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Lecture 10

3.2 AF-algebras

Definition 3.6. Let us call a C∗-algebra an AF-algebra (approximately finite-dimensional),
if it is the closure of the union of an increasing sequence of its finite-dimensional C∗-
subalgebras.

Problem 49. Prove that the matrix algebra Mn is simple for any n (this does not follow
from Lemma 2.34, from which one can deduce that Mn is simple for some n). Hint: for
any ideal I 6= {0} consider a matrix from it with aij 6= 0. By multiplying on the left and
right by matrices with 1’s in one place and zeros in the rest, you obtain a matrix of I with
a single nonzero element aij. Multiplying by permutation matrices, get similar matrices
with all possible i, j. Their linear combinations give the entire Mn algebra.

Problem 50. Deduce from Problem 49 and Lemma 2.34 that the image of the matrix
algebra Mn under a ∗-homomorphism is either a zero algebra or an algebra isomorphic to
Mn.

Problem 51. Prove the following almost obvious fact: if p and q are projections of the
same rank in Mn, then there exists a unitary matrix u such that q = u∗pu.

Lemma 3.7. Let ϕ : Mn → Mk be a non-zero ∗-homomorphism, so that p := ϕ(1n) is a
self-adjoint projection, where 1n is the unit of Mn. Then rk(p) = Trace(p) is divided by
n = rk(1n) = Trace(1n).

Proof. Consider some one-dimensional orthogonal (self-adjoint) projection e ∈Mn. Then
ϕ(e) is a self-adjoint projection in Mk. Its rank does not depend on the choice of e, since
any other e′ is equal to u∗eu (by problem 51), where u is unitary, so

Trace(ϕ(e′)) = Trace(ϕ(u∗eu)) = Trace(ϕ(u∗)ϕ(e)ϕ(u)) =

= Trace(ϕ(u)ϕ(u∗)ϕ(e)) = Trace(ϕ(uu∗e)) = Trace(ϕ(e)).

If this (one for all) rank is zero, then ϕ would be zero. This means it is equal to c > 1.
Let us now consider an orthonormal basis e1, . . . , en (for example, canonical) in Cn and
denote the corresponding one-dimensional orthoprojections by [ei], so [ej] [ei] = 0 for
i 6= j. Then, since ϕ([ei])ϕ([ej]) = ϕ([eiej]) = 0 for i 6= j, we get

Trace(p) = rk(ϕ(1n)) = rk(ϕ([e1]⊕ · · · ⊕ [en])) = rk(ϕ([e1])) + · · ·+ rk(ϕ([en])) = cn.

Definition 3.8. The ratio c := rk(p)
n

will be called multiplicity of ϕ.
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Along with the standard left action of Mn on Cn, we consider the left action of Mn on
itself by multiplication, so the canonical expansion

Mn
∼= Cn ⊕ · · · ⊕ Cn︸ ︷︷ ︸

n times

= Mn[e1]⊕ · · · ⊕Mn[en]

is a decomposition into simple modules (=irreducible representations), where [ei] ∈ Mn

is an orthogonal projection onto the basis vector ei of the standard basis. Another way
to write it is [ei] = ei ⊗ e∗i (considering matrices as endomorphisms), where e∗ is the
Hermitian conjugate functional for e, so [ei]v = (ei⊗ e∗i )v = ei(ei, v). For different vectors
we get the matrix unit eij = ei ⊗ (ej)

∗, so [ei] = eii.

Lemma 3.9. Any irreducible left module M in Mn has the form Mn(g ⊗ f ∗) = Cn ⊗ f ∗,
where g, f are some unit (can be taken to be unit) vectors.

Proof. For the left action, the module Mn(g ⊗ f ∗) = Cn ⊗ f ∗ is isomorphic to Cn with
the standard action, and therefore is irreducible. Therefore, if g ⊗ f ∗ ∈ M , then M =
Mn(g ⊗ f ∗). It remains to show that M contains an element of the form g ⊗ f ∗. But
this form describes any operator of rank 1. Indeed, if a is an operator of rank 1, then we
must take as f the unit vector perpendicular to its kernel, and g = a(f). Finally, if M is
nonzero and 0 6= b ∈M , then choose f 6= 0 from its image. Then (f ⊗ f ∗)b is an operator
of rank 1 from M .

