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Lecture 11

Definition 3.13. Any A ∗-homomorphism between finite-dimensional C∗-algebras can
be represented in the following graphical way. Let’s represent A in the form k-tuple
{(1, 1) = n1, . . . , (1, k) = nk} corresponding A ∼= Mn1 ⊕ . . .⊕Mnk , and B — in the form
l-tuple {(2, 1) = m1, . . . , (2, l) = ml} corresponding to B ∼= Mm1 ⊕ . . . ⊕Mml . Let us
represent ϕ using arrows between the elements of sets, and from (1, j) to (2, i) we draw
cij arrows, the number is equal to the partial multiplicity. A sequence of such pictures for
a sequence of homomorphisms A1 ⊂ A2 ⊂ . . . ⊂ Ap ⊂ · · · is called the Bratteli diagram
of this sequence. It is sometimes called the Bratteli diagram of an algebra, but the same
algebra can be obtained from different sequences.

Problem 53. Draw Bratteli diagrams (for some defining sequences) of the following AF-
algebras:

1) of the algebra of compact operators K(H);

2) of its unitization K(H)+;

3) the closure of the union of Ap = M2p , with embeddings Ap ⊂ Ap+1 of multiplicity 2

according to the formula a 7→
(
a 0
0 a

)
(CAR algebra);

4) C(K), where K is the Cantor set obtained from [0, 1] by successive by removing the
middle third of the corresponding intervals. If Kp is a set, obtained at the pth step
of this process, then Ap is an algebra of continuous functions constant on intervals
of Kp;

5) C(X), where X := {0} ∪ { 1
n

: n ∈ N}, and Ak consists of all functions constant on
[0, 1/2k].

Lemma 3.14. If two Bratteli diagrams coincide, then the corresponding AF-algebras are
isometrically ∗-isomorphic.

Proof. Let An and Bn be two sequences of finite-dimensional C∗-algebras with inclusions
αn : An → An+1, βn : Bn → Bn+1. Since the Bratteli diagrams are the same, then for each
n there is an isomorphism ϕn : An → Bn. Consider ϕn+1 ◦ αn and βn ◦ ϕn : An → Bn+1.
They can differ only by unitary un+1 ∈ Bn+1, that is βn ◦ ϕn = Adun+1 ϕn+1 ◦ αn, where
Adun+1(a) = un+1a(un+1)∗.

Let’s put ψ1 = ϕ1, v1 = 1. Let us define inductively vn+1 = βn(vn)un+1 ∈ Bn+1,
ψn+1 = Advn+1 ϕn+1. Then

βnψn = βn Advn ϕn = Adβn(vn) βnϕn = Adβ(vn) Adun+1 ϕn+1αn

= Adβn(vn)un+1 ϕn+1αn = ψn+1αn.

In this case ∪∞n=1ψn : ∪∞n=1An → ∪∞n=1Bn is an isometric ∗-isomorphism, so the closures
are also isomorphic.
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One should not think that AF-algebras are “small” and that C∗-subalgebras of AF-
algebras are AF-algebras again. For example, C[0, 1] is not an AF-algebra (since its only
finite-dimensional C∗-subalgebra consists of constant functions), but it is a C∗-subalgebra
of the AF-algebra C(K) functions on the Cantor set. Indeed, let f be a function on K
that has a dense set of rational numbers in the interval [0, 1] as its values. For example,
the restriction of the Cantor function f : [0, 1] → [0, 1] [8, Ch. VI, §4] on K has all
rationals of the form p/2s as its values. Its spectrum is a closure of this set, that is,
equal to the entire interval [0, 1]. Thus, C∗(1, f) ⊂ C(K) is isometrically ∗-isomorphic to
C(Sp(f)) = C[0, 1].

3.3 Multipliers

We will call a C∗-subalgebra B(H) non-degenerate, if its natural representation in the
Hilbert space H is non-degenerate.

Everywhere in this section A,B ⊂ B(H).

Definition 3.15. An operator x ∈ B(H) is called left multiplier A if xA ⊂ A. It is called
right multiplier, if Ax ⊂ A and double (or double-sided) multiplier or simply multiplier,
if both conditions are met.

If A is unital, then every left (right) multiplier lies in A.
Since A is weakly dense in A′′, we can proceed to the closure xA ⊂ A and get xA′′ ⊂ A′′.

If A′′ is equal to one, then x ∈ A′′.

