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Lecture 3

1.5 Gelfand transform

Definition 1.22. For a commutative Banach algebra A we define Gelfand transform
Γ : A→ C0(MA) by the relation Γ(a) = â, where â(ϕ) := ϕ(a) (the necessary properties
will be verified in the next lemma).

Lemma 1.23. The Gelfand transform is a (non-strict) contraction homomorphism of
algebras and the image A separates the points MA, that is, for any two points MA there
is a function from the image with distinct values at these points.

Proof. Functions â are continuous by the definition of the ∗-weak topology. The mapping
is contractive because

‖Γ(a)‖ = sup
ϕ∈MA

|ϕ(a)| ≤ sup
ϕ∈MA

‖ϕ‖ · ‖a‖ = sup
ϕ∈MA

‖a‖ = ‖a‖.

The separation of points is obvious since two (multiplicative) functionals are distinct if
and only if their values on some element a are distinct. If A is not unital, then we note
that â(0̃) = 0(a) = 0, where MA+ = MA ∪ 0̃. Therefore â ∈ C0(MA).

Problem 22. If an algebra is unital, then Γ(1) = 1.

Corollary 1.24. Let A be a commutative unital Banach algebra. Then a ∈ A is invertible
if and only if â is invertible, and if and only if â(ϕ) 6= 0 for any ϕ ∈ MA. Therefore
Sp(a) = Sp(â) = {ϕ(a) : ϕ ∈MA} and ‖â‖ = r(a).

Proof. If a is invertible, then â is invertible by Problem 22. If a is not invertible, then
consider the ideal I = aA. As discussed above (see the proof of Lemma 1.19), this ideal
cannot contain 1, so it is proper. Let IM be the maximal ideal containing I (see problem
23 below), and ϕ be the corresponding IM multiplicative functional. Then ϕ(a) = 0 and
â is not invertible in C(MA).

The remaining statements are immediately obtained from what has been proven.

Problem 23. Any ideal I of a commutative Banach algebra with identity is contained
in some maximum ideal. Hint: consider the union of J of all proper ideals Iα containing
I partially ordered by inclusion. For each chain (a completely ordered subsystem) Iατ
using, as above, by the fact that 1 does not belong to every Iατ , make sure that it does
not belong to ∪τIατ , so this is its own ideal. Then apply Zorn’s lemma.

Theorem 1.25. Let A be a commutative C*-algebra. Then the Gelfand transformation
is an isometric ∗-isomorphism of A onto C0(MA).

Proof. Let us prove the theorem for a unital algebra. The necessary adaptation for the
case without a unit is left to the reader as Problem 24.
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Let ϕ ∈ MA. Let us first consider the self-adjoint element a∗ = a ∈ A. Let us set
ut =

∑∞
n=0

(ita)n

n!
, t ∈ R. It is easy to check by considering the partial sum and passing to

the limit that u∗t = u−1
t , so ut ∈ A is unitary. Then

1 ≥ |ϕ(ut)| = |
∞∑
n=0

(itϕ(a))n

n!
| = |eitϕ(a)| = e−t Imϕ(a).

Due to the arbitrariness of t ∈ R in this estimate, we conclude that Imϕ(a) = 0, that is,
ϕ(a) ∈ R.

We write an arbitrary element c ∈ A in the form c = a+ ib, where a = (c+ c∗)/2 and
b = (c− c∗)/2i are self-adjoint. According to what has been proven, ϕ(a), ϕ(b) ∈ R, that
means ϕ(c∗) = ϕ(a) − iϕ(b) = ϕ(c), so the Gelfand transformation preserves involution
and is thus a ∗-homomorphism.

For a self-adjoint element (a = a∗) we have ‖a‖2 = ‖a∗a‖ = ‖a2‖, therefore

‖â‖ = r(a) = lim
n→∞

‖a2n‖1/2n = lim
n→∞

(‖a‖2n)1/2n = ‖a‖.

For an element b ∈ A of general form we have ‖b‖2 = ‖b∗b‖ = ‖b̂∗b‖ = ‖b̂∗b̂‖ = ‖b̂‖2, so
the Gelfand transformation is an isometry (onto its image).

Therefore Γ(A) is norm closed and involutive subalgebra with identity in C(MA) sep-
arating the points. By theorem Stone-Weierstrass1, Γ(A) = C(MA).

Problem 24. Prove the theorem for a non-unital algebra.

So in particular there is an inverse mapping for the transformation Gelfand, which is
also an isometric ∗-isomorphism.

