1.2 Compact, Hausdorff and normal spaces

12.09.2022

Definition 1.48. A topological space X is called Hausdorff, if, for any $x, y \in X$, $x \neq y$, there exist their neighborhoods U(x) and U(y) such that $U(x) \cap U(y) = \emptyset$.

Home Problem 1.49. Give an example of non-Hausdorff topological space.

Class Problem 1.50. Prove that the cartesian product of Hausdorff spaces is a Hausdorff space.

Home Problem 1.51. Prove that in any Hausdorff space each point is a closed set.

Definition 1.52 A topological space X is called *normal*, if it is Hausdorff and, for any two non-intersecting vets F_1 and F_2 , there exist their non-intersecting neighborhoods $U_1 \supseteq F_1$ and $U_2 \supseteq F_2$, $U_1 \cap U_2 = \emptyset$.

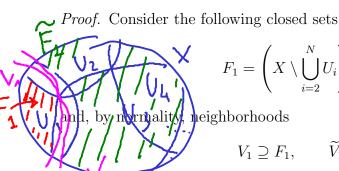
Class Problem 1.53. Verify that any metric space is normal.

Definition 1.54. A cover $\{V_{\beta}\}_{{\beta}\in B}$ is a refinement of a cover $\{U_{\alpha}\}_{{\alpha}\in A}$, if, for any β , there exists $\alpha=\alpha(\beta)$ such that $V_{\beta}\subseteq U_{\alpha}$.

Counterex: $F_2 \subseteq U \cap F_1 \neq \emptyset$ open closed

Not necess: |B| > |A| $V_1 = V_2$ $V_2 = V_3 \neq V_2$ $V_3 \neq V_2$ $V_4 \neq V_2$ $V_4 \neq V_2$ $V_5 \neq V_4 \neq V_2$

Theorem 1.55. Suppose that X is a normal topological space and $\{U_i\}_{i=1}^N$ is a finite open cover. Then there exists its refinement of the form $\{V_i\}_{i=1}^N$ such that $\overline{V}_i \subseteq U_i$.



 $F_1 = \left(X \setminus \bigcup_{i=2}^N U_i\right) \subseteq U_1, \quad \widetilde{F}_1 = X \setminus U_1,$ thborhoods by def. Two mality

$$V_1 \supseteq F_1, \qquad \widetilde{V}_1 \supseteq \widetilde{F}_1, \qquad V_1 \cap \widetilde{V}_1 = \varnothing.$$

Each point of \widetilde{F}_1 has an open neighborhood \widetilde{V}_1 , which does not intersect V_1 . Hence this point can not be an adherent point of V_1 and

$$\overline{V}_1 \cap \widetilde{F}_1 = \emptyset, \qquad V_1 \subset \overline{V}_1 \subset (X \setminus \widetilde{F}_1) = U_1$$

Also, (V_1, U_2, \ldots, U_N) is a cover by the construction of F_1 . At next steps we replace U_2 by V_2 and so on.

Home **Problem 1.56.** Let $f: X \to X$ be a continuous self-map of a Hausdorff space. Prove that the set of fixed points $F_f := \{x \in X \mid f(x) = x\}$ is closed.

Home **Problem 1.57.** Prove that X is Hausdorff iff the diagonal $\Delta := \{(x,y) \mid x=y\} \subset X \times X$ is closed in $X \times X$.

Class Problem 1.58. Prove that a map $f: X \to Y$, where Y is Hausdorff, is continuous iff its graph $\Gamma_f := \{(x, f(x)) \mid x \in X\} \subset X \times Y$ is closed in $X \times Y$.

Lemma 1.59. (Uryson's lemma) Suppose that X is a normal topological space, F_0 and F_1 are some closed non-intersecting sets. Then there exists a continuous function $f: X \to [0,1]$ such that $f|_{F_0} = 0$ and $f|_{F_1} = 1$.