Definition 3.16. The linear mapping σ : A→ A is called left centralizer, if σ(ab) = σ(a)b
for any a, b ∈ A. Linear mapping σ : A→ A called right centralizer, if σ(ab) = aσ(b) for
any a, b ∈ A. Pair (σ1, σ2) called double centralizer, if σ1 is a right centralizer, σ2 is a left
centralizer and σ1(a)b = aσ2(b) for any a, b ∈ A.

Lemma 3.17. Any left centralizer is bounded.

Proof. Let us assume the opposite. Then for any n ∈ N there is an element xn ∈ A
such that ‖xn‖ < 1/n and ‖σ(xn)‖ > n. This means that the series a =

∑∞
n=1 xnx

∗
n

converges, so a ∈ A and xnx
∗
n 6 a. According to Lemma 1.45, xn can be written as

xn = a1/4un, where ‖un‖ 6 ‖a‖1/4. Therefore, for any n we have ‖σ(xn)‖ = ‖σ(a1/4)un‖ 6
‖σ(a1/4)‖ · ‖a1/4‖. A contradiction.

Theorem 3.18. If A is non-degenerate, then there is a bijective correspondence between
left (right, double) multipliers and left (right, double) centralizers.

Proof. If x is a left multiplier, then the mapping A 3 a 7→ xa ∈ A is a left centralizer. If
xa = ya for any a ∈ A, then (x− y)a = 0 for any a ∈ A′′, so x = y in A′′.

Let σ be a left centralizer, and uλ be an approximate unit for A. Since the directed net
{σ(uλ)} is bounded, then it has a point of accumulation in A′′ (bounded sets are weakly
compact in B(H) and accumulation points must lie in the closure of A). Let us denote
one of the accumulation points by x. For any a ∈ A, the directed net {uλa} converges
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in norm to a, so that σ(uλa) = σ(uλ)a converges to σ(a). Then xa = σ(a) ∈ A, so x is
a left multiplier. If xA = 0, then σ = 0. Note that if y ∈ A′′ is another accumulation
point, then xa = σ(a) = ya for any a ∈ A, and (x − y)a = 0 for any a ∈ A′′ (due to the
strong density of A in A′′), so x = y in A′′. Therefore, in this case there is only one point
of accumulation.

A similar proof works also for right multipliers and right centralizers.
Let now x be a double multiplier. Then the mappings σ2 : a 7→ xa and σ1 : a 7→ ax

are left and right multipliers, with σ1(a)b = (ax)b = a(xb) = aσ2(b) for any a, b ∈ A, so x
defines a double centralizer. Conversely, if (σ1, σ2) is a double centralizer, then, by what
has been proven, σ1 determines a right multiplier x1, and σ2 a left multiplier x2. Since
ax1b = σ1(a)b = aσ2(b) = ax2b for any a, b ∈ A, we have x1 = x2, and x1 = x2 is a double
multiplier.

Problem 54. Let π : A → B(H) be a degenerate representation. Let us denote by H0

the invariant subspace H0 := {ξ ∈ H : π(a)(ξ)0 for any a ∈ A}. Prove that π induces
a representation π′ : A → B(H/H0), and if π was a faithful representation (an injective
homomorphism), then so is π′.

Remark 3.19. Accordingly, until the end of this section we will consider non-degenerate
A ⊆ B(H), so that (double) multipliers coincide with double centralizers.

The set of all left (right) multipliers of A is denoted by LM(A) (RM(A)), and the set
of all multipliers of A by M(A).

Problem 55. Check that RM(A) = (LM(A))∗ and that M(A) = LM(A) ∩ RM(A), so
that M(A) is symmetric with respect to the involution.

It follows directly from the definition that all three sets are norm closed. Thus, M(A)
is a C∗-algebra (and the other two are, in the general case, only Banach algebras).

Problem 56. Let X be a locally compact space, and let C0(X), as before, be the
C∗-algebra of continuous functions tending to 0 at infinity. Prove that the algebra
M(C0(X)) ⊂ L∞(X) can be identified with the C∗-algebra Cb(X) of all bounded contin-
uous functions on X.

Example 3.20. If A = K(H), then M(K(H)) ⊆ B(H), but any bounded operator is a
multiplier (since K(H) is an ideal in B(H)), so M(K(H)) = B(H).

