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Abstract. The purpose of the present mostly expository paper (based mainly on [16,
17, 39, 15, 11]) is to present the current state of the following conjecture of A. Fel’shtyn
and R. Hill [12], which is a generalization of the classical Burnside theorem.

Let G be a countable discrete group, φ one of its automorphisms, R(φ) the number
of φ-conjugacy (or twisted conjugacy) classes, and S(φ) = # Fix(φ̂) the number of φ-
invariant equivalence classes of irreducible unitary representations. If one of R(φ) and
S(φ) is finite, then it is equal to the other.

This conjecture plays a important role in the theory of twisted conjugacy classes (see
[25], [10]) and has very important consequences in Dynamics, while its proof needs rather
sophisticated results from Functional and Non-commutative Harmonic Analysis.

First we prove this conjecture for finitely generated groups of type I and discuss its
applications.

After that we discuss an important example of an automorphism of a type II1 group
which disproves the original formulation of the conjecture.

Then we prove a version of the conjecture for a wide class of groups, including almost
polycyclic groups (in particular, finitely generated groups of polynomial growth). In this
formulation the role of an appropriate dual object plays the finite-dimensional part of
the unitary dual. Some counter-examples are discussed.

Then we begin a discussion of the general case (which also needs new definition of the
dual object) and prove the weak twisted Burnside theorem for general countable discrete
groups. For this purpose we prove a non-commutative version of Riesz-Markov-Kakutani
representation theorem.

Finally we explain why the Reidemeister numbers are always infinite for Baumslag-
Solitar groups.
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1. Introduction and formulation of results

Definition 1.1. Let G be a countable discrete group and φ : G → G an endomorphism.
Two elements x, x′ ∈ G are said to be φ-conjugate or twisted conjugate, iff there exists
g ∈ G with

x′ = gxφ(g−1).

We shall write {x}φ for the φ-conjugacy or twisted conjugacy class of the element x ∈ G.
The number of φ-conjugacy classes is called the Reidemeister number of an endomorphism
φ and is denoted by R(φ). If φ is the identity map then the φ-conjugacy classes are the
usual conjugacy classes in the group G.

If G is a finite group, then the classical Burnside theorem (see e.g. [26, p. 140]) says that
the number of classes of irreducible representations is equal to the number of conjugacy

classes of elements of G. Let Ĝ be the unitary dual of G, i.e. the set of equivalence classes
of unitary irreducible representations of G.

Remark 1.2. If φ : G → G is an epimorphism, it induces a map φ̂ : Ĝ → Ĝ, φ̂(ρ) = ρ ◦φ
(because a representation is irreducible if and only if the scalar operators in the space of
representation are the only ones which commute with all operators of the representation).
This is not the case for a general endomorphism φ, because ρφ can be reducible for

an irreducible representation ρ, and φ̂ can be defined only as a multi-valued map. But

nevertheless we can define the set of fixed points Fix φ̂ of φ̂ on Ĝ.

Therefore, by the Burnside’s theorem, if φ is the identity automorphism of any finite

group G, then we have R(φ) = # Fix(φ̂).
To formulate the main theorem of the first part of the paper for the case of a general

endomorphism we first need an appropriate definition of the Fix(φ̂).

Definition 1.3. Let Rep(G) be the space of equivalence classes of finite dimensional

unitary representations of G. Then the corresponding map φ̂R : Rep(G) → Rep(G) is

defined in the same way as above: φ̂R(ρ) = ρ ◦ φ.

Let us denote by Fix(φ̂) the set of points ρ ∈ Ĝ ⊂ Rep(G) such that φ̂R(ρ) = ρ.

Theorem 1.4. Let G be a finitely generated discrete group of type I, φ one of its endo-

morphism, R(φ) the number of φ-conjugacy classes, and S(φ) = # Fix(φ̂) the number of

φ̂-invariant equivalence classes of irreducible unitary representations. If one of R(φ) and
S(φ) is finite, then it is equal to the other.
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Let µ(d), d ∈ N, be the Möbius function, i.e.

µ(d) =





1 if d = 1,
(−1)k if d is a product of k distinct primes,
0 if d is not square− free.

Theorem 1.5 (Congruences for the Reidemeister numbers). Let φ : G → G be an endo-
morphism of a countable discrete group G such that all numbers R(φn) are finite and let
H be a subgroup of G with the properties

φ(H) ⊂ H,

∀x ∈ G ∃n ∈ N such that φn(x) ∈ H.

If the pair (H, φn) satisfies the conditions of Theorem 1.4 for any n ∈ N, then one has for
all n, ∑

d|n
µ(d) ·R(φn/d) ≡ 0 mod n.

These theorems were proved previously in a special case of Abelian finitely generated
plus finite group [12, 13].

For groups of type II1 the situation is much more complicated. We discuss in detail the
case of a semi-direct product of the action of Z on Z⊕ Z by a hyperbolic automorphism

with finite Reidemeister number (four to be precise) and the number of fixed points of φ̂

on Ĝ equal or greater than five [17]. The origin of this phenomenon lies in bad separation

properties of Ĝ for general discrete groups. A more deep study leads to the following
general theorem.

Theorem 1.6 (weak twisted Burnside theorem, [39]). The number R∗(φ) of Reidemeister
classes related to twisted invariant functions on G from the Fourier-Stieltjes algebra B(G)

is equal to the number S∗(φ) of generalized fixed points of φ̂ on the Glimm spectrum of G,

i. e. on the complete regularization of Ĝ, if one of R∗(φ) and S∗(φ) is finite.

The argument goes along the following line. The well-known Riesz(-Markov-Kakutani)
theorem identifies the space of linear functionals on algebra A = C(X) and the space
of regular measures on X. To prove the weak twisted Burnside theorem we first ob-
tain a generalization of this theorem to the case of non-commutative C∗-algebra A via
Dauns-Hofmann sectional representation theorem. The corresponding measures on Glimm
spectrum are functional-valued. In extreme situation this theorem is tautological, but for
group C∗-algebras of discrete groups in many cases one obtains some new tool for counting
twisted conjugacy classes.

Keeping in mind that for hyperbolic groups R(φ) is always infinite while in the ”op-
posite” case the twisted Burnside theorem is proved, we can formulate the following
conjecture, which is in fact a program of further actions.

Conjecture 1.7. There exists a class of groups G such that

• for any group G 6∈ G and any automorphism φ : G → G the Reidemeister number
R(φ) is always infinite,
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• for any group G ∈ G there exists a subset of ideals M⊂ Prim C∗(G) such that its

points are separated and R(φ) coincides with the number of fixed points of φ̂ on
M supposing one of these numbers to be finite.

One of candidates for M is the set of maximal ideals (let us remind that the Glimm
spectrum is in fact the space of maximal ideals of the center of C∗(G), cf. [4, 39]). The
strategy of proof will be based on the weak theorem 1.6.

We also consider a formulation of the main conjecture with counting only finite-dimen-
sional fixed points on the unitary dual. In [15] we prove this version for a very large class
of groups.

Theorem 1.8. For a wide class of groups, which includes almost polycyclic groups (in
particular, finitely generated groups of polynomial growth) the Reidemeister number R(φ)

coincides with the number Sf (φ) of finite-dimensional φ̂-fixed points on the unitary dual,
if one of these numbers is finite.

This version of the main conjecture (with the consideration of only finite-dimensional
representations) has some counter-examples. One of them, coming from D. Osin’s group
[32] we discuss after the mentioned theorem in Section 11. Also we propose there some
possible formulation of the conjecture appropriate for residually finite groups.

Let us remark, that in some cases the weak twisted Burnside theorem easily implies the
twisted Burnside theorem (in particular, in the form with finite-dimensional representa-
tions). For example, we will show directly that R(φ) = R∗(φ) in Abelian case. On the
other hand, the unitary dual coincides with the Glimm spectrum. Slightly more compli-
cated argument is valid for some more general groups covered by Theorem 1.8, in particu-
lar, the Heisenberg group. More precisely, it is possible to extract from the first part of the
proof of Theorem 1.8 (see below Section 11) that R(φ) = R∗(φ). Moreover, characteristic
functions of Reidemeister classes are related to finite dimensional representations, which
are maximal and Hausdorff separated. Hence, the finite-dimensional fixed points form a
part of generalized fixed points on Glimm spectrum and S∗(φ) ≥ Sf (φ). In fact, we have
an equality here, because if there exists a functional coming from some other generalized
fixed point on Glimm spectrum, it cannot be a coefficient of a finite-dimensional rep-
resentation because Glimm spectrum is Hausdorff separated while all finite-dimensional
(generalized) fixed points are already counted in Sf (φ). The details concerning the rela-
tion between separateness and linear independence are contained in Section 11.

The interest in twisted conjugacy relations has its origins, in particular, in the Nielsen-
Reidemeister fixed point theory (see, e.g. [25, 10]), in Selberg theory (see, eg. [37, 1]),
and Algebraic Geometry (see, e.g. [22]).

The congruences give some necessary conditions for the realization problem for Rei-
demeister numbers in topological dynamics. The relations with Selberg theory will be
presented in a forthcoming paper.

Let us remark that it is known that the Reidemeister number of an endomorphism of
a finitely generated Abelian group is finite iff 1 is not in the spectrum of the restriction
of this endomorphism to the free part of the group (see, e.g. [25]). The Reidemeister
number is infinite for any automorphism of a non-elementary Gromov hyperbolic group
[18].
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To make the presentation more detailed and transparent we start from a new approach
(E.T.) for Abelian (Section 2) and compact (Section 3) groups. Only after that we develop
this approach and prove the main theorem for finitely generated groups of type I [16] in
Section 5. A discussion of some examples leading to conjectures is the subject of Section 6.
In Section 7 we present the mentioned important example for type II1 groups [17]. After
that we pass to the demonstration of the weak twisted Burnside theorem in Section 10. For
this purpose we present in Section 9 a non-commutative version of Riesz-Markov-Kakutani
theorem [39] (some necessary information on operator fields is collected in Section 8). In
Section 11 we discuss almost polycyclic groups and related matter. Section 12 is devoted
to the discussion of Baumslag-Solitar groups [11].

Acknowledgement. We would like to thank the Max Planck Institute for Mathematics
in Bonn for its kind support and hospitality while the most part of this work has been
completed. We are also indebted to MPI and organizers of the Workshops on Noncom-
mutative Geometry and Number Theory I, II (Bonn, August 2003 and June 2004) where
the results of this paper were presented.
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R. Grigorchuk, R. Hill, V. Kaimanovich, V. Manuilov, A. Mishchenko, A. Rosenberg,
M. Sapir, A. Shtern, L. Vainerman, A. Vershik for helpful discussions, and to the referee
for valuable suggestions.

2. Abelian case

Let φ be an automorphism of an Abelian group G.

Lemma 2.1. The twisted conjugacy class H of e is a subgroup. The other ones are cosets
gH.

Proof. The first statement follows from the equalities

hφ(h−1)gφ(g−1) = ghφ((gh)−1, (hφ(h−1))−1 = φ(h)h−1 = h−1φ(h).

For the second statement suppose a ∼ b, i.e. b = haφ(h−1). Then

gb = ghaφ(h−1) = h(ga)φ(h−1), gb ∼ ga.

¤
Lemma 2.2. Suppose, u1, u2 ∈ G, χH is the characteristic function of H as a set. Then

χH(u1u
−1
2 ) =

{
1, if u1, u2 are in one coset ,
0, otherwise .

Proof. Suppose, u1 ∈ g1H, u2 ∈ g2H, hence, u1 = g1h1, u2 = g2h2. Then

u1u
−1
2 = g1h1h

−1
2 g−1

2 ∈ g1g
−1
2 H.