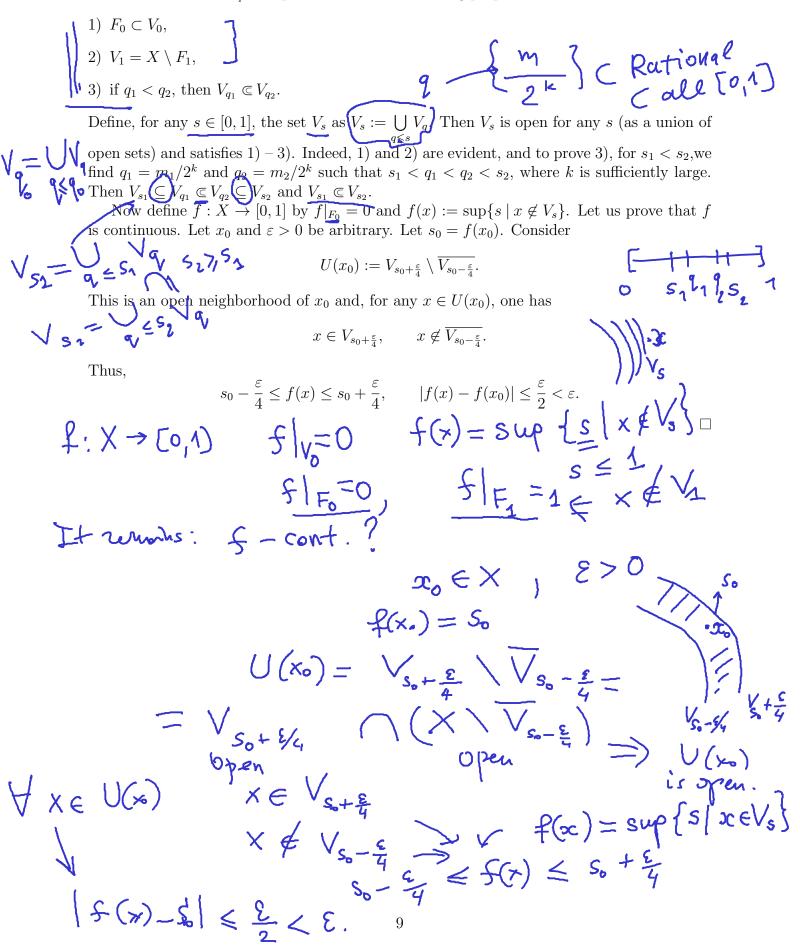
Proof. The normality of X implies that, for any closed F and its open neighborhood U, $F\subseteq U$, there exists another neighborhood V auch that $F\subseteq V\subseteq \overline{V}\subseteq U$ (see the above proof of Theorem 1.55). We will denote this by $V\subseteq U$.

Define V_q for rational q of the form $q=m/2^k$ m odd, by induction over k (i.e., first for 0 and 1, then for 1/2, then for 1/4 and 3/4, then for 1/8, 3/8, 5/8, 7/8 and so on) in such a way that $V_{q_1} \subseteq V_{q_2}$ if $q_1 < q_2$. Define V_0 and V_1 to be open sets U and V from the beginning of the proof, i.e., $F_0 \subseteq V_0$, $F_1 \subseteq X \setminus V_1$, $V_0 \subseteq V_2$. Suppose that, by the induction supposition, the sets V_q are defined for q up to 2^k as the denominator of q. Consider

$$F := \overline{V_{\frac{i}{2^k}}}, \qquad U := V_{\frac{i+1}{2^k}},$$

and define $V_{\frac{2i+1}{2k+1}} := V$ (as in the beginning of the proof, for these F and U). And so on.

The constructed V_q are open and have the following properties:



Home **Problem 1.60.** A closed subset of a closed set is closed in the entire space.

Problem 1.61. (Tietze's theorem about extension) [Mishchenko, Fomenko, pp. 78–79]

Home Suppose that X is a normal topological space, $F \subset X$ is a closed subset and $f: F \to \mathbf{R}$ is a continuous function. Then f can be extended to a continuous function $g: X \to \mathbf{R}$. If f is bounded, then g can be chosen to be bounded by the same constant.

Definition 1.62. The support of a function $f: X \to \mathbf{R}$ is

$$\operatorname{supp} f := \overline{\{x \in X \mid f(x) \neq 0\}}.$$

Theorem 1.63. Suppose that X is a normal topological space and $\{U_{\alpha}\}$ its finite open cover. Then there exist continuous functions $\psi_{\alpha}: X \to [0,1] \subset \mathbf{R}$ such that

- 1) supp $\psi_{\alpha} \subset U_{\alpha}$,
- 2) $\sum_{\alpha} \psi_{\alpha}(x) \equiv 1$.

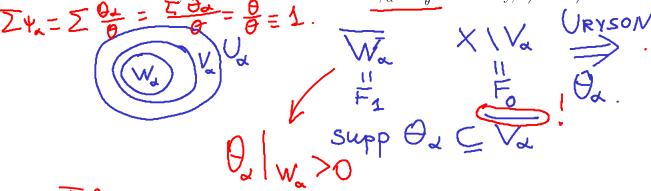
This system (not <u>uniquely determined</u>) of functions $\{\psi_{\alpha}\}$ is called a partition of unity subordinated to $\{U_{\alpha}\}$.

