characteristic function of a twisted class is a functional on C∗(G). For a

finite group it is evident, for a general compact group it is necessary to verify only
the measurability of the twisted class with the respect to Haar measure, i.e. that
twisted class is Borel. For a compact G, the twisted conjugacy classes being orbits
of twisted action are compact and hence closed. Then its complement is open,
hence Borel, and the class is Borel too.

Under the identification it passes to a sequence {ϕi}, where ϕi is a functional
on Mi (the properties of convergence can be formulated, but they play no role at the
moment). The conditions of invariance are the following: for each ρi ∈ Ĝ one has
g[ϕi] = ϕi, i.e. for any a ∈ Mi and any g ∈ G one has ϕi(ρi(g)aρi(φ(g−1))) = ϕi(a).

Let us recall the following well-known fact.

Lemma 3.1. Each functional on matrix algebra has form a �→ Tr(ab) for a fixed
matrix b.

Proof. One has dim(M(n, C))′ = dim(M(n, C)) = n×n and looking at matri-
ces as at operators in V , dimV = n, with base ei, one can remark that functionals
a �→ 〈aei, ej〉, i, j = 1, . . . , n, are linearly independent. Hence, any functional takes
form

a �→
∑
i,j

bi
j〈aei, ej〉 =

∑
i,j

bi
ja

j
i = Tr(ba), b := ‖bi

j‖.

�
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Now we can study invariant ones:

Tr(bρi(g)aρi(φ(g−1))) = Tr(ba), ∀ a, g,

Tr((b − ρi(φ(g−1))bρi(g))a) = 0, ∀ a, g,

hence,
b − ρi(φ(g−1))bρi(g) = 0, ∀ g.

Since ρi is irreducible, the dimension of the space of such b is 1 if ρi is a fixed point
of φ̂ and 0 in the opposite case. So, we are done.

Remark 3.2. In fact we are only interested in finite discrete case. Indeed,
for a compact G, the twisted conjugacy classes being orbits of twisted action are
compact and hence closed. If there is a finite number of them, then are open too.
Hence, the situation is more or less reduced to a discrete group: quotient by the
component of unity.

4. Extensions and Reidemeister classes

Consider a group extension respecting homomorphism φ:

0 �� H
i ��

φ′

��

G
p ��

φ

��

G/H

φ

��

�� 0

0 �� H
i �� G

p �� G/H �� 0,

where H is a normal subgroup of G. The following argument has partial intersection
with [10].

First of all let us notice that the Reidemeister classes of φ in G are mapped
epimorphically on classes of φ in G/H . Indeed,

p(g̃)p(g)φ(p(g̃−1)) = p(g̃gφ(g̃−1).

Suppose, R(φ) < ∞. Then the previous remark implies R(φ) < ∞. Consider a
class K = {h}τgφ′ , where τg(h) := ghg−1, g ∈ G, h ∈ H . The corresponding
equivalence relation is

(1) h ∼ h̃hgφ′(h̃−1)g−1.

Since H is normal, the automorphism τg : H → H is well defined. We will denote
by K the image iK as well. By (1) the shift Kg is a subset of Hg is characterized
by

(2) hg ∼ h̃(hg)φ′(h̃−1).

Hence it is a subset of {hg}φ ∩ Hg and the partition Hg = ∪({h}τgφ′)g is a sub-
partition of Hg = ∪(Hg ∩ {hg}φ).

Lemma 4.1. Suppose, |G/H | = N < ∞. Then R(τgφ
′) ≤ NR(φ). More

precisely, the mentioned subpartition is not more than in N parts.

Proof. Consider the following action of G on itself: x �→ gxφ(g−1). Then
its orbits are exactly classes {x}φ. Moreover it maps classes (2) onto each other.
Indeed,

g̃h̃(hg)φ′(h̃−1)φ(g̃−1) = ĥg̃(hg)φ(g̃−1)φ′(ĥ−1)
using normality of the H . This map is invertible (g̃ ↔ g̃−1), hence bijection.
Moreover, g̃ and g̃ĥ, for any ĥ ∈ H, act in the same way. Or in the other words, H
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is in the stabilizer of this permutation of classes (2). Hence, the cardinality of any
orbit ≤ N . �

Hence, for any finite G/H the number of classes of the form (2) is finite: it is
≤ NR(φ).