Thus, χH(u1u
−1
2 ) = 1 if and only if g1g

−1
2 ∈ H and u1 and u2 are in the same class.

Otherwise it is 0. ¤
The following Lemma is well known.

Lemma 2.3. For any subgroup H the function χH is of positive type.
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Proof. Let us take arbitrary elements u1, u2, . . . , un of G. Let us reenumerate them in
such a way that some first are in g1H, the next ones are in g2H, and so on, till gmH,
where gjH are different cosets. By the previous Lemma the matrix ‖pit‖ := ‖χH(uiu

−1
t )‖

is block-diagonal with square blocks formed by units. These blocks, and consequently the
whole matrix are positively semi-defined. ¤

Lemma 2.4. In the Abelian case characteristic functions of twisted conjugacy classes
belong to the Fourier-Stieltjes algebra B(G) = (C∗(G))∗.

Proof. By Lemma 2.1 in this case the characteristic functions of twisted conjugacy classes
are the shifts of the characteristic function of the class H of e. Hence, by Corollary (2.19)
of [7], these characteristic functions are in B(G). ¤

Let us remark that there exists a natural isomorphism (Fourier transform)

u 7→ û, C∗(G) = C∗
r (G) ∼= C(Ĝ), ĝ(ρ) := ρ(g),

(this is a number because irreducible representations of an Abelian group are 1-dimen-

sional). In fact, it is better to look (for what follows) at an algebra C(Ĝ) as an algebra

of continuous sections of a bundle of 1-dimensional matrix algebras. over Ĝ.
Our characteristic functions, being in B(G) = (C∗(G))∗ in this case, are mapped to the

functionals on C(Ĝ) which, by the Riesz-Markov-Kakutani theorem, are measures on Ĝ.
Which of these measures are invariant under the induced (twisted) action of G ? Let us
remark, that an invariant non-trivial functional gives rise to at least one invariant space
– its kernel.

Let us remark, that convolution under the Fourier transform becomes point-wise mul-
tiplication. More precisely, the twisted action, for example, is defined as

g[f ](ρ) = ρ(g)f(ρ)ρ(φ(g−1)), ρ ∈ Ĝ, g ∈ G, f ∈ C(Ĝ).

There are 2 possibilities for the twisted action of G on the representation algebra
Aρ

∼= C: 1) the linear span of the orbit of 1 ∈ Aρ is equal to all Aρ, 2) and the opposite
case (the action is trivial).

The second case means that the space of intertwining operators between Aρ and Aφ̂ρ

equals C, and ρ is a fixed point of the action φ̂ : Ĝ → Ĝ. In the first case this is the
opposite situation.

If we have a finite number of such fixed points, then the space of twisted invariant
measures is just the space of measures concentrated in these points. Indeed, let us describe
the action of G on measures in more detail.

Lemma 2.5. For any Borel set E one has g[µ](E) =
∫

E
g[1] dµ.

Proof. The restriction of measure to any Borel set commutes with the action of G, since

the last is point wise on C(Ĝ). For any Borel set E one has

g[µ](E) =

∫

E

1 dg[µ] =

∫

E

g[1] dµ.

¤
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Hence, if µ is twisted invariant, then for any Borel set E and any g ∈ G one has
∫

E

(1− g[1]) dµ = 0.

Lemma 2.6. Suppose, f ∈ C(X), where X is a compact Hausdorff space, and µ is a
regular Borel measure on X, i.e. a functional on C(X). Suppose, for any Borel set
E ⊂ X one has

∫
E

f dµ = 0. Then µ(h) = 0 for any h ∈ C(X) such that f(x) = 0
implies h(x) = 0. I.e. µ is concentrated off the interior of supp f.

Proof. Since the functions of the form fh are dense in the space of the referred to above
h’s, it is sufficient to verify the statement for fh. Let us choose an arbitrary ε > 0 and a

simple function h′ =
n∑

i=1

aiχEi
such that |µ(fh′)− µ(fh)| < ε. Then

µ(fh′) =
n∑

i=1

∫

Ei

aif dµ =
n∑

i=1

ai

∫

Ei

f dµ = 0.

Since ε is an arbitrary one, we are done. ¤

Applying this lemma to a twisted invariant measure µ and f = 1− g[1] we obtain that

µ is concentrated at our finite number of fixed points of φ̂, because outside of them f 6= 0.
If we have an infinite number of fixed points, then the space is infinite-dimensional (we

have an infinite number of measures concentrated in finite number of points, each time
different) and Reidemeister number is infinite as well. So, we are done.

3. Compact case

Let G be a compact Hausdorff group, hence Ĝ is a discrete space. Then C∗(G) = ⊕Mi,
where Mi are the matrix algebras of irreducible representations. The infinite sum is in
the following sense:

C∗(G) = {fi}, i ∈ {1, 2, 3, ...} = Ĝ, fi ∈ Mi, ‖fi‖ → 0(i →∞).

When G is finite and Ĝ is finite this is exactly Peter-Weyl theorem.
A characteristic function of a twisted class is a functional on C∗(G). For a finite group

it is evident, for a general compact group it is necessary to verify only the measurability
of the twisted class with the respect to Haar measure, i.e. that twisted class is Borel. For
a compact G, the twisted conjugacy classes being orbits of twisted action are compact
and hence closed.

Under the identification it passes to a sequence {ϕi}, where ϕi is a functional on Mi

(the properties of convergence can be formulated, but they play no role at the moment).

The conditions of invariance are the following: for each ρi ∈ Ĝ one has g[ϕi] = ϕi, i.e. for
any a ∈ Mi and any g ∈ G one has ϕi(ρi(g)aρi(φ(g−1))) = ϕi(a).

Let us recall the following well-known fact.

Lemma 3.1. Each functional on matrix algebra has form a 7→ Tr(ab) for a fixed matrix
b.
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Proof. One has dim(M(n,C))′ = dim(M(n,C)) = n × n and looking at matrices as at
operators in V , dim V = n, with base ei, one can remark that functionals a 7→ 〈aei, ej〉,
i, j = 1, . . . , n, are linearly independent. Hence, any functional takes form

a 7→
∑
i,j

bi
j〈aei, ej〉 =

∑
i,j

bi
ja

j
i = Tr(ba), b := ‖bi

j‖.

¤
Now we can study invariant functionals:

Tr(bρi(g)aρi(φ(g−1))) = Tr(ba), ∀ a, g,

Tr((b− ρi(φ(g−1))bρi(g))a) = 0, ∀ a, g,

hence,
b− ρi(φ(g−1))bρi(g) = 0, ∀ g.

Since ρi is irreducible, the dimension of the space of such b is 1 if ρi is a fixed point of φ̂
and 0 in the opposite case by the Schur lemma. So, we are done.

Remark 3.2. In fact we are only interested in finite discrete case. Indeed, for a compact
G, the twisted conjugacy classes being orbits of twisted action are compact and hence
closed. If there is a finite number of them, then they are open as well. Hence, the situation
is more or less reduced to a discrete group: quotient by the component of unity.

4. Extensions and Reidemeister classes

Let us denote by τg : G → G the automorphism τg(g̃) = gg̃ g−1 for g ∈ G. Its restriction
on a normal subgroup we will denote by τg as well.

Lemma 4.1. {g}φk = {g k}τk−1◦φ.

Proof. Let g′ = f g φ(f−1) be φ-conjugate to g. Then

g′ k = f g φ(f−1) k = f g k k−1 φ(f−1) k = f (g k) (τk−1 ◦ φ)(f−1).

Conversely, if g′ is τk−1 ◦ φ-conjugate to g, then

g′ k−1 = f g (τk−1 ◦ φ)(f−1)k−1 = f g k−1 φ(f−1).

Hence a shift maps φ-conjugacy classes onto classes related to another automorphism. ¤
Corollary 4.2. R(φ) = R(τg ◦ φ).

Consider a group extension respecting homomorphism φ:

(1) 0 // H
i //

φ′

²²

G
p //

φ

²²

G/H

φ
²²

// 0

0 // H
i // G

p // G/H // 0,

where H is a normal subgroup of G. The argument below, especially related the role of
fixed points, has a partial intersection with [19, 20].

First of all let us notice that the Reidemeister classes of φ in G are mapped epimorphi-
cally on classes of φ in G/H. Indeed,

(2) p(g̃)p(g)φ(p(g̃−1)) = p(g̃gφ(g̃−1).
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Suppose, R(φ) < ∞. Then the previous remark implies R(φ) < ∞. Consider a class
D = {h}τgφ′ , where τg(h) := ghg−1, g ∈ G, h ∈ H. The corresponding equivalence
relation is

(3) h ∼ h̃hgφ′(h̃−1)g−1.

Since H is normal, the automorphism τg : H → H is well defined. We will denote by D
the image iD as well. By (3) the shift Dg is a subset of Hg is characterized by

(4) hg ∼ h̃(hg)φ′(h̃−1).

Hence it is a subset of {hg}φ ∩Hg and the partition Hg = ∪({h}τgφ′)g is a subpartition
of Hg = ∪(Hg ∩ {hg}φ).

We need the following statements.

Lemma 4.3. Suppose, the extension (1) satisfies the following conditions:

(1) # Fix φ = k < ∞,
(2) R(φ) < ∞.

Then

(5) R(φ′) ≤ k · (R(φ)−R(φ) + 1).

If G/H is abelian, let gi be some elements with p(gi) being representatives of all different
φ-conjugacy classes, i = 1, . . . , R(φ). Then

(6)

R(φ)∑
i=1

R(τgi
φ′) ≤ k ·R(φ).

Proof. Consider classes {z}φ′ , z ∈ G, i.e. the classes of relation z ∼ hzφ′(h−1), h ∈ H.
The group G acts on them by z 7→ gzφ(g−1). Indeed,

g[h̃hφ(h̃−1)]φ(g−1) = (gh̃g−1)(ghφ(g−1))(φ(g)φ(h̃−1)φ(g−1))

= (gh̃g−1)(ghφ(g−1))φ(gh̃g−1) ∈ {ghφ(g−1)}φ′ ,

because H is normal and gh̃g−1 ∈ H. Due to invertibility, this action of G transposes
classes {z}φ′ inside one class {g}φ. Hence, the number d of classes {h}φ′ inside {h}φ ∩H

does not exceed the number of g ∈ G such that p(g)φ(p(g−1)) = e. Since two elements
g and gh in one H-coset induce the same permutation of classes {h}φ′ , the mentioned

number d does not exceed the number of z ∈ G/H such that zφ(z−1) = e, i.e. d ≤ k.
This implies (5).

Now we discuss φ-classes over φ-classes other than {e}φ for an abelian G/H. An estima-

tion analogous to the above one leads to the number of z ∈ G/H such that zz0φ(z−1) = z0

for some fixed z0. But for an Abelian G/H they form the same group Fix(φ). This to-
gether with the description (4) of shifts of D at the beginning of the present Section
implies (6). ¤

Lemma 4.4. Suppose, in the extension (1) the group H is abelian. Then # Fix(φ) ≤
# Fix(φ′) ·# Fix(φ).
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Proof. Let s : G/H → G be a section of p. If s(z)h is a fixed point of φ then

(7) (s(z))−1φ(s(z)) = hφ′(h−1).

Hence, z ∈ Fix(φ) and left hand side takes k := # Fix(φ) values h1, . . . , hk. Let us
estimate the number of s(z)h for a fixed z such that (s(z))−1φ(s(z)) = hi. These h have
to satisfy (7). Since H is abelian, if one has

hi = hφ′(h−1) = h̃φ′(h̃−1),

then h−1h̃ ∈ Fix(φ′) and we are done. ¤

Theorem 4.5. Let A be a finitely generated Abelian group, ψ : A → A its automorphism
with R(ψ) < ∞. Then # Fix(ψ) < ∞.

