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Lecture 10

2.7 Finite-dimensional C∗-algebras

Consider the ∗-weak topology on A defined by the seminorm system a 7→ |ϕ(a)| for
all linear functionals ϕ. From Lemma 2.20 and Theorem 2.22 it follows that the same
topology can be obtained by using only seminorms, defined by states.

Note also that the corresponding LTS has the homothety property 2.27.

Lemma 2.32. A finite-dimensional C∗-algebra is always unital.

Proof. If A is finite-dimensional, then the topology of the norm coincides with the ∗-weak
topology according to Theorem 2.31. Let un be an approximate unit of the algebra A.
Then for any state ϕ the sequence ϕ(un) is non-decreasing and bounded, hence has a
limit. Passing to linear combinations, we obtain the cinvergence for any functional on the
finite-dimensional vector space A, in particular, for functionals ϕ1, . . . ϕk of the dual base
for some base a1, . . . , ak. Then there exists an element a ∈ A with ϕi(a) = limn ϕi(un).
Considering linear combinations of ϕi, we conclude that ϕ(a) = limn ϕ(un) for any ϕ.
Therefore un converges to a in ∗-weak topology, and therefore in norm. Then ax = xa = x
for any x ∈ A, so a = 1.

Lemma 2.33. Let I ⊂ A be an ideal in a finite-dimensional C∗-algebra A. Then I = Ap
for some central projector (=idempotent from the center) p.

Proof. Since I is finite-dimensional, it is unital by Lemma 2.32. Let p ∈ I be the unit
of I. Then for every x ∈ A, one has xp ∈ I, so p(xp) = xp. Hence px∗p = x∗p for any
x ∈ A, whence xp = pxp = px and p belongs to the center of A. Obviously, p2 = p.

Lemma 2.34. A simple finite-dimensional C∗-algebra A is isometrically ∗-isomorphic to
the matrix algebra Mn for some n.

Proof. First of all, note that aAb 6= 0 for any non-zero a, b ∈ A. Indeed, AaA is a non-
zero ideal (since A is unital and 0 6= a = 1 · a · 1 ∈ A), so by simplicity, AaA = A.
Therefore 1 =

∑
i xiayi and b =

∑
i xiayib. Hence, if ayb = 0 for any y ∈ A, then

b =
∑

i xi(ayib) = 0. This contradicts the assumption.
Let B be some maximal commutative subalgebra of A. Then it can be identified

with C(X) = Cn = C · e1 ⊕ . . . ⊕ C · en for some n, where X consists of n points,
and ei ∈ B denotes the element corresponding to the characteristic functions at point
i. Here ei are projections with the relations eiej = 0 for i 6= j and

∑n
i=1 ei = 1. Since

eiAei · ej = ej · eiAei = 0 and B is maximal, then eiAei ⊂ B. Therefore eiAei = C · ei
(since, obviously, 0 6= eiAei 3 ei, or you can use the statement from the beginning of the
proof).

For any i, j there is x = xij ∈ A such that x = eixej 6= 0, ‖x‖ = 1. Indeed, by virtue
of the statement from the beginning of the proof, eiAej 6= 0, so we have x = eiyej with
‖x‖ = 1. In this case eixej = eieiyejej = eiyej = x. Then x∗x = ejx

∗eieixej ∈ ejAej, and
therefore, according to what has been proven, this element has the form αej, α ∈ C. Since
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x∗x is a positive element with norm equal to one, then α = 1, so x∗x = ej. Likewise, xx∗ =
ei. Let us denote such x = xij for j = 1 by ui, so that ui = eixe1 = eiuie1. Then u∗iui = e1,
uiu
∗
i = ei, i = 1, . . . , n. Let us set uij := uiu

∗
j . In this case, uie1u

∗
i = uiu

∗
iuiu

∗
i = eiei = ei,

So uijuji = uiu
∗
juju

∗
i = uie1u

∗
i = ei. Also ejuji = uju

∗
juju

∗
i = uje1u

∗
i = uju

∗
iuiu

∗
i = ujiei,

and eiuij = uiu
∗
iuiu

∗
j = uie1u

∗
j = uiu

∗
juju

∗
j .

If x ∈ eiAej, that is, x = eiaej, then xuji = eiaejuji = eiaujiei ∈ eiAei, so xuji = λei
for some λ ∈ C. Then x = xej = xujiuij = λeiuij = λuij, so for any x ∈ A there is a
number λij(x) ∈ C such that eixej = λij(x)uij. Thus, x =

∑
i,j eixej =

∑
ij λij(x)uij.

The correspondence x 7→ (λij(x)) defines an isomorphism κ : A→Mn (Problem 47).

Problem 47. Check the bijectivity and necessary algebraic properties of κ.


