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1 Some concepts from topology

We start from metric spaces. 43

Definition 1.1. A metric p on a sc a mapping p : x X = (] 00)
satisfy:

1 plz,y) =0 <& z=y Vir,y€ X (identity axiom);

—_—

2. p(z,y) = py,x) Vz,y € X (symmetry a_xiom{;
e
3. p(z,2) < plz,y) + p(y,2) Vz,y,z € X (triangle axiom). x

A pair (X g} where X is a set and p is a metric on X, is called ¢_mefric . mctime%
we write simply X.

A subset YV C X is automatically a metric space itsclf. F\ / \/7‘\{ _ [0 W\

Definition 1.2. Diameter of Y is diamY := sup p(z If diamY < oo, then Y is
—— ERTIS 4 -
bounded. A ball (ball neighborhood) is - -
\
B.(z) :={y € X | p(y,z) <£}. ‘ £
— . .
The distance between Y € X and Z C X is ' L o

pY,2) =

Definition 1.3. If p(y,Y’) = 0, then y is an 2 ; ¥, closure of a subs
YisY :={the sct of all adhcrent points of Y}. Evidently, Y CY. A sibseT Y 15 closed, if
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Definition 1.4. A point z is an mﬁr’m(m point of a subsct Y, if there gxist? c > ( such that
B.(x) CY (in particular, oY) T terior of Y is the set Int YC Y of all its interior
points. A subsct Y is open, iffY = Int Y|
T C

Problem_1.5. Supposc, X pcf Th(‘n Y C X is opcn iff (if and only if)

LR closed. Ty fact; m :
L~
rem 1.6. Suppose,
T ——————

1 O X is open;

——

2 O 9 is open;

IHNES X\XWY =76 )TT-X\Y

3 O the uni WW(”H subsets U, C X is open; @ - ( )
wITC I

4 O the intersection ﬂ U; of _ﬁnzte c¥llection of open subsets U; C X is open;

1 C @ is closed; _‘/ko 4 X:k.

2 C X is closed;

3 C the intersection ﬂ F, of collection of closed subsets F,, C X is closed; n UK f—.{é‘k
acA o
k Is ‘\-0"
4 C the union |J F; of @ finite) collection of closed subsets F; C X is closed. \
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Proof. Propertics 1 O and 2 O are evident. Let us prove 3 O. Suppod

hcn. for some a, we have z € Usi and B,y € U,. Then B,y € U, C 0% l

Let us prove 4 O. bllpposc U= ﬂ U;, © € U. Then there arc g; (i = 1,...,k) such
that =z € B,,(z) C U;. Take & := min El,...,Ek}. Take B.(z) C B, (z) C U; Vi. Hence,

BE(LL' @ U —————————
nally, yProblcml.[),kO@kCVk.*‘ O
Home Problem 1.7. Show that the finitenesg gggdltlon is essential. b]( b‘\
ome Problem 1.8. Grovc that B.(z) Is open,
Home Problem 1.9. Prove that IntY is open, i.c., Int(IntY) = Int V. T
Home Problem 1.10. Prove that Y is closed, ic., Y =Y.

Definition 1.11. A topology on a sct X is a system 7 of its subscts (these subsets are called
open), restricted to satisfy the following axioms:

-——
1) Xe
2) ger;

3)ifU,erforala€ A, then |J U, €73

agA

k
4) if0y,...,U. €7, then N U; € 7.
i1

Then (X, called a Wﬂy set of the form F = X\ U _where U € 7, is

called clo:
Home Problem 1.12. Verify 1 C — 4 C for closed scts in a topological space. )

Example 1.13. Any metric space is a topological space.
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Class Problem 1.14. Find an cxample of a topological space (X, 7), which is not related to a f.my

metric (this is called: topology gis not metrizable). x ’\
-
X/&\ 3, \ o, (# L

¥ v&\’\\’*ﬂg_(ﬂ}o ;ff"“(

Definition 1.15. An (ope
in a topological space ifany 4
An adherent point o is a pomt 916 X such that any its nmghborhood has a
non-cmpty intersection with Y The closure of Y is the set ¥ of all adherent points of ¥ (in
particular, Y C Y).
A point z € Y is called an interior point of Y, if there exists a neighborhood U of # such
e E._(i C Y. The sct Int Y of all interior points of Y is called the interiorsof Y.