Moreover, R(ψ) ≥ #Fix(ψ).

Proof. Let T be the torsion subgroup. It is finite and characteristic. We obtain the
extension T → A → A/T respecting φ. Since A/T ∼= Zk, Fix(ψ : A/T → A/T ) = e, by
[25],[10, Sect. 2.3.1]. Hence, by Lemma 4.4, # Fix(ψ) ≤ # Fix(ψ′), ψ′ : T → T . For any
finite abelian group T one clearly has # Fix(ψ′) = R(ψ′) by Theorem 11.3 (cf. [10, p. 7]).
Finally, R(ψ′) ≤ R(ψ) by (6). ¤

Lemma 4.6. Suppose, |G/H| = N < ∞. Then R(τgφ
′) ≤ NR(φ). More precisely, the

mentioned subpartition is not more than in N parts.

Proof. Consider the following action of G on itself: x 7→ gxφ(g−1). Then its orbits are
exactly classes {x}φ. Moreover it maps classes (4) onto each other. Indeed,

g̃h̃(hg)φ′(h̃−1)φ(g̃−1) = ĥg̃(hg)φ(g̃−1)φ′(ĥ−1)

using normality of the H. This map is invertible (g̃ ↔ g̃−1), hence bijection. Moreover, g̃

and g̃ĥ, for any ĥ ∈ H, act in the same way. Or in the other words, H is in the stabilizer
of this permutation of classes (4). Hence, the cardinality of any orbit ≤ N . ¤

Hence, for any finite G/H the number of classes of the form (4) is finite: it is ≤ NR(φ).

Lemma 4.7. Suppose, H satisfies the following property: for any automorphism of H
with finite Reidemeister number the characteristic functions of Reidemeister classes of φ
are linear combinations of matrix elements of some finite number of irreducible finite di-
mensional representations of H. Then the characteristic functions of classes (4) are linear
combinations of matrix elements of some finite number of irreducible finite dimensional
representations of G.

Proof. Let ρ1, ρ2, . . . , ρk be the above irreducible representations of H, ρ its direct sum act-
ing on V , and π the regular (finite dimensional) representation of G/H. Let ρI

1, . . . , ρ
I
k, ρ

I

be the corresponding induced representations of G. Let us remind that in this sim-
ple situation the representation ρI is defined as a representation of G in the space

l2(G/H, V ) ∼= ⊕|G/H|
1 V defined by the formula

[ρI(g)f ](x) = ρ(s(x)g(s(xg))−1)f(xg), f ∈ l2(G/H, V ), x ∈ G/H,

for some fixed section s : G/H → G of the canonical projection G → G/H.
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Let the characteristic function of D be represented under the form χD(h) = 〈ρ(h)ξ, η〉.
Let ξI ∈ L2(G/H, V ) be defined by the formulas ξI(e) = ξ ∈ V , ξI(g) = 0 if g 6= e. Define
similarly ηI . Then for h ∈ i(H) we have

ρI(h)ξI(g) = ρ(s(g)hs(gh)−1)ξ(gh) = ρ(hs(g)s(g)−1)ξ(g) =

{
ρ(h)ξ, if g = e,

0, otherwise.

Hence, 〈ρI(h)ξI , ηI〉|i(H) is the characteristic function of i(D). Let u, v ∈ L2(G/H) be
such vectors that 〈π(g)u, v〉 is the characteristic function of e. Then

〈(ρI ⊗ π)(ξI ⊗ u, ηI ⊗ v)〉
is the characteristic function of i(D). Other characteristic functions of classes (4) are
shifts of this one. Hence, they are matrix elements of the representation ρI ⊗ π. It
is finite dimensional. Hence it can be decomposed in a finite direct sum of irreducible
representations. ¤
Corollary 4.8 (of previous two lemmata). Under the assumptions of the previous lemma,
the characteristic functions of Reidemeister classes of φ are linear combinations of matrix
elements of some finite number of irreducible finite dimensional representations of G.

5. The case of groups of type I

Theorem 5.1. Let G be a discrete group of type I. Then

• [6, 3.1.4, 4.1.11] The dual space Ĝ is a T1-topological space.
• [38] Any irreducible representation of G is finite-dimensional.

Remark 5.2. In fact a discrete group G is of type I if and only if it has a normal, Abelian
subgroup M of finite index. The dimension of any irreducible representation of G is at
most [G : M ] [38].

Suppose R = R(φ) < ∞, and let F ⊂ L∞(G) be the R-dimensional space of all
twisted-invariant functionals on L1(G). Let K ⊂ L1(G) be the intersection of kernels of
functionals from F . Then K is a linear subspace of L1(G) of codimension R. For each

ρ ∈ Ĝ let us denote by Kρ the image ρ(K). This is a subspace of a (finite-dimensional)
full matrix algebra. Let cdρ be its codimension.

Let us introduce the following set

ĜF = {ρ ∈ Ĝ | cdρ 6= 0}.
Lemma 5.3. One has cdρ 6= 0 if and only if ρ is a fixed point of φ̂. In this case cdρ = 1.

Proof. Suppose, cdρ 6= 0 and let us choose a functional ϕρ on the (finite-dimensional full
matrix) algebra ρ(L1(G)) such that Kρ ⊂ Ker ϕρ. Then for the corresponding functional
ϕ∗ρ = ϕρ ◦ ρ on L1(G) one has K ⊂ Ker ϕ∗ρ. Hence, ϕ∗ρ ∈ F and is twisted-invariant, as
well as ϕρ. Then we argue as in the case of compact group (text after Lemma 3.1).

Conversely, if ρ is a fixed point of φ̂, it gives rise to a (unique up to scaling) non-trivial
twisted-invariant functional ϕρ. Let x = ρ(a) be any element in ρ(L1(G)) such that
ϕρ(x) 6= 0. Then x 6∈ Kρ, because ϕ∗ρ(a) = ϕρ(x) 6= 0, while ϕ∗ρ is a twisted-invariant

functional on L1(G). So, cdρ 6= 0.
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The uniqueness (up to scaling) of the intertwining operator implies the uniqueness of
the corresponding twisted-invariant functional. Hence, cdρ = 1. ¤

Hence,

(8) ĜF = Fix(φ̂).

From the property cdρ = 1 one obtains for this (unique up to scaling) functional ϕρ:

(9) Ker ϕρ = Kρ.

Lemma 5.4. R = #ĜF , in particular, the set ĜF is finite.

Proof. First of all we remark that since G is finitely generated almost Abelian (cf. Remark
5.2) there is a normal Abelian subgroup H of finite index invariant under φ. Hence we can
apply Lemma 4.8 to G, H, φ. So there is a finite collection of irreducible representations
of G such that any twisted-invariant functional is a linear combination of matrix elements
of them, i.e. linear combination of functionals on them. If one of them gives a non-trivial
contribution, it has to be a twisted-invariant functional on the corresponding matrix

algebra. Hence, by the argument above, these representations belong to ĜF , and the
appropriate functional is unique up to scaling. Hence, R ≤ S.

Then we use T1-separation property. More precisely, suppose some points ρ1, . . . , ρs

belong to ĜF . Let us choose some twisted-invariant functionals ϕi = ϕρi
corresponding

to these points as it was described (i.e. choose some scaling). Assume that ‖ϕi‖ = 1,
ϕi(xi) = 1, xi ∈ ρi(L

1(G)). If we can find ai ∈ L1(G) such that ϕi(ρi(ai)) = ϕ∗i (ai) is
sufficiently large and ρj(ai), i 6= j, are sufficiently small (in fact it is sufficient ρj(ai) to be
close enough to Kj := Kρj

), then ϕ∗j(ai) are small for i 6= j, and ϕ∗i are linear independent

and hence, s < R. This would imply S := #ĜF ≤ R is finite. Hence, R = S.
So, the problem is reduced to the search of the above ai. Let d = max

i=1,...,s
dim ρi. For

each i let ci := ‖bi‖, where xi is the unitary equivalence of ρi and φ̂ρi and xi = ρi(bi).
Let c := max

i=1,...,s
ci and ε := 1

2·s2·d·c .

One can find a positive element a′i ∈ L1(G) such that ‖ρi(a
′
i)‖ ≥ 1 and ‖ρj(a

′
i)‖ < ε for

j 6= i. Indeed, ρi can be separated from one point, and hence from the finite number of
points: ρj, j 6= i. Hence, one can find an element vi such that ‖ρi(vi)‖ > 1, ‖ρj(vi)‖ < 1
for j 6= i [6, Lemma 3.3.3]. The same is true for the positive element ui = v∗i vi. (Due to
density we do not distinguish elements of L1 and C∗). Now for a sufficiently large n the
element a′i := (ui)

n has the desired properties.
Let us take ai := a′ib

∗
i . Then

(10) ϕ∗i (ai) = Tr(xiρi(ai)) = Tr(xiρi(a
′
i)ρi(bi)

∗) = Tr(xiρi(a
′
i)x

∗
i )

= Tr(xiρi(a
′
i)(xi)

−1) = Tr(ρi(a
′
i)) ≥

1

dim ρi

≥ 1

d
.

For j 6= i one has

(11) ‖ϕ∗j(ai)‖ = ‖ϕj(ρj(a
′
ib
∗
i ))‖ ≤ ci · ε.
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Then the s×s matrix Φ = ϕ∗j(ai) can be decomposed into the sum of the diagonal matrix

∆ and off-diagonal Σ. By (10) one has ∆ ≥ 1
d
. By (11) one has

‖Σ‖ ≤ s2 · ci · ε ≤ s2 · c · 1

2 · s2 · d · c =
1

2d
.

Hence, Φ is non-degenerate and we are done. ¤
Lemma 5.4 together with (8) completes the proof of Theorem 1.4 for automorphisms.
We need the following additional observations for the proof of Theorem 1.4 for a general

endomorphism (in which (3) is false for infinite-dimensional representations).

Lemma 5.5. (1) If φ is an epimorphism, then Ĝ is φ̂R-invariant.

(2) For any φ the set Rep(G) \ Ĝ is φ̂R-invariant.

(3) The dimension of the space of intertwining operators between ρ ∈ Ĝ and φ̂R(ρ) is

equal to 1 if and only if ρ ∈ Fix(φ̂). Otherwise it is 0.

Proof. (1) and (2): This follows from the characterization of irreducible representation as
that one for which the centralizer of ρ(G) consists exactly of scalar operators.

(3) Let us decompose φ̂R(ρ) into irreducible ones. Since dim Hρ = dim Hφ̂(ρ) one has

only 2 possibilities: ρ does not appear in φ̂(ρ) and the intertwining number is 0, otherwise

φ̂R(ρ) is equivalent to ρ. In this case ρ ∈ Fix(φ̂). ¤
The proof of Theorem 1.4 can be now repeated for the general endomorphism with the

new definition of Fix(φ̂). The item (3) supplies us with the necessary property.

6. Examples and their discussion

The natural candidate for the dual object to be used instead of Ĝ in the case when the
different notions of the dual do not coincide (i.e. for groups more general than type I one

groups) is the so-called quasi-dual
_

G, i.e. the set of quasi-equivalence classes of factor-
representations (see, e.g. [6]). This is a usual object when we need a sort of canonical
decomposition for regular representation or group C∗-algebra. More precisely, one needs

the support
_

Gp of the Plancherel measure.
Unfortunately the following example shows that this is not the case.

Example 6.1. Let G be a non-elementary Gromov hyperbolic group. As it was shown
by Fel’shtyn [18] with the help of geometrical methods, for any automorphism φ of G
the Reidemeister number R(φ) is infinite. In particular this is true for free group in two

generators F2. But the support (
_

F2)p consists of one point (i.e. regular representation is
factorial).