Remark 1.64. It is sufficient to ask local finiteness of $\{U_{\alpha}\}$: every point has a neighborhood such that it intersects only finitely many sets from $\{U_{\alpha}\}$.

Proof of theorem. Using Theorem 1.55 let us find new covers $W_{\alpha} \subset V_{\alpha} \subset U_{\alpha}$. By the Uryson lemma we can find continuous functions

$$\theta_{\alpha}: X \to [0, 1], \qquad \theta_{\alpha}|_{\overline{W}_{\alpha}} \equiv 1, \qquad \theta_{\alpha}|_{(X \setminus V_{\alpha})} \equiv 0.$$

Thus, supp $\theta_{\alpha} \subseteq \overline{V}_{\alpha} \subseteq U_{\alpha}$ and $\theta_{\alpha}|_{W_{\alpha}} > 0$. Define $\theta := \sum_{\alpha} \theta_{\alpha}$ It is a finite sum of continuous functions, hence, itself a continuous function. Since $\{W_{\alpha}\}$ is a cover and $\theta \ge \theta_{\alpha} > 0$ on W_{α} , then $\theta > 0$ everywhere. Hence we can define $\psi_{\alpha} := \frac{\theta_{\alpha}}{\theta}$. Evidently, 1) and 2) are satisfied. \square



Definition 1.65. A topological space X is *compact*, if each its open cover has a finite sub-cover (i.e. there is a finite number of elements, which still cover X).

Problem 1.66. Prove that any closed interval [a, b] is compact. Class

Problem 1.67. Prove that a closed subset of a compact space is compact itself. Home

Problem 1.68. Prove that a compact subset of a Hausdorff space is closed. Home

Theorem 1.69. Any compact Hausdorff space is normal.

Proof. Let $F \subset X$ be closed and $x \notin F$. Let us prove that there exist non-intersecting open neighborhoods U(x) and V(F). Since X is Hausdorff, for any $y \in F$, there exist $V_y \ni y$ and $U_y \ni x$ such that $V_y \cap U_y = \emptyset$. The neighborhoods V_y form a cover of F and we can find its finite sub-cover V_{y_1}, \ldots, V_{y_N} , since F is compact (see Problem 1.67). Define:

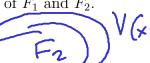
$$V(F) := V_{y_1} \cup \dots \cup V_{u_N}$$

$$V(F) := V_{y_1} \cup \cdots \cup V_{u_N}, \qquad U(x) := \bigcap_{j=1}^N U_{y_j}.$$

They are as desired.

Let now $F_1 \subset X$ and $F_2 \subset X$ be closed. According to the first part of the proof, we can find for each $x \in F_1$ open non-intersecting sets $U(x) \ni x$ and $V(x) \supset F_2$. Then $\{U(x)\}$ is an open cover of F_1 and we can find its finite sub-cover $U(x_1), \ldots, U(x_n)$. The sets $\bigcup_{i=1}^n U(x_i)$

and $\bigcap_{i=1}^{n} V(x_i)$ are demanded non-intersecting neighborhoods of F_1 and F_2 .



Home **Problem 1.70.** Prove that a continuous image of a compact is compact.

Class **Problem 1.71.** Let $f: X \to \mathbf{R}^1$ be a continuous function on a compact space X. Then f is bounded and reaches its maximal and minimal value.

Theorem 1.72. A continuous bijective mapping of a compact space onto a Hausdorff space is a homeomorphism.

Proof. Let $f: X \to Y$ be a continuous bijection, where X is a compact and Y is Hausdorff. To prove the statement, it is sufficient to prove that the image of any closed subset $F \subset X$ is a closed subset in Y. Since X is compact, then F is compact as well (see Problem 1.67). Thus, f(F) is also compact. But Y is Hausdorf. Thus, f(F) is closed (see Problem 1.68). \square

Class Problem 1.73. A cartesian product of compact spaces is compact.

f: X > Y,

fis cont.?

fis hot compact

is char.

for the inerse may

i.e. f (dozed) in chosed ?

F is compact

F is compact

in a Hard. Space

in a Hard.

