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Lecture 13

Lemma 3.11. Let the homomorphism ϕ be unital under the conditions of Lemma 3.7.
Then ϕ is determined by multiplicity up to a unitary equivalence (conjugation) in Mk.

Proof. Let f 1
i , . . . , f

c
i be an orthonormal basis in the image of the projection ϕ(ei),

s = 1, . . . , n. Denoting by [f ji ] the corresponding one-dimensional pairwise orthogonal
projections, we have ϕ(ei) = [f 1

i ] + · · ·+ [f ci ]. Then {f ji }, i = 1, . . . , n, j = 1, . . . , c, is an
orthobasis Ck, 1k =

∑
i,j[f

j
i ]. If u ∈ Mk is a unitary matrix taking {f ji } to the canonical

basis of Ck, where uf ji = e(i−1)n+j, then

[e(i−1)n+j]x = e(i−1)n+j(e(i−1)n+j, x) = uf ji (uf ji , x) = uf ji (f ji , u
∗x) = u[f ji ]u∗x (3.1)

for any x ∈ Ck. That is why

ϕ([ei]) = [f 1
i ] + · · ·+ [f ci ] =

c∑
j=1

u∗[e(i−1)n+j]u = u∗

(
c∑
j=1

[e(i−1)n+j]

)
u. (3.2)

Thus,

uϕ(a)u∗ =

 ϕ1(a) · · · 0
...

. . .
...

0 · · · ϕc(a)

 (block diagonal matrix), (3.3)

where ϕi : Mn → Mn is a non-zero homomorphism, and therefore an isomorphism (i =
1, . . . , c). Therefore, we can apply Theorem 3.10 to it and find a unitary vi ∈ Mn, such
that ϕi(a) = v∗i av

i. Denoting v = v1 ⊕ · · · ⊕ vc (a unitary element from Mk), we obtain
that vuϕ(a)u∗v∗ = Sc(a) for any a ∈ Mn, where Sc : Mn → Mk, k = cn, is the standard
homomorphism of multiplicity c:

Sc(a) =

 a · · · 0
...

. . .
...

0 · · · a

 (block diagonal matrix with c blocks equal to a),

as desired.

Lemma 3.12. Let ϕ be a unital ∗-homomorphism of a finite-dimensional C∗-algebra
A = Mn1 ⊕ . . .⊕Mnk into a finite-dimensional C∗-algebra B = Mm1 ⊕ . . .⊕Mml. Then ϕ
is given (up to unitary equivalence in B) by some l×k-matrix C = (cij) with nonnegative

elements, and
∑k

j=1 cijnj = mi.

Proof. Let εi : B →Mmi be the canonical epimorphism, and σj : Mnj → A the canonical
embedding, i = 1, . . . , l, j = 1, . . . , k. Then εi ◦ ϕ is a unital homomorphism of A into
Mmi . Let cij be the multiplicity of ϕij = εi ◦ϕ◦σj : Mnj →Mmi in the sense of Definition
3.8.

Note that σj(1nj) are pairwise orthogonal self-adjoint projections in A with their sum
equal to one, so pij := ϕij(1nj) are pairwise orthogonal self-adjoint projections in Mmi , also
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with their sum equal to one. Therefore, as before, their direct sum is unitarily equivalent
with the help of ui in Mmi to the sum of the corresponding diagonal projections uipiju

∗
i .

Applying Lemma 3.11 to each of a 7→ uiϕij(a)u∗i , we find that εi ◦ϕ is unitarily equivalent
(in Mmi) to the homomorphism idci1n1

⊕ . . . ⊕ idciknk = Sci1 ⊕ · · · ⊕ Scik . Comparison of

dimensions gives the equality
∑k

j=1 cijnj = mi. Since ϕ is determined by the direct sum
εi ◦ ϕ, i = 1, . . . , l, the statement is proven.

