Lecture 10

3.2 AF-algebras

Definition 3.6. Let us call a C^{*}-algebra an $A F$-algebra (approximately finite-dimensional), if it is the closure of the union of an increasing sequence of its finite-dimensional C^{*} subalgebras.

Problem 49. Prove that the matrix algebra M_{n} is simple for any n (this does not follow from Lemma 2.34, from which one can deduce that M_{n} is simple for some n). Hint: for any ideal $I \neq\{0\}$ consider a matrix from it with $a_{i j} \neq 0$. By multiplying on the left and right by matrices with 1 's in one place and zeros in the rest, you obtain a matrix of I with a single nonzero element $a_{i j}$. Multiplying by permutation matrices, get similar matrices with all possible i, j. Their linear combinations give the entire M_{n} algebra.

Problem 50. Deduce from Problem 49 and Lemma 2.34 that the image of the matrix algebra M_{n} under a $*$-homomorphism is either a zero algebra or an algebra isomorphic to M_{n}.

Problem 51. Prove the following almost obvious fact: if p and q are projections of the same rank in M_{n}, then there exists a unitary matrix u such that $q=u^{*} p u$.

Lemma 3.7. Let $\varphi: M_{n} \rightarrow M_{k}$ be a non-zero $*$-homomorphism, so that $p:=\varphi\left(1_{n}\right)$ is a self-adjoint projection, where 1_{n} is the unit of M_{n}. Then $\operatorname{rk}(p)=\operatorname{Trace}(p)$ is divided by $n=\operatorname{rk}\left(1_{n}\right)=\operatorname{Trace}\left(1_{n}\right)$.

Proof. Consider some one-dimensional orthogonal (self-adjoint) projection $e \in M_{n}$. Then $\varphi(e)$ is a self-adjoint projection in M_{k}. Its rank does not depend on the choice of e, since any other e^{\prime} is equal to $u^{*} e u$ (by problem 51), where u is unitary, so

$$
\begin{aligned}
& \operatorname{Trace}\left(\varphi\left(e^{\prime}\right)\right)=\operatorname{Trace}\left(\varphi\left(u^{*} e u\right)\right)=\operatorname{Trace}\left(\varphi\left(u^{*}\right) \varphi(e) \varphi(u)\right)= \\
& =\operatorname{Trace}\left(\varphi(u) \varphi\left(u^{*}\right) \varphi(e)\right)=\operatorname{Trace}\left(\varphi\left(u u^{*} e\right)\right)=\operatorname{Trace}(\varphi(e))
\end{aligned}
$$

If this (one for all) rank is zero, then φ would be zero. This means it is equal to $c \geqslant 1$. Let us now consider an orthonormal basis e_{1}, \ldots, e_{n} (for example, canonical) in \mathbb{C}^{n} and denote the corresponding one-dimensional orthoprojections by $\left[e_{i}\right]$, so $\left[e_{j}\right]\left[e_{i}\right]=0$ for $i \neq j$. Then, since $\varphi\left(\left[e_{i}\right]\right) \varphi\left(\left[e_{j}\right]\right)=\varphi\left(\left[e_{i} e_{j}\right]\right)=0$ for $i \neq j$, we get

$$
\operatorname{Trace}(p)=\operatorname{rk}\left(\varphi\left(1_{n}\right)\right)=\operatorname{rk}\left(\varphi\left(\left[e_{1}\right] \oplus \cdots \oplus\left[e_{n}\right]\right)\right)=\operatorname{rk}\left(\varphi\left(\left[e_{1}\right]\right)\right)+\cdots+\operatorname{rk}\left(\varphi\left(\left[e_{n}\right]\right)\right)=c n
$$

Definition 3.8. The ratio $c:=\frac{\operatorname{rk}(p)}{n}$ will be called multiplicity of φ.

Along with the standard left action of M_{n} on \mathbb{C}^{n}, we consider the left action of M_{n} on itself by multiplication, so the canonical expansion

$$
M_{n} \cong \underbrace{\mathbb{C}^{n} \oplus \cdots \oplus \mathbb{C}^{n}}_{n \text { times }}=M_{n}\left[e_{1}\right] \oplus \cdots \oplus M_{n}\left[e_{n}\right]
$$

is a decomposition into simple modules (=irreducible representations), where $\left[e_{i}\right] \in M_{n}$ is an orthogonal projection onto the basis vector e_{i} of the standard basis. Another way to write it is $\left[e_{i}\right]=e_{i} \otimes e_{i}^{*}$ (considering matrices as endomorphisms), where e^{*} is the Hermitian conjugate functional for e, so $\left[e_{i}\right] v=\left(e_{i} \otimes e_{i}^{*}\right) v=e_{i}\left(e_{i}, v\right)$. For different vectors we get the matrix unit $e_{i j}=e_{i} \otimes\left(e_{j}\right)^{*}$, so $\left[e_{i}\right]=e_{i i}$.

