Lecture 10

3.2 AF-algebras

Definition 3.6. Let us call a C^* -algebra an AF-algebra (approximately finite-dimensional), if it is the closure of the union of an increasing sequence of its finite-dimensional C^* -subalgebras.

Problem 49. Prove that the matrix algebra M_n is simple for any n (this does not follow from Lemma 2.34, from which one can deduce that M_n is simple for some n). Hint: for any ideal $I \neq \{0\}$ consider a matrix from it with $a_{ij} \neq 0$. By multiplying on the left and right by matrices with 1's in one place and zeros in the rest, you obtain a matrix of I with a single nonzero element a_{ij} . Multiplying by permutation matrices, get similar matrices with all possible i, j. Their linear combinations give the entire M_n algebra.

Problem 50. Deduce from Problem 49 and Lemma 2.34 that the image of the matrix algebra M_n under a *-homomorphism is either a zero algebra or an algebra isomorphic to M_n .

Problem 51. Prove the following almost obvious fact: if p and q are projections of the same rank in M_n , then there exists a unitary matrix u such that $q = u^*pu$.

Lemma 3.7. Let $\varphi: M_n \to M_k$ be a non-zero *-homomorphism, so that $p := \varphi(1_n)$ is a self-adjoint projection, where 1_n is the unit of M_n . Then $\operatorname{rk}(p) = \operatorname{Trace}(p)$ is divided by $n = \operatorname{rk}(1_n) = \operatorname{Trace}(1_n)$.

Proof. Consider some one-dimensional orthogonal (self-adjoint) projection $e \in M_n$. Then $\varphi(e)$ is a self-adjoint projection in M_k . Its rank does not depend on the choice of e, since any other e' is equal to u^*eu (by problem 51), where u is unitary, so

$$\operatorname{Trace}(\varphi(e')) = \operatorname{Trace}(\varphi(u^*eu)) = \operatorname{Trace}(\varphi(u^*)\varphi(e)\varphi(u)) =$$

$$= \operatorname{Trace}(\varphi(u)\varphi(u^*)\varphi(e)) = \operatorname{Trace}(\varphi(uu^*e)) = \operatorname{Trace}(\varphi(e)).$$

If this (one for all) rank is zero, then φ would be zero. This means it is equal to $c \ge 1$. Let us now consider an orthonormal basis e_1, \ldots, e_n (for example, canonical) in \mathbb{C}^n and denote the corresponding one-dimensional orthoprojections by $[e_i]$, so $[e_j]$ $[e_i] = 0$ for $i \ne j$. Then, since $\varphi([e_i])\varphi([e_j]) = \varphi([e_ie_j]) = 0$ for $i \ne j$, we get

$$\operatorname{Trace}(p) = \operatorname{rk}(\varphi(1_n)) = \operatorname{rk}(\varphi([e_1] \oplus \cdots \oplus [e_n])) = \operatorname{rk}(\varphi([e_1])) + \cdots + \operatorname{rk}(\varphi([e_n])) = cn.$$

Definition 3.8. The ratio $c := \frac{\operatorname{rk}(p)}{n}$ will be called *multiplicity* of φ .

Along with the standard left action of M_n on \mathbb{C}^n , we consider the left action of M_n on itself by multiplication, so the canonical expansion

$$M_n \cong \underbrace{\mathbb{C}^n \oplus \cdots \oplus \mathbb{C}^n}_{n \text{ times}} = M_n[e_1] \oplus \cdots \oplus M_n[e_n]$$

is a decomposition into simple modules (=irreducible representations), where $[e_i] \in M_n$ is an orthogonal projection onto the basis vector e_i of the standard basis. Another way to write it is $[e_i] = e_i \otimes e_i^*$ (considering matrices as endomorphisms), where e^* is the Hermitian conjugate functional for e, so $[e_i]v = (e_i \otimes e_i^*)v = e_i(e_i, v)$. For different vectors we get the matrix unit $e_{ij} = e_i \otimes (e_j)^*$, so $[e_i] = e_{ii}$.

Lemma 3.9. Any irreducible left module M in M_n has the form $M_n(g \otimes f^*) = \mathbb{C}^n \otimes f^*$, where g, f are some unit (can be taken to be unit) vectors.

Proof. For the left action, the module $M_n(g \otimes f^*) = \mathbb{C}^n \otimes f^*$ is isomorphic to \mathbb{C}^n with the standard action, and therefore is irreducible. Therefore, if $g \otimes f^* \in M$, then $M = M_n(g \otimes f^*)$. It remains to show that M contains an element of the form $g \otimes f^*$. But this form describes any operator of rank 1. Indeed, if a is an operator of rank 1, then we must take as f the unit vector perpendicular to its kernel, and g = a(f). Finally, if M is nonzero and $0 \neq b \in M$, then choose $f \neq 0$ from its image. Then $(f \otimes f^*)b$ is an operator of rank 1 from M.

