General Topology ___ Mfd ____ } -> Vector fields, Tensor fields --- Connection, Bundles integration and diff. of exterior (differential form). -> K-theory. Exam in January

Oral

1) Theor.

1 | Problem. from a list knowh Not using Sources. Only paper and 3 h ledwirtent lan. E-mail link to the page of course invite to the a Telegram Group. (to be created)
"consultation" a) in distant

b) on request. 5 exul satist.

Some concepts from topology

We start from metric spaces.

Definition 1.1. A metric ρ on a set X is a mapping $\rho: X \times X \to [0, \infty)$, restricted to satisfy:

- $x = y \quad \forall x, y \in X \text{ (identity axiom)};$
- 2. $\rho(x,y) = \rho(y,x) \quad \forall x,y \in X \text{ (symmetry axiom)};$
- 3. $\rho(x,z) \le \rho(x,y) + \rho(y,z) \quad \forall x,y,z \in X$ (triangle axiom).

A pair (X, ρ) , where X is a set and ρ is a metric on X, is called a metric space. ometimes we write simply X.

A subset $Y \subset X$ is automatically a metric space itself.

then Y is **Definition 1.2.** Diameter of Y is diam $Y := \sup_{x \in \mathcal{X}} \rho(x,y)$ If diam Y

bounded. A ball (ball neighborhood) is

$$B_{\varepsilon}(x) := \{ y \in X \mid \rho(y, x) < \varepsilon \}.$$

The distance between $Y\subseteq X$ and $Z\subseteq X$ is

$$\rho(Y,Z) := \inf_{y \in Y, z \in Z} \rho(y,z)$$

Definition 1.3. If $\rho(y,Y)=0$, then y is an adherent point of Y. The closure of a subset Y is $\overline{Y} := \{ \text{the set of all adherent points of } Y \}$. Evidently, $Y \subseteq \overline{Y}$. A subset Y is closed, if $Y = \overline{Y}$.

12

Home Problem 1.7.

Home Problem 1.8. (Prove that $B_{\varepsilon}(x)$ is open.

Home Problem 1.9. Prove that Int Y is open, i.e., Int(Int Y) = Int Y.

Home Problem 1.10. Prove that \overline{Y} is closed, i.e., $\overline{\overline{Y}} = \overline{Y}$.

Definition 1.11. A topology on a set X is a system τ of its subsets (these subsets are called open), restricted to satisfy the following axioms:

- 1) $X \in \tau$;
- 2) $\varnothing \in \tau$;
- 3) if $U_{\alpha} \in \tau$ for all $\alpha \in A$, then $\bigcup_{\alpha \in A} U_{\alpha} \in \tau$;
- 4) if $U_1, \ldots, U_k \in \tau$, then $\bigcap_{i=1}^k U_i \in \tau$.

Then (X,τ) is called a *topological space*. Any set of the form $F=X\setminus U$, where $U\in \tau$, is called *closed*

Home Problem 1.12. Verify 1 C – 4 C for closed sets in a topological space.

Example 1.13. Any metric space is a topological space.

To = { x, {a,e}} \$, {a}, {6}, {a,6} - list of all subsets. \$(aa)=9(A)=0, 9 (a11)=r {a} ⇒ [a] is yen, syn {b}

Home Problem 1.35. Verify (with the help of the previous problem) that $X \times Y$ is really a topological space.

Home **Problem 1.36.** Prove that $X \times Y$ and $Y \times X$ are homeomorphic.

Home Problem 1.37. Prove that $(X \times Y) \times Z$ and $X \times (Y \times Z)$ are homeomorphic.

