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Abstract. It is proved that the Reidemeister number of any automorphism of any
finitely generated torsion-free two-step nilpotent group coincides with the number of fixed
points of the corresponding homeomorphism of the subspace of the unitary dual related
to finite-dimensional representations, if one of these numbers is finite. An important
example of the discrete Heisenberg group is studied in detail.
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1. Introduction

Definition 1.1. Let G be a countable discrete group and φ : G → G an endomorphism.
Two elements x, x′ ∈ G are said to be φ-conjugate or twisted conjugate, iff there exists
g ∈ G with

x′ = gxφ(g−1).

We write {x}φ for the φ-conjugacy or twisted conjugacy class of the element x ∈ G. The
number of φ-conjugacy classes is called the Reidemeister number of an endomorphism φ
and is denoted by R(φ). If φ is the identity map then the φ-conjugacy classes are the
usual conjugacy classes in the group G.

If G is a finite group, then the classical Burnside theorem (see e.g. [13, p. 140]) says that
the number of classes of irreducible representations is equal to the number of conjugacy

classes of elements of G. Let Ĝ be the unitary dual of G, i.e. the set of equivalence classes
of unitary irreducible representations of G.
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Therefore, by the Burnside’s theorem, if φ is the identity automorphism of any finite

group G, then we have R(φ) = # Fix(φ̂).
One of the main achievements in the field till now is the following result.

Theorem 1.2 ([5]). Let G be a finitely generated discrete group of type I, φ one of its

endomorphism, R(φ) the number of φ-conjugacy classes, and S(φ) = # Fix(φ̂) the number

of φ̂-invariant equivalence classes of irreducible unitary representations. If one of R(φ)
and S(φ) is finite, then it is equal to the other.

The research is motivated not only by a natural desire to extend the classical Burnside
theorem to the case of infinite groups and twisted conjugacy classes, but also by dynamical
applications. Namely, the identification of Reidemeister number with a number of fixed
points in a natural way, has some very interesting consequences in Dynamics and Number
Theory (see [5]).

On the other hand, one can introduce the number R∗(φ) of ”Reidemeister classes related
to twisted invariant functions on G from the Fourier-Stieltjes algebra B(G)”, or more
precisely, the dimension of the space of twisted invariant functions on G which can be
extended up to bounded functionals on the group algebra C∗(G). Let S∗(φ) be the sum
of codimensions of subspaces LI ⊂ C∗(G)/I, where LI is generated by elements of the
form a − LgaLφ(g−1) and I runs over the Glimm spectrum of G, i. e. on the complete

regularization of Ĝ. We call S∗(φ) the number of generalized fixed points of φ̂ on the
Glimm spectrum of G.

Theorem 1.3 (weak twisted Burnside theorem, [15]). The number R∗(φ) is equal to the

number S∗(φ) of generalized fixed points of φ̂ on the Glimm spectrum of G, if one of R∗(φ)
and S∗(φ) is finite.

This result allows to obtain the strong form of twisted Burnside theorem R(φ) = S(φ)
in a number of cases.

The interest in twisted conjugacy relations has its origins, in particular, in the Nielsen-
Reidemeister fixed point theory (see, e.g. [12, 4]), in Selberg theory (see, eg. [14, 1]), and
Algebraic Geometry (see, e.g. [10]).

The congruences give some necessary conditions for the realization problem for Reide-
meister numbers in topological dynamics.

Let us remark that it is known that the Reidemeister number of an endomorphism of
a finitely generated Abelian group is finite iff 1 is not in the spectrum of the restriction
of this endomorphism to the free part of the group (see, e.g. [12]). The Reidemeister
number is infinite for any automorphism of a non-elementary Gromov hyperbolic group
[7].

The main results of the present paper are as follows.

• The Reidemeister number of any automorphism of any finitely generated torsion-
free two-step nilpotent group coincides with the number of fixed points of the
corresponding homeomorphism of the subspace of the unitary dual related to finite-
dimensional representations, if one of these numbers is finite.

• For the discrete Heisenberg group and any even number 2N an automorphism φ
is constructed with R(φ) = 2N .