Theorem 3.10. Let φ be a (unital) *-automorphism of the C*-algebra M_n . Then it is inner: $\varphi(a) = vav^*$ for any a, where $v \in M_n$ is unitary.

Proof. Note that φ is an isomorphism between M_n , considered as a left module over M_n with the standard action $a \cdot x$, and M_n , considered as a module with the action $a*x = \varphi(a) \cdot x$, since $\varphi(a \cdot x) = \varphi(a) \cdot \varphi(x) = a*\varphi(x)$. Since $\varphi(M_n) = M_n$, then the invariant and irreducible modules for both actions are the same (the latter are described by Lemma 3.9), and $\varphi(\mathbb{C} \otimes e_i) = \mathbb{C} \otimes h_i$, moreover, since the automorphism takes a direct sum to a direct sum, then h_i form a basis in \mathbb{C}^n and, thus, an isomorphism $u:\mathbb{C}^n\to\mathbb{C}^n$ is defined by $u:e_i\to h_i$ (even if we assume $||h_i||=1$, then u is uniquely defined only up to multiplication by a diagonal matrix of complex numbers modulo one). Thus, $\varphi(e_{ij}) = r_{ij} \otimes h_j$, where $r_{ij} \in \mathbb{C}^n$ are some elements. Similar reasoning with right modules shows that $\varphi(e_{ij}) = g_i \otimes (s_{ij})^*$, where $v: \mathbb{C}^n \to \mathbb{C}^n$, $v: e_i \to g_i$, is an isomorphism, and $s_{ij} \in \mathbb{C}^n$ are some elements. From these two relations we obtain that $\varphi(e_{ij}) = \lambda_{ij} g_i \otimes (h_j)^*$, where λ_{ij} are some numbers. Moreover (see the proof of Lemma 3.7) $\varphi([e_i]) = \lambda_{ii}g_i \otimes (h_i)^*$ is a self-adjoint projection, so $h_i = \mu g_i$ and $g_i = (\lambda_{ij}\overline{\mu})(g_i \otimes (g_i)^*)(g_i) = (\lambda_{ij}\overline{\mu})g_i$ and $\lambda_{ij}\overline{\mu}=1$. Thus, we can assume that $h_i=g_i,\ u=v$ and (new) λ_{ij} satisfy $\lambda_{ii}=1$ for any i. In this case, g_i form an orthonormal basis (see the proof of Lemma 3.7), so $u:e_i\mapsto g_i$ is unitary. Since the homomorphism φ preserves the equalities $e_{ij}e_{ji}=e_{ii}=[e_i]$ and $e_{ij}^* = e_{ji}$, we obtain that $\lambda_{ij}\lambda_{ji} = 1$, $\lambda_{ij} = \lambda_{ji}$, so, in particular, λ_{ij} are complex numbers

Consider the matrix $\Lambda = ||\lambda_{ij}||$. Passing, if necessary, from vectors g_i to $(\lambda_{1i})^{-1}g_i = \overline{\lambda_{1i}}g_i$ for $i = 2, \ldots, n$, we can consider $\lambda_{1i} = \lambda_{i1} = 1$ for $i = 2, \ldots, n$. At the same time, the

3.2. AF-ALGEBRAS 47

image $\varphi(a)$ of a matrix $a = \|a_{ij}\|$ can be written down with respect to the orthonormal basis $\{g_i\}$ as $\|\lambda_{ij}a_{ij}\|$, and if the matrix a was unitary, then $\varphi(a)$ must also be unitary. Let some $\lambda_{ij} \neq 1$ (that is possible only for $i \neq j$, $i \neq 1$). Taking for these i, j the unitary matrix a with $a_{1i} = 1/\sqrt{2}$, $a_{1j} = 1/\sqrt{2}$, $a_{ii} = 1/\sqrt{2}$, $a_{ij} = -1/\sqrt{2}$ (and the rest in these rows and columns, of course, is formed with zeros), we obtain the orthogonality condition for these rows in the form $0 = (1/\sqrt{2} \cdot 1)(1/\sqrt{2} \cdot 1) + (-1/\sqrt{2} \cdot \lambda_{ij})(1/\sqrt{2} \cdot 1) = (1-\lambda_{ij})/2$, so $\lambda_{ij} = 1$. Contradiction.

So, for any i, j we get that $\varphi(e_i \otimes (e_j)^*) = v(e_i) \otimes (v(e_j))^* = v \cdot (e_i \otimes (e_j)^*) \cdot v^*$. Since any matrix is a linear combination of such matrix units, by linearity we obtain the required equality $\varphi(a) = vav^*$.

Lemma 3.11. Let the homomorphism φ be unital under the conditions of Lemma 3.7. Then φ is determined by multiplicity up to a unitary equivalence (conjugation) in M_k .