Lemma 3.9. Any irreducible left module M in M_{n} has the form $M_{n}\left(g \otimes f^{*}\right)=\mathbb{C}^{n} \otimes f^{*}$, where g, f are some unit (can be taken to be unit) vectors.

Proof. For the left action, the module $M_{n}\left(g \otimes f^{*}\right)=\mathbb{C}^{n} \otimes f^{*}$ is isomorphic to \mathbb{C}^{n} with the standard action, and therefore is irreducible. Therefore, if $g \otimes f^{*} \in M$, then $M=$ $M_{n}\left(g \otimes f^{*}\right)$. It remains to show that M contains an element of the form $g \otimes f^{*}$. But this form describes any operator of rank 1 . Indeed, if a is an operator of rank 1 , then we must take as f the unit vector perpendicular to its kernel, and $g=a(f)$. Finally, if M is nonzero and $0 \neq b \in M$, then choose $f \neq 0$ from its image. Then $\left(f \otimes f^{*}\right) b$ is an operator of rank 1 from M.

Theorem 3.10. Let φ be a (unital) *-automorphism of the C^{*}-algebra M_{n}. Then it is inner: $\varphi(a)=v a v^{*}$ for any a, where $v \in M_{n}$ is unitary.

Proof. Note that φ is an isomorphism between M_{n}, considered as a left module over M_{n} with the standard action $a \cdot x$, and M_{n}, considered as a module with the action $a * x=\varphi(a) \cdot x$, since $\varphi(a \cdot x)=\varphi(a) \cdot \varphi(x)=a * \varphi(x)$. Since $\varphi\left(M_{n}\right)=M_{n}$, then the invariant and irreducible modules for both actions are the same (the latter are described by Lemma 3.9), and $\varphi\left(\mathbb{C} \otimes e_{i}\right)=\mathbb{C} \otimes h_{i}$, moreover, since the automorphism takes a direct sum to a direct sum, then h_{i} form a basis in \mathbb{C}^{n} and, thus, an isomorphism $u: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is defined by $u: e_{i} \rightarrow h_{i}$ (even if we assume $\left\|h_{i}\right\|=1$, then u is uniquely defined only up to multiplication by a diagonal matrix of complex numbers modulo one). Thus, $\varphi\left(e_{i j}\right)=r_{i j} \otimes h_{j}$, where $r_{i j} \in \mathbb{C}^{n}$ are some elements. Similar reasoning with right modules shows that $\varphi\left(e_{i j}\right)=g_{i} \otimes\left(s_{i j}\right)^{*}$, where $v: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}, v: e_{i} \rightarrow g_{i}$, is an isomorphism, and $s_{i j} \in \mathbb{C}^{n}$ are some elements. From these two relations we obtain that $\varphi\left(e_{i j}\right)=\lambda_{i j} g_{i} \otimes\left(h_{j}\right)^{*}$, where $\lambda_{i j}$ are some numbers. Moreover (see the proof of Lemma 3.7) $\varphi\left(\left[e_{i}\right]\right)=\lambda_{i i} g_{i} \otimes\left(h_{i}\right)^{*}$ is a self-adjoint projection, so $h_{i}=\mu g_{i}$ and $g_{i}=\left(\lambda_{i j} \bar{\mu}\right)\left(g_{i} \otimes\left(g_{i}\right)^{*}\right)\left(g_{i}\right)=\left(\lambda_{i j} \bar{\mu}\right) g_{i}$ and $\lambda_{i j} \bar{\mu}=1$. Thus, we can assume that $h_{i}=g_{i}, u=v$ and (new) $\lambda_{i j}$ satisfy $\lambda_{i i}=1$ for any i. In this case, g_{i} form an orthonormal basis (see the proof of Lemma 3.7), so $u: e_{i} \mapsto g_{i}$ is unitary. Since the homomorphism φ preserves the equalities $e_{i j} e_{j i}=e_{i i}=\left[e_{i}\right]$ and $e_{i j}^{*}=e_{j i}$, we obtain that $\lambda_{i j} \lambda_{j i}=1, \overline{\lambda_{i j}}=\lambda_{j i}$, so, in particular, $\lambda_{i j}$ are complex numbers of norm 1 .