• For N = 1 the mentioned fixed points are found explicitly.
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2. Preliminary considerations

Lemma 2.1. Let G be abelian. The twisted conjugacy class H of e is a subgroup. The

other ones are cosets gH.

Proof. The first statement follows from the equalities

hφ(h−1)gφ(g−1) = ghφ((gh)−1, (hφ(h−1))−1 = φ(h)h−1 = h−1φ(h).

For the second statement suppose a ∼ b, i.e. b = haφ(h−1). Then

gb = ghaφ(h−1) = h(ga)φ(h−1), gb ∼ ga.

�

Lemma 2.2 ([4, 12]). An automorphism φ : Zk → Zk with R(φ) < ∞ has a unique fixed

point: identity element.

Let us denote by τg : G → G the automorphism τg(g̃) = gg̃φ(g−1) for g ∈ G. Its
restriction on a normal subgroup we will denote by τg as well.

Lemma 2.3. {g}φk = {g k}τ
k−1◦φ.

Proof. Let g′ = f g φ(f−1) be φ-conjugate to g. Then

g′ k = f g φ(f−1) k = f g k k−1 φ(f−1) k = f (g k) (τk−1 ◦ φ)(f−1).

Conversely, if g′ is τk−1 ◦ φ-conjugate to g, then

g′ k−1 = f g (τk−1 ◦ φ)(f−1)k−1 = f g k−1 φ(f−1).

Hence a shift maps φ-conjugacy classes onto classes related to another automorphism. �

3. Extensions and Reidemeister classes

Consider a group extension respecting homomorphism φ:

(1) 0 // H
i

//

φ′

��

G
p

//

φ

��

G/H

φ
��

// 0

0 // H
i

// G
p

// G/H // 0,

where H is a normal subgroup of G. The following argument has partial intersection with
[8, 9].
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First of all let us notice that the Reidemeister classes of φ in G are mapped epimorphi-
cally on classes of φ in G/H. Indeed,

(2) p(g̃)p(g)φ(p(g̃−1)) = p(g̃gφ(g̃−1).

Suppose, R(φ) < ∞. Then the previous remark implies R(φ) < ∞. Consider a class
K = {h}τgφ′, where τg(h) := ghg−1, g ∈ G, h ∈ H. The corresponding equivalence
relation is

(3) h ∼ h̃hgφ′(h̃−1)g−1.

Since H is normal, the automorphism τg : H → H is well defined. We will denote by K
the image iK as well. By (3) the shift Kg is a subset of Hg is characterized by

(4) hg ∼ h̃(hg)φ′(h̃−1).

Hence it is a subset of {hg}φ ∩ Hg and the partition Hg = ∪({h}τgφ′)g is a subpartition
of Hg = ∪(Hg ∩ {hg}φ).

Lemma 3.1 ([8]). Suppose, # Fix(τzφ) = 1 for some representative z of any class {y}φ.

Let {zα} be the full collection of these representatives and gα some elements of G such

that p(gα) = zα. If R(φ) < ∞, then

R(φ) =
∑

α

R(τgα
φ′).

4. Torsion-free two-step nilpotent groups

A torsion-free f.g. two-step nilpotent group G is an extension (1) with H ∼= Zm,
G/H ∼= Zk, and H being the center of G. Since H is the center, the extension respects
any φ.

Theorem 4.1. Let φ be an automorphism of a torsion-free f.g. two-step nilpotent group

G and R(φ) < ∞. Then all φ-class functions are coefficients of finite-dimensional repre-

sentations of G.

Proof. By Lemma 2.2 and Lemma 3.1 one has R(φ′) < ∞. Taking a quotient by subgroup
H1 = {e}φ′ (see Lemma 2.1) one obtains a factor group G1 = G/H1 with a bijection of
φ-conjugacy classes under the projection. This means that it is sufficient to prove the
statement for G1. For G1 we have the following φ-invariant extension:

H/H1 = A → G1 → Zk,

where the abelian group A is finite.
By Lemma 2.3 the number of different sets among the shifts of a φ-conjugacy class is

less or equal R(φ)×M , where M is the number of different automorphisms τg : G1 → G1.
From the facts that G1 is finitely generated, A is finite, and G1/A is abelian, it follows
that M < ∞. Hence the common stabilizer of classes has a finite index. Let S be a
characteristic subgroup of finite index inside this stabilizer. Then a characteristic function
of φ-conjugacy class is an inverse image under projection of a function on the finite group
G1/S. This function is a coefficient of a finite-dimensional representation ρ : G1/S →
End V . Then the characteristic function of the original set is the corresponding coefficient
of the representation

G → G/H = G1 → G1/S
ρ

−→ End V.
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�

5. Twisted Burnside theorem

Definition 5.1. Denote by Ĝf the subset of the unitary dual Ĝ related to finite-dimen-
sional representations.

Theorem 5.2. Let G be a torsion-free f.g. two-step nilpotent group and φ its automor-

phism. Denote by Sf(φ) the number of fixed points of φ̂f on Ĝf . Then

R(φ) = Sf(φ)

if one of this numbers is finite.

Proof. Let us start from the following observation. Let Σ be the universal compact group
associated with G and α : G → Σ the canonical morphism (see, e.g. [3, Sect. 16.1]). Then

Ĝf = Σ̂ [3, 16.1.3]. The coefficients of (finite-dimensional) non-equivalent irreducible
representations of Σ are linear independent by Peter-Weyl theorem as functions on Σ.
Hence the corresponding functions on G are linearly independent.

It is sufficient to verify the following three statements:
1) If R(φ) < ∞, than each φ-class function is a finite linear combination of twisted-

invariant functionals being coefficients of points of Fix φ̂f .

2) If ρ ∈ Fix φ̂f , there exists one and only one (up to scaling) twisted invariant functional
on ρ(C∗(G)) (this is a finite full matrix algebra).

3) For different ρ the corresponding φ-class functions are linearly independent. This
follows from the remark at the beginning of the proof.

Let us remark that Theorem 4.1 implies in particular that φ-central functions (for φ
with R(φ) < ∞) are functionals on C∗(G), not only L1(G), i.e. are in the Fourier-Stieltijes
algebra B(G).

The statement 1) follows from Theorem 4.1. Indeed, the twisted action takes functional
related to some representation to another functional related with the same representation.
Since they are linearly independent, this component of the linear combination has to be

twisted-invariant. For any ρ ∈ Ĝf any functional has the form a 7→ Tr(ba) for some fixed
b. Twisted invariance implies twisted invariance of b (evident details can be found in [5,

Sect. 3]). Hence, b is intertwining between ρ and ρ ◦ φ and ρ ∈ Fix(φ̂f). The uniqueness
of intertwining operator (up to scaling) implies 2). �

6. An infinite series of automorphisms of discrete Heisenberg group

Consider the set of matrices


1 k m
0 1 l
0 0 1


 , where k, l, m ∈ Z.

They form the discrete Heisenberg group G with respect to the matrix multiplication.
This group has 3 generators:

a =




1 1 0
0 1 0
0 0 1


 ; b =




1 0 0
0 1 1
0 0 1


 ; c =




1 0 1
0 1 0
0 0 1


 ,
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and

(5)




1 k m
0 1 l
0 0 1


 = blakcm.

The relations are the following

[a, c] = e; [b, c] = e; [a, b] = c.

We will denote elements of G as triples:



1 k m
0 1 l
0 0 1


 = (k, l, m),

in particular,
a = (1, 0, 0); b = (0, 1, 0); c = (0, 0, 1).

The (matrix) multiplication takes form

(x1, x2, x3)(y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3 + x1y2);

(x1, x2, x3)
−1 = (−x1,−x2,−x3 + x1x2).

One has

(6) akbl = blakckl.

This allows to present any element under the form bx2ax1cx3 , because it is easy to verify
that the center of G is the infinite cyclic group generated by c = (0, 0, 1).

Any automorphism φ of G maps the center isomorphically onto itself. Hence φ(c) = c±1.
Let φ map the generators as follows:





φ(a) = (k, l, m) = blakcm;

φ(b) = (p, q, r) = bqapcr;

φ(c) = cs, where s = ±1.