Proof. Let f_i^1, \ldots, f_i^c be an orthonormal basis in the image of the projection $\varphi(e_i)$, $s = 1, \ldots, n$. Denoting by $[f_i^j]$ the corresponding one-dimensional pairwise orthogonal projections, we have $\varphi(e_i) = [f_i^1] + \cdots + [f_i^c]$. Then $\{f_i^j\}$, $i = 1, \ldots, n$, $j = 1, \ldots, c$, is an orthobasis \mathbb{C}^k , $1_k = \sum_{i,j} [f_i^j]$. If $u \in M_k$ is a unitary matrix taking $\{f_i^j\}$ to the canonical basis of \mathbb{C}^k , where $uf_i^j = e_{(i-1)n+j}$, then

$$[e_{(i-1)n+j}]x = e_{(i-1)n+j}(e_{(i-1)n+j}, x) = uf_i^j(uf_i^j, x) = uf_i^j(f_i^j, u^*x) = u[f_i^j]u^*x$$
(3.1)

for any $x \in \mathbb{C}^k$. That is why

$$\varphi([e_i]) = [f_i^1] + \dots + [f_i^c] = \sum_{j=1}^c u^* [e_{(i-1)n+j}] u = u^* \left(\sum_{j=1}^c [e_{(i-1)n+j}] \right) u.$$
 (3.2)

Thus,

$$u\varphi(a)u^* = \begin{pmatrix} \varphi_1(a) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \varphi_c(a) \end{pmatrix} \text{ (block diagonal matrix)}, \tag{3.3}$$

where $\varphi_i: M_n \to M_n$ is a non-zero homomorphism, and therefore an isomorphism $(i = 1, \ldots, c)$. Therefore, we can apply Theorem 3.10 to it and find a unitary $v_i \in M_n$, such that $\varphi_i(a) = v_i^* a v^i$. Denoting $v = v_1 \oplus \cdots \oplus v_c$ (a unitary element from M_k), we obtain that $vu\varphi(a)u^*v^* = S_c(a)$ for any $a \in M_n$, where $S_c: M_n \to M_k$, k = cn, is the standard homomorphism of multiplicity c:

$$S_c(a) = \begin{pmatrix} a & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a \end{pmatrix}$$
 (block diagonal matrix with c blocks equal to a),

as desired. \Box

Lemma 3.12. Let φ be a unital *-homomorphism of a finite-dimensional C^* -algebra $A = M_{n_1} \oplus \ldots \oplus M_{n_k}$ into a finite-dimensional C^* -algebra $B = M_{m_1} \oplus \ldots \oplus M_{m_l}$. Then φ is given (up to unitary equivalence in B) by some $l \times k$ -matrix $C = (c_{ij})$ with nonnegative elements, and $\sum_{j=1}^k c_{ij} n_j = m_i$.

Proof. Let $\epsilon_i: B \to M_{m_i}$ be the canonical epimorphism, and $\sigma_j: M_{n_j} \to A$ the canonical embedding, $i = 1, \ldots, l, \ j = 1, \ldots, k$. Then $\epsilon_i \circ \varphi$ is a unital homomorphism of A into M_{m_i} . Let c_{ij} be the multiplicity of $\varphi_{ij} = \epsilon_i \circ \varphi \circ \sigma_j: M_{n_j} \to M_{m_i}$ in the sense of Definition 3.8.

Note that $\sigma_j(1_{n_j})$ are pairwise orthogonal self-adjoint projections in A with their sum equal to one, so $p_{ij} := \varphi_{ij}(1_{n_j})$ are pairwise orthogonal self-adjoint projections in M_{m_i} , also with their sum equal to one. Therefore, as before, their direct sum is unitarily equivalent with the help of u_i in M_{m_i} to the sum of the corresponding diagonal projections $u_i p_{ij} u_i^*$. Applying Lemma 3.11 to each of $a \mapsto u_i \varphi_{ij}(a) u_i^*$, we find that $\epsilon_i \circ \varphi$ is unitarily equivalent (in M_{m_i}) to the homomorphism $\mathrm{id}_{n_1}^{c_{i1}} \oplus \ldots \oplus \mathrm{id}_{n_k}^{c_{ik}} = S_{c_{i1}} \oplus \cdots \oplus S_{c_{ik}}$. Comparison of dimensions gives the equality $\sum_{j=1}^k c_{ij} n_j = m_i$. Since φ is determined by the direct sum $\epsilon_i \circ \varphi$, $i = 1, \ldots, l$, the statement is proven.

Problem 52. Suppose that in the previous lemma we exclude the requirement of unitality. Prove an analogue of the lemma in this case. Namely, take instead of B the subalgebra $\varphi(A) = p\varphi(A)p$ in B, where $p = \varphi(1_A)$, apply the previous lemma to $\varphi: A \to \varphi(A)$ and obtain the statement of the lemma with inequalities $\sum_{j=1}^k c_{ij}n_j \leqslant m_i$ instead of equalities.