The next hope was to exclude from this dual object the II1-points assuming that they
always give rise to an infinite number of twisted invariant functionals. But this is also
wrong:

Example 6.2. (an idea of Fel’shtyn realized in [19]) Let G = (Z ⊕ Z)oθ Z be the semi-

direct product by a hyperbolic action θ(1) =

(
2 1
1 1

)
. Let φ be an automorphism of G
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whose restriction to Z is −id and restriction to Z ⊕ Z is

(
0 1
−1 0

)
. Then R(φ) = 4,

while the space
_

Gp consists of a single II1-point once again (cf. [3, p. 94]).

These examples show that powerful methods of the decomposition theory do not work
for more general classes of groups.

On the other hand Example 6.2 disproves the old conjecture of Fel’shtyn and Hill [12]
who supposed that the Reidemeister numbers of an injective endomorphism for groups
of exponential growth are always infinite. More precisely, this group is amenable and of
exponential growth. Also, one has the following example

Example 6.3. In [32] D. Osin has constructed an infinite finitely generated group, which
is not amenable, contains the free group in two generators, and has two (ordinary) con-
jugacy classes.

The role of this example will be clarified in Section 11.
In this relation the following example (to be discussed in Section 12) seems to be

interesting.

Example 6.4. [11] For amenable and non-amenable Baumslag-Solitar groups Reidemeis-
ter numbers are always infinite.

For Example 6.2 recently we have found 4 fixed points of φ̂ being finite dimensional
irreducible representations. They give rise to 4 linear independent twisted invariant func-
tionals. These functionals can also be obtained from the regular factorial representation.
There also exist fixed points (at least one) that are infinite dimensional irreducible rep-
resentations. The corresponding functionals are evidently linear dependent with the first
4. This example will be presented in detail in Section 7.

7. An example for type II1 groups

In the present section based on [17] it is shown that the twisted Burnside theorem

(or Fel’shtyn-Hill conjecture) in the original formulation with Ĝ as a dual object is not
true for non-type I groups. More precisely, an example of a group and its automorphism
is constructed such that the number of fixed irreducible representations is greater than
the Reidemeister number. But the number of fixed finite-dimensional representations
(i.e. the number of invariant finite-dimensional characters) in this example coincides with
the Reidemeister number. The directions for search of an appropriate formulation are
indicated (another definition of the dual object). Some advances in this direction will be
made in the next sections.

Let G be a semidirect product of Z2 and Z by Anosov automorphism α with the matrix

A =

(
2 1
1 1

)
. It consists by the definition of triples ((m, k), n) of integers with the

following multiplication low:

((m, k), n) ∗ ((m′, k′), n′) = ((m, k) + αn(m′, k′), n + n′).

In particular,

((m, k), 0) ∗ ((0, 0), n) = ((m, k), n).
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The inverse of ((m, k), n) is (−α−n(m, k),−n). Indeed,

((m, k), n) ∗ (−α−n(m, k),−n) = ((m, k)− αnα−n(m, k), n− n) = ((0, 0), 0).

The group G is a solvable (hence, amenable) group which is not of type I. Its regular
representation is factorial. The irreducible representations can be obtained from ergodic
orbits of the action of α on the torus T2 which is dual for the normal subgroup Z2 using
appropriate cocycles [3, Sec. II.4], [2, Ch. 17, § 1].

Let us define an automorphism φ : G → G by

φ((m, k), n) = ((k,−m),−n),

i.e. the action on Z2 is defined by automorphism µ with the matrix M =

(
0 1
−1 0

)
,

and on Z by n 7→ −n. The map φ is clearly a bijection,

φ(((m, k), n) ∗ ((m′, k′), n′) = φ((m, k) + αn(m′, k′), n + n′))

= φ((k,−m) + µαn(m′, k′),−n− n′),

φ((m, k), n) ∗ φ(((m′, k′), n′) = ((k,−m),−n) ∗ ((k′,−m′),−n′)

= ((k,−m) + α−n(k′,−m′),−n− n′).

Hence, to prove that φ is an automorphism, we need µαn = α−nµ. This follows from
µα = α−1µ. The further results in this direction can be found in [19].

Let us find the Reidemeister classes of φ, i.e. the classes of the equivalence relation
h ∼ ghφ(g−1). For h = ((m, k), n) and g = ((x, y), z) the right hand side of the relation
takes the following form:

(12) ((x, y) + αz(m, k), z + n) ∗ (−µα−z(x, y), z)

= ((x, y) + αz(m, k)− αz+nµα−z(x, y), 2z + n)

= (αz{(m, k) + (Id−αnµ)α−z(x, y)}, 2z + n).

Let us call level n (of G) the coset Ln of Z2 ⊂ G of all elements of the form ((m, k), n).
Let us first take an element ((m, k), 0) from the level 0 and describe elements from the
same level, being equivalent to it. By (12) in this case z = n = 0 and they have the form

((m, k) + (Id−µ)(x, y), 0) = ((m + (x− y), k + (x + y)), 0),

where Id−µ has the matrix

(
1 −1
1 1

)
. Hence, the level 0 has intersections with 2

Reidemeister classes, say, B1 and B2. The first intersection B1∩L0 is formed by elements
((u, v), 0) with even u + v, and B2 ∩ L0 — with odd u + v. The elements from the other
levels, which are equivalent to ((m, k), 0), have the form

(13) (αz{(m, k) + (Id−µ)α−z(x, y)}, 2z).

This means that B1 and B2 enter only even levels. Also, since α is an automorphism, we
can rewrite (13) as

(14) (αz{(m, k) + (Id−µ)(u, v)}, 2z).

with arbitrary integers u and v. This means, that the intersections Bi∩L2z have the form
αz(Bi), i = 1, 2. In particular, the other Reidemeister classes do not enter even levels.
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In a similar way, the elements of L1 equivalent to ((m, k), 1) have the form

((m, k) + (Id−αµ)(x, y), 1) = ((m + (2x− 2y), k + x), 1).

This means, that L1 enters 2 classes: the intersection with B3 is formed by elements with
even first coordinate, and with B4 — with the odd one. The elements from the other
levels, which are equivalent to ((m, k), 1), have the form

(15) (αz{(m, k) + (Id−αµ)α−z(x, y)}, 2z + 1).

Since α is an automorphism, we can rewrite (15) as

(16) (αz{(m, k) + (Id−αµ)(u, v)}, 2z + 1).

with arbitrary integers u and v. This means, that the intersections Bi ∩ L2z+1 have the
form αz(Bi), i = 3, 4. In particular, these four classes cover G and R(φ) = 4.

To obtain a complete description of Bi let us remark that directly from the definition
of α

α(x, y) = (2x + y, x + y)

one has the following properties:

• α maps the set of elements with an even (resp., odd) sum of coordinates onto the
set of elements with an even (resp., odd) second coordinate,

• α maps the set of elements with an even (resp., odd) second coordinate onto the
set of elements with an even (resp., odd) first coordinate,

• α maps the set of elements with an even (resp., odd) first coordinate onto the set
of elements with an even (resp., odd) sum of coordinates.

Hence, the elements ((m, k), n) in intersections Bi ∩ Lj are of the form

i 1 2 3 4

j ≡ 0 mod 6 m + k is even m + k is odd ∅ ∅
j ≡ 1 mod 6 ∅ ∅ m is even m is odd
j ≡ 2 mod 6 k is even k is odd ∅ ∅
j ≡ 3 mod 6 ∅ ∅ m + k is even m + k is odd
j ≡ 4 mod 6 m is even m is odd ∅ ∅
j ≡ 5 mod 6 ∅ ∅ k is even k is odd

Now we want to study the fixed points of the homeomorphism φ̂ : Ĝ → Ĝ, [ρ] 7→ [ρφ]
of the unitary dual. Let us start from the finite-dimensional representations. As it was
shown in [16] (see also Section 3 and after) in this case there exists exactly one twisted-
invariant functional on L1(G), or φ-central L∞ function, coming from a twisted-invariant
functional on ρ(L1(G)) ∼= M(dim ρ,C) (up to scaling), namely

(17) ϕρ : g 7→ Tr(Sρ(g)),

where S is the intertwining operator between ρ and ρφ.
First, we have to find µ-invariant finite α-orbits on T2. One can notice that

det(An −M) = det An + 1 = 2

for any n. Hence, the mentioned orbits are formed by points with coordinates 0 and 1/2.
We have 2 orbits: one of them consists of 1 point (0, 0) and gives rise to 1-dimensional
trivial representation ρ1, and the other consists of A1 = (0, 1/2), A2 = (1/2, 0) and
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A3 = (1/2, 1/2) and gives rise to a 3-dimensional (irreducible) representation ρ2. Also,
one has the following 1-dimensional representation π:

π((m, k), 2n) = 1, π((m, k), 2n + 1) = −1.

So, we have 4 representations

ρ1, ρ2, π, ρ2 ⊗ π.

We claim that they give rise via (17) to 4 linear independent twisted-invariant functionals.

In particular, there is no more finite-dimensional fixed points of φ̂.
Clearly,

(18) ϕρ1 ≡ 1, ϕπ =

{
1, on ∪n L2n = B1 ∪B2,

−1, on ∪n L2n+1 = B3 ∪B4,
ϕρ2⊗π = ϕρ2 · ϕπ.

Let us find ϕρ2 . In the space L2(A1, A2, A3) we take the base ε1, ε2, ε3 of characteristic
functions in these points. One has

α(ε1) = ε3, α(ε3) = ε2, α(ε2) = ε1,

µ(ε1) = ε2, µ(ε2) = ε1, µ(ε3) = ε3.

The representation (see [2, Ch. 17, § 1]) is defined by:

ρ2(m, k, 0)(εi) = χAi
(m, k) · εi, ρ2(0, 0, n)(εi) = α−n(εi) = εi+n mod 3,

ρ2(m, k, 0)(ε1) = e2πi(0·m+1/2·k) · ε1 = eπikε1,

ρ2(m, k, 0)(ε2) = e2πi(1/2·m+0·k) · ε2 = eπimε2,

ρ2(m, k, 0)(ε3) = e2πi(1/2·m+1/2·k) · ε3 = eπi(m+k)ε3.

The representation φ̂ρ2 is defined by

φ̂ρ2(0, 0, n)(εi) = ρ2(0, 0,−n)(εi) = εi−n mod 3,

φ̂ρ2(m, k, 0)(ε1) = ρ2(k,−m, 0)(ε1) = e−πimε1 = eπimε1,

φ̂ρ2(m, k, 0)(ε2) = ρ2(k,−m, 0)(ε2) = eπikε2,

φ̂ρ2(m, k, 0)(ε3) = ρ2(k,−m, 0)(ε3) = eπi(k−m)ε3 = eπi(m+k)ε3.

The intertwining operator is induced by φ and has the matrix S =




0 1 0
1 0 0
0 0 1


. Hence,

ϕρ2(m, k, n) = Tr(Sρ2(m, k, 0)ρ2(0, 0, n))

= Tr







0 1 0
1 0 0
0 0 1







eπik 0 0
0 eπim 0
0 0 eπi(k+m)







0 0 1
1 0 0
0 1 0




n


= Tr







0 eπik 0
eπik 0 0
0 0 eπi(k+m)







0 0 1
1 0 0
0 1 0




n
 .
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For n ≡ 0 mod 3

ϕρ2(m, k, n) = Tr







0 eπim 0
eπik 0 0
0 0 eπi(k+m)





 = eπi(k+m) =

{
1, if m + k is even

−1, if m + k is odd
,

for n ≡ 1 mod 3

ϕρ2(m, k, n) = Tr







0 eπim 0
eπik 0 0
0 0 eπi(k+m)







0 0 1
1 0 0
0 1 0







= Tr




eπim 0 0
0 0 eπik

0 eπi(k+m) 0


 = eπim =

{
1, if m is even

−1, if m is odd
,

for n ≡ 2 mod 3

ϕρ2(m, k, n) = Tr







0 eπim 0
eπik 0 0
0 0 eπi(k+m)







0 1 0
0 0 1
1 0 0





 =

= Tr




0 0 eπim

0 eπik 0
eπi(k+m) 0 0


 = eπik =

{
1, if k is even

−1, if k is odd
.