Then for an arbitrary element (x1, x2, x3) ∈ G

φ(x1, x2, x3) = (φ(b))x2(φ(a))x1(φ(c))x3;

φ(b)x2 = (bqapcr)(bqapcr) · · · (bqapcr)︸ ︷︷ ︸
x2

(with use of (6), ac = ca, bc = cb)

= bqx2apx2crx2+pq(1+2+...+(x2−1)) = bqx2apx2crx2+pq
x2(x2−1)

2 ;

φ(a)x1 = (blakcm)(blakcm) · · · (blakcm)︸ ︷︷ ︸
x1

= blx1akx1cmx1+kl
x1(x1−1)

2 .

Hence,

φ(x1, x2, x3) = bqx2apx2crx2+pq
x2(x2−1)

2 · blx1akx1cmx1+kl
x1(x1−1)

2 · csx3

= bqx2+lx1apx2+kx1crx2+mx1+sx3+pq
x2(x2−1)

2
+kl

x1(x1−1)
2

+plx1x2

= (kx1 + px2, lx1 + qx2, mx1 + rx2 + sx3 + pq
x2(x2 − 1)

2
+ kl

x1(x1 − 1)

2
+ plx1x2).
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Then automorphisms of G have to satisfy

(7) φ : (x1, x2, x3) 7→

(kx1 + px2, lx1 + qx2, mx1 + rx2 + sx3 + pq
x2(x2 − 1)

2
+ kl

x1(x1 − 1)

2
+ plx1x2),

p, q, r, k, l, m ∈ Z, s = ±1.

Lemma 6.1. A map of the form (7) is an isomorphism of G if and only if kq = pl + s.

Proof. Let us prove that the restriction kq = pl + s is necessary and sufficient for φ of the
form (7) to be an endomorphism.

First, let us verify that the first two components of φ(x)φ(y) and φ(xy) coincide for all
k, l, m, p, q, r, s:

φ(x) =(kx1 + px2, lx1 + qx2, ∗);

φ(y) =(ky1 + py2, ly1 + qy2, ∗);

φ(x)φ(y) = (k(x1 + x2) + p(x2 + y2), l(x1 + y1) + q(x2 + y2), ∗);

xy =(x1 + y1, x2 + y2, ∗);

φ(xy) = (k(x1 + x2) + p(x2 + y2), l(x1 + y1) + q(x2 + y2), ∗);

Let us verify the coincidence of the last components of φ(x)φ(y) and φ(xy) for x =
(x1, x2, x3), y = (y1, y2, y3):

φ(x)φ(y) = (kx1+px2, lx1+qx2, mx1+rx2+sx3+pq
x2(x2 − 1)

2
+kl

x1(x1 − 1)

2
+plx1x2)·

· (ky1 + py2, ly1 + qy2, my1 + ry2 + sy3 + pq
y2(y2 − 1)

2
+ kl

y1(y1 − 1)

2
+ ply1y2) =

= (∗, ∗, m(x1 + y1) + r(x2 + y2) + s(x3 + y3) + A),

where

A =
pq

2
(x2(x2 − 1) + y2(y2 − 1)) +

kl

2
(x1(x1 − 1) + y1(y1 − 1)) + pl(x1x2 + y1y2)+

+ (kx1 + px2)(ly1 + qy2) =

=
pq

2
(x2

2+y2
2−x2−y2+2x2y2)+

kl

2
(x2

1+y2
1−x1−y1+2x1y1)+pl(x1x2+y1y2+x2y1)+kqx1y2.

On the other hand,

φ(xy) = φ(x1 + y1, x2 + y2, x3 + y3 + x1y2) =

= (∗, ∗, m(x1 + y1) + r(x2 + y2) + s(x3 + y3) + B),
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where

B = sx1y2 +
pq

2
((x2 + y2)(x2 + y2 − 1))

+
kl

2
((x1 + y1)(x1 + y1 − 1)) + pl(x1 + y1)(x2 + y2)

= sx1y2 +
pq

2
(x2

2 + y2
2 − x2 − y2 + 2x2y2)

+
kl

2
(x2

1 + y2
1 − x1 − y1 + 2x1y1) + pl(x1x2 + y1x2 + y2x1 + y1y2).