Lemma 4.2. Suppose, H satisfies the following property: for any automorphism
of H with finite Reidemeister number the characteristic functions of Reidemeister
classes of φ are linear combinations of matrix elements of some finite number of ir-
reducible finite dimensional representations of H. Then the characteristic functions
of classes (2) are linear combinations of matrix elements of some finite number of
irreducible finite dimensional representations of G.

Proof. Let ρ1, ρ2, . . . , ρk be the above irreducible representations of H , ρ its
direct sum acting on V , and π the regular (finite dimensional) representation of
G/H . Let ρI

1, . . . , ρ
I
k, ρI be the corresponding induced representations of G. Let

the characteristic function of K be represented under the form χK(h) = 〈ρ(h)ξ, η〉.
Let ξI ∈ L2(G/H, V ) be defined by the formulas ξI(e) = ξ ∈ V , ξI(g) = 0 if g �= e.
Define similarly ηI . Then for h ∈ iH we have

ρI(h)ξI(g) = ρ(s(g)hs(gh)−1)ξ(gh) = ρ(hs(g)s(g)−1)ξ(g) =

{
ρ(h)ξ, if g = e,

0, otherwise.

Hence, 〈ρI(h)ξI , ηI〉|iH is the characteristic function of iK. Let u, v ∈ L2(G/H) be
such vectors that 〈π(g)u, v〉 is the characteristic function of e. Then

〈(ρI ⊗ π)(ξI ⊗ u, ηI ⊗ v)〉
is the characteristic function of iK. Other characteristic functions of classes (2)
are shifts of this one. Hence matrix elements of the representation ρI ⊗ π. It is
finite dimensional. Hence it can be decomposed in a finite direct sum of irreducible
representations. �

Corollary 4.3 (of previous two lemmata). Under the assumptions of the pre-
vious lemma, the characteristic functions of Reidemeister classes of φ are linear
combinations of matrix elements of some finite number of irreducible finite dimen-
sional representations of G.

5. The case of groups of type I

Theorem 5.1. Let G be a discrete group of type I. Then

• [3, 3.1.4, 4.1.11] The dual space Ĝ is a T1-topological space.
• [15] Any irreducible representation of G is finite-dimensional.

Remark 5.2. In fact a discrete group G is of type I if and only if it has a
normal, Abelian subgroup M of finite index. The dimension of any irreducible
representation of G is at most [G : M ] [15].

Suppose R = R(φ) < ∞, and let F ⊂ L∞(G) be the R-dimensional space of
all twisted-invariant functionals on L1(G). Let K ⊂ L1(G) be the intersection of
kernels of functionals from F . Then K is a linear subspace of L1(G) of codimension
R. For each ρ ∈ Ĝ let us denote by Kρ the image ρ(K). This is a subspace of a
(finite-dimensional) full matrix algebra. Let cdρ be its codimension.
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Let us introduce the following set

ĜF = {ρ ∈ Ĝ | cdρ �= 0}.
Lemma 5.3. One has cdρ �= 0 if and only if ρ is a fixed point of φ̂. In this case

cdρ = 1.

Proof. Suppose, cdρ �= 0 and let us choose a functional ϕρ on the (finite-
dimensional full matrix) algebra ρ(L1(G)) such that Kρ ⊂ Kerϕρ. Then for the
corresponding functional ϕ∗

ρ = ϕρ ◦ρ on L1(G) one has K ⊂ Kerϕ∗
ρ. Hence, ϕ∗

ρ ∈ F
and is twisted-invariant, as well as ϕρ. Then we argue as in the case of compact
group (after Lemma 3.1).