ϕρ2 is 3-periodical in n, while the characteristic functions of Bi are 6-periodical. For
j = 0, . . . , 5 one has

ϕρ2|B1∩L0 ≡ 1, ϕρ2|B2∩L0 ≡ −1, ϕρ2|B3∩L1 ≡ 1, ϕρ2|B4∩L1 ≡ −1,
ϕρ2|B1∩L2 ≡ 1, ϕρ2|B2∩L2 ≡ −1, ϕρ2|B3∩L3 ≡ 1, ϕρ2|B4∩L3 ≡ −1,
ϕρ2|B1∩L4 ≡ 1, ϕρ2|B2∩L4 ≡ −1, ϕρ2|B3∩L5 ≡ 1, ϕρ2|B4∩L5 ≡ −1,

so ϕρ2|B1∪B3 ≡ 1, ϕρ2|B2∪B4 ≡ −1. The determinant of the values of the functions ϕρ1 ,
ϕπ, ϕρ2 , ϕρ2⊗π on B1, B2, B3, B4 is

det




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


 = −8 6= 0.

Hence, they are linearly independent.

Nevertheless, there are infinite-dimensional irreducible φ̂-invariant representations. E.g.
we have a representation ρ of G on L2(T2) with the respect to the Lebesgue measure, with
ρ(m, k, 0) be the multiplier by characters in the appropriate points and ρ(0, 0, 1) is α, in
the same manner as for ρ2.

This disproves the conjecture of Fel’shtyn and Hill [12], who supposed that the Reide-

meister number equals to the number of fixed points of φ̂ on Ĝ.
This representation is not traceable, but one can nevertheless try to calculate (17). Let

us choose an orthonormal base of L2(T2) formed by εst(x, y) = e2πi(sx+ty), x, y ∈ [0, 1].
The intertwining operator S is generated by µ. Then

Tr(Sρ(m, k, n)) =
∑
s,t

∫ 1

0

∫ 1

0

(ρ(m, k, 0)ρ(0, 0, n)εs,t)(µ(x, y))εs,t(x, y) dx dy
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=
∑
s,t

∫ 1

0

∫ 1

0

e2πi〈(m,k),µ(x,y)〉(ρ(0, 0, n)εs,t)(µ(x, y))ε−s,−t(x, y) dx dy

=
∑
s,t

∫ 1

0

∫ 1

0

e2πi〈(m,k),µ(x,y)〉εs,t(α
nµ(x, y))ε−s,−t(x, y) dx dy

=
∑
s,t

∫ 1

0

∫ 1

0

e2πi〈(m,k)+(αn−µ)(s,t),µ(x,y)〉 dx dy =
∑

(m,k)=(µ−αn)(s,t)

1.

For n = 0 this equals 1 for m + k even and 0 for m + k odd. Hence, ϕρ|B1∩L0 = 1,
ϕρ|B2∩L0 = 0. For n = 1 the equality takes the form (m, k) = (−2s − 2t,−t). Hence,
ϕρ|B3∩L1 = 1, ϕρ|B4∩L1 = 0. If n = 2r, the equality takes form

(m, k) = (µ− α2r)(s, t), (m, k) = (αrµαr − α2r)(s, t),

α−r(m, k) = (µ− α0)αr(s, t).

Since α is an automorphism of Z⊕Z and by the description of Bi via the action of α, we
obtain that ϕρ|B1 = 1, ϕρ|B2 = 0. Similarly, for n odd. So, ϕρ is well defined and

ϕρ = χB1 + χB3 =
1

2
(ϕρ1 + ϕρ2).

Of course, there are also φ̂-invariant traceable factor representations of this group G,
e.g. the regular representation. Since its kernel is trivial, evidently all twisted-invariant
functionals can be pushed back from it.

This example shows that the conjecture of [12] for general groups can survive only after

eliminating badly separated points in Ĝ.

8. Algebras of operator fields

Let us first remind the theory of operator fields following [9]. Let T be a topological
space and for each point t ∈ T a C∗-algebra (or more general — involutive Banach algebra)
At is fixed.

Definition 8.1. A continuity structure for T and the {At} is a linear space F of operator
fields on T , with values in the {At}, (i.e. maps sending t ∈ T to an element of At),
satisfying

(1) if x ∈ F , the real-valued function t 7→ ‖x(t)‖ is continuous on T ;
(2) for each t ∈ T , {x(t) | x ∈ F} is dense in At;
(3) F is closed under pointwise multiplication and involution.

Definition 8.2. An operator field x is continuous with respect to F at t0, if for each
ε > 0, there is an element y ∈ F and a neighborhood U of t0 such that ‖x(t)− y(t)‖ < ε
for all t ∈ U . The field x is continuous on T if it is continuous at all points of T .

Definition 8.3. A full algebra of operator fields is a family A of operator fields on T
satisfying:

(1) A is a *-algebra, i.e., it is closed under all the pointwise algebraic operations;
(2) for each x ∈ A, the function t 7→ ‖x(t)‖ is continuous on T and vanishes at infinity;
(3) for each t, {x(t) | x ∈ A} is dense in At;
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(4) A is complete in the norm ‖x‖ = sup
t
‖x(t)‖.

A full algebra of operator fields is evidently a continuity structure. If F is any continuity
structure, let us define C0(F ) to be the family of all operator fields x which are continuous
on T with respect to F , and for which t 7→ ‖x‖ vanishes at infinity. One can prove that
C0(F ) is a full algebra of operator fields — indeed, a maximal one.

Lemma 8.4. For any full algebra A of operator fields on T , the following three conditions
are equivalent:

(1) A is a maximal full algebra of operator fields;
(2) A = C0(F ) for some continuity structure F ;
(3) A = C0(A).

Such a maximal full algebra A of operator fields may sometimes be called a continuous
direct sum of the {At}. It is clearly separating, in the sense that , if s, t ∈ T , s 6= t,
α ∈ As, β ∈ At, there is an x ∈ A such that x(s) = α, x(t) = β. We will denote by â the
section corresponding to an element a ∈ A. We will study the unital case and T will be
compact without the property of vanishing at infinity. The corresponding algebra will be
denoted by Γ(A) ∼= A. Moreover, we suppose that T is Hausdorff, hence, normal.

9. Functionals and measures

Definition 9.1. A (bounded additive) algebra of operator field measure (BA AOFM)
related to a maximal full algebra of operator fields A = Γ(A) is a set function µ : S →
Γ(A)∗ = A∗, where S ∈ Σ, some algebra of sets,

• being additive: µ(tSi)(a) =
∑

i µ(Si)(a)
• µ(S)(a) = 0 if supp â ∩ S = ∅.
• bounded: sup over partitions {Si} of T of

∑
i ‖µ(Si)‖ is finite and denoted by ‖µ‖

Definition 9.2. It is *-weak regular (RBA AOFM) if for each E ∈ Σ, a ∈ A, and ε > 0
there is a set F ∈ Σ whose closure is contained in E and a set G ∈ Σ whose interior
contains E such that ‖µ(C)a‖ < ε for every C ∈ Σ with C ⊂ G \ F .

We will use as Σ all sets and the algebra generated by closed sets in T .

Definition 9.3. Let AOFM λ be defined on a field Σ of sets in T and λ(∅) = 0. A set
E ∈ Σ is called λ-set if for any M ∈ Σ

λ(M) = λ(M ∩ E) + λ(M ∩ (T \ E)).

Lemma 9.4. Let λ be an AOFM defined on a field Σ of sets in T with λ(∅) = 0. The
family of λ-sets is a subfield of Σ on which λ is additive. Furthemore, if E is the union
of a finite sequence {En} of disjoint λ-sets and M ∈ Σ, then λ(M ∩E) =

∑
n λ(M ∩En).

Proof. It is clear, that the void set, the whole space, and the complement of any λ-set are
λ-sets. Now let X and Y be λ-sets, and M ∈ Σ. Then, since X is a λ-set,

(19) λ(M ∩ Y ) = λ(M ∩ Y ∩X) + λ(M ∩ Y ∩ (T \X)),

and since Y is a λ-set,

(20) λ(M) = λ(M ∩ Y ) + λ(M ∩ (T \ Y )),
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λ(M ∩ (T \ (X ∩ Y ))) = λ(M ∩ (T \ (X ∩ Y )) ∩ Y ) + λ(M ∩ (T \ (X ∩ Y )) ∩ (T \ Y )),

hence,

(21) λ(M ∩ (T \ (X ∩ Y ))) = λ(M ∩ (T \X) ∩ Y ) + λ(M ∩ (T \ Y )).

From (19) and (20) it follows that

λ(M) = λ(M ∩ Y ∩X) + λ(M ∩ Y ∩ (T \X)) + λ(M ∩ (T \ Y )),

and from (21) that

λ(M) = λ(M ∩ Y ∩X) + λ(M ∩ (T \ (X ∩ Y ))).

Thus X ∩ Y is a λ-set. Since ∪Xn = T \ ∩(T \Xn), we conclude that the λ-sets form a
field. Now if E1, and E2 are disjoint λ-sets, it follows, by replacing M by M ∩ (E1 ∪ E2)
in Definition 9.3, that

λ(M ∩ (E1 ∪ E2)) = λ(M ∩ E1) + λ(M ∩ E2).

The final conclusion of the lemma follows from this by induction. ¤

As it is well known, any functional τ on a C∗-algebra B can be represented as a linear
combination of 4 positive functionals in the following canonical way. First let us represent
τ under the form τ = τ1 + iτ2, where self-adjoint functionals τ1 and τ2 are defined by the
formulas

(22) τ1(a) =
τ(a) + τ(a∗)

2
, τ2(a) =

τ(a)− τ(a∗)
2i

.

By the lemma about Jordan decomposition, any self-adjoint functional α can be repre-
sented in a unique way as a difference of two positive functionals α = α+ − α− under
requirement

(23) ‖α‖ = ‖α+‖+ ‖α−‖
(see [29, §3.3], [33, Theorem 3.2.5]). Let us decompose an AOFM in the related way.
Since the decomposition is unique, the second property of AOFM will held. If we start
from BA AOFM, then the additivity of summands will follow from the uniqueness of the
decomposition, and the boundedness (with double constant) will follow from (22) and
property (23). The same argument shows that the summands are *-weak regular, if the
initial AOFM was *-weak regular. So, the AOFM’s in the decomposition are positive
AOFM, i.e., such that

µ(E)[a∗a] ≥ 0

for any E ∈ Σ. Such a set function is non-decreasing.

Lemma 9.5. The sets F and G in the Definition 9.2 can be chosen in such a way that
‖µ(C)(fa)‖ < ε for any continuous function f : T → [0, 1].

Proof. Let us take the decompositions µ =
∑4

i=1 xiµi, a =
∑4

j=1 yjaj, where µi and aj are
positive, xi, yj are complex numbers of norm ≤ 1. Let us choose the sets F and G, as in
Definition 9.2, for ε/16 and for all pairs µi, aj simultaneously. Then

0 ≤ µi(C)(f · aj) = µi(C)((aj)
1/2f(aj)

1/2) ≤ µi(C)(aj) ≤ ε

16
,
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and

‖µi(C)(f · a)‖ ≤
4∑

i,j=1

|xiyj| · |µi(C)(aj)| ≤ 16 · ε

16
= ε.