Hence,

φ(xy) = φ(x)φ(y) ⇔ A = B ⇔

⇔ pl(x1x2 + y1y2 + x2y1) + kqx1y2 = pl(x1x2 + y1x2 + y2x1 + y1y2) + sx1x2 ⇔

⇔ kqx1y2 = plx1y2 + sx1y2 ⇔ kq = pl + s.

Let us verify that the same condition kq = pl+s is sufficient for φ to be bijective. Suppose
p = (p1, p2, p3) ∈ G. Let us find all elements x such that φ(x) = p, i.e.





kx1 + px2 = p1;

lx1 + qx2 = p2;

F (x1, x2) + sx3 = p3.

Since kq − pl = s = ±1, this system of equations has a unique solution ∀ p1, p2, p3. Hence
φ is a bijection. �

Lemma 6.2. If s = 1, then R(φ) = ∞.

Proof. This follows immediately from Lemma 2.2. �

Lemma 6.3. For each N ∈ N there exists an automorphism φ of G such that R(φ) = 2N .

Proof. For any automorphism φ, i.e. a map of the form (7) with kq − pl = ±1, one has

φ(x) = (kx1 + px2, lx1 + qx2, sx3 + Q0(x1, x2)).

Let g = (g1, g2, g3). Then g−1 = (−g1,−g2, g1g2 − g3) and

φ(g−1) = (−kg1 − pg2,−lg1 − qg2,−sg3 + Q1(g1, g2)),

gxφ(g−1) = (g1 + x1, g2 + x2, g3 + x3 + g1x2)(−kg1 − pg2,−lg1 − qg2,−sg3 + Q1(g1, g2))

= (x1 + (1 − k)g1 − pg2, x2 − lg1 + (1 − q)g2, x3 + 2g3 + Q2(g1, g2, x1, x2)).

Take k = 1 − N , p = N , l = 1, q = −1. Then s = kq − pl = N − 1 − N = −1 as in
Lemma 6.1. One has

(8) gxφ(g−1) = (x1 + Ng1 − Ng2, x2 + 2g2 − g1, x3 + 2g3 + Q2(g1, g2, x1, x2)).

Denote f1 := g1 − g2, f2 := 2g2 − g1, f3 := g3. Then g1 = f2 + 2f1, g2 = f2 − f1, and

(9) xφ = {gxφ(g−1) | g ∈ G}

= {(x1 + Nf1, x2 + f2, x3 + 2f3 + Q3(f1, f2, x1, x2)) | f1, f2, f3 ∈ Z}.
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Hence, if the first components of x and y do not coincide modulo N , then x � y. Let

Hr = {(r + f1N, ∗, ∗) ∈ G | f1 ∈ Z}.

Then elements of Hi are not equivalent to element of Hj if i 6= j, i, j = 1, . . . , N.
Let us verify that each of Hi consists exactly of two φ-conjugacy classes. Let us remind

that

Q0(x1, x2) = mx1 + rx2 + pq
x2(x2 − 1)

2
+ kl

x1(x1 − 1)

2
+ plx1x2.

This is a polynomial in 2 variables. It is easy to see that the parity of its value for some
arguments is determined by their values modulo 4. Returning to the definitions of Qi one
can see that all of them enjoy the same property. Let us fix r ∈ {0, . . . , N − 1}. Then in
accordance with (9) one has

{(r, 0, 0)}φ = {(r + Nf1, f2, 2f3 + Q3(f1, f2, x1, x2)) | f1, f2, f3 ∈ Z}

=
⋃

i,j∈Z4

{(r + Nf1, f2, 2f3 + Q3(f1, f2, r, 0)) | f1 ∈ 4Z + i, f2 ∈ 4Z + j, f3 ∈ Z}

=
⋃

i,j∈Z4

{(r + Nf1, f2, 2f3 + (Q3(i, j, r, 0)) mod 2) | f1 ∈ 4Z + i, f2 ∈ 4Z + j, f2 ∈ Z} ;

{(r, 0, 1)}φ =
⋃

i,j∈Z4

{(r + Nf1, f2, 2f3 + 1 + (Q3(i, j, r, 0)) mod 2) |

f1 ∈ 4Z + i, f2 ∈ 4Z + j, f3 ∈ Z} .