Let a ∈ A be a normal element. Let us denote by C∗(1, a) (respectively, C∗(a))
C∗-algebra generated by 1 and a (resp., only a). Due to normality, these algebras are
commutative, with the first definition supposing that A is unital.

Let us clarify that by a C∗-algebra generated by a set we call the minimal C∗-subalgebra
A containing the set, that is, the intersection all C∗-subalgebras of A containing this set.

Problem 25. Verify that the C∗-algebra generated by a set is indeed a C∗-algebra.

Problem 26. If a is an invertible element, then the algebra C∗(a) is unital. In this case
C∗(a) = C∗(1, a).

Corollary 1.26. If a∗ = a, then Sp(a) ⊂ R.

Proof. As we know, Sp(a) = Sp(â) and â∗ = â. But a self-adjoint function is exactly a
function with real values, while the spectrum of a function is the set of all its values.

Corollary 1.27. The algebra C∗(1, a) is isometrically ∗-isomorphic to the algebra C(Sp(a))
under a mapping that takes a to the function z(t) = t, z : Sp(a) ⊂ C → C. The algebra
C∗(a) is mapped onto C0(Sp(a) \ {0}).

1The theorem is not always included in the standard course on functional analysis, so we present its
proof in Section 1.6.
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Proof. For a commutative C∗-algebra C∗(1, a) we find X = MC∗(1,a). Any multiplicative
functional ϕ ∈ X is determined by its value ϕ(a) = λ on a. Moreover, due to multiplica-
tivity ϕ(p(a, a∗)) = p(λ, λ̄) for any polynomial p. Thus, X is identified with the set of
all possible values λ that ϕ(a) = â(ϕ) takes for ϕ ∈ X. According to Corollary 1.24, we
have â(X) = Sp(a). We obtain the identification Sp(a) ∼= X using the correspondence
Sp(a) 3 λ 7→ ϕλ ∈ X, where ϕλ is determined by the condition ϕλ(a) = λ.

This identification carries over to functions: every continuous function on X is identi-
fied with a continuous function on Sp(a), namely, the function b̂ = b̂(ϕ) is associated with
the function argument λ ∈ Sp(a), specified as λ 7→ ϕλ(b). For example, if we take the poly-
nomial p(a, a∗) = b , then the corresponding function will be λ 7→ ϕλ(p(a, a

∗)) = p(λ, λ̄).
In particular, the function â is mapped to λ 7→ ϕλ(a) = λ, so the Gelfand transform
identifies â with the identity mapping of X ⊂ C. By Theorem 1.25, this mapping is an
isometric ∗-isomorphism.

If a is invertible, then by Problem 26, C∗(a) isometrically ∗-isomorphic to C(Sp(a)).
If a is not is invertible, then C∗(a) does not have unity (see Problem 27). It corresponds
under the constructed mapping for C∗(1, a) ∼= C∗(a)+ to the ideal C(Sp′(a)) consisting of
functions, tending to 0.

Problem 27. Prove that if a is not invertible, then C∗(a) does not have a unit. Hint: if
there is a unit, then it has to be approximated by a polynomial in a and a∗, which cannot
be an invertible element.

Corollary 1.28 (continuous functional calculus). Let a be a normal element of a unital
C∗-algebra A, and f is a continuous function on Sp(a). Then the element f(a) ∈ A is
defined as the inverse image of f under the Gelfand transformation: Γ = Γa : C∗(1, a)→
C(Sp(a)), f(a) := (Γa)

−1(f). If 0 ∈ Sp(a) and f(0) = 0, then f(a) ∈ C∗(a). Moreover,
f(Sp(a)) = Sp(f(a)) and if g is a continuous function on f(Sp(a)), then g(f(a)) =
(g ◦ f)(a).

Proof. Everything has already been proven except the last statement. Let’s first consider
the polynomial p(λ, λ̄) as f = f(λ). Then Γ(p(a, a∗)) is a function λ 7→ p(λ, λ̄), so
Sp(p(a, a∗)) coincides with the set of values of this function, {µ : µ = p(λ, λ̄), λ ∈ Sp(a)}.
Approximating f by polynomials, we get f(Sp(a)) = Sp(f(a)) (Problem 28).

Similarly, consider the polynomial q(λ, λ̄) as g. It’s easy to see that

q(f(a)) = lim
α

(q(pα(a)) = lim
α

(q ◦ pα)(a) = (q ◦ f)(a).

Now we approximate g by polynomials and use the isometricity of the inverse Gelfand
transform.