Consider the matrix $\Lambda=\left\|\lambda_{i j}\right\|$. Passing, if necessary, from vectors g_{i} to $\left(\lambda_{1 i}\right)^{-1} g_{i}=$ $\overline{\lambda_{1 i}} g_{i}$ for $i=2, \ldots, n$, we can consider $\lambda_{1 i}=\lambda_{i 1}=1$ for $i=2, \ldots, n$. At the same time, the
image $\varphi(a)$ of a matrix $a=\left\|a_{i j}\right\|$ can be written down with respect to the orthonormal basis $\left\{g_{i}\right\}$ as $\left\|\lambda_{i j} a_{i j}\right\|$, and if the matrix a was unitary, then $\varphi(a)$ must also be unitary. Let some $\lambda_{i j} \neq 1$ (that is possible only for $i \neq j, i \neq 1$). Taking for these i, j the unitary matrix a with $a_{1 i}=1 / \sqrt{2}, a_{1 j}=1 / \sqrt{2}, a_{i i}=1 / \sqrt{2}, a_{i j}=-1 / \sqrt{2}$ (and the rest in these rows and columns, of course, is formed with zeros), we obtain the orthogonality condition for these rows in the form $0=(1 / \sqrt{2} \cdot 1)(\overline{1 / \sqrt{2} \cdot 1})+\left(-1 / \sqrt{2} \cdot \lambda_{i j}\right)(\overline{1 / \sqrt{2} \cdot 1})=\left(1-\lambda_{i j}\right) / 2$, so $\lambda_{i j}=1$. Contradiction.

So, for any i, j we get that $\varphi\left(e_{i} \otimes\left(e_{j}\right)^{*}\right)=v\left(e_{i}\right) \otimes\left(v\left(e_{j}\right)\right)^{*}=v \cdot\left(e_{i} \otimes\left(e_{j}\right)^{*}\right) \cdot v^{*}$. Since any matrix is a linear combination of such matrix units, by linearity we obtain the required equality $\varphi(a)=v a v^{*}$.
Lemma 3.11. Let the homomorphism φ be unital under the conditions of Lemma 3.7. Then φ is determined by multiplicity up to a unitary equivalence (conjugation) in M_{k}.
Proof. Let $f_{i}^{1}, \ldots, f_{i}^{c}$ be an orthonormal basis in the image of the projection $\varphi\left(e_{i}\right)$, $s=1, \ldots, n$. Denoting by $\left[f_{i}^{j}\right]$ the corresponding one-dimensional pairwise orthogonal projections, we have $\varphi\left(e_{i}\right)=\left[f_{i}^{1}\right]+\cdots+\left[f_{i}^{c}\right]$. Then $\left\{f_{i}^{j}\right\}, i=1, \ldots, n, j=1, \ldots, c$, is an orthobasis $\mathbb{C}^{k}, 1_{k}=\sum_{i, j}\left[f_{i}^{j}\right]$. If $u \in M_{k}$ is a unitary matrix taking $\left\{f_{i}^{j}\right\}$ to the canonical basis of \mathbb{C}^{k}, where $u f_{i}^{j}=e_{(i-1) n+j}$, then

$$
\begin{equation*}
\left[e_{(i-1) n+j}\right] x=e_{(i-1) n+j}\left(e_{(i-1) n+j}, x\right)=u f_{i}^{j}\left(u f_{i}^{j}, x\right)=u f_{i}^{j}\left(f_{i}^{j}, u^{*} x\right)=u\left[f_{i}^{j}\right] u^{*} x \tag{3.1}
\end{equation*}
$$

for any $x \in \mathbb{C}^{k}$. That is why

$$
\begin{equation*}
\varphi\left(\left[e_{i}\right]\right)=\left[f_{i}^{1}\right]+\cdots+\left[f_{i}^{c}\right]=\sum_{j=1}^{c} u^{*}\left[e_{(i-1) n+j}\right] u=u^{*}\left(\sum_{j=1}^{c}\left[e_{(i-1) n+j}\right]\right) u . \tag{3.2}
\end{equation*}
$$