Problem 52. Suppose that in the previous lemma we exclude the requirement of unitality.
Prove an analogue of the lemma in this case. Namely, take instead of B the subalgebra
ϕ(A) = pϕ(A)p in B, where p = ϕ(1A), apply the previous lemma to ϕ : A → ϕ(A) and
obtain the statement of the lemma with inequalities

∑k
j=1 cijnj 6 mi instead of equalities.

Definition 3.13. Any A ∗-homomorphism between finite-dimensional C∗-algebras can
be represented in the following graphical way. Let’s represent A in the form k-tuple
{(1, 1) = n1, . . . , (1, k) = nk} corresponding A ∼= Mn1 ⊕ . . .⊕Mnk , and B — in the form
l-tuple {(2, 1) = m1, . . . , (2, l) = ml} corresponding to B ∼= Mm1 ⊕ . . . ⊕Mml . Let us
represent ϕ using arrows between the elements of sets, and from (1, j) to (2, i) we draw
cij arrows, the number is equal to the partial multiplicity. A sequence of such pictures for
a sequence of homomorphisms A1 ⊂ A2 ⊂ . . . ⊂ Ap ⊂ · · · is called the Bratteli diagram
of this sequence. It is sometimes called the Bratteli diagram of an algebra, but the same
algebra can be obtained from different sequences.

Problem 53. Draw Bratteli diagrams (for some defining sequences) of the following AF-
algebras:

1) of the algebra of compact operators K(H);

2) of its unitization K(H)+;

3) the closure of the union of Ap = M2p , with embeddings Ap ⊂ Ap+1 of multiplicity 2

according to the formula a 7→
(
a 0
0 a

)
(CAR algebra);

4) C(K), where K is the Cantor set obtained from [0, 1] by successive removing the
middle third of the corresponding intervals. If Kp is a set, obtained at the pth step
of this process, then Ap is an algebra of continuous functions constant on intervals
of Kp;

5) C(X), where X := {0} ∪ { 1
n

: n ∈ N}, and Ak consists of all functions constant on
[0, 1/2k].

Lemma 3.14. If two Bratteli diagrams coincide, then the corresponding AF-algebras are
isometrically ∗-isomorphic.

Proof. Let An and Bn be two sequences of finite-dimensional C∗-algebras with inclusions
αn : An → An+1, βn : Bn → Bn+1. Since the Bratteli diagrams are the same, then for each
n there is an isomorphism ϕn : An → Bn. Consider ϕn+1 ◦ αn and βn ◦ ϕn : An → Bn+1.
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They can differ only by unitary un+1 ∈ Bn+1, that is βn ◦ ϕn = Adun+1 ϕn+1 ◦ αn, where
Adun+1(a) = un+1a(un+1)∗.

Let’s put ψ1 = ϕ1, v1 = 1. Let us define inductively vn+1 = βn(vn)un+1 ∈ Bn+1,
ψn+1 = Advn+1 ϕn+1. Then

βnψn = βn Advn ϕn = Adβn(vn) βnϕn = Adβ(vn) Adun+1 ϕn+1αn

= Adβn(vn)un+1 ϕn+1αn = ψn+1αn.

In this case ∪∞n=1ψn : ∪∞n=1An → ∪∞n=1Bn is an isometric ∗-isomorphism, so the closures
are also isomorphic.

One should not think that AF-algebras are “small” and that C∗-subalgebras of AF-
algebras are AF-algebras again. For example, C[0, 1] is not an AF-algebra (since its only
finite-dimensional C∗-subalgebra consists of constant functions), but it is a C∗-subalgebra
of the AF-algebra C(K) functions on the Cantor set. Indeed, let f be a function on K
that has a dense set of rational numbers in the interval [0, 1] as its values. For example,
the restriction of the Cantor function f : [0, 1] → [0, 1] [8, Ch. VI, §4] on K has all
rationals of the form p/2s as its values. Its spectrum is a closure of this set, that is,
equal to the entire interval [0, 1]. Thus, C∗(1, f) ⊂ C(K) is isometrically ∗-isomorphic to
C(Sp(f)) = C[0, 1].