2 Manifolds and tangent vectors

has a countable dense set

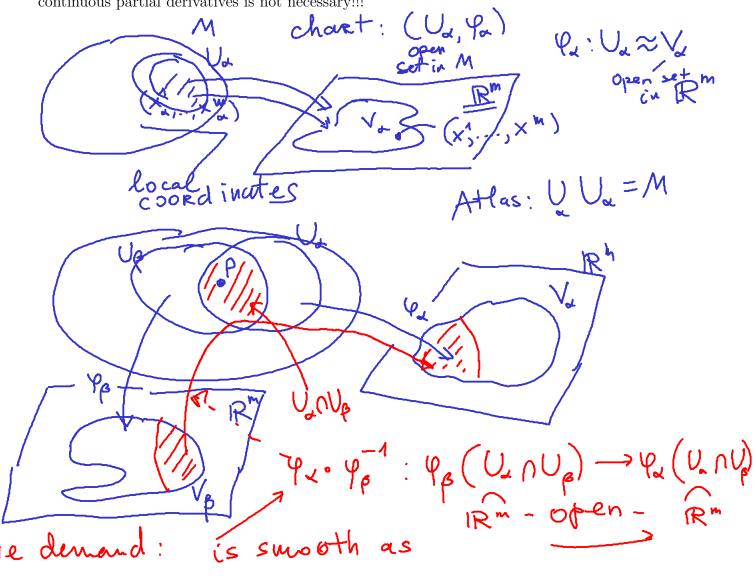
Definition 2.1. A smooth manifold of dimension m is a separable Hausdorff topological space M, equipped with a smooth atlas, i.e., its open cover $\{U_{\alpha}\}$ and a collection of homeomorphisms φ_{α} , which map U_{α} onto open subsets $V_{\alpha} \subset \mathbf{R}^m$ (the dimension m of M is denoted by dim M). They introduce on each U_{α} local coordinates. They are restricted to satisfy the following compatibility property: the change of coordinate maps (or overlap maps, or transition functions) $\varphi_{\alpha}\varphi_{\beta}^{-1}: \varphi_{\beta}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\alpha}(U_{\alpha} \cap U_{\beta})$ should be smooth as vector-valued functions, defined on an open subset in \mathbf{R}^m . A pair $(U_{\alpha}, \varphi_{\alpha})$ is called a chart.

A smooth structure is a maximal smooth atlas (not absolutely rigorous definition). These are all charts, that are compatible with all charts of some smooth atlas.

Reminder: a map $f: U \to \mathbf{R}^n$, where U is an open subset of \mathbf{R}^m , is called *differentiable* at $u \in U$ iff there is a linear map $Df(u): \mathbf{R}^m \to \mathbf{R}^n$ such that

$$\lim_{\|h\| \to 0} \frac{\|f(u+h) - f(u) - Df(u)(h)\|}{\|h\|} = 0.$$

Existence of partial derivatives of coordinate functions at u is not sufficient and existence of continuous partial derivatives is not necessary!!!



- **Remark 2.2.** We have inserted the restriction of the same m for all charts into the definition, but in fact there is a theorem which shows that if we have a homeomorphism $\varphi : U \approx V$, where $U \subseteq \mathbb{R}^n$ and $V \subseteq \mathbb{R}^m$ are some open sets, then m = n.
- Remark 2.3. If we do not demand compatibility, a manifold is called topological.
- Class Problem 2.4. Find an example of a manifold and two non-compatible smooth structures on it, i.e., two smooth atlases (U_i, φ_i) and (V_j, ψ_j) such that $\{(U_i, \varphi_i), (V_j, \psi_j)\}$ is not a smooth atlas.
- Class **Problem 2.5.** Prove that the sphere S^n and the projective space $\mathbb{R}P^n$ are smooth manifolds.
- Home **Problem 2.6.** Are the boundary of a square and 8 smooth manifolds (subspaces of \mathbb{R}^2)?
 - **Definition 2.7.** A 2*n*-dimensional manifold is called *complex analytical*, if all transition functions are complex analytical.
- Home **Problem 2.8.** Prove that S^2 is a complex analytical manifold.
 - **Definition 2.9.** A function $f: M \to \mathbf{R}$ is called *smooth*, if, for any point $P \in M$ and some chart $(U_{\alpha}, \varphi_{\alpha})$ with $P \in U_{\alpha}$, the function $f \circ \varphi_{\alpha}^{-1} : V_{\alpha} \to \mathbf{R}$, defined on an open set in \mathbf{R}^m , is smooth.