¤
Theorem 9.6. Let a unital separable C∗-algebra A be isomorphic to a full algebra of
operator fields Γ(A) over a Hausdorff space X. Then functionals on A ∼= Γ(A) can be
identified with RBA AOFM of A.

Proof. Let us remark that these suppositions imply the following: T is a separable Haus-
dorff compact and the unit ball of the dual space of A is a metrizable compact in ∗-weak
topology.

Obviously RBA AOFM form a linear normed space with respect to ‖.‖.
First, we want to prove that the natural linear map µ 7→ µ(T ) is an isometry of RBA

AOFM into A∗. Since ‖µ(T )‖ ≤ ‖µ‖, it is of norm ≤ 1. Let now take an arbitrary small
ε > 0. Let E1, . . . , En be a partition of T such that

n∑
i=1

‖µ(Ei)‖ ≥ ‖µ‖ − ε.

Let ai ∈ A be such elements of norm 1, that µ(Ei)(ai) ≥ ‖µ(Ei)‖ − ε/n.
By *-weak regularity of µ and normality of T one can take closed sets Ci, disjoint open

sets Gi, and continuous functions fi : T → [0, 1] such that Ci ⊂ Ei, ‖µ(Ei \ Ci)(aj)‖ ≤
ε/n2, Ci ⊂ Gi, ‖µ(Gi \ Ci)(aj)‖ ≤ ε/n2, (and estimations hold for multiplication by
positive functions as well, as in Lemma 9.5) fi(s) = 0 if s 6∈ Gi, fi(s) = 1 if s ∈ Ci,
i, j = 1, . . . , n.

Consider the element a :=
∑

i fiai ∈ Γ(A) = A. Then ‖a‖ ≤ 1 and

| µ(S)(a)− ‖µ‖ | ≤
n∑

i=1

|µ(Ei)(a)− µ(Ei)|+ ε

≤
n∑

i=1

|µ(Ei \ Ci)(a) + µ(Ci)(a)− µ(Ei)(ai)|+ 2ε

=
n∑

i=1

∣∣∣∣∣
n∑

j=1

µ(Ei \ Ci)(fjaj) + µ(Ci)(ai)− µ(Ei)(ai)

∣∣∣∣∣ + 2ε

≤
n∑

i,j=1

|µ(Ei \ Ci)(fjaj)|+
n∑

i=1

|µ(Ei \ Ci)(ai)|+ 2ε ≤ n2 ε

n2
+ n

ε

n2
+ 2ε ≤ 4ε.

Since ε is arbitrary small, ‖µ‖ = ‖µ(S)‖.
It remains to represent the general functional ϕ by RBA AOFM. This functional on

Γ(A) can be extended by Hahn-Banach theorem to a continuous functional ψ on B(A) =∏
t∈T At (the C∗-algebra of possibly discontinuous cross-sections of A with sup-norm).

This functional can be decomposed ψ =
∑4

i=1 αiψi, where ψi are positive functionals,
αi ∈ C, |αi| = 1, ‖ψi‖ ≤ ‖ψ‖. Let us define

λ(E)(a) := ψ(χEa), λi(a) := ψi(χEa), i = 1, . . . , 4.
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where a ∈ Γ(A), and χE is the characteristic function of E. Evidently, λ(T )(a) = ψ(a)
and λ is a BA AOFM. Indeed, the first two properties of Definition 9.1 are evident. The
third one can be verified for each λi, i = 1, . . . , 4:

N∑
j=1

|λi(Ej)| =
N∑

j=1

λi(Ej)(1) =
N∑

j=1

ψi(χEj
1) = ψi(1) ≤ ‖ψi‖,

hence,
N∑

j=1

|λ(Ej)| ≤
4∑

i=1

N∑
j=1

|λi(Ej)| ≤
4∑

i=1

‖ψi‖ ≤ 4 · ‖ψ‖.

Now we want to find an RBA AOFM µ such that µ(T )(a) = λ(T )(a). Without loss of
generality it is sufficient to do this for a positive λ = λi.

Let F represent the general closed subset, G the general open subset, E the general
subset of S. Define µ1 and µ2 by putting

µ1(F )(a∗a) = inf
G⊃F

λ(G)(a∗a), µ2(E)(a∗a) = sup
F⊂E

µ1(F )(a∗a),

and then by taking linear extension. More precisely, due to separability one can take a
cofinal sequence {Gi}. The unit ball in the dual space is weakly compact and one can take
a weakly convergent sequence λ(Gik). Its limit ψ is a positive functional on A enjoying
inf-property on positive elements. In particular, it is independent of the choice of {Gi}
and {Gik}. In a similar way for sup.

These set functions are non-negative and non-decreasing. Let G1 be open and F1 be
closed. Then if G ⊃ F1 \ G1, it follows that G1 ∩ G ⊃ F1 and λ(G1) ≤ λ(G1) + λ(G) so
that µ1(F1) ≤ λ(G1) + λ(G). Since G is an arbitrary open set containing F1 \G1 we have

µ1(F1) ≤ λ(G1) + µ1(F1 \G1).

If F is a closed set it follows from this inequality, by allowing G1 to range over all open
sets containing F ∩ F1, that

µ1(F1) ≤ µ1(F ∩ F1) + µ2(F1 \ F ).

If E is an arbitrary subset of T and F1 ranges over the closed subsets of E, then it follows
from the preceding inequality that

(24) µ2(E) ≤ µ2(E ∩ F ) + µ2(E \ F ).

It will next be shown that for an arbitrary set E in T and arbitrary closed set F in T we
have

(25) µ2(E) ≥ µ2(E ∩ F ) + µ2(E \ F ).

To see this let F1 and F2 be disjoint closed sets. Since T is normal there are disjoint
neighborhoods G1 and G2 of F1 and F2 respectively. If G is an arbitrary neighborhood of
F1 ∪ F2 then λ(G) ≥ λ(G ∩G1) + λ(G ∩G2) so that

µ1(F1 ∩ F2) ≥ µ1(F1) + µ2(F2).

We now let E and F be arbitrary sets in T with F closed and let F1 range over closed
subsets of E∩F while F2 ranges over the closed subsets of E\F . The preceding inequality
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then proves (25). From (24) and (25) we have

(26) µ2(E) = µ2(E ∩ F ) + µ2(E ∩ (T \ F ))

for any E in T and F closed. The function µ2 is defined on the field of all subsets of T
and it follows from (26) that every closed set F is a µ2-set. If µ is the restriction of µ2

on the field determined by the closed sets, it follows from Lemma 9.4 that µ is additive
on this field. It is clear from the definition of µ1 and µ2 that µ1(F ) = µ2(F ) = µ(F ) if F
is closed and thus µ(E) = supF⊂E µ(F ). This shows that µ is *-weak regular and since
‖µ(T )‖ < ∞, we have µ is RBA AOFM.

Finally, by the definition, µ(S)(a) = λ(S)(a) = ψ(a) = ϕ(a) for a ∈ Γ(A). ¤

10. Twisted-invariant AOFM

The most part of the argument is valid for various representations of algebras by op-
erator fields, but now we will pass to the case of group C∗-algebra of a discrete group
and concentrate ourselves on the following important case due to Dauns and Hofmann [4,
Corollary 8.13] (see also [4, Corollary 8.14]):

Theorem 10.1. Consider a C∗-algebra A (with or without an identity) and the set B of
all its primitive ideals in the hull-kernel topology q.

(1) The complete regularization ϕ : (B, q) → (M, t) can be taken to consist of closed
ideals m of A satisfying m = ∩ϕ−1(m). The topology t of M contains the weak-star
topology t∗ induced on M by A.

Denote by K the family of all t-compact subsets of M of the form {m ∈ M |‖a+m‖ ≥ ε},
a ∈ A, 0 < ε. Let π′′ : E ′ → (M, t) be the uniform field of C∗-algebras obtained by first
forming the canonical field from A, M and then enlarging the weak-star topology t∗ of M
up to t. For each a ∈ A, â is the map â : M → E ′, â(m) = a+m ∈ A/m. The C∗-algebra
of all sections vanishing at infinity with respect to the class K is denoted by Γ0(π

′′).
(2) Then the map A → Γ0(π

′′), a 7→ â is an isometric star-isomorphism. In particular,
if M is t-compact, then M ∈ K and A ∼= Γ(π′′).

Definition 10.2. Ideals m from the previous theorem, i.e., points of M , are called Glimm
ideals.

We will use the notation T instead of M for Glimm spectrum to agree with the previous
section.

Now we consider a countable discrete group G and its automorphism φ. Also, A =
C∗(G). One has the twisted action of G on A:

g[a] = LgaLφ(g−1),

where Lg is the left shift, and respectively on functionals.

Definition 10.3. The dimension R∗(φ) of the space of twisted invariant functionals on
C∗(G) is called generalized Reidemeister number of φ.

Definition 10.4. A (Glimm) ideal I is a generalized fixed point of φ̂ if the linear span of
elements b− g[b] is not dense in AI = A/I, where g[.] is the twisted action, i.e. its closure
KI does not coincide with AI .
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If we have only a finite number of such fixed points, then the twisted invariant RBA
AOFM’s are concentrated in these points. Indeed, let us describe the action of G on RBA
AOFM’s in more detail. The action of G on measures is defined by the identification of
the measures and functionals on A.

Lemma 10.5. If µ corresponds to a twisted invariant functional, then for any Borel
E ⊂ T the functional µ(E) is twisted invariant.

Proof. This is an immediate consequence of *-weak regularity. Let a ∈ A, g ∈ G and
ε > 0 be an arbitrary small number, and U and F as in Lemma 9.5, for a and g[a]
simultaneously. Let us choose a continuous function f : T → [0, 1], with f |F = 1 and
f |T\U = 0. Then

|µ(E)(a− g[a])| = |µ(E \ F )(a) + µ(F )(a)− µ(E \ F )(g[a])− µ(F )(g[a])|
≤ |µ(F )(a)− µ(F )(g[a])|+ 2ε = |µ(F )(fa)− µ(F )(g[fa])|+ 2ε

= |µ(U)(fa)− µ(U \ F )(fa)− µ(U)(g[fa]) + µ(U \ F )(g[fa])|+ 2ε

≤ |µ(U)(fa)− µ(U)(g[fa])|+ 4ε = |µ(T )(fa)− µ(T )(g[fa])|+ 4ε = 4ε.

¤

Lemma 10.6. For any twisted-invariant functional ϕ on C∗(G) the corresponding mea-
sure µ is concentrated in the set GFP of generalized fixed points.

Proof. Let ‖µ‖ = 1. Suppose opposite: there exists an element a ∈ A, ‖a‖ = 1, vanishing
on generalized fixed points, such that ϕ(a) 6= 0. Let ε := |ϕ(a)| > 0. In each point
t 6∈ GFP we can find elements bi

t ∈ A, gi
t ∈ G, i = 1, . . . k(t), such that

‖a(t)−
k(t)∑
i=1

(gi
t[b

i
t](t)− bi

t(t))‖ < ε/4.

Then there exists a neighborhood Ut such that for s ∈ Ut one has

‖a(s)−
k(t)∑
i=1

(gi
t[b

i
t](s)− bi

t(s))‖ < ε/2.

Let us choose a finite subcovering {Utj}, j = 1, . . . , n, of {Ut} and a Borel partition
E1, . . . , En subordinated to this subcovering. Then

ϕ(a) =
n∑

j=1

µ(Ej)(a) =
n∑

j=1

µ(Ej)


a−

k(tj)∑
i=1

(gi
tj
[bi

tj
]− bi

tj
)


 +

n∑
j=1

k(tj)∑
i=1

µ(Ej)(g
i
tj
[bi

tj
]− bi

tj
).