Conversely, if ρ is a fixed point of φ̂, it gives rise to a (unique up to scaling) non-
trivial twisted-invariant functional ϕρ. Let x = ρ(a) be any element in ρ(L1(G))
such that ϕρ(x) �= 0. Then x �∈ Kρ, because ϕ∗

ρ(a) = ϕρ(x) �= 0, while ϕ∗
ρ is a

twisted-invariant functional on L1(G). So, cdρ �= 0.
The uniqueness (up to scaling) of the intertwining operator implies the unique-

ness of the corresponding twisted-invariant functional. Hence, cdρ = 1. �

Hence,

(3) ĜF = Fix(φ̂).

From the property cdρ = 1 one obtains for this (unique up to scaling) functional
ϕρ:

(4) Kerϕρ = Kρ.

Lemma 5.4. R = #ĜF , in particular, the set ĜF is finite.

Proof. First of all we remark that since G is finitely generated almost Abelian
(cf. Remark 5.2) there is a normal Abelian subgroup H of finite index invariant
under all φ. Hence we can apply Lemma 4.3 to G, H , φ. So there is a finite collection
of irreducible representations of G such that any twisted-invariant functional is a
linear combination of matrix elements of them, i.e. linear combination of functionals
on them. If each of them gives a non-trivial contribution, it has to be a twisted-
invariant functional on the corresponding matrix algebra. Hence, by the argument
above, these representations belong to ĜF , and the appropriate functional is unique
up to scaling. Hence, R ≤ S.

Then we use T1-separation property. More precisely, suppose some points
ρ1, . . . , ρs belong to ĜF . Let us choose some twisted-invariant functionals ϕi = ϕρi

corresponding to these points as it was described (i.e. choose some scaling). As-
sume that ‖ϕi‖ = 1, ϕi(xi) = 1, xi ∈ ρi(L1(G)). If we can find ai ∈ L1(G) such
that ϕi(ρi(ai)) = ϕ∗

i (ai) is sufficiently large and ρj(ai), i �= j, are sufficiently small
(in fact it is sufficient ρj(ai) to be close enough to Kj := Kρj ), then ϕ∗

j (ai) are
small for i �= j, and ϕ∗

i are linear independent and hence, s < R. This would imply
S := #ĜF ≤ R is finite. Hence, R = S.

So, the problem is reduced to the search of the above ai. Let d = max
i=1,...,s

dim ρi.

For each i let ci := ‖bi‖, where xi is the unitary equivalence of ρi and φ̂ρi and
xi = ρi(bi).

Let c := max
i=1,...,s

ci and ε := 1
2·s2·d·c .
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One can find a positive element a′
i ∈ L1(G) such that ‖ρi(a′

i)‖ ≥ 1 and
‖ρj(a′

i)‖ < ε for j �= i. Indeed, since ρi can be separated from one point, and
hence from the finite number of points: ρj, j �= i. Hence, one can find an element
vi such that ‖ρi(vi)‖ > 1, ‖ρj(vi)‖ < 1 for j �= i [3, Lemma 3.3.3]. The same is true
for the positive element ui = v∗i vi. (Due to density we do not distinguish elements
of L1 and C∗). Now for a sufficiently large n the element a′

i := (ui)n has the desired
properties.

Let us take ai := a′
ib

∗
i . Then

(5) ϕ∗
i (ai) = Tr(xiρi(ai)) = Tr(xiρi(a′

i)ρi(bi)∗) = Tr(xiρi(a′
i)x

∗
i ) =

= Tr(xiρi(a′
i)(xi)−1) = Tr(ρi(a′

i)) ≥
1

dim ρi
≥ 1

d
.

For j �= i one has

(6) ‖ϕ∗
j(ai)‖ = ‖ϕj(ρj(a′

ib
∗
i ))‖ ≤ ci · ε.

Then the s× s matrix Φ = ϕ∗
j (ai) can be decomposed into the sum of the diagonal

matrix Δ and off-diagonal Σ. By (5) one has Δ ≥ 1
d . By (6) one has

‖Σ‖ ≤ s2 · ci · ε ≤ s2 · c · 1
2 · s2 · d · c =

1
2d

.