Hence, each element of Hr is equivalent to (r, 0, 0) or (r, 0, 1). Namely, an element of the
form (r + f1N, f2, f3), where f1 = i(N) and f2 = j(N), belongs to {(r, 0, 0)}φ if and only
if f3 has the same parity as Q3(i, j, r, 0), and belongs to {(r, 0, 1)}φ otherwise. �

7. Finding of fixed representations

Consider the discrete Heisenberg group G as a semi-direct product of Z2 and Z:

H = Z2
h Z, α̃ : Z → Aut(Z2);

s 7→ αs, α =
(

1 1
0 1

)
.

So, G consists of integral triples ((m, k), s) with the following multiplication:

((m, k), s) ∗ ((m′, k′), s′) = ((m, k) + αs(m′, k′)) = ((m + m′, k + k′ + sm′), s + s′);

In particular,

((m, k), 0) ∗ ((0, 0), s) = ((m, k), s);

The dual object for Z2 is the torus T2. A pair χ = (ξ, η) ∈ T2 corresponds to the
character (m, k) 7→ e2πi(mξ+kη). The torus is a right G-space for the action

χh(m, k) = χ(h ∗ ((m, k), 0) ∗ h−1).

The action of ((m, k), s) is defined by the formula

(ξ, η) 7→ (ξ, η)
(

1 0
s 1

)
= (ξ + sη, η).

We need the following facts.
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Theorem 7.1 (Glimm). [13, Sect. 9.1] For complete separable metric H-space X the

following properties are equivalent:

(1) Each H-orbit in X is locally closed.

(2) The quotient space X/H is a T0-space.

(3) There exists a countable family of H-invariant Borel subsets in X separating any

two H-orbits.

(4) Each H-ergodic Borel measure on X is supported on one of these orbits.

Theorem 7.2 (Mackey). [13, p. 197] If N is a closed commutative normal subgroup of a

locally compact group H and an action of H on N̂ satisfies the properties of the Glimm’s

theorem, then any irreducible representation ρ of H has the form Ind(H, Y, β), where Y

is the stabilizer of some point χ ∈ N̂ and the restriction of β on N is a scalar one and is

a multiple of the character χ.

Conversely, [2, Theorem 5, p. 509] implies the following. If β is an irreducible represen-
tation of Y with the restriction on N being a multiple of a character, then Ind(H, Y, β)
is irreducible.

Theorem 7.3. [11, Theorem 3.2, Chapter II] Let G be a locally compact group with

countable base acting transitively on a locally compact Hausdorff space Γ. Let γ be an

arbitrary point of Γ with the stabilizer H. Then H is closed and the map gH 7→ gγ is a

homeomorphism of G/H onto Γ.

Hence, for such G and Γ each orbit O is homeomorphic to the quotient space of G by
the stabilizer of any point of this orbit.

Let us describe finite dimensional irreducible representations of H. By the previous
paragraph and the Mackey’s theorem, all these representations are induced from the

stabilizer of some point χ = (ξ, η) ∈ T2 such that its orbit Ôχ is finite. Let it for some χ
consist of p points. The stabilizer of χ is

Y = {((m, k), ps) | m, k, s ∈ Z} = Z2
h (pZ).

By [2, Lemma 3, p. 508] the multiplication by the character of χ is a bijection between
the collections of irreducible unitary representations pZ and Y = Z2

h (pZ).
Hence, any p-dimensional irreducible unitary representation of H (P < ∞) can be

obtained as a result of the following procedure: 1) choose a point χ = (ξ, η) ∈ T2 with
the orbit of cardinality p; 2) choose an irreducible representation α of the subgroup
pZ = {((0, 0), ps) | s ∈ Z}; 3) multiply this representation by the character of χ and
obtain a representation β of the corresponding subgroup Y ; 4) form the representation ρ
of H induced by β.