By Lemma 10.5 each summand in the second term is zero. The absolute value of the first
term is less then

∑
j ‖µ(Ej)‖ε/2 ≤ ‖µ‖ · ε/2 = ε/2. A contradiction with |ϕ(a)| = ε. ¤

Since a functional ϕ on AI is twisted-invariant if and only if Ker ϕ ⊃ KI , the dimension
of the space of these functionals equals the dimension of the space of functionals on AI/KI

and is finite if and only if the space AI/KI is finite dimensional. In this case the dimension
of the space of twisted-invariant functionals on AI equals dim(AI/KI).
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Definition 10.7. Generalized number S∗(φ) of fixed points of φ̂ on Glimm spectrum is

S∗(φ) :=
∑

I∈GFP

dim(AI/KI).

Since functionals associated with measures, which are concentrated in different points,
are linearly independent (the space is Hausdorff), the argument above gives the following
statement.

Theorem 10.8 (Weak generalized Burnside).

R∗(φ) = S∗(φ)

if one of these numbers is finite.

In [16] (see also [10, 17] and the first part of the present survey paper) it was proved
for groups of type I that the Reidemeister number R(φ), i.e., the number of twisted
(or φ-)conjugacy classes, coincides with the number of fixed points of the corresponding

action φ̂ on the dual space Ĝ. This was a generalization of Burnside theorem. The proof
used identification of R(φ) and the dimension of the space of (L∞-) twisted invariant
functions on G, i.e. twisted invariant functionals on L1(G). Since only part of L∞-
functions defines functionals on C∗(G) (namely, Fourier-Stieltjes functions), so, a priori
one has R∗(φ) ≤ R(φ). Nevertheless, the functions with some symmetry conditions
very often are in Fourier-Stieltjes algebra, so one can conjecture that R(φ) = R∗(φ) if
R(φ) < ∞. This is the case for all known examples.

11. Finite-dimensional representations and almost polycyclic groups

Let us start from several useful facts.

Theorem 11.1 ([34, Theorem 1.41]). If G is a finitely generated group and H is a
subgroup with finite index in G, then H is finitely generated.

Lemma 11.2. Let G be finitely generated, and H ′ ⊂ G its subgroup of finite index. Then
there is a characteristic subgroup H ⊂ G of finite index, H ⊂ H ′.

Proof. Since G is finitely generated, there is only finitely many subgroups of the same
index as H ′ (see [23], [27, § 38]). Let H be their intersection. Then H is characteristic,
in particular normal, and of finite index. ¤
Theorem 11.3 (see [25]). Let A be a finitely generated Abelian group, ψ : A → A its
automorphism. Then R(ψ) = # Coker(ψ− Id), i.e. to the index of subgroup generated by
elements of the form x−1ψ(x).

Proof. By Lemma 2.1, R(ψ) is equal to the index of the subgroup H = {e}ψ. This group
consists by definition of elements of the form x−1ψ(x). ¤

Let us remind the following definitions of a class of groups.

Definition 11.4. A group with finite conjugacy classes is called FC-group.

In a FC-group the elements of finite order form a characteristic subgroup with locally
infinite abelian factor group; a finitely generated FC-group contains in its center a free
abelian group of finite index in the whole group [30].
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Lemma 11.5. An automorphism φ of a finitely generated FC-group G with R(φ) < ∞
has a finite number of fixed points.

The same is true for τx ◦ φ. Hence, the number of g ∈ G such that for some x ∈ G

gxφ(g−1) = x,

is still finite.

Proof. Let A be the center of G. As it was indicated, A has a finite index in G and hence,
by Theorem 11.1, is f.g. Since A is characteristic, one has an extension A → G → G/A
respecting φ. One has R(φ′) ≤ R(φ) · |G/A| by Lemma 4.3 and # Fix(φ′) ≤ R(φ) · |G/A|
by Theorem 4.5. Then # Fix(φ) ≤ R(φ) · |G/A|2 by Lemma 4.4. ¤
Definition 11.6. We say that a group G has the property RP if for any automorphism
φ with R(φ) < ∞ the characteristic functions f of Reidemeister classes (hence all
φ-central functions) are periodic in the following sense.

There exists a finite group W , its automorphism φW , and epimorphism F : G → W
such that

(1) The diagram

G
φ //

F
²²

G

F
²²

W
φW // W

commutes.
(2) f = F ∗fW , where fW is a characteristic function of a subset of W .

If this property holds for a concrete automorphism φ, we will denote this by RP(φ).

Remark 11.7. By (2) there is only one class {g}φ which maps onto {F (g)}φW
. Hence,

F induces a bijection of Reidemeister classes.

Lemma 11.8. Suppose, G is f.g. and R(φ) < ∞. Then characteristic functions of φ-
conjugacy classes are periodic (i.e. G has RP(φ) ) if and only if their left shifts generate
a finite dimensional space.

Proof. From the supposition of finite dimension it follows that the stabilizer of each φ-
conjugacy class has finite index. Hence, the common stabilizer of all φ-conjugacy classes
under left shifts is an intersection of finitely many subgroups, each of finite index. Hence,
its index is finite. By Lemma 11.2 there is some smaller subgroup GS of finite index
which is normal and φ-invariant. Then one can take W = G/GS. Indeed, it is sufficient
to verify that the projection F is one to one on classes. In other words, that each coset
of Gs enters only one φ-conjugacy class, or any two elements of coset are φ-conjugated.
Consider g and hg, g ∈ G, h ∈ Gs. Since h by definition preserves classes, hg = xgφ(x−1)
for some x ∈ G, as desired.

Conversely, if G has RP(φ), the class {g}φ is a full pre-image F−1(S) of some class
S ⊂ W . Then its left shift can be described as

g′{g}φ = g′F−1(S) = {g′g1|g1 ∈ F−1(S)} = {g|(g′)−1g ∈ F−1(S)}
= {g|F ((g′)−1g) ∈ S} = {g|F (g) ∈ F (g′)(S)} = F−1(F (g′)(S)).

Since W is finite, the number of these sets is finite. ¤
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Remark 11.9. 1) In this situation in accordance with Lemma 11.2 the subgroup GS is
characteristic, i.e. invariant under any automorphism.

2) Also, the group G/GS will serve as W (i.e. give rise a bijection on sets of Reidemeister
classes) not only for φ but for τg ◦ φ for any g ∈ G because they have the same collection
of left shifts of Reidemeister classes by Lemma 4.1.

Theorem 11.10. Suppose, the extension (1) satisfies the following conditions:

(1) H has RP;
(2) G/H is FC f.g.

Then G has RP(φ).

Proof. We have R(φ) < ∞, hence # Fix(φ) < ∞ by Lemma 11.5 as well as # Fix(τzφ) <
∞ for any z ∈ G/H. Then by Lemma 4.3 R(τgφ

′) < ∞ for any g ∈ G. Let g1, ..., gs,

s = R(φ), be elements of G which are mapped by p to different Reidemeister classes of
φ. Now we can apply the supposition that H has RP and find a characteristic subgroup
HW := Ker F ⊂ H of finite index such that F : H → W gives rise a bijection for
Reidemeister classes of each τgi

◦φ′, i = 1, . . . , s, moreover, it is contained in the stabilizer
of each twisted conjugacy class of each of these automorphisms. We choose it in a way to
satisfy Remark 11.9. In particular, it is normal in G. Hence, we can take a quotient by
HW of the extension (1):

H
Â Ä //

F
²²

G

F1

²²

p

$$JJJJJJJJJJ

H/HW
Â Ä // G/HW

p // G/H

W
Â Ä // G1

p // Γ.

The quotient map F1 : G → G/HW takes {g}φ to {g}φ and it is a unique class with this
property (we conserve the notations e, g, φ for the quotient objects). Indeed, suppose two

classes are mapped onto one. Hence, gih and gihĥW belong to the same (different) classes
as g and ghW . Moreover, they can not be φ-conjugate by elements of H. Hence (cf. (4)),

the elements h and hĥW are not (τgi
◦φ′)-conjugate in H. But this contradicts the choice

of HW 3 ĥW .
By Lemma 11.8 (applied to G1 and concrete automorphism φ) for the purpose to find

a map F2 : G1 → W1 with properties (1) and (2) of the Definition 11.6 it is sufficient to
verify that shifts of the characteristic function of {h}φ ⊂ G1 form a finite dimensional
space, i.e. the shifts of {h}φ ⊂ G1 form a finite collection of subsets of G1. After that one
can take the composition

G
F1−→ G1

F2−→ W1

to complete the proof of theorem.
Let us observe, that we can apply Lemma 11.8 because the group G1 is finitely gener-

ated: we can take as generators all elements of W and some pre-images s(zi) ∈ G1 under
p of a finite system of generators zi for Γ. Indeed, for any x ∈ G1 one can find some
product of zi to be equal to p(x). Then the same product of s(zi) differs from x by an
element of W .
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Let us prove that the mentioned space of shifts is finite-dimensional. By Lemma 4.1
these shifts of {h}φ ⊂ G1 form a subcollection of

{x}τy◦φ, x, y ∈ G1.

Hence, by Corollary 4.2 it is sufficient to verify that the number of different automorphisms
τy : G1 → G1 is finite.

Let x1, . . . , xn be some generators of G1. Then the number of different τy does not
exceed

n∏
j=1

#{τy(xj) | y ∈ G1} ≤
n∏

j=1

|W | ·#{τz(p(xj)) | z ∈ Γ},

where the last numbers are finite by the definition of FC for Γ. ¤
Now we describe using Theorem 11.10 some classes of RP groups. Of course these

classes are only a small part of possible corollaries of this theorem.
Let G′ = [G,G] be the commutator subgroup or derived group of G, i.e. the subgroup

generated by commutators. G′ is invariant under any homomorphism, in particular it is
normal. It is the smallest normal subgroup of G with an abelian factor group. Denoting
G(0) := G, G(1) := G′, G(n) := (G(n−1))′, n ≥ 2, one obtains derived series of G:

(27) G = G(0) ⊃ G′ ⊃ G(2) ⊃ · · · ⊃ G(n) ⊃ . . .

If G(n) = e for some n, i.e. the series (27) stabilizes by trivial group, the group G is
solvable;

Definition 11.11. A solvable group with derived series with cyclic factors is called poly-
cyclic group.

Theorem 11.12. Any polycyclic group is RP.

Proof. By Lemma 2.1 any commutative group is RP. Any extension with H being the
commutator subgroup G′ of G respects any automorphism φ of G, because G′ is evidently
characteristic. The factor group is abelian, in particular FC.

Since any polycyclic group is a result of finitely many such extensions with finitely gen-
erated (cyclic) factor groups, starting from Abelian group, applying inductively Theorem
11.10 we obtain the result. ¤
Theorem 11.13. Any finitely generated nilpotent group is RP.

Proof. These groups are supersolvable, hence, polycyclic [35, 5.4.6, 5.4.12]. ¤
Theorem 11.14. Any finitely generated group of polynomial growth is RP.

Proof. By [21] a finitely generated group of polynomial growth is just as finite extension
of a f.g. nilpotent group H. The subgroup H can be supposed to be characteristic, i.e.
φ(H) = H for any automorphism φ : G → G. Indeed, let H ′ ⊂ G be a nilpotent subgroup
of index j. Let H be the subgroup from Lemma 11.2. By Theorem 11.1 it is finitely
generated. Also, it is nilpotent as a subgroup of nilpotent group (see [27, § 26]).

