
Chapter 1

C∗-algebras

Lecture 1

1.1 Definition and first examples

Definition 1.1. An algebra A (over a field K) is a ring that is a linear space over K,
and the addition in the definition of a ring and in the definition of a linear spaces are
the same, and multiplications are connected by the relation λ(ab) = (λa)b for all λ ∈ K,
a, b ∈ A.

We will consider algebras only over the field of complex numbers C.

Definition 1.2. An algebra A over C is called a Banach algebra, if the underlying linear
space is a Banach space and ‖ab‖ ≤ ‖a‖‖b‖ for any a, b ∈ A.

Problem 1 (easy). Show that in this case the multiplication is continuous (as a mapping
A× A→ A).

Definition 1.3. A mapping ∗ : A→ A, a 7→ a∗ is called an involution if

1. (a∗)∗ = a;

2. (a+ b)∗ = a∗ + b∗;

3. (λa)∗ = λ̄a∗;

4. (ab)∗ = b∗a∗;

5. ‖a∗‖ = ‖a‖

for any a, b ∈ A, λ ∈ C. A Banach algebra with involution is called involutive Banach
algebra.

Definition 1.4. An involutive Banach algebra A is called a C∗-algebra, if the involution
satisfies the equality ‖a∗a‖ = ‖a‖2 for all a ∈ A (this equality is called the C∗-property).
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Problem 2. Give an example of an involutive Banach algebra that is not a C∗-algebra.

Problem 3 (easy). Show that property (5) of the definition 1.3 follows from properties
(1 – 4) and the C∗-property.

Definition 1.5. An element 1 ∈ A is called a (left) unit, if 1a = a for any a ∈ A. A
C∗-algebra A is called unital or algebra with unit, if it has a (left) unit (identity element).

Problem 4. Show that a left unit element is also a right one, which has 1∗ = 1; that the
identity element is unique and that ‖1‖ = 1. It is called the unit of algebra.

Problem 5. Verify that the algebra C(X) formed by all continuous complex-valued
functions on a compact space X and the algebra C0(X) of all continuous complex-valued
functions on a locally compact space X tending to 0 at infinity (that is, f : X → C such
that for any ε > 0 there exists a compact K ⊆ X such that sup{|f(x)| | x ∈ K} < ε)
are commutative C∗-algebras if the supremum-norm: ‖f‖ = supx∈X |f(x)|, is taken as
the norm and the pointwise multiplication is taken as the multiplication. Moreover, the
algebra C(X) is unital.

Problem 6. Verify that the algebra B(H) of all bounded operators acting on a Hilbert
space H is a C∗-algebra with identity. Here as a norm we take the operator norm ‖a‖ =
suph∈H, ‖h‖≤1 ‖a(h)‖, and the multiplication is the composition of operators.

These examples of C∗-algebras are the most important, as we will see later.

1.2 Unitalization, or attaching of a unit

If an involutive Banach algebra A does not have a unit, then it can be embedded into an
involutive unital Banach algebra A as follows. Let A+ = A ⊕ C be a linear space (the
direct sum of linear spaces). Let’s define a structure of an involutive Banach algebra on
A+ by formulas

(a, λ)(b, µ) = (ab+ λb+ µa, λµ), (1.1)

(a, λ)∗ = (a∗, λ̄),

‖(a, λ)‖ = ‖a‖+ |λ|

for any (a, λ), (b, µ) ∈ A⊕ C.
We further assume that the initial algebra A is a C∗-algebra.

Problem 7. Show that this norm turns A+ into an involutive Banach algebra, but not
into a C∗-algebra. (To check completeness, use the completeness of the subspace A ⊂ A+

of finite codimension (one), this follows from Problem 337(b) in [7].)

Definition 1.6. A subset B ⊆ A is called a subalgebra of a (Banach) algebra A if B is
an algebra with respect to the operations (and norm) of A.

A subset of B ⊆ A is called (C∗-)subalgebra C∗-algebras A, if B is a C∗-algebra with
respect to the operations and the norm of A. In particular, B is closed in A.
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Definition 1.7. A subalgebra I ⊆ A is called a (two-sided) ideal, if aI ⊆ I and Ia ⊆ I
for any a ∈ A.

Problem 8. Prove that A is an ideal in A+.

Lemma 1.8. There is a norm on A+ such that

1) it is equivalent to the one defined above;

2) on A it coincides with the original norm:

3) it is a C∗-norm.

Proof. For b = (b′, λ) ∈ A+, consider the linear mapping Lb : A → A according to the
formula Lb(a) = ba, a ∈ A. For Lb, we can thus define the operator norm: ‖Lb‖ :=
supa∈A, ‖a‖≤1 ‖Lb(a)‖. If b ∈ A, then ‖Lb‖ ≤ ‖b‖. Since ‖Lb(b∗)‖ = ‖bb∗‖ = ‖b‖2, we
have ‖Lb‖ = ‖b‖. For every b = (b′, λ) ∈ A+ we set ‖b‖new = ‖Lb‖. Note that the above
reasoning shows that ‖.‖new satisfies condition 2) from the formulation of the lemma.