st
"”«

U

roblem 1.16. Y C X isclosediff ¥ =Y. Home
((b roblem 1.17. Y is closed. Home
oblem 1.18. Y C X isopeniff Y =IntY. Home
" o‘ PYoblem 1.19. IntY is open. Home
efinition 1.20. Suppose Y C X, where (X, 7) is a topological space. The system of scts
rn={UNY|Ue T}pfs callod the induced topology (bypT oi—lY). " g
——
oblem 1.21. Verify the axioms for 1. Home
Problem 1.22.  Suppose that (X, px) is a metric space. Then one can introduce a topology Home
onY C X in two ways:
1) px generates 7x, which then induces 7,
2) px after the restriction on Y gives py, which generates 7, ¢ - Y ﬂ
Prove that 7; = 7,,, . —




Problem 1.21. Verify the axioms for 7.
Problem 1.22. Supposc that (X, px) is a metric space. Then onc can introduce a topology
on Y C X in two ways:

1) px gencrates Ty, which then induces 7y,

2) px after the restriction on Y gives py, which generates 7,

Prove that 71 = 7,,.. %— ﬁl\
-

—
Definition 1.23. A subsct Y C X is called (everywhere) dense, if
—
Let Y7 € X and ¥2 € X be dense open sets. Then YWOHS(‘

Problem 1.24.
open set.

A
~=X V/QC_ IRLA A

Defin’

0h for any nc1ghb0rh00d of 1g i (f(=
such that j(U (zg)) €V ([f(zg map 1s called continuous, if it is continuous at cach point.
e ————

Theorem 1.26. The next properties are equivalent:
1) amap f: X =Y is continuous;

2) for any open set V C Y, its full pre-image f~1(V) is epen in X;

({) for any closed set F C Y its full pre-image f~'(F) is closed in X.

Proof. Since {1 (Y\V) = f~4Y)\f~(V) = X\ f~(V), propertics 2) and 3) arc equivalent.
Suppose, 1) is fulfilled, i.c., f is continuous, and ¥V C Y is an open set. Then either the
pre-image of V is empty, hence open, or there is some point z, i.c., f(z) € V. Then, by
definition, for any such z, there exists a neighborhood U(x) such that f(U(z)) € V, Lc.,
U(z) C f~Y(V). Thus, any point of f~'(V) is interior.
Conversely, suppose 2) is fulfilled. Then, for V = V(f(zy)), one can take U(zy) = f~1(V)
as the desired open ggighborhood (sce Def. 1.25). O

et TRICd continuous at_a_point 2
0)), there exists a neighborflood U7 (7o)
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Home Problem 1.27. Suppose, X = FyUF,, where Fy and F; are closed subsets, and f: X =V
is a map. Then f is continuous iff f | Fi =Y and f| #, 1 £5 = Y arc continuous.

Class Problem 1.28. Let f, : X — R be a sequence of continuous functions, which is uniformly
convergent on X to some function f. Then f is continuous.

Home Problem 1.29. TLet X and Y be metric spaces. Prove that f : X — Y is continuous
at o as a map of topological spaces iff, for any sequence {z,} with le T, = Tp we have

nlggu f(In) = j{TU)

1) f is a bijection;

—
N Frand Ft (mvcrso mapping) arc

E]ass Problem 1.31. Give an example of a continuous bijection, which is not a homeomorphism.

