Chapter 1

C^* -algebras

Lecture 1

1.1 Definition and first examples

Definition 1.1. An algebra A (over a field \mathbb{K}) is a ring that is a linear space over \mathbb{K} , and the addition in the definition of a ring and in the definition of a linear spaces are the same, and multiplications are connected by the relation $\lambda(ab) = (\lambda a)b$ for all $\lambda \in \mathbb{K}$, $a, b \in A$.

We will consider algebras only over the field of complex numbers \mathbb{C} .

Definition 1.2. An algebra A over \mathbb{C} is called a *Banach algebra*, if the underlying linear space is a Banach space and $||ab|| \leq ||a|| ||b||$ for any $a, b \in A$.

Problem 1 (easy). Show that in this case the multiplication is continuous (as a mapping $A \times A \rightarrow A$).

Definition 1.3. A mapping $*: A \to A, a \mapsto a^*$ is called an *involution* if

- 1. $(a^*)^* = a;$
- 2. $(a+b)^* = a^* + b^*;$
- 3. $(\lambda a)^* = \overline{\lambda} a^*;$
- 4. $(ab)^* = b^*a^*;$
- 5. $||a^*|| = ||a||$

for any $a, b \in A$, $\lambda \in \mathbb{C}$. A Banach algebra with involution is called *involutive Banach* algebra.

Definition 1.4. An involutive Banach algebra A is called a C^* -algebra, if the involution satisfies the equality $||a^*a|| = ||a||^2$ for all $a \in A$ (this equality is called the C^* -property).

Problem 2. Give an example of an involutive Banach algebra that is not a C^* -algebra.

Problem 3 (easy). Show that property (5) of the definition 1.3 follows from properties (1-4) and the C^* -property.

Definition 1.5. An element $1 \in A$ is called a (left) *unit*, if 1a = a for any $a \in A$. A C^* -algebra A is called *unital* or *algebra with unit*, if it has a (left) unit (identity element).

Problem 4. Show that a left unit element is also a right one, which has $1^* = 1$; that the identity element is unique and that ||1|| = 1. It is called the *unit of algebra*.

Problem 5. Verify that the algebra C(X) formed by all continuous complex-valued functions on a compact space X and the algebra $C_0(X)$ of all continuous complex-valued functions on a locally compact space X tending to 0 at infinity (that is, $f: X \to \mathbb{C}$ such that for any $\varepsilon > 0$ there exists a compact $K \subseteq X$ such that $\sup\{|f(x)| \mid x \in K\} < \varepsilon\}$ are commutative C^* -algebras if the *supremum-norm*: $||f|| = \sup_{x \in X} |f(x)|$, is taken as the norm and the pointwise multiplication is taken as the multiplication. Moreover, the algebra C(X) is unital.

Problem 6. Verify that the algebra $\mathbb{B}(H)$ of all bounded operators acting on a Hilbert space H is a C^* -algebra with identity. Here as a norm we take the *operator norm* $||a|| = \sup_{h \in H, ||h|| \le 1} ||a(h)||$, and the multiplication is the composition of operators.

These examples of C^* -algebras are the most important, as we will see later.

1.2 Unitalization, or attaching of a unit

If an involutive Banach algebra A does not have a unit, then it can be embedded into an involutive unital Banach algebra A as follows. Let $A^+ = A \oplus \mathbb{C}$ be a linear space (the direct sum of linear spaces). Let's define a structure of an involutive Banach algebra on A^+ by formulas

$$(a, \lambda)(b, \mu) = (ab + \lambda b + \mu a, \lambda \mu),$$

$$(a, \lambda)^* = (a^*, \overline{\lambda}),$$

$$\|(a, \lambda)\| = \|a\| + |\lambda|$$

$$(1.1)$$

for any $(a, \lambda), (b, \mu) \in A \oplus \mathbb{C}$.

We further assume that the initial algebra A is a C^* -algebra.

Problem 7. Show that this norm turns A^+ into an involutive Banach algebra, but not into a C^* -algebra. (To check completeness, use the completeness of the subspace $A \subset A^+$ of finite codimension (one), this follows from Problem 337(b) in [7].)

Definition 1.6. A subset $B \subseteq A$ is called a *subalgebra* of a (Banach) algebra A if B is an algebra with respect to the operations (and norm) of A.

A subset of $B \subseteq A$ is called (C^*-) subalgebra C^* -algebras A, if B is a C^* -algebra with respect to the operations and the norm of A. In particular, B is closed in A.

Definition 1.7. A subalgebra $I \subseteq A$ is called a (two-sided) *ideal*, if $aI \subseteq I$ and $Ia \subseteq I$ for any $a \in A$.

Problem 8. Prove that A is an ideal in A^+ .

Lemma 1.8. There is a norm on A^+ such that

- 1) it is equivalent to the one defined above;
- 2) on A it coincides with the original norm:
- 3) it is a C^* -norm.

Proof. For $b = (b', \lambda) \in A^+$, consider the linear mapping $L_b : A \to A$ according to the formula $L_b(a) = ba$, $a \in A$. For L_b , we can thus define the operator norm: $||L_b|| := \sup_{a \in A, ||a|| \le 1} ||L_b(a)||$. If $b \in A$, then $||L_b|| \le ||b||$. Since $||L_b(b^*)|| = ||bb^*|| = ||b||^2$, we have $||L_b|| = ||b||$. For every $b = (b', \lambda) \in A^+$ we set $||b||_{new} = ||L_b||$. Note that the above reasoning shows that $||.||_{new}$ satisfies condition 2) from the formulation of the lemma.