First of all, let’s check that ‖ · ‖new is a norm. Obviously, the axioms of linearity
and triangle are satisfied (that is, this is a semi-norm, or pre-norm), so it remains to
check the nondegeneracy. Let ‖b‖new = 0 for some b = (b′, λ) ∈ A+. It means that
(b′, λ) · (a, 0) = (b′a+ λa, 0) = (0, 0) for any a ∈ A, so − 1

λ
b′ · a = a and − 1

λ
b′ is the unit of

A. But A does not have a unit. This means that ‖ · ‖new is the norm. Like any operator
norm, the new norm is a norm of a Banach algebra, that is,

‖bc‖new ≤ ‖b‖new‖c‖new (1.2)

for any b, c ∈ A+ (Easy problem: check this). We do not claim yet that the involution is
an isometry.

This new norm is equivalent to the previously defined norm on A+, since A ⊂ A+ is
a subspace of codimension 1. Indeed, by the triangle inequality, we have ‖(a, λ)‖new ≤
‖a‖ + |λ| = ‖(a + λ)‖, so it is sufficient to show that there is a constant c > 0 such
that ‖(a, λ)‖new ≥ c‖(a, λ)‖. Let’s assume the opposite: there are such pairs (an, λn) and
numbers cn > 0 such that limn→∞ cn = 0 and

‖(an, λn)‖new ≤ cn‖(an, λn)‖.

Since none of λn is zero, we can assume (by dividing both sides by λn 6= 0 if necessary)
that λn = 1. Applying the triangle inequality again, we get

‖an‖ − 1 ≤ ‖(an, 1)‖new ≤ cn(‖an‖+ 1),

whence ‖an‖ ≤ 1+cn
1−cn , and for sufficiently large n we have ‖an‖ < 2. But then for these n

we have ‖(an, 1)‖new ≤ 3cn, so
lim
n→∞

(an, 1) = 0. (1.3)

Now recall that A+/A ∼= C, and all norms on C are equivalent (moreover, they differ only
by a constant multiple). Thus, the quotient norm on A+/A given by ‖(a, λ) + A‖new :=
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infa∈A ‖(a, λ)‖new is equivalent to the usual norm on C. So infa∈A ‖(a, 1)‖new = α > 0,
what contradicts (1.3).

Now we need to check the C∗ property. By definition, for any b ∈ A+ and any ε > 0
there is an element a ∈ A such that ‖a‖ = 1 and

‖Lb(a)‖ ≥ (1− ε)‖Lb‖, that is ‖ba‖new = ‖ba‖ ≥ (1− ε)‖b‖new.

We also have

‖b∗b‖new ≥ ‖a∗(b∗b)a‖new = ‖a∗(b∗b)a‖ = ‖(ba)∗(ba)‖ = ‖ba‖2 ≥ (1− ε)2‖b‖2
new

(where the first inequality is satisfied by virtue of (1.2), the next equality is satisfied by
virtue of that A is an ideal in A+, and then we apply the C∗-property in A). Passing to
the limit as ε tends to zero, we obtain ‖b∗b‖new > ‖b‖2

new. In particular, ‖b∗‖new · ‖b‖new >
‖b∗b‖new > ‖b‖2

new, so ‖b∗‖new > ‖b‖new. Therefore ‖b‖new = ‖(b∗)∗‖new > ‖b∗‖new. Thus,
the involution is an isometry and, by (1.2), ‖b∗b‖new 6 ‖b∗‖new‖b‖new = ‖b‖2

new. This
means that this is a C∗-norm.

Definition 1.9. An element a ∈ A is called self-adjoint, if a∗ = a, unitary, if a∗a = aa∗ =
1 (here the algebra A is assumed to be unital), normal, if a∗a = aa∗.

Definition 1.10. In a unital C∗-algebra, an element a is called invertible, if there is an
element a′ ∈ A such that aa′ = a′a = 1. There is only one a′ with this property (check!),
called the inverse to a and is denoted by a−1. The set of invertible elements G(A) is a
group.

Problem 9. Check this.

Lemma 1.11. If ‖1− a‖ < 1, then a−1 exists and is equal to a′ =
∑∞

n=0(1− a)n, and the
series converges in norm.

Proof. Convergence immediately follows from the domination by a geometric progression.
Next we calculate: a′a = aa′ = −(1−a)a′+a′ = −

∑∞
n=1(1−a)n+

∑∞
n=0(1−a)n = 1.

Problem 10. Prove in a similar way that if a0 ∈ A is invertible and ‖a − a0‖ < 1
‖a−1

0 ‖
,

then a is also invertible, and a−1 =
∑∞

n=0[a−1
0 (a0 − a)]na−1

0 .

Corollary 1.12. The subset G(A) ⊂ A is an open set. Taking the inverse element
a 7→ a−1 is a continuous map G(A) into itself.

Problem 11. Prove the corollary using the formulas established above.