Choose an arbitrary α ∈ [0, 1) and consequently an irreducible representation π of the
subgroup (pZ):

π((0, 0)ps) = e2πisα.

The multiplication by the character χ = (ξ, η) gives rise the following representation β of
the subgroup Y :

β((m, k), ps) = χ(m, k)e2πisα = e2πi(mξ+kη+sα);

Now we have to form the representation ρ of H induced by β. For this purpose let
us remind the realization of the induced representation in the space of L2-functions on
X = Y �H (see, e.g. [13, pp. 188–190]) for the case of a discrete group.
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Let H be a discrete group, Y its subgroup, β a unitary representation of Y in a Hilbert
space V , X = Y �H the corresponding right homogeneous space. Let us fix a map
s : X → G such that s(Hg) ∈ Hg. Then the induced representation ρ in the space
L2(X, V ) is defined by the following formula:

[ρ(h)f ](x) = A(h, x)f(xh),

where the operator valued function A(h, x) is defined by

A(h, x) = β(y),

while y ∈ Y is defined by
s(x)h = ys(xh).

In our case β is 1-dimensional and A(h, x) is a complex valued function. One has
Y ((m, k), s) = Y ((0, 0), s mod p). Hence,

Y �H = {Y ((0, 0), 0), Y ((0, 0), 1), . . . , Y ((0, 0), p − 1)} =: {x0, x1, . . . , xp−1}.

Choose s : X → G being

s : Y ((m, k), s) 7−→ ((0, 0), s mod p).

Now we have for given x ∈ X = Y �H and h ∈ H to find y ∈ Y in accordance with
s(x)h = ys(xh). Let h = ((m, k), s), x = Y ((0, 0), j). Then s(x) = ((0, 0), j);

s(x)h = ((0, 0), j)((m, k), s) = ((m, k + jm), s + j);

s(xh) = s(Y ((0, 0), j)((m, k), s)) = s(Y (m, k + jm), s + j) = ((0, 0), (s + j) mod p).

Let the desired y be y = ((yk, ym), ys). Then

ys(xh) = ((yk, ym), ys)((0, 0), (s + j) mod p) = ((ym,k ), ys + (s + j) mod p).

Hence,
ym = m, yk = k + jm, ys = s + j − (s + j) mod p.

Denote [l]p := l − l mod p. Then y = ((m, k + jm), [s + j]p) and

A(h, x) = β(y) = β((m, k + jm), [s + j]p) = e2πi(mξ+(k+jm)η+
[s+j]p

p
)

= e2πi(mξ+(k+jm)η+[ s+j

p
]),

where [r] is the entire part of r. Finally, the induced representation ρ in L2(X) =
L2({x0, x1, . . . , xp−1}) is given by

[ρ(h)f ](x) = A(h, x)f(xh) = e2πi(mξ+(k+jm)η+[ s+j

p
])f(xh);

[ρ((m, k), s)f ](xj) = e2πi(mξ+(k+jm)η+[ s+j

p
])f(x(j+s) mod p); j = 0, p − 1.

Let us choose in L2(X) = L2({x0, x1, . . . , xp−1}) the base ε0, ε1, . . . , εp−1, where εj is the
indicator of a point xj ∈ X. With the respect to this base our representation is defined
by

(10) ρ((m, k), s) : εj 7→ e2πi(mξ+(k+jm)η+[ s+j

p
]α)ε(j−s) mod p; j = 0, p − 1.

So, all finite dimensional irreducible unitary representations of H are of the form (10)
with some ξ, η, α ∈ [0, 1), and the orbit of χ = (ξ, η) ∈ T2 consists of p points. The action
of ((m, k), s) on T2 is given by

(ξ, η) 7→ (ξ + sη, η).
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Hence the orbit of this action has cardinality p iff η is an irreducible fraction with denom-
inator p.

Let us find the character χρ of the representation (10). The matrix of ρ((m, k), s) is
diagonal for s ≡ 0 mod p and has zeros on the diagonal for other s. Hence, for s non
divisible by p one has χρ((m, k), s) = 0. So,

χρ((m, k), s) = δ0
s mod p

p−1∑

j=0

exp(2πi(mξ + kη + jmη + [
s + j

p
]α)).

