Lecture 13

Lemma 3.11. Let the homomorphism φ be unital under the conditions of Lemma 3.7. Then φ is determined by multiplicity up to a unitary equivalence (conjugation) in M_k .

Proof. Let f_i^1, \ldots, f_i^c be an orthonormal basis in the image of the projection $\varphi(e_i)$, $s = 1, \ldots, n$. Denoting by $[f_i^j]$ the corresponding one-dimensional pairwise orthogonal projections, we have $\varphi(e_i) = [f_i^1] + \cdots + [f_i^c]$. Then $\{f_i^j\}$, $i = 1, \ldots, n, j = 1, \ldots, c$, is an orthobasis \mathbb{C}^k , $1_k = \sum_{i,j} [f_i^j]$. If $u \in M_k$ is a unitary matrix taking $\{f_i^j\}$ to the canonical basis of \mathbb{C}^k , where $uf_i^j = e_{(i-1)n+j}$, then

$$[e_{(i-1)n+j}]x = e_{(i-1)n+j}(e_{(i-1)n+j}, x) = uf_i^j(uf_i^j, x) = uf_i^j(f_i^j, u^*x) = u[f_i^j]u^*x$$
(3.1)

for any $x \in \mathbb{C}^k$. That is why

$$\varphi([e_i]) = [f_i^1] + \dots + [f_i^c] = \sum_{j=1}^c u^* [e_{(i-1)n+j}] u = u^* \left(\sum_{j=1}^c [e_{(i-1)n+j}] \right) u.$$
(3.2)

Thus,

$$u\varphi(a)u^* = \begin{pmatrix} \varphi_1(a) & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \varphi_c(a) \end{pmatrix} \text{ (block diagonal matrix)}, \quad (3.3)$$

where $\varphi_i : M_n \to M_n$ is a non-zero homomorphism, and therefore an isomorphism $(i = 1, \ldots, c)$. Therefore, we can apply Theorem 3.10 to it and find a unitary $v_i \in M_n$, such that $\varphi_i(a) = v_i^* a v^i$. Denoting $v = v_1 \oplus \cdots \oplus v_c$ (a unitary element from M_k), we obtain that $vu\varphi(a)u^*v^* = S_c(a)$ for any $a \in M_n$, where $S_c : M_n \to M_k$, k = cn, is the standard homomorphism of multiplicity c:

$$S_c(a) = \begin{pmatrix} a & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a \end{pmatrix}$$
 (block diagonal matrix with *c* blocks equal to *a*),

as desired.

Lemma 3.12. Let φ be a unital *-homomorphism of a finite-dimensional C^* -algebra $A = M_{n_1} \oplus \ldots \oplus M_{n_k}$ into a finite-dimensional C^* -algebra $B = M_{m_1} \oplus \ldots \oplus M_{m_l}$. Then φ is given (up to unitary equivalence in B) by some $l \times k$ -matrix $C = (c_{ij})$ with nonnegative elements, and $\sum_{j=1}^{k} c_{ij}n_j = m_i$.

Proof. Let $\epsilon_i : B \to M_{m_i}$ be the canonical epimorphism, and $\sigma_j : M_{n_j} \to A$ the canonical embedding, $i = 1, \ldots, l, j = 1, \ldots, k$. Then $\epsilon_i \circ \varphi$ is a unital homomorphism of A into M_{m_i} . Let c_{ij} be the multiplicity of $\varphi_{ij} = \epsilon_i \circ \varphi \circ \sigma_j : M_{n_j} \to M_{m_i}$ in the sense of Definition 3.8.

Note that $\sigma_j(1_{n_j})$ are pairwise orthogonal self-adjoint projections in A with their sum equal to one, so $p_{ij} := \varphi_{ij}(1_{n_j})$ are pairwise orthogonal self-adjoint projections in M_{m_i} , also

with their sum equal to one. Therefore, as before, their direct sum is unitarily equivalent with the help of u_i in M_{m_i} to the sum of the corresponding diagonal projections $u_i p_{ij} u_i^*$. Applying Lemma 3.11 to each of $a \mapsto u_i \varphi_{ij}(a) u_i^*$, we find that $\epsilon_i \circ \varphi$ is unitarily equivalent (in M_{m_i}) to the homomorphism $\mathrm{id}_{n_1}^{c_{i1}} \oplus \ldots \oplus \mathrm{id}_{n_k}^{c_{ik}} = S_{c_{i1}} \oplus \cdots \oplus S_{c_{ik}}$. Comparison of dimensions gives the equality $\sum_{j=1}^k c_{ij} n_j = m_i$. Since φ is determined by the direct sum $\epsilon_i \circ \varphi$, $i = 1, \ldots, l$, the statement is proven.

