Chapter 1

C^{*}-algebras

Lecture 1

1.1 Definition and first examples

Definition 1.1. An algebra A (over a field \mathbb{K}) is a ring that is a linear space over \mathbb{K}, and the addition in the definition of a ring and in the definition of a linear spaces are the same, and multiplications are connected by the relation $\lambda(a b)=(\lambda a) b$ for all $\lambda \in \mathbb{K}$, $a, b \in A$.

We will consider algebras only over the field of complex numbers \mathbb{C}.
Definition 1.2. An algebra A over \mathbb{C} is called a Banach algebra, if the underlying linear space is a Banach space and $\|a b\| \leq\|a\|\|b\|$ for any $a, b \in A$.

Problem 1 (easy). Show that in this case the multiplication is continuous (as a mapping $A \times A \rightarrow A$).

Definition 1.3. A mapping $*: A \rightarrow A, a \mapsto a^{*}$ is called an involution if

1. $\left(a^{*}\right)^{*}=a$;
2. $(a+b)^{*}=a^{*}+b^{*}$;
3. $(\lambda a)^{*}=\bar{\lambda} a^{*}$;
4. $(a b)^{*}=b^{*} a^{*}$;
5. $\left\|a^{*}\right\|=\|a\|$
for any $a, b \in A, \lambda \in \mathbb{C}$. A Banach algebra with involution is called involutive Banach algebra.

Definition 1.4. An involutive Banach algebra A is called a C^{*}-algebra, if the involution satisfies the equality $\left\|a^{*} a\right\|=\|a\|^{2}$ for all $a \in A$ (this equality is called the C^{*}-property).

Problem 2. Give an example of an involutive Banach algebra that is not a C^{*}-algebra.
Problem 3 (easy). Show that property (5) of the definition 1.3 follows from properties $(1-4)$ and the C^{*}-property.

Definition 1.5. An element $1 \in A$ is called a (left) unit, if $1 a=a$ for any $a \in A$. A C^{*}-algebra A is called unital or algebra with unit, if it has a (left) unit (identity element).

Problem 4. Show that a left unit element is also a right one, which has $1^{*}=1$; that the identity element is unique and that $\|1\|=1$. It is called the unit of algebra.

Problem 5. Verify that the algebra $C(X)$ formed by all continuous complex-valued functions on a compact space X and the algebra $C_{0}(X)$ of all continuous complex-valued functions on a locally compact space X tending to 0 at infinity (that is, $f: X \rightarrow \mathbb{C}$ such that for any $\varepsilon>0$ there exists a compact $K \subseteq X$ such that $\sup \{|f(x)| \mid x \in K\}<\varepsilon)$ are commutative C^{*}-algebras if the supremum-norm: $\|f\|=\sup _{x \in X}|f(x)|$, is taken as the norm and the pointwise multiplication is taken as the multiplication. Moreover, the algebra $C(X)$ is unital.

Problem 6. Verify that the algebra $\mathbb{B}(H)$ of all bounded operators acting on a Hilbert space H is a C^{*}-algebra with identity. Here as a norm we take the operator norm $\|a\|=$ $\sup _{h \in H,\|h\| \leq 1}\|a(h)\|$, and the multiplication is the composition of operators.

These examples of C^{*}-algebras are the most important, as we will see later.

1.2 Unitalization, or attaching of a unit

If an involutive Banach algebra A does not have a unit, then it can be embedded into an involutive unital Banach algebra A as follows. Let $A^{+}=A \oplus \mathbb{C}$ be a linear space (the direct sum of linear spaces). Let's define a structure of an involutive Banach algebra on A^{+}by formulas

$$
\begin{align*}
(a, \lambda)(b, \mu) & =(a b+\lambda b+\mu a, \lambda \mu), \tag{1.1}\\
(a, \lambda)^{*} & =\left(a^{*}, \bar{\lambda}\right) \\
\|(a, \lambda)\| & =\|a\|+|\lambda|
\end{align*}
$$

for any $(a, \lambda),(b, \mu) \in A \oplus \mathbb{C}$.
We further assume that the initial algebra A is a C^{*}-algebra.
Problem 7. Show that this norm turns A^{+}into an involutive Banach algebra, but not into a C^{*}-algebra. (To check completeness, use the completeness of the subspace $A \subset A^{+}$ of finite codimension (one), this follows from Problem 337(b) in [7].)