For s divisible by p and j ∈ 0, p − 1 one has [ s+j

p
] = s

p
. Let us transform the expression:

χρ((m, k), s) = δ0
s mod p exp(2πi(mξ + kη +

s

p
α))

p−1∑

j=0

e2πimηj .

To calculate the above sum of p terms of a geometric progression, let us observe that
e2πimη = 1 iff mη ∈ Z, i.e. m ≡ 0 mod p. Hence,

p−1∑

j=0

e2πimηj =

{
p, if m ≡ 0 mod p,
exp(2πimηp)−1
exp(2πimη)−1

if m 6≡ 0 mod p.

But ηp ∈ Z. Hence, exp(2πimηp) − 1 = 0. As a result we obtain

χρ((m, k), s) =

{
p · e2πi(mξ+kη+ s

p
α), ifs ≡ 0 mod p and m ≡ 0 mod p,

0, otherwise.

Consider the following automorphism φ of G.

φ((m, k), s) = ((s + m,−k +
m(m − 1)

2
+ sm), m).

After identification of the representation from the present section and the previous one,
we can easily see that R(φ) = 2. Let us find implicitly the character of the representation
ρφ.,

One has:

ρφ((m, k), s)εj = ρ((s + m,−k +
m(m − 1)

2
+ sm), m)εj =

= exp 2πi((s + m)ξ + (−k +
m(m − 1)

2
+ sm + js + jm)η + [

m + j

p
]α)ε(j−m) mod p.

Analogously calculations above, χρφ vanishes on elements with m 6≡ 0 mod p, and then
we use the fact that [m+j

p
] = m

p
if m ≡ 0 mod p and j ∈ 1, p;

χρφ((m, k), s) = δ0
m mod p exp 2πi((s+m)ξ+(−k+

m(m − 1)

2
+sm)η+

m

p
α)

p−1∑

j=0

e2πi(s+m)ηj ,

and
p−1∑

j=0

e2πi(s+m)ηj =

{
p, if (s + m)η ∈ Z i.e. if (s + m) ≡ 0 mod p,

0, if (s + m)η 6∈ Z
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Hence,

χρφ((m, k), s) =

{
p · e2πi((s+m)ξ+(−k+

m(m−1)
2

+sm)η+ m
p

α), if s and m ≡ 0 mod p,

0, otherwise.

Let us find the finite-dimensional fixed points of φ̂. One of them is the trivial 1-
dimensional representation.

For finding another, let us write the property of coincidence of characters:

e2πi((s+m)ξ+(−k+
m(m−1)

2
+sm)η+ m

p
α) = e2πi(mξ+kη+ s

p
α) for s, m ≡ 0 mod p.

Let p = 2. Then η = 1
2
. Then

e2πi((s+m)ξ+ 1
2
(−k+ m(m−1)

2
+sm)+ m

2
α) = e2πi(mξ+ 1

2
k+ s

2
α) for even s, m.

Putting s =: 2t, m =: 2q we obtain:

e2πi((2t+2q)ξ+ 1
2
(−k+q(2q−1)+4tq)+qα) = e2πi(2qξ+ 1

2
k+tα) for any s, m ∈ Z.

This is equivalent to

(
(2t + 2q)ξ +

1

2
(−k + q(2q − 1) + 4tq) + qα

)
−

(
2qξ +

1

2
k + tα

)
∈ Z for any s, m ∈ Z.

After reducing and cancelation of entire summands q2, 2tq,−k one gets:

2tξ −
q

2
+ qα − tα ∈ Z for any s, m ∈ Z;⇔

⇔ t(2ξ − α) + q(α −
1

2
) ∈ Z, ∀s, m ∈ Z.

This relation is evidently satisfied for α = 1
2
, ξ = 1

4
.

So the fixed class representation is two-dimensional. It is defined by (10) with α =
1
2
, ξ = 1

4
, η = 1

2
, i. e.

ρ2((m, k), s) : εj 7→ e2πi( m
4

+ k+jm

2
+ 1

2
[ s+j

2
])ε(j−s) mod 2; j = 0, 1.
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