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Lecture 12

3.4 Hilbert C∗-modules

Definition 3.26. Let M be a Banach space (with norm ‖·‖), which at the same time is a
right module over a C∗-algebra A (the action of A on M is assumed to be continuous). Let
〈·, ·〉 : M ×M → A be a sesquilinear form (called an inner product) with the properties:

1. 〈m,na〉 = 〈m,n〉a for all m,n ∈M , a ∈ A;

2. 〈m,n〉 = 〈n,m〉∗ for all m,n ∈M ;

3. 〈m,m〉 ∈ A is positive for all m ∈M , and if it is equal to 0, then m = 0.

We call M a Hilbert C∗-module if ‖m‖2 = ‖〈m,m〉‖ for every m ∈M .

Example 3.27. The algebra A is a Hilbert C∗-module over A if we define its inner
product by the formula 〈a, b〉 := a∗b, a, b ∈ A.

Example 3.28. The module An is a Hilbert C∗-module over A with an inner product,
given by the formula 〈(a1, . . . , an), (b1, . . . , bn)〉 :=

∑n
i=1 a

∗
i bi.

Lemma 3.29 (Cauchy(-Schwarz-Bunyakovsky) inequality). We have ‖〈n,m〉‖2 6 ‖n‖2‖m‖2

for any n,m ∈M .

Proof. For all A ∈ A we have 〈m − na,m − na〉 > 0, so 〈m,m〉 − a∗〈n,m〉 − 〈m,n〉a +
a∗〈n, n〉a > 0. Let’s take a = 1

‖n‖2 〈n,m〉. Then

〈m,m〉 − 2

‖n‖2
〈m,n〉〈n,m〉+

1

‖n‖4
〈m,n〉〈n, n〉〈n,m〉 > 0.

Since ‖n‖2 = ‖〈n, n〉‖ > 〈n, n〉, we obtain that 〈m,m〉 − 1
‖n‖2 〈m,n〉〈n,m〉 > 0, so

〈m,n〉〈n,m〉 6 ‖n‖2〈m,m〉. From this we obtain the required inequality.

Example 3.30. Let M consist of all sequences (ai), ai ∈ A for which the series
∑∞

i=1 a
∗
i ai

converges in A (in norm). The inner product is given by formula 〈(ai), (bi)〉 :=
∑∞

i=1 a
∗
i bi.

By the previous lemma, this series converges. This Hilbert C∗ module is very important
for applications. It is usually denoted by l2(A) and is called the standard Hilbert C∗-
module.

A mapping T : M → M is called a (bounded) operator on a Hilbert C∗-module M if
it is linear and A-linear (that is, T (ma) = T (m)a for any m ∈ M , a ∈ A). If M = A,
then this definition coincides with the definition of left centralizers.

Definition 3.31. An operator T is called adjointable if there is an operator S such that
〈m,T (n)〉 = 〈S(m), n〉 for any m,n ∈M . In this case, S is called the adjoint operator for
T and is denoted by TF. Let BF

A (M) denote the set of operators admitting an adjoint.
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Unlike Hilbert spaces, in Hilbert C∗-modules there are bounded operators that do not
admit an adjoint.

Problem 60. Construct an example of an operator that does not admit an adjoint.

Problem 61. Prove that ‖x‖ = supy∈B1(M) |〈x, y〉|, where B1(M) ⊂M is the unit ball.

Theorem 3.32. The algebra BF
A (M) is a C∗-algebra.

Outline of proof. The following points are the key ones.
1) The involution F : BF

A (M)→ BF
A (M) is an isometry. Indeed, by Problem 61,

‖T‖ = sup
x∈B1(M)

‖Tx‖ = sup
x,y∈B1(M)

‖〈Tx, y〉‖ =

= sup
x,y∈B1(M)

‖〈x, TFy〉‖ = sup
y∈B1(M)

‖TFy‖ = ‖TF‖.