Definition 1.6. A subset $B \subseteq A$ is called a subalgebra of a (Banach) algebra A if B is an algebra with respect to the operations (and norm) of A.

A subset of $B \subseteq A$ is called $\left(C^{*}\right.$-) subalgebra C^{*}-algebras A, if B is a C^{*}-algebra with respect to the operations and the norm of A. In particular, B is closed in A.

Definition 1.7. A subalgebra $I \subseteq A$ is called a (two-sided) ideal, if $a I \subseteq I$ and $I a \subseteq I$ for any $a \in A$.

Problem 8. Prove that A is an ideal in A^{+}.
Lemma 1.8. There is a norm on A^{+}such that

1) it is equivalent to the one defined above;
2) on A it coincides with the original norm:
3) it is a C^{*}-norm.

Proof. For $b=\left(b^{\prime}, \lambda\right) \in A^{+}$, consider the linear mapping $L_{b}: A \rightarrow A$ according to the formula $L_{b}(a)=b a, a \in A$. For L_{b}, we can thus define the operator norm: $\left\|L_{b}\right\|:=$ $\sup _{a \in A,\|a\| \leq 1}\left\|L_{b}(a)\right\|$. If $b \in A$, then $\left\|L_{b}\right\| \leq\|b\|$. Since $\left\|L_{b}\left(b^{*}\right)\right\|=\left\|b b^{*}\right\|=\|b\|^{2}$, we have $\left\|L_{b}\right\|=\|b\|$. For every $b=\left(b^{\prime}, \lambda\right) \in A^{+}$we set $\|b\|_{\text {new }}=\left\|L_{b}\right\|$. Note that the above reasoning shows that $\|\cdot\|_{\text {new }}$ satisfies condition 2) from the formulation of the lemma.

First of all, let's check that $\|\cdot\|_{\text {new }}$ is a norm. Obviously, the axioms of linearity and triangle are satisfied (that is, this is a semi-norm, or pre-norm), so it remains to check the nondegeneracy. Let $\|b\|_{\text {new }}=0$ for some $b=\left(b^{\prime}, \lambda\right) \in A^{+}$. It means that $\left(b^{\prime}, \lambda\right) \cdot(a, 0)=\left(b^{\prime} a+\lambda a, 0\right)=(0,0)$ for any $a \in A$, so $-\frac{1}{\lambda} b^{\prime} \cdot a=a$ and $-\frac{1}{\lambda} b^{\prime}$ is the unit of A. But A does not have a unit. This means that $\|\cdot\|_{\text {new }}$ is the norm. Like any operator norm, the new norm is a norm of a Banach algebra, that is,

$$
\begin{equation*}
\|b c\|_{\text {new }} \leq\|b\|_{\text {new }}\|c\|_{\text {new }} \tag{1.2}
\end{equation*}
$$

for any $b, c \in A^{+}$(Easy problem: check this). We do not claim yet that the involution is an isometry.

This new norm is equivalent to the previously defined norm on A^{+}, since $A \subset A^{+}$is a subspace of codimension 1 . Indeed, by the triangle inequality, we have $\|(a, \lambda)\|_{\text {new }} \leq$ $\|a\|+|\lambda|=\|(a+\lambda)\|$, so it is sufficient to show that there is a constant $c>0$ such that $\|(a, \lambda)\|_{\text {new }} \geq c\|(a, \lambda)\|$. Let's assume the opposite: there are such pairs $\left(a_{n}, \lambda_{n}\right)$ and numbers $c_{n}>0$ such that $\lim _{n \rightarrow \infty} c_{n}=0$ and

$$
\left\|\left(a_{n}, \lambda_{n}\right)\right\|_{\text {new }} \leq c_{n}\left\|\left(a_{n}, \lambda_{n}\right)\right\|
$$

Since none of λ_{n} is zero, we can assume (by dividing both sides by $\lambda_{n} \neq 0$ if necessary) that $\lambda_{n}=1$. Applying the triangle inequality again, we get

$$
\left\|a_{n}\right\|-1 \leq\left\|\left(a_{n}, 1\right)\right\|_{\text {new }} \leq c_{n}\left(\left\|a_{n}\right\|+1\right)
$$

whence $\left\|a_{n}\right\| \leq \frac{1+c_{n}}{1-c_{n}}$, and for sufficiently large n we have $\left\|a_{n}\right\|<2$. But then for these n we have $\left\|\left(a_{n}, 1\right)\right\|_{\text {new }}^{1-c_{n}} \leq 3 c_{n}$, so

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(a_{n}, 1\right)=0 \tag{1.3}
\end{equation*}
$$

Now recall that $A^{+} / A \cong \mathbb{C}$, and all norms on \mathbb{C} are equivalent (moreover, they differ only by a constant multiple). Thus, the quotient norm on A^{+} / A given by $\|(a, \lambda)+A\|_{\text {new }}:=$
$\inf _{a \in A}\|(a, \lambda)\|_{\text {new }}$ is equivalent to the usual norm on \mathbb{C}. So $\inf _{a \in A}\|(a, 1)\|_{\text {new }}=\alpha>0$, what contradicts (1.3).