Hence, Φ is non-degenerate and we are done. �

Lemma 5.4 together with (3) completes the proof of Theorem 1.4 for automor-
phisms.

We need the following additional observations for the proof of Theorem 1.4 for
a general endomorphism (in which (3) is false for infinite-dimensional representa-
tions).

Lemma 5.5. (1) If φ is an epimorphism, then Ĝ is φ̂R-invariant.
(2) For any φ the set Rep(G) \ Ĝ is φ̂R-invariant.
(3) The dimension of the space of intertwining operators between ρ ∈ Ĝ and

φ̂R(ρ) is equal to 1 if and only if ρ ∈ Fix(φ̂). Otherwise it is 0.

Proof. (1) and (2): This follows from the characterization of irreducible rep-
resentation as that one for which the centralizer of ρ(G) consists exactly of scalar
operators.

(3) Let us decompose φ̂R(ρ) into irreducible ones. Since dimHρ = dimH
bφ(ρ)

one has only 2 possibilities: ρ does not appear in φ̂(ρ) and the intertwining number
is 0, otherwise φ̂R(ρ) is equivalent to ρ. In this case ρ ∈ Fix(φ̂). �

The proof of Theorem 1.4 can be now repeated for the general endomorphism
with the new definition of Fix(φ̂). The item (3) supplies us with the necessary
property.

6. Examples and their discussion

The natural candidate for the dual object to be used instead of Ĝ in the case
when the different notions of the dual do not coincide (i.e. for groups more general
than type I one groups) is the so-called quasi-dual

�

G, i.e. the set of quasi-equivalence
classes of factor-representations (see, e.g. [3]). This is a usual object when we need
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a sort of canonical decomposition for regular representation or group C∗-algebra.
More precisely, one needs the support

�

Gp of the Plancherel measure.
Unfortunately the following example shows that this is not the case.

Example 6.1. Let G be a non-elementary Gromov hyperbolic group. As it was
shown by Fel’shtyn [5] with the help of geometrical methods, for any automorphism
φ of G the Reidemeister number R(φ) is infinite. In particular this is true for free

group in two generators F2. But the support (
�

F2)p consists of one point (i.e. regular
representation is factorial).

The next hope was to exclude from this dual object the II1-points assuming
that they always give rise to an infinite number of twisted invariant functionals.
But this is also wrong:

Example 6.2. (an idea of Fel’shtyn realized in [10]) Let G = (Z ⊕ Z) �θ Z

be the semi-direct product by a hyperbolic action θ(1) =
(

2 1
1 1

)
. Let φ be

an automorphism of G whose restriction to Z is −id and restriction to Z ⊕ Z is(
0 1
−1 0

)
. Then R(φ) = 4, while the space

�

Gp consists of a single II1-point once

again (cf. [2, p. 94]).

These examples show that powerful methods of the decomposition theory do
not work for more general classes of groups.

On the other hand Example 6.2 disproves the old conjecture of Fel’shtyn and
Hill [8] who supposed that the Reidemeister numbers of a injective endomorphism
for groups of exponential growth are always infinite. More precisely, this group is
amenable and of exponential growth. Together with some calculations for concrete
groups which are too routine to be included in the present paper, this allow us to
formulate the following question.
Question. Is the Reidemeister number R(φ) infinite for any automorphism φ of
(non-amenable) finitely generated group G containing F2 ?

In this relation the following example seems to be interesting.

Example 6.3. [7] For amenable and non-amenable Baumslag-Solitar groups
Reidemeister numbers are always infinite.

For Example 6.2 recently we have found 4 fixed points of φ̂ being finite dimen-
sional irreducible representations. They give rise to 4 linear independent twisted
invariant functionals. These functionals can also be obtained from the regular fac-
torial representation. There also exist fixed points (at least one) that are infinite
dimensional irreducible representations. The corresponding functionals are evi-
dently linear dependent with the first 4. This example will be presented in detail
in a forthcoming paper.