Problem 52. Suppose that in the previous lemma we exclude the requirement of unitality. Prove an analogue of the lemma in this case. Namely, take instead of *B* the subalgebra $\varphi(A) = p\varphi(A)p$ in *B*, where $p = \varphi(1_A)$, apply the previous lemma to $\varphi : A \to \varphi(A)$ and obtain the statement of the lemma with inequalities $\sum_{j=1}^{k} c_{ij}n_j \leq m_i$ instead of equalities.

Definition 3.13. Any A *-homomorphism between finite-dimensional C^* -algebras can be represented in the following graphical way. Let's represent A in the form k-tuple $\{(1,1) = n_1, \ldots, (1,k) = n_k\}$ corresponding $A \cong M_{n_1} \oplus \ldots \oplus M_{n_k}$, and B — in the form l-tuple $\{(2,1) = m_1, \ldots, (2,l) = m_l\}$ corresponding to $B \cong M_{m_1} \oplus \ldots \oplus M_{m_l}$. Let us represent φ using arrows between the elements of sets, and from (1,j) to (2,i) we draw c_{ij} arrows, the number is equal to the partial multiplicity. A sequence of such pictures for a sequence of homomorphisms $A_1 \subset A_2 \subset \ldots \subset A_p \subset \cdots$ is called the *Bratteli diagram* of this sequence. It is sometimes called the Bratteli diagram of an algebra, but the same algebra can be obtained from different sequences.

Problem 53. Draw Bratteli diagrams (for some defining sequences) of the following AF-algebras:

- 1) of the algebra of compact operators $\mathbb{K}(H)$;
- 2) of its unitization $\mathbb{K}(H)^+$;
- 3) the closure of the union of $A_p = M_{2^p}$, with embeddings $A_p \subset A_{p+1}$ of multiplicity 2 according to the formula $a \mapsto \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$ (CAR algebra);
- 4) C(K), where K is the Cantor set obtained from [0, 1] by successive removing the middle third of the corresponding intervals. If K_p is a set, obtained at the *p*th step of this process, then A_p is an algebra of continuous functions constant on intervals of K_p ;
- 5) C(X), where $X := \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$, and A_k consists of all functions constant on $[0, 1/2^k]$.

Lemma 3.14. If two Bratteli diagrams coincide, then the corresponding AF-algebras are isometrically *-isomorphic.

Proof. Let A_n and B_n be two sequences of finite-dimensional C^* -algebras with inclusions $\alpha_n : A_n \to A_{n+1}, \beta_n : B_n \to B_{n+1}$. Since the Bratteli diagrams are the same, then for each n there is an isomorphism $\varphi_n : A_n \to B_n$. Consider $\varphi_{n+1} \circ \alpha_n$ and $\beta_n \circ \varphi_n : A_n \to B_{n+1}$.

They can differ only by unitary $u_{n+1} \in B_{n+1}$, that is $\beta_n \circ \varphi_n = \operatorname{Ad}_{u_{n+1}} \varphi_{n+1} \circ \alpha_n$, where $\operatorname{Ad}_{u_{n+1}}(a) = u_{n+1}a(u_{n+1})^*$.

Let's put $\psi_1 = \varphi_1$, $v_1 = 1$. Let us define inductively $v_{n+1} = \beta_n(v_n)u_{n+1} \in B_{n+1}$, $\psi_{n+1} = \operatorname{Ad}_{v_{n+1}} \varphi_{n+1}$. Then

$$\beta_n \psi_n = \beta_n \operatorname{Ad}_{v_n} \varphi_n = \operatorname{Ad}_{\beta_n(v_n)} \beta_n \varphi_n = \operatorname{Ad}_{\beta(v_n)} \operatorname{Ad}_{u_{n+1}} \varphi_{n+1} \alpha_n$$
$$= \operatorname{Ad}_{\beta_n(v_n)u_{n+1}} \varphi_{n+1} \alpha_n = \psi_{n+1} \alpha_n.$$

In this case $\bigcup_{n=1}^{\infty} \psi_n : \bigcup_{n=1}^{\infty} A_n \to \bigcup_{n=1}^{\infty} B_n$ is an isometric *-isomorphism, so the closures are also isomorphic.

One should not think that AF-algebras are "small" and that C^* -subalgebras of AFalgebras are AF-algebras again. For example, C[0, 1] is not an AF-algebra (since its only finite-dimensional C^* -subalgebra consists of constant functions), but it is a C^* -subalgebra of the AF-algebra C(K) functions on the Cantor set. Indeed, let f be a function on Kthat has a dense set of rational numbers in the interval [0, 1] as its values. For example, the restriction of the Cantor function $f : [0, 1] \to [0, 1]$ [8, Ch. VI, §4] on K has all rationals of the form $p/2^s$ as its values. Its spectrum is a closure of this set, that is, equal to the entire interval [0, 1]. Thus, $C^*(1, f) \subset C(K)$ is isometrically *-isomorphic to $C(\operatorname{Sp}(f)) = C[0, 1]$.