Now we need to check the C^{*} property. By definition, for any $b \in A^{+}$and any $\varepsilon>0$ there is an element $a \in A$ such that $\|a\|=1$ and

$$
\left\|L_{b}(a)\right\| \geq(1-\varepsilon)\left\|L_{b}\right\|, \quad \text { that is } \quad\|b a\|_{\text {new }}=\|b a\| \geq(1-\varepsilon)\|b\|_{\text {new }}
$$

We also have

$$
\left\|b^{*} b\right\|_{\text {new }} \geq\left\|a^{*}\left(b^{*} b\right) a\right\|_{\text {new }}=\left\|a^{*}\left(b^{*} b\right) a\right\|=\left\|(b a)^{*}(b a)\right\|=\|b a\|^{2} \geq(1-\varepsilon)^{2}\|b\|_{\text {new }}^{2}
$$

(where the first inequality is satisfied by virtue of (1.2), the next equality is satisfied by virtue of that A is an ideal in A^{+}, and then we apply the C^{*}-property in A). Passing to the limit as ε tends to zero, we obtain $\left\|b^{*} b\right\|_{\text {new }} \geqslant\|b\|_{\text {new }}^{2}$. In particular, $\left\|b^{*}\right\|_{\text {new }} \cdot\|b\|_{\text {new }} \geqslant$ $\left\|b^{*} b\right\|_{\text {new }} \geqslant\|b\|_{\text {new }}^{2}$, so $\left\|b^{*}\right\|_{\text {new }} \geqslant\|b\|_{\text {new }}$. Therefore $\|b\|_{\text {new }}=\left\|\left(b^{*}\right)^{*}\right\|_{\text {new }} \geqslant\left\|b^{*}\right\|_{\text {new }}$. Thus, the involution is an isometry and, by (1.2), $\left\|b^{*} b\right\|_{\text {new }} \leqslant\left\|b^{*}\right\|_{\text {new }}\|b\|_{\text {new }}=\|b\|_{\text {new }}^{2}$. This means that this is a C^{*}-norm.

Definition 1.9. An element $a \in A$ is called self-adjoint, if $a^{*}=a$, unitary, if $a^{*} a=a a^{*}=$ 1 (here the algebra A is assumed to be unital), normal, if $a^{*} a=a a^{*}$.

Definition 1.10. In a unital C^{*}-algebra, an element a is called invertible, if there is an element $a^{\prime} \in A$ such that $a a^{\prime}=a^{\prime} a=1$. There is only one a^{\prime} with this property (check!), called the inverse to a and is denoted by a^{-1}. The set of invertible elements $G(A)$ is a group.

Problem 9. Check this.
Lemma 1.11. If $\|1-a\|<1$, then a^{-1} exists and is equal to $a^{\prime}=\sum_{n=0}^{\infty}(1-a)^{n}$, and the series converges in norm.

Proof. Convergence immediately follows from the domination by a geometric progression. Next we calculate: $a^{\prime} a=a a^{\prime}=-(1-a) a^{\prime}+a^{\prime}=-\sum_{n=1}^{\infty}(1-a)^{n}+\sum_{n=0}^{\infty}(1-a)^{n}=1$.

Problem 10. Prove in a similar way that if $a_{0} \in A$ is invertible and $\left\|a-a_{0}\right\|<\frac{1}{\left\|a_{0}^{-1}\right\|}$, then a is also invertible, and $a^{-1}=\sum_{n=0}^{\infty}\left[a_{0}^{-1}\left(a_{0}-a\right)\right]^{n} a_{0}^{-1}$.

Corollary 1.12. The subset $G(A) \subset A$ is an open set. Taking the inverse element $a \mapsto a^{-1}$ is a continuous map $G(A)$ into itself.

Problem 11. Prove the corollary using the formulas established above.