Definition 1.32. A basc of a topology/'r iq a system of open set: such that any 7—open
set is as a union of some of them

Home f Problem 1.33. What conditions nced to be imposed on an arbitrary system of gubgets
Bi, to obtain some topology by taking their arbitrary unions? Q b

Definition 1.34. Suppose that (X, 7x) and (Y, 7y) are topological spaces.
X x Y the following basc of topology:

a (y.)
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Home Problem 1.38. Let (X, px) and (Y, py) be metric spaces. Define on X x Y the following
distances:

Home Problem 1.35. Verify (with the help of the previous problem) that X x Y is really a |
topological space. com—— V
Home Problem 1.36. Prove that X x Y and ¥ x X arc homcomorphic. *
Home Problem 1.37. Prove that (X x Y) x Z and X x (Y x Z) arc homcomorphic.
Praax((T1,11), (T2,92)) = max{px (w1, %2), py (y1,92)}, u a

pa((w1, 1), (B2, 32)) := \/ P (%1, 72) + P5 (41, 72),
P ((@1,01); (22, 92)) = px(1,72) + pyv (31, 92)- — '\Ax x v

Prove:
1) That these are metrics. 4
2) That the corresponding topologics on X X Y coincide.
Class Problem 1.39. Prove that (a,b), [a,b) and [a,b] (subscts of real line) are pair-wisc non-
homcomorphic.

C:




Home Problem 1.35. Verify (with the help of the previous problem) that X x Y is really a
topological space.

Home Problem 1.36. Prove that X x Y and ¥ x X are homeomorphic.

Home Problem 1.37. Prove that (X xY) x Z and X x (Y x Z) arc homcomorphic.

Home Problem 1.38. Let (X, px) and (Y, py) be metric spaces. Definc on X x Y the following

distances:
pmax((zla 3}1}, (mﬂu ?}2)) = maX{PX (zla I?}J Py (3}1, y?)}:
PZ((Ilryl)i (3;27 yg)) = \/pg((fﬂl: :EE} + ,0?/ (yli y?}?
P+ ((x1,31), (22,102)) == px (1, T2) + py (1, 02)-
Prove:

1) That these arc metries.
2) That the corresponding topologics on X x Y coincide.
Class Problem 1.39. Prove that (a,b), [a,b) and [a,b] (subsets of real line) are pair-wise non-
homeomorphic.
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1.1 Connectedness and arc connectedness

Definition 1.40. A topological spacc X is called disconnected, if one of the following (cvi-
dently equivalent to cach other) conditions is fulfilled:

e X is cqual to a union of its two non-intersecting non-empty open subsets.
e X has a non-cmpty subset A #£ X, which is open and closed simultancously.

R=>\A

e X is equal to a union of its two non-intérsecting non-empty open and closed simulta-

ncously subscts. ’

Otherwise X is connected.

Definition 1.41. A topological space X is called arc connected, if, for any two points
Tg, @1 € X, there exists a continuous map (path) f: [0,1] = X, f(0) = zq, f(1) = z;.

Problem 1.42. Any interval [o,b] C R is connected and arc connected. Class
’
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Theorem 1.43. Suppose, X = | Xa, cach X, is connected, and ([ Xo # @. Then X is

connected.

Proof. Suppose that X is disconnected, X = AUB, AN B =@, A and B arc non-empt;
closed-open sets. Then, for cach o, we have X, = (X, N A) U (X, N B). By the definitio
of the induced topology, these sets are closed-open in X,,. Since X, is connected, onc of
them should be empty. Hence, cach X, belongs entirely cither to A, or to B, which do not
intersect. Since A and B are non-cmpty and X is the union of X,,, then at least one of X,
say X, 18 contained in A and some other, X,,, € B. Then (X, € X,, N X,, = &. A

0
o

contradiction. O

Theorem 1.44. Suppose that, for any two points x and y of a topological space X, there
exists a connected subset Py, such that x € P, and y € P,,. Then X is connected.

Proof. Suppose that X is disconnected: X = A ANDB =0, Aand B arc non-cmpty
closed-open subsets. Then there exist some a € A, b € B and a corresponding P,,. Then
Py = (PypnNA)U(P,NB). The subsets PN A and P,N B are closed-open in Py, and non-
empty (the first one contains a, the second one — b). A contradiction with connectedness
of P,. i

Problem 1.45. The image of a connected space under a continuous mapping is connected. Home

-/

Theorem 1.M6. An arc connected space is connected. )

grmm————
Proof. By the prévious problem, the set ([0, 1]) is connected, where f = f,, ., is the function
from Def. 1.41. Taking P, ., := f([0,1]), apply Theorem 1.44. O

Problem 1.47. Find an example of connected space, which is not arc-connected. Class
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