7. Congruences for Reidemeister numbers of endomorphisms

Lemma 7.1 ([12]). For any endomorphism φ of a group G and any x ∈ G one
has φ(x) ∈ {x}φ.

Proof. φ(x) = x−1xφ(x). �
The following lemma is useful for calculating Reidemeister numbers.
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Lemma 7.2. Let φ : G → G be any endomorphism of any group G, and let H
be a subgroup of G with the properties

φ(H) ⊂ H

∀x ∈ G ∃n ∈ N such that φn(x) ∈ H.

Then
R(φ) = R(φH),

where φH : H → H is the restriction of φ to H.

Proof. Let x ∈ G. Then there is n such that φn(x) ∈ H . By Lemma 7.1 it is
known that x is φ-conjugate to φn(x). This means that the φ-conjugacy class {x}φ

of x has non-empty intersection with H .
Now suppose that x, y ∈ H are φ-conjugate, i.e. there is a g ∈ G such that

gx = yφ(g).

We shall show that x and y are φH -conjugate, i.e. we can find a g ∈ H with the
above property. First let n be large enough that φn(g) ∈ H . Then applying φn to
the above equation we obtain

φn(g)φn(x) = φn(y)φn+1(g).

This shows that φn(x) and φn(y) are φH -conjugate. On the other hand, one knows
by Lemma 7.1 that x and φn(x) are φH -conjugate, and y and φn(y) are φH conju-
gate, so x and y must be φH -conjugate.

We have shown that the intersection with H of a φ-conjugacy class in G is a
φH -conjugacy class in H . Therefore, we have a map

Rest : R(φ) → R(φH)
{x}φ �→ {x}φ ∩ H

It is evident that it has the two-sided inverse

{x}φH �→ {x}φ.

Therefore Rest is a bijection and R(φ) = R(φH). �
Corollary 7.3. Let H = φn(G). Then R(φ) = R(φH).

Now we pass to the proof of Theorem 1.5.

Proof. From Theorems 1.4 and Lemma 7.2 it follows immediately that for
every n

R(φn) = # Fix
[
φ̂H

n
: Ĥ → Ĥ

]
.

Let Pn denote the number of periodic points of φ̂H of least period n. One
obtains immediately

R(φn) = # Fix
[
φ̂H

n]
=

∑
d|n

Pd.

Applying Möbius’ inversion formula, we have,

Pn =
∑
d|n

μ(d)R(φ
n
d ).

On the other hand, we know that Pn is always divisible by n, because Pn is exactly
n times the number of φ̂H -orbits in Ĥ of cardinality n.

Now we pass to the proof of Theorem 1.5 for general endomorphisms.



152 ALEXANDER FEL’SHTYN AND EVGENIJ TROITSKY

From Theorem 1.4, Lemma 7.2 it follows immediately that for every n

R(φn) = R(φn
H) = # Fix((̂φn

H)R| bH)

Let Pn denote the number of periodic points of (φ̂H)R| bH of least period n. One
obtains by Lemma 5.5 (2)

R(φn) = # Fix((̂φn
H)R| bH) =

∑
d|n

Pd.

The proof can be completed as in the case of automorphisms. �

8. Congruences for Reidemeister numbers of a continuous map

Now we pass to the formulation of the topological counterpart of the main
theorems. Let X be a connected, compact polyhedron and f : X → X be a
continuous map. Let p : X̃ → X be the universal cover of X and f̃ : X̃ → X̃ a
lifting of f , i.e. p ◦ f̃ = f ◦ p. Two liftings f̃ and f̃ ′ are called conjugate if there is a
elementγ in the deck transformation group Γ ∼= π1(X) such that f̃ ′ = γ ◦ f̃ ◦ γ−1.
The subset p(Fix(f̃)) ⊂ Fix(f) is called the fixed point class of f determined by the
lifting class [f̃ ]. Two fixed points x0 and x1 of f belong to the same fixed point
class iff there is a path c from x0 to x1 such that c ∼= f ◦ c (homotopy relative to
endpoints). This fact can be considered as an equivalent definition of a non-empty
fixed point class. Every map f has only finitely many non-empty fixed point classes,
each a compact subset of X .