Problem 28. Prove that f(Sp(a)) = Sp(f(a)) in the proof above, approximating f by
polynomials, and correctly stating what it means that the image is continuous under a
uniform approximation, and using the isometricity of the Gelfand transform.

Corollary 1.29. If a is a normal element, then ‖a‖ = r(a).

Proof. ‖a‖ = ‖â‖ = supϕ∈MA
|â(ϕ)| = supλ∈Sp(a) |λ| = r(a).
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1.6 Addition: Stone-Weierstrass theorem

Let us first consider the algebra CR(X) over R formed by all continuous real-valued
functions on a compact Hausdorff space X.

Theorem 1.30. Let A ⊆ CR(X), where X is a compact Hausdorff space, is a closed
subalgebra2 such that A separates the points X and contains 1 ∈ CR(X) (and hence all
constant functions). Then A = CR(X).

Proof. First of all, we note that the condition for separating points can be strengthened,
namely: for any x and y from X and any u and v from R there is a function g ∈ A
such that g(x) = u and g(y) = v. Indeed, since there is f ∈ A with the property
u′ = f(x) 6= f(y) = v′, then g can be taken equal

g =
u− v
u′ − v′

· f +
u′v − v′u
u′ − v′

· 1.

For f, g ∈ A we define continuous functions f ∨ g, f ∧ g, γ(g) as

(f ∨ g)(s) = max{f(s), g(s)}, (f ∧ g)(s) = min{f(s), g(s)}, γ(g)(s) = |g(s)|.

According to Weierstrass’s theorem on the approximation of continuous functions by
polynomials, there is a sequence of polynomials pn such that

| |λ| − pn(λ)| 6 1

n
with − n 6 λ 6 n.

Then

| |g(s)| − pn(g)(s)| = | |g(s)| − pn(g(s))| 6 1

n
for − n 6 g(s) 6 n.

So γ(g) ∈ A. Therefore, f ∨ g ∈ A, f ∧ g ∈ A, since

f ∨ g =
f + g

2
+
γ(f − g)

2
, f ∧ g =

f + g

2
− γ(f − g)

2
.

Let us now consider an arbitrary F ∈ CR(X) and, by the remark from the beginning of
the proof, find for arbitrary x, y ∈ X a function fx,y ∈ A such that fx,y(x) = F (x) and
fx,y(y) = F (y). Having temporarily fixed y, we find for each x ∈ X a neighborhood Ux
such that fx,y(u) > F (u)− ε for u ∈ Ux. Let us choose a finite subcover Ux1 , . . . Uxp and
define fy = fx1,y ∨· · ·∨fxp,y. Then fy(u) > F (u)− ε for any u ∈ X. Since fxi,y(y) = F (y)
for any i = 1, . . . , p, then fy(y) = F (y). This means that there is a neighborhood Vy of a
point y such that fy(u) < F (u) + ε for u ∈ Vy. Let’s choose a finite subcover Vy1 , . . . , Vyq
and define f := fy1 ∧ · · · ∧ fyq . Since every fyi(u) > F (u) − ε for any u ∈ X, then
f(u) > F (u) − ε for any u ∈ X. On the other hand, for any u ∈ X there is Vyi 3 u, so
f(u) < fyi(u) < F (u) + ε. Combining the inequalities, we obtain that |f(u)− F (u)| < ε
for any u ∈ X. Due to arbitrariness ε we obtain the required result.

2this condition can be weakened



1.6. ADDITION: STONE-WEIERSTRASS THEOREM 17

Theorem 1.31. Let A ⊆ C(X), where X is a compact Hausdorff space, is a closed
involutive subalgebra such that A separates the points X and contains 1 ∈ C(X) (and
hence all constant functions). Then A = C(X).

Proof. The involution has the form f ∗(x) = f(x). Let AR consist of real-valued functions
belonging to A. Note that this is a unital subalgebra of the algebra CR(X). Since AR
coincides with the kernel of a continuous R-linear mapping f 7→ f − f ∗, then it is closed
in A, and hence in C(X). Therefore AR = A ∩ CR(X) is closed in CR(X). Finally, AR
separates the points X. Indeed, if f(x) 6= f(y), where f ∈ A, then f = f1 + if2 for
f1 = (f + f ∗)/2 ∈ AR, f1 = (f − f ∗)/2i ∈ AR, so at least one of f1, f2 separates x and y.

Therefore, by the previous theorem, CR(X) = AR ⊂ A. Using the representation
f = f1 + if2 again, but for the entire C(X), we see that C-linear combinations of elements
of CR(X) give C(X) and, at the same time, give A by virtue of what has been proven.
So A = C(X).