2) The norm satisfies the C∗-property. This follows from the equality

‖TFT‖ > sup
x∈B1(M)

‖〈TFTx, x〉‖ = sup
x∈B1(M)

‖〈Tx, Tx〉‖ = ‖T‖2

(in the opposite direction is a general property of the operator norm, taking into account
item 1).

3) The algebra BF
A (M) is closed as a subalgebra of the Banach algebra B of all bounded

C-linear operators M →M (with operator norm). Really, first of all, note that the Banach
algebra BA(M) of all operators is closed in B as the intersection over all x ∈M , a ∈ A, of
closed sets Ker(fx,a), where fx,a : B → M , fx,a(T ) = T (xa)− T (x)a, is a bounded linear

mapping, ‖fx,a‖ 6 2‖x‖ ‖a‖. Let a directed net of elements Tα ∈ BF
A (M) converge to

T ∈ BA(M), in particular, be a Cauchy directed net. According to item 1), the directed
net TF

α is also Cauchy directed net, and therefore has a limit S ∈ BA(M). It is easy to
see that S = TF and T ∈ BF

A (M).

Problem 62. Complete the proof of Theorem 3.32.

If M = A, then the definition of an operator admitting an adjoint coincides with the
definition of a double centralizer.

Definition 3.33. The operator θx,y, defined by the formula θx,y(z) = x〈y, z〉, called
elementary.

Problem 63. Prove that θx,y ∈ BF
A (M) by providing an explicit formula for the adjoint.

Definition 3.34. The closure of the set of C-linear combinations of elementary operators
is denoted by KA(M). Its elements are called A-compact operators.

Problem 64. Prove that KA(M) is an ideal in BF
A (M).

Problem 65. Prove that KA(A) = A. Note that if A is non-unital, then KA(A) = A 6=
BF
A (A) = DC(A) (algebra of double centralizers).
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3.5 Calkin algebra

If a Hilbert space H is not separable, then B(H) can be quite complex, in particular,
have more than just one proper ideal. For example, the set of operators with separable
image is an ideal. This does not happen in the case of separable H, which we will usually
restrict ourselves to.

Definition 3.35. The factor-C∗-algebra Q(H) = B(H)/K(H) is called Calkin algebra.

Definition 3.36. The factor-C∗-algebra M(A)/A is called algebra of external multipliers,
or generalized Calkin algebra.

Lemma 3.37. Calkin algebra is simple.

Proof. We must prove that K(H) is the only ideal of B(H). Let an ideal I ⊂ B(H) contain
at least one non-compact operator. We can assume that this operator is positive (since
any operator is a linear combination of four positive ones). Let us denote it by t. Note
that since K(H) is simple (by Corollary 3.4), then either K(H) ⊆ I or K(H) ∩ I = {0}.
Since t /∈ K(H), then we can assume that there is a number α > 0 such that both
spectral projections p1 = p[0,α) and p2 = p[α,∞) are of infinite rank. Indeed, if there is
no p2 with the specified property, then t is compact, contrary to assumption. If p1 = 0,
then t is invertible, which means I = B(H), as required. If p1 6= 0, but its rank is finite,
then we have a finite number of eigenvalues, less than α, so that for some function f
continuous on the spectrum, we have 0 6= f(t) ∈ K(H). Hence, K(H) ⊆ I. Therefore
p1 ∈ I and t + p1 ∈ I is invertible and I = B(H). So, both projections p1 and p2 are
of infinite rank. Let Hi = Im pi, i = 1, 2. Then H1 ⊥ H2 and H = H1 ⊕ H2. Since
H1 and H2 are isomorphic due to the separability of H, then there is a partial isometry
w ∈ B(H) such that w|H2 = 0 and w|H1 maps H1 isometrically onto H2. Since spectral
projections commute with t, then tp2 > α · 1H2 , where 1H2 is the identity operator in H2.
Also, w∗tw > α · 1H1 , so tp2 + w∗tw > α · 1. Therefore tp2 + w∗tw ∈ I is invertible, so
I = B(H).