The number of lifting classes of f (and hence the number of fixed point classes,
empty or not) is called the Reidemeister number of f , which is denoted by R(f).
This is a positive integer or infinity.

Let a specific lifting f̃ : X̃ → X̃ be fixed. Then every lifting of f can be written
in a unique way as γ ◦ f̃ , with γ ∈ Γ. So the elements of Γ serve as ”coordinates”
of liftings with respect to the fixed f̃ . Now, for every γ ∈ Γ, the composition
f̃ ◦ γ is a lifting of f too; so there is a unique γ′ ∈ Γ such that γ′ ◦ f̃ = f̃ ◦ γ.
This correspondence γ → γ′ is determined by the fixed f̃ , and is obviously a
homomorphism.

Definition 8.1. The endomorphism f̃∗ : Γ → Γ determined by the lifting f̃ of
f is defined by

f̃∗(γ) ◦ f̃ = f̃ ◦ γ.

We shall identify π = π1(X, x0) and Γ in the following way. Choose base points
x0 ∈ X and x̃0 ∈ p−1(x0) ⊂ X̃ once and for all. Now points of X̃ are in 1-1
correspondence with homotopy classes of paths in X which start at x0: for x̃ ∈ X̃

take any path in X̃ from x̃0 to x̃ and project it onto X ; conversely, for a path c

starting at x0, lift it to a path in X̃ which starts at x̃0, and then take its endpoint.
In this way, we identify a point of X̃ with a path class 〈c〉 in X starting from x0.
Under this identification, x̃0 = 〈e〉 is the unit element in π1(X, x0). The action of
the loop class α = 〈a〉 ∈ π1(X, x0) on X̃ is then given by

α = 〈a〉 : 〈c〉 → α · c = 〈a · c〉.
Now we have the following relationship between f̃∗ : π → π and

f∗ : π1(X, x0) −→ π1(X, f(x0)).
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Lemma 8.2. Suppose f̃(x̃0) = 〈w〉. Then the following diagram commutes:

π1(X, x0)
f∗ ��

ef∗ �������������
π1(X, f(x0))

w∗
��

π1(X, x0)

where w∗ is the isomorphism induced by the path w.

In other words, for every α = 〈a〉 ∈ π1(X, x0), we have

f̃∗(〈a〉) = 〈w(f ◦ a)w−1〉.
Remark 8.3. In particular, if x0 ∈ p(Fix(f̃)) and x̃0 ∈ Fix(f̃), then f̃∗ = f∗.

Lemma 8.4 (see, e.g. [12]). Lifting classes of f (and hence fixed point classes,
empty or not) are in 1-1 correspondence with f̃∗-conjugacy classes in π, the lifting
class [γ ◦ f̃ ] corresponding to the f̃∗-conjugacy class of γ. We therefore have R(f) =
R(f̃∗).

We shall say that the fixed point class p(Fix(γ ◦ f̃)), which is labeled with the
lifting class [γ ◦ f̃ ], corresponds to the f̃∗-conjugacy class of γ. Thus f̃∗-conjugacy
classes in π serve as ”coordinates” for fixed point classes of f , once a fixed lifting
f̃ is chosen.

Using Lemma 8.4 we may apply the Theorem 1.5 to the Reidemeister numbers
of continuous maps.

Theorem 8.5. Let f : X → X be a continuous map of a compact polyhedron
X such that all numbers R(fn) are finite. Let f∗ : π1(X) → π1(X) be an induced
endomorphism of the group π1(X) and let H be a subgroup of π1(X) with the
properties

(1) f∗(H) ⊂ H,
(2) ∀x ∈ π1(X) ∃n ∈ N such that fn∗ (x) ∈ H.

If the couple (H, fn
∗ ) satisfies the conditions of Theorem 1.4 for any n ∈ N, then

one has for all n, ∑
d|n

μ(d) · R(fn/d) ≡ 0 mod n.
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