Definition 3.21. An ideal A ⊂ B is said to be essential if any nonzero ideal B has a
nontrivial intersection with A.

Let A⊥ ⊂ B denote the set A⊥ = {x ∈ B : Ax = 0}.

Lemma 3.22. An ideal A ⊂ B is essential if and only if A⊥ = 0.

Proof. Suppose that A⊥ = 0, but A is not essential. Then there is a nonzero ideal J ⊂ B
such that A ∩ J = {0}. Let us take j ∈ J , j 6= 0. For any a ∈ A we have ja ∈ J ∩ A, so
ja = 0 and 0 6= j ∈ A⊥. A contradiction.
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Conversely, let A be essential, but A⊥ 6= 0. Then there is an element x ∈ A⊥ such
that x 6= 0. Consider the ideal BxB (the closure of the set of all linear combinations
of elements of the form

∑
i bixb

′
i, bi, b

′
i ∈ B) and take an arbitrary y ∈ BxB ∩ A. As

it is known (for example, from Lemma 1.45), any element of the C∗-algebra admits a
decomposition into the product of two of its elements, so we can write y = z · a, where
z, a ∈ BxB∩A. We write z =

∑
i bixb

′
i, so y = za =

∑
i bix(b′ia) = 0, since b′ia ∈ A, hence

xb′ia = 0, because x ∈ A⊥. Therefore, BxB ∩A = 0 and we arrive to a contradiction.

Lemma 3.23. Let A ⊂ B be an essential ideal. Then there is an embedding B ⊂ M(A)
that is identical on A.

Proof. Consider b ∈ B. Then b defines the left and right centralizer A (since A is an ideal)
σ2 : a 7→ ba and σ1 : a 7→ ab, and σ1(a)a′ = (ab)a′ = a(ba′) = aσ2(a′) for any a, a′ ∈ A,
so b defines a double centralizer, and hence a multiplier. So the mapping π : B →M(A)
is defined, identical on A. This mapping is obviously a ∗-homomorphism. It remains to
check whether π is injective. If b ∈ Ker π, then σ1 = 0 and σ2 = 0 (see proof of theorem
3.18), so bA = 0, Ab = 0 and b ∈ A⊥, which means b = 0.

Note that the correspondence A 7→M(A) is not a functor. For example, for A = K(H)
and B = A+, consider the embedding A ⊂ B. Wherein M(A) = B(H), and M(B) = B.
Obviously, the embedding does not continue to these multiplier algebras. However, in
some cases the transition to multipliers has some functorial properties.

Lemma 3.24. Let ϕ : A→ B be a surjective ∗-homomorphism of two C∗-algebras. Then
it continues to a ∗-homomorphism ϕ̄ : M(A)→M(B).

Proof. Let σ ∈ LM(A) be a left centralizer. For any b ∈ B we set ϕ̄(σ)(b) := ϕ(σ(ϕ−1(b))).
It is necessary check that the map is well defined, that is, its independence of the choice
of a representative in ϕ−1(b) ⊂ A. Due to linearity, it suffices to check that σ maps Kerϕ
to itself. Let a ∈ Kerϕ. Let us represent it in the form a = a1 · a2, a1, a2 ∈ Kerϕ. Then
ϕ(σ(a)) = ϕ(σ(a1)a2) = 0, since Kerϕ is an ideal.

Thus, a left centralizer σ defines the mapping ϕ̄(σ), which is the left centralizer of B.
The same is done for right and double centralizers (Problem 57).

Problem 57. Prove that ϕ̄(σ) is a left centralizer. Construct an extension of a right
centralizer in a similar way. Check that for a double centralizer we get a double centralizer.

Problem 58. Check that in the situation of the previous lemma the extension ϕ̄ is also
surjective.

Problem 59. Prove that a representation π : A → B(H) is non-degenerate if and only
if for some approximate unit uλ of the algebra A the following condition is satisfied: for
any vector ξ ∈ H there is a λ such that that uλ(ξ) 6= 0.

Lemma 3.25. Let B ⊂ A be an algebra and its C∗-subalgebra with a common approximate
unit uλ. Then M(B) ⊂M(A).

Proof. If A is non-degenerate, then B is also non-degenerate by Problem 59. So M(B) ⊂
B′′ ⊂ A′′. For any x ∈ A, y ∈M(B), yx = lim yuλx ∈ A, and similarly, xy ∈ A, so y is a
multiplier of A.