First of all, let's check that $\|\cdot\|_{new}$ is a norm. Obviously, the axioms of linearity and triangle are satisfied (that is, this is a *semi-norm*, or *pre-norm*), so it remains to check the nondegeneracy. Let $\|b\|_{new} = 0$ for some $b = (b', \lambda) \in A^+$. It means that $(b', \lambda) \cdot (a, 0) = (b'a + \lambda a, 0) = (0, 0)$ for any $a \in A$, so $-\frac{1}{\lambda}b' \cdot a = a$ and $-\frac{1}{\lambda}b'$ is the unit of A. But A does not have a unit. This means that $\|\cdot\|_{new}$ is the norm. Like any operator norm, the new norm is a norm of a Banach algebra, that is,

$$\|bc\|_{new} \le \|b\|_{new} \|c\|_{new} \tag{1.2}$$

for any $b, c \in A^+$ (Easy problem: check this). We do not claim yet that the involution is an isometry.

This new norm is equivalent to the previously defined norm on A^+ , since $A \subset A^+$ is a subspace of codimension 1. Indeed, by the triangle inequality, we have $||(a, \lambda)||_{new} \leq$ $||a|| + |\lambda| = ||(a + \lambda)||$, so it is sufficient to show that there is a constant c > 0 such that $||(a, \lambda)||_{new} \geq c||(a, \lambda)||$. Let's assume the opposite: there are such pairs (a_n, λ_n) and numbers $c_n > 0$ such that $\lim_{n\to\infty} c_n = 0$ and

$$||(a_n,\lambda_n)||_{new} \le c_n ||(a_n,\lambda_n)||.$$

Since none of λ_n is zero, we can assume (by dividing both sides by $\lambda_n \neq 0$ if necessary) that $\lambda_n = 1$. Applying the triangle inequality again, we get

$$||a_n|| - 1 \le ||(a_n, 1)||_{new} \le c_n(||a_n|| + 1),$$

whence $||a_n|| \leq \frac{1+c_n}{1-c_n}$, and for sufficiently large *n* we have $||a_n|| < 2$. But then for these *n* we have $||(a_n, 1)||_{new} \leq 3c_n$, so

$$\lim_{n \to \infty} (a_n, 1) = 0. \tag{1.3}$$

Now recall that $A^+/A \cong \mathbb{C}$, and all norms on \mathbb{C} are equivalent (moreover, they differ only by a constant multiple). Thus, the quotient norm on A^+/A given by $||(a, \lambda) + A||_{new} :=$ $\inf_{a \in A} ||(a, \lambda)||_{new}$ is equivalent to the usual norm on \mathbb{C} . So $\inf_{a \in A} ||(a, 1)||_{new} = \alpha > 0$, what contradicts (1.3).

Now we need to check the C^* property. By definition, for any $b \in A^+$ and any $\varepsilon > 0$ there is an element $a \in A$ such that ||a|| = 1 and

 $||L_b(a)|| \ge (1-\varepsilon)||L_b||, \quad \text{that is} \quad ||ba||_{new} = ||ba|| \ge (1-\varepsilon)||b||_{new}.$

We also have

 $\|b^*b\|_{new} \ge \|a^*(b^*b)a\|_{new} = \|a^*(b^*b)a\| = \|(ba)^*(ba)\| = \|ba\|^2 \ge (1-\varepsilon)^2 \|b\|_{new}^2$

(where the first inequality is satisfied by virtue of (1.2), the next equality is satisfied by virtue of that A is an ideal in A^+ , and then we apply the C^* -property in A). Passing to the limit as ε tends to zero, we obtain $||b^*b||_{new} \ge ||b||_{new}^2$. In particular, $||b^*||_{new} \cdot ||b||_{new} \ge ||b^*b||_{new} \ge ||b||_{new}^2$, so $||b^*||_{new} \ge ||b||_{new}$. Therefore $||b||_{new} = ||(b^*)^*||_{new} \ge ||b^*||_{new}$. Thus, the involution is an isometry and, by (1.2), $||b^*b||_{new} \le ||b^*||_{new} ||b||_{new} = ||b||_{new}^2$. This means that this is a C^* -norm.

Definition 1.9. An element $a \in A$ is called *self-adjoint*, if $a^* = a$, *unitary*, if $a^*a = aa^* = 1$ (here the algebra A is assumed to be unital), *normal*, if $a^*a = aa^*$.

Definition 1.10. In a unital C^* -algebra, an element a is called *invertible*, if there is an element $a' \in A$ such that aa' = a'a = 1. There is only one a' with this property (check!), called the *inverse to a* and is denoted by a^{-1} . The set of invertible elements G(A) is a group.

Problem 9. Check this.

Lemma 1.11. If ||1-a|| < 1, then a^{-1} exists and is equal to $a' = \sum_{n=0}^{\infty} (1-a)^n$, and the series converges in norm.

Proof. Convergence immediately follows from the domination by a geometric progression. Next we calculate: $a'a = aa' = -(1-a)a' + a' = -\sum_{n=1}^{\infty} (1-a)^n + \sum_{n=0}^{\infty} (1-a)^n = 1$. \Box

Problem 10. Prove in a similar way that if $a_0 \in A$ is invertible and $||a - a_0|| < \frac{1}{||a_0^{-1}||}$, then a is also invertible, and $a^{-1} = \sum_{n=0}^{\infty} [a_0^{-1}(a_0 - a)]^n a_0^{-1}$.

Corollary 1.12. The subset $G(A) \subset A$ is an open set. Taking the inverse element $a \mapsto a^{-1}$ is a continuous map G(A) into itself.

Problem 11. Prove the corollary using the formulas established above.