Home **Problem 1.38.** Let (X, ρ_X) and (Y, ρ_Y) be metric spaces. Define on $X \times Y$ the following distances:

 $\rho_{\max}((x_1,y_1),(x_2,y_2)) := \max\{\rho_X(x_1,x_2),\; \rho_Y(y_1,y_2)\},$

$$\rho_2((x_1,y_1),(x_2,y_2)) := \sqrt{\rho_X^2(x_1,x_2) + \rho_Y^2(y_1,y_2)},$$

$$\rho_+((x_1,y_1),(x_2,y_2)) := \rho_X(x_1,x_2) + \rho_Y(y_1,y_2).$$

Prove:

1) That these are metrics.

2) That the corresponding topologies on $X \times Y$ coincide.

Class Problem 1.39. Prove that (a, b), [a, b) and [a, b] (subsets of real line) are pair-wise non-homeomorphic.

1.1 Connectedness and arc connectedness

Definition 1.40. A topological space X is called *disconnected*, if one of the following (evidently equivalent to each other) conditions is fulfilled:

- ullet X is equal to a union of its two non-intersecting non-empty open subsets.
- X has a non-empty subset $A \neq X$, which is open and closed simultaneously.
- X is equal to a union of its two non-intersecting non-empty open and closed simultaneously subsets.

Otherwise X is connected.

Definition 1.41. A topological space X is called *arc connected*, if, for any two points $x_0, x_1 \in X$, there exists a continuous map (path) $f: [0,1] \to X$, $f(0) = x_0$, $f(1) = x_1$.

Problem 1.42. Any interval $[a,b] \subset \mathbb{R}$ is connected and arc connected.

Theorem 1.43. Suppose, $X = \bigcup X_{\alpha}$, each X_{α} is connected, and $\bigcap X_{\alpha} \neq \emptyset$. Then X is connected. *Proof.* Suppose that X is disconnected, $X = A \cup B$, $A \cap B = \emptyset$, A and B are non-empty closed-open sets. Then, for each α , we have $X_{\alpha} = (X_{\alpha} \cap A) \cup (X_{\alpha} \cap B)$. By the definition of the induced topology, these sets are closed-open in X_{α} . Since X_{α} is connected, one of them should be empty. Hence, each X_{α} belongs entirely either to A, or to B, which do not intersect. Since A and B are non-empty and X is the union of X_{α} , then at least one of X_{α} , say X_{α_0} is contained in A and some other, $X_{\alpha_1} \subseteq B$. Then $\bigcap X_{\alpha} \subseteq X_{\alpha_0} \cap X_{\alpha_1} = \emptyset$. A contradiction. **Theorem 1.44.** Suppose that, for any two points x and y of a topological space X, there exists a connected subset P_{xy} such that $x \in P_{xy}$ and $y \in P_{xy}$. Then X is connected. *Proof.* Suppose that X is disconnected: $X = A \cup B$, $A \cap B = \emptyset$, A and B are non-empty closed-open subsets. Then there exist some $a \in A$, $b \in B$ and a corresponding P_{ab} . Then $P_{ab} = (P_{ab} \cap A) \cup (P_{ab} \cap B)$. The subsets $P_{ab} \cap A$ and $P_{ab} \cap B$ are closed-open in P_{ab} and nonempty (the first one contains a, the second one -b). A contradiction with connectedness of P_{ab} . Problem 1.45. The image of a connected space under a continuous mapping is connected. Home Theorem 1.46. An arc connected space is connected. *Proof.* By the previous problem, the set f([0,1]) is connected, where $f=f_{x_0,x_1}$ is the function from Def. 1.41. Taking $P_{x_0,x_1} := f([0,1])$, apply Theorem 1.44. Problem 1.47. Find an example of connected space, which is not arc-connected. Class our arc-conn f: [9/2]f(0)= x1, f(1)= x1

 $f(t) = (\times/t), y/t) \quad (t \to 0)$ all internet value, hence it takes So f cannot be continue So f can n. $f: [a, b] \xrightarrow{\text{Covt}} [a, d]$ f(a) = c , f(i) = d $\forall u \in [c, d] \rightarrow x \in [a, l] , s.t$ 0 xx = x(a) x(4x)