Since a finite group is a particular case of FC group and f.g. nilpotent group has RP
by Theorem 11.13, we can apply Theorem 11.10 to complete the proof. ¤

The proof of the following twisted Burnside theorem can be extracted from Theorem
11.18, but we formulate it separately due to importance of the classes under consideration.
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Theorem 11.15. The Reidemeister number of any automorphism φ of a f.g. group of
polynomial growth or polycyclic group is equal to the number of finite-dimensional fixed

points of φ̂ on the unitary dual of this group if R(φ) is finite.

Theorem 11.16. Any almost polycyclic group, i.e. an extension of a polycyclic group
with a finite factor group, is RP.

Proof. The proof repeats almost literally the proof of Theorem 11.14. One has to use the
fact that a subgroup of a polycyclic group is polycyclic [35, p. 147]. ¤

Definition 11.17. Denote by Ĝf the subset of the unitary dual Ĝ related to finite-di-
mensional representations.

Theorem 11.18 (Twisted Burnside Theorem). Let G be an RP group and φ its auto-

morphism. Denote by Sf (φ) the number of fixed points of φ̂f on Ĝf . Then

R(φ) = Sf (φ),

if the Reidemeister number R(φ) is finite.

Proof. Let us start from the following observation. Let Σ be the universal compact group
associated with G and α : G → Σ the canonical morphism (see, e.g. [6, Sect. 16.1]). Then

Ĝf = Σ̂ [6, 16.1.3]. The coefficients of (finite-dimensional) non-equivalent irreducible
representations of Σ are linear independent by Peter-Weyl theorem as functions on Σ.
Hence the coefficients of finite-dimensional non-equivalent irreducible representations of
G as functions on G are linearly independent as well.

It is sufficient to verify the following three statements:
1) If R(φ) < ∞, than each φ-class function is a finite linear combination of twisted-

invariant functionals being coefficients of points of Fix φ̂f .

2) If ρ ∈ Fix φ̂f , there exists one and only one (up to scaling) twisted invariant functional
on ρ(C∗(G)) (this is a finite full matrix algebra).

3) For different ρ the corresponding φ-class functions are linearly independent. This
follows from the remark at the beginning of the proof.

Let us remark that the property RP implies in particular that φ-central functions (for φ
with R(φ) < ∞) are functionals on C∗(G), not only L1(G), i.e. are in the Fourier-Stieltijes
algebra B(G).

The statement 1) follows from the RP property. Indeed, this φ-class function f is a
linear combination of functionals coming from some finite collection {ρi} of elements of

Ĝf (these representations ρ1, . . . , ρs are in fact representations of the form πi◦F , where πi

are irreducible representations of the finite group W and F : G → W , as in the definition
of RP). So,

f =
s∑

i=1

fi ◦ ρi, ρi : G → End(Vi), fi : End(Vi) → C, ρi 6= ρj, (i 6= j).

For any g, g̃ ∈ G one has
s∑

i=1

fi(ρi(g̃)) = f(g̃) = f(gg̃φ(g−1)) =
s∑

i=1

fi(ρi(gg̃φ(g−1))).
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By the observation at the beginning of the proof concerning linear independence,

fi(ρi(g̃)) = fi(ρi(gg̃φ(g−1))), i = 1, . . . , s,

i.e. fi are twisted-invariant. For any ρ ∈ Ĝf , ρ : G → End(V ), any functional ω :
End(V ) → C has the form a 7→ Tr(ba) for some fixed b ∈ End(V ). Twisted invariance
implies twisted invariance of b (evident details can be found in [16, Sect. 3]). Hence,

b is intertwining between ρ and ρ ◦ φ and ρ ∈ Fix(φ̂f ). The uniqueness of intertwining
operator (up to scaling) implies 2). ¤
Remark 11.19. We were able to prove only one statement of the theorem in the terms
of Σ because of difficulties with an extension of φ to Σ.

Now let us present some counterexamples to this statement for pathological (monster)
discrete groups. Suppose, an infinite discrete group G has a finite number of conjugacy
classes. Such examples can be found in [36] (HNN-group), [31, p. 471] (Ivanov group),
and [32] (Osin group). Then evidently, the characteristic function of unity element is not
almost-periodic and the argument above is not valid. Moreover, let us show, that these
groups give rise counterexamples to above theorem.

Example 11.20. For the Osin group the Reidemeister number R(Id) = 2, while there
is only trivial (1-dimensional) finite-dimensional representation. Indeed, Osin group is
an infinite finitely generated group G with exactly two conjugacy classes. All nontrivial
elements of this group G are conjugate. So, the group G is simple, i.e. G has no nontrivial
normal subgroup. This implies that group G is not residually finite (by definition of
residually finite group). Hence, it is not linear (by Mal’cev theorem [28], [35, 15.1.6]) and
has no finite-dimensional irreducible unitary representations with trivial kernel. Hence,
by simplicity of G, it has no finite-dimensional irreducible unitary representation with
nontrivial kernel, except of the trivial one.

Let us remark that Osin group is non-amenable, contains the free group in two gener-
ators F2, and has exponential growth.

Example 11.21. For large enough prime numbers p, the first examples of finitely gener-
ated infinite periodic groups with exactly p conjugacy classes were constructed by Ivanov
as limits of hyperbolic groups (although hyperbolicity was not used explicitly) (see [31,
Theorem 41.2]). Ivanov group G is infinite periodic 2-generator group, in contrast to the
Osin group, which is torsion free. The Ivanov group G is also a simple group. The proof
(kindly explained to us by M. Sapir) is the following. Denote by a and b the generators
of G described in [31, Theorem 41.2]. In the proof of Theorem 41.2 on [31] it was shown
that each of elements of G is conjugate in G to a power of generator a of order s. Let us
consider any normal subgroup N of G. Suppose γ ∈ N . Then γ = gasg−1 for some g ∈ G
and some s. Hence, as = g−1γg ∈ N and from periodicity of a, it follows that also a ∈ N
as well as ak ∈ N for any k, because p is prime. Then any element h of G also belongs to

N being of the form h = h̃ak(h̃)−1, for some k, i.e., N = G. Thus, the group G is simple.
The discussion can be completed in the same way as in the case of Osin group.

Example 11.22. In paper [24], Theorem III and its corollary, G. Higman, B. H. Neu-
mann, and H. Neumann proved that any locally infinite countable group G can be embed-
ded into a countable group G∗ in which all elements except the unit element are conjugate
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to each other (see also [36]). The discussion above related Osin group remains valid for
G∗ groups.

Let us remark that almost polycyclic group are residually finite (see e.g. [35, 5.4.17])
while the groups from these counterexamples are not residually finite, as it is clear by
definition. That is why we would like to complete this section with the following question.
Question. Suppose G is a residually finite group and φ is its endomorphism with finite
R(φ). Does R(φ) equal Sf (φ)?

The results of the present section are generalized to the case of coincidences in [14].

12. Baumslag-Solitar groups B(1, n)

In this section based on (a part of) [11] it is proved that any injective endomorphism
of a Baumslag-Solitar group B(1, n) has infinite Reidemeister number. In [11] the similar
result for automorphisms of B(m, n) is obtained as well.

Let B(1, n) = 〈a, b : a−1ba = bn, n > 1〉 be the Baumslag-Solitar groups. These groups
(see [8]) are finitely-generated solvable groups (in particular amenable) which are not
virtually nilpotent. These groups have exponential growth [5] and they are not Gromov
hyperbolic. Furthermore, these groups are torsion free and metabelian (an extension of
an Abelian group by an Abelian). More precisely one has

Proposition 12.1. B(1, n) ∼= Z[1/n] oθ Z, where the action of Z on Z[1/n] is given by
θ(1)(x) = x/n.

Proof. The map defined by ι(a) = (0, 1) and ι(b) = (1, 0) extends to a unique homomor-
phism ι : B(1, n) → Z[1/n]o Z, because

ι(a−1) ∗ ι(b) ∗ ι(a) = (0,−1) ∗ (1, 0) ∗ (0, 1) = (0,−1) ∗ (1, 1) = (n, 0) = ι(bn).

One has

(28) ι(arbsa−r) = (0, r) ∗ (s,−r) =
( s

nr
, 0

)
.

The map ι is clearly surjective. Let us show that this homomorphism is injective.
Let us remark that the group relation implies a−1b−1a = b−n. Hence for any s one has
a−1bsa = bns. Thus we can move all a−1 to the right (until they annihilate with some a or
take the extreme right place) and all a to the left, with an appropriate changing of powers
of b. Hence any word in B(1, n) is equivalent to a word of the form w = ar1bsar2 , where
r1 ≥ 0, r2 ≤ 0. Then ι(w) = (m, r1 + r2) for some m ∈ Z[1/n]. Hence, if r1 + r2 6= 0, then
ι(w) 6= e. Let now r1 + r2 = 0, then by (28) if ι(w) = e, then s = 0 and w = e. ¤

Consider the homomorphism | |a : B(1, n) −→ Z which associates to each word w ∈
B(1, n) the sum of the exponents of a in this word. Since this sum for the relation is zero,
this is a well defined map, which is evidently surjective.

Proposition 12.2. We have a short exact sequence

0 −→ K −→ B(1, n)
| |a−→ Z −→ 1,

where K is the kernel of | |a. Moreover, B(1, n) equals a semidirect product K o Z.

Proof. The first statement follows from surjectivity of | · |a. Since Z is free, this sequence
splits. ¤
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Proposition 12.3. The kernel K coincide with the normalizer N〈b〉 of the subgroup 〈b〉
generated by b in B(1, n):

(29) 0 −→ N〈b〉 −→ B(1, n)
| |a−→ Z −→ 1.

Proof. We have N〈b〉 ⊂ K. The quotient B(1, n)/N〈b〉 has the following presentation:

a−1ba = b
n
, b = 1. Therefore this group is isomorphic to Z under the identification

[a] ↔ 1Z. Hence the natural projection coincides with the map | |a and we have the
following commutative diagram

0 // N〈b〉 //

∩
²²

B(1, n) //

=

²²

B(1, n)/(N〈b〉) //

∼=
²²

1

0 // K // B(1, n) // Z // 1.

The five-lemma completes the proof. ¤
Proposition 12.4. Any homomorphism φ : B(1, n) → B(1, n) is a homomorphism of the
short exact sequence (29).

Proof. Let φ̄ be the homomorphism induced by φ on the abelianization B(1, n)ab of
B(1, n). The group B(1, n)ab is isomorphic to Zn−1 +Z. The torsion elements of B(1, n)ab

form a subgroup isomorphic to Zn−1 which is invariant under any homomorphism. The
preimage of this subgroup under the projection B(1, n) → B(1, n)ab is exactly the sub-
group N(b), i.e. the elements represented by words where the sum of the powers of a is
zero. So it follows that N(b) is mapped into N(b) and the result follows. ¤
Theorem 12.5. For any injective homomorphism φ of B(1, n) the Reidemeister number
is infinite.

Proof. By Proposition 12.4 it is a homomorphism of short exact sequence. The induced
map φ on the quotient is an injective endomorphism of Z. If φ = IdZ, then by (2) the
number of Reidemeister classes is infinite. Hence, φ is multiplication by k 6= 0, 1. But this
is impossible. Indeed, when we apply φ to the relation a−1ba = bn, under the identification
of Proposition 12.1 ι : B(1, n) ∼= Z[1/n] o Z we have, because φ(b) ∈ N〈b〉 and hence
ι(φ(b)) = (d, 0) for some d ∈ Z[1/n],

(nd, 0) = ι(φ(bn)) = ι(φ(a−1ba)) = ι(a−kφ(b)ak) = (d · nk, 0).

This implies that either n1−k = 1 or φ(b) = 0. ¤
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