Theorem 3.10. Let ϕ be a (unital) ∗-automorphism of the C∗-algebra Mn. Then it is
inner: ϕ(a) = vav∗ for any a, where v ∈Mn is unitary.

Proof. Note that ϕ is an isomorphism between Mn, considered as a left module over
Mn with the standard action a · x, and Mn, considered as a module with the action
a ∗ x = ϕ(a) · x, since ϕ(a · x) = ϕ(a) · ϕ(x) = a ∗ ϕ(x). Since ϕ(Mn) = Mn, then the
invariant and irreducible modules for both actions are the same (the latter are described
by Lemma 3.9), and ϕ(C⊗ ei) = C⊗hi, moreover, since the automorphism takes a direct
sum to a direct sum, then hi form a basis in Cn and, thus, an isomorphism u : Cn → Cn

is defined by u : ei → hi (even if we assume ‖hi‖ = 1, then u is uniquely defined
only up to multiplication by a diagonal matrix of complex numbers modulo one). Thus,
ϕ(eij) = rij⊗hj, where rij ∈ Cn are some elements. Similar reasoning with right modules
shows that ϕ(eij) = gi ⊗ (sij)

∗, where v : Cn → Cn, v : ei → gi, is an isomorphism, and
sij ∈ Cn are some elements. From these two relations we obtain that ϕ(eij) = λijgi⊗(hj)

∗,
where λij are some numbers. Moreover (see the proof of Lemma 3.7) ϕ([ei]) = λiigi⊗(hi)

∗

is a self-adjoint projection, so hi = µgi and gi = (λijµ)(gi ⊗ (gi)
∗)(gi) = (λijµ)gi and

λijµ = 1. Thus, we can assume that hi = gi, u = v and (new) λij satisfy λii = 1 for any
i. In this case, gi form an orthonormal basis (see the proof of Lemma 3.7), so u : ei 7→ gi
is unitary. Since the homomorphism ϕ preserves the equalities eijeji = eii = [ei] and
e∗ij = eji, we obtain that λijλji = 1, λij = λji, so, in particular, λij are complex numbers
of norm 1.

Consider the matrix Λ = ‖λij‖. Passing, if necessary, from vectors gi to (λ1i)
−1gi =

λ1igi for i = 2, . . . , n, we can consider λ1i = λi1 = 1 for i = 2, . . . , n. At the same time, the
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image ϕ(a) of a matrix a = ‖aij‖ can be written down with respect to the orthonormal
basis {gi} as ‖λijaij‖, and if the matrix a was unitary, then ϕ(a) must also be unitary.
Let some λij 6= 1 (that is possible only for i 6= j, i 6= 1). Taking for these i, j the unitary
matrix a with a1i = 1/

√
2, a1j = 1/

√
2, aii = 1/

√
2, aij = −1/

√
2 (and the rest in these

rows and columns, of course, is formed with zeros), we obtain the orthogonality condition

for these rows in the form 0 = (1/
√

2 ·1)(1/
√

2 · 1)+(−1/
√

2 ·λij)(1/
√

2 · 1) = (1−λij)/2,
so λij = 1. Contradiction.

So, for any i, j we get that ϕ(ei⊗(ej)
∗) = v(ei)⊗(v(ej))

∗ = v ·(ei⊗(ej)
∗)·v∗. Since any

matrix is a linear combination of such matrix units, by linearity we obtain the required
equality ϕ(a) = vav∗.

Lemma 3.11. Let the homomorphism ϕ be unital under the conditions of Lemma 3.7.
Then ϕ is determined by multiplicity up to a unitary equivalence (conjugation) in Mk.