Thus,

$$
u \varphi(a) u^{*}=\left(\begin{array}{ccc}
\varphi_{1}(a) & \cdots & 0 \tag{3.3}\\
\vdots & \ddots & \vdots \\
0 & \cdots & \varphi_{c}(a)
\end{array}\right) \text { (block diagonal matrix) }
$$

where $\varphi_{i}: M_{n} \rightarrow M_{n}$ is a non-zero homomorphism, and therefore an isomorphism ($i=$ $1, \ldots, c)$. Therefore, we can apply Theorem 3.10 to it and find a unitary $v_{i} \in M_{n}$, such that $\varphi_{i}(a)=v_{i}^{*} a v^{i}$. Denoting $v=v_{1} \oplus \cdots \oplus v_{c}$ (a unitary element from M_{k}), we obtain that $v u \varphi(a) u^{*} v^{*}=S_{c}(a)$ for any $a \in M_{n}$, where $S_{c}: M_{n} \rightarrow M_{k}, k=c n$, is the standard homomorphism of multiplicity c :

$$
S_{c}(a)=\left(\begin{array}{ccc}
a & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & a
\end{array}\right) \quad \text { (block diagonal matrix with } c \text { blocks equal to } a \text {) }
$$

as desired.
Lemma 3.12. Let φ be a unital *-homomorphism of a finite-dimensional C^{*}-algebra $A=M_{n_{1}} \oplus \ldots \oplus M_{n_{k}}$ into a finite-dimensional C^{*}-algebra $B=M_{m_{1}} \oplus \ldots \oplus M_{m_{l}}$. Then φ is given (up to unitary equivalence in B) by some $l \times k$-matrix $C=\left(c_{i j}\right)$ with nonnegative elements, and $\sum_{j=1}^{k} c_{i j} n_{j}=m_{i}$.

Proof. Let $\epsilon_{i}: B \rightarrow M_{m_{i}}$ be the canonical epimorphism, and $\sigma_{j}: M_{n_{j}} \rightarrow A$ the canonical embedding, $i=1, \ldots, l, j=1, \ldots, k$. Then $\epsilon_{i} \circ \varphi$ is a unital homomorphism of A into $M_{m_{i}}$. Let $c_{i j}$ be the multiplicity of $\varphi_{i j}=\epsilon_{i} \circ \varphi \circ \sigma_{j}: M_{n_{j}} \rightarrow M_{m_{i}}$ in the sense of Definition 3.8.

Note that $\sigma_{j}\left(1_{n_{j}}\right)$ are pairwise orthogonal self-adjoint projections in A with their sum equal to one, so $p_{i j}:=\varphi_{i j}\left(1_{n_{j}}\right)$ are pairwise orthogonal self-adjoint projections in $M_{m_{i}}$, also with their sum equal to one. Therefore, as before, their direct sum is unitarily equivalent with the help of u_{i} in $M_{m_{i}}$ to the sum of the corresponding diagonal projections $u_{i} p_{i j} u_{i}^{*}$. Applying Lemma 3.11 to each of $a \mapsto u_{i} \varphi_{i j}(a) u_{i}^{*}$, we find that $\epsilon_{i} \circ \varphi$ is unitarily equivalent (in $M_{m_{i}}$) to the homomorphism $\operatorname{id}_{n_{1}}^{c_{i 1}} \oplus \ldots \oplus \mathrm{id}_{n_{k}}^{c_{i k}}=S_{c_{i 1}} \oplus \cdots \oplus S_{c_{i k}}$. Comparison of dimensions gives the equality $\sum_{j=1}^{k} c_{i j} n_{j}=m_{i}$. Since φ is determined by the direct sum $\epsilon_{i} \circ \varphi, i=1, \ldots, l$, the statement is proven.

Problem 52. Suppose that in the previous lemma we exclude the requirement of unitality. Prove an analogue of the lemma in this case. Namely, take instead of B the subalgebra $\varphi(A)=p \varphi(A) p$ in B, where $p=\varphi\left(1_{A}\right)$, apply the previous lemma to $\varphi: A \rightarrow \varphi(A)$ and obtain the statement of the lemma with inequalities $\sum_{j=1}^{k} c_{i j} n_{j} \leqslant m_{i}$ instead of equalities.