Proof. Let f 1
i , . . . , f

c
i be an orthonormal basis in the image of the projection ϕ(ei),

s = 1, . . . , n. Denoting by [f ji ] the corresponding one-dimensional pairwise orthogonal
projections, we have ϕ(ei) = [f 1

i ] + · · ·+ [f ci ]. Then {f ji }, i = 1, . . . , n, j = 1, . . . , c, is an
orthobasis Ck, 1k =

∑
i,j[f

j
i ]. If u ∈ Mk is a unitary matrix taking {f ji } to the canonical

basis of Ck, where uf ji = e(i−1)n+j, then

[e(i−1)n+j]x = e(i−1)n+j(e(i−1)n+j, x) = uf ji (uf ji , x) = uf ji (f ji , u
∗x) = u[f ji ]u∗x (3.1)

for any x ∈ Ck. That is why

ϕ([ei]) = [f 1
i ] + · · ·+ [f ci ] =

c∑
j=1

u∗[e(i−1)n+j]u = u∗

(
c∑
j=1

[e(i−1)n+j]

)
u. (3.2)

Thus,

uϕ(a)u∗ =

 ϕ1(a) · · · 0
...

. . .
...

0 · · · ϕc(a)

 (block diagonal matrix), (3.3)

where ϕi : Mn → Mn is a non-zero homomorphism, and therefore an isomorphism (i =
1, . . . , c). Therefore, we can apply Theorem 3.10 to it and find a unitary vi ∈ Mn, such
that ϕi(a) = v∗i av

i. Denoting v = v1 ⊕ · · · ⊕ vc (a unitary element from Mk), we obtain
that vuϕ(a)u∗v∗ = Sc(a) for any a ∈ Mn, where Sc : Mn → Mk, k = cn, is the standard
homomorphism of multiplicity c:

Sc(a) =

 a · · · 0
...

. . .
...

0 · · · a

 (block diagonal matrix with c blocks equal to a),

as desired.

Lemma 3.12. Let ϕ be a unital ∗-homomorphism of a finite-dimensional C∗-algebra
A = Mn1 ⊕ . . .⊕Mnk into a finite-dimensional C∗-algebra B = Mm1 ⊕ . . .⊕Mml. Then ϕ
is given (up to unitary equivalence in B) by some l×k-matrix C = (cij) with nonnegative

elements, and
∑k

j=1 cijnj = mi.
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Proof. Let εi : B →Mmi be the canonical epimorphism, and σj : Mnj → A the canonical
embedding, i = 1, . . . , l, j = 1, . . . , k. Then εi ◦ ϕ is a unital homomorphism of A into
Mmi . Let cij be the multiplicity of ϕij = εi ◦ϕ◦σj : Mnj →Mmi in the sense of Definition
3.8.

Note that σj(1nj) are pairwise orthogonal self-adjoint projections in A with their sum
equal to one, so pij := ϕij(1nj) are pairwise orthogonal self-adjoint projections in Mmi , also
with their sum equal to one. Therefore, as before, their direct sum is unitarily equivalent
with the help of ui in Mmi to the sum of the corresponding diagonal projections uipiju

∗
i .

Applying Lemma 3.11 to each of a 7→ uiϕij(a)u∗i , we find that εi ◦ϕ is unitarily equivalent
(in Mmi) to the homomorphism idci1n1

⊕ . . . ⊕ idciknk = Sci1 ⊕ · · · ⊕ Scik . Comparison of

dimensions gives the equality
∑k

j=1 cijnj = mi. Since ϕ is determined by the direct sum
εi ◦ ϕ, i = 1, . . . , l, the statement is proven.

Problem 52. Suppose that in the previous lemma we exclude the requirement of unitality.
Prove an analogue of the lemma in this case. Namely, take instead of B the subalgebra
ϕ(A) = pϕ(A)p in B, where p = ϕ(1A), apply the previous lemma to ϕ : A → ϕ(A) and
obtain the statement of the lemma with inequalities

∑k
j=1 cijnj 6 mi instead of equalities.


