Lecture 3

1.5 Gelfand transform

Definition 1.22. For a commutative Banach algebra A we define Gelfand transform $\Gamma: A \rightarrow C_{0}\left(M_{A}\right)$ by the relation $\Gamma(a)=\hat{a}$, where $\hat{a}(\varphi):=\varphi(a)$ (the necessary properties will be verified in the next lemma).

Lemma 1.23. The Gelfand transform is a (non-strict) contraction homomorphism of algebras and the image A separates the points M_{A}, that is, for any two points M_{A} there is a function from the image with distinct values at these points.

Proof. Functions \hat{a} are continuous by the definition of the $*$-weak topology. The mapping is contractive because

$$
\|\Gamma(a)\|=\sup _{\varphi \in M_{A}}|\varphi(a)| \leq \sup _{\varphi \in M_{A}}\|\varphi\| \cdot\|a\|=\sup _{\varphi \in M_{A}}\|a\|=\|a\| .
$$

The separation of points is obvious since two (multiplicative) functionals are distinct if and only if their values on some element a are distinct. If A is not unital, then we note that $\hat{a}(\tilde{0})=0(a)=0$, where $M_{A^{+}}=M_{A} \cup \tilde{0}$. Therefore $\hat{a} \in C_{0}\left(M_{A}\right)$.

Problem 22. If an algebra is unital, then $\Gamma(1)=1$.
Corollary 1.24. Let A be a commutative unital Banach algebra. Then $a \in A$ is invertible if and only if \hat{a} is invertible, and if and only if $\hat{a}(\varphi) \neq 0$ for any $\varphi \in M_{A}$. Therefore $\operatorname{Sp}(a)=\operatorname{Sp}(\hat{a})=\left\{\varphi(a): \varphi \in M_{A}\right\}$ and $\|\hat{a}\|=r(a)$.

Proof. If a is invertible, then \hat{a} is invertible by Problem 22. If a is not invertible, then consider the ideal $I=\overline{a A}$. As discussed above (see the proof of Lemma 1.19), this ideal cannot contain 1, so it is proper. Let I_{M} be the maximal ideal containing I (see problem 23 below), and φ be the corresponding I_{M} multiplicative functional. Then $\varphi(a)=0$ and \hat{a} is not invertible in $C\left(M_{A}\right)$.

The remaining statements are immediately obtained from what has been proven.
Problem 23. Any ideal I of a commutative Banach algebra with identity is contained in some maximum ideal. Hint: consider the union of J of all proper ideals I_{α} containing I partially ordered by inclusion. For each chain (a completely ordered subsystem) $I_{\alpha_{\tau}}$ using, as above, by the fact that 1 does not belong to every $I_{\alpha_{\tau}}$, make sure that it does not belong to $\cup_{\tau} I_{\alpha_{\tau}}$, so this is its own ideal. Then apply Zorn's lemma.

Theorem 1.25. Let A be a commutative C^{*}-algebra. Then the Gelfand transformation is an isometric $*$-isomorphism of A onto $C_{0}\left(M_{A}\right)$.

Proof. Let us prove the theorem for a unital algebra. The necessary adaptation for the case without a unit is left to the reader as Problem 24.

Let $\varphi \in M_{A}$. Let us first consider the self-adjoint element $a^{*}=a \in A$. Let us set $u_{t}=\sum_{n=0}^{\infty} \frac{(\text { ita })^{n}}{n!}, t \in \mathbb{R}$. It is easy to check by considering the partial sum and passing to the limit that $u_{t}^{*}=u_{t}^{-1}$, so $u_{t} \in A$ is unitary. Then

$$
1 \geq\left|\varphi\left(u_{t}\right)\right|=\left|\sum_{n=0}^{\infty} \frac{(i t \varphi(a))^{n}}{n!}\right|=\left|e^{i t \varphi(a)}\right|=e^{-t \operatorname{Im} \varphi(a)}
$$

Due to the arbitrariness of $t \in \mathbb{R}$ in this estimate, we conclude that $\operatorname{Im} \varphi(a)=0$, that is, $\varphi(a) \in \mathbb{R}$.

We write an arbitrary element $c \in A$ in the form $c=a+i b$, where $a=\left(c+c^{*}\right) / 2$ and $b=\left(c-c^{*}\right) / 2 i$ are self-adjoint. According to what has been proven, $\varphi(a), \varphi(b) \in \mathbb{R}$, that means $\varphi\left(c^{*}\right)=\varphi(a)-i \varphi(b)=\overline{\varphi(c)}$, so the Gelfand transformation preserves involution and is thus a $*$-homomorphism.

For a self-adjoint element $\left(a=a^{*}\right)$ we have $\|a\|^{2}=\left\|a^{*} a\right\|=\left\|a^{2}\right\|$, therefore

$$
\|\hat{a}\|=r(a)=\lim _{n \rightarrow \infty}\left\|a^{2^{n}}\right\|^{1 / 2^{n}}=\lim _{n \rightarrow \infty}\left(\|a\|^{2^{n}}\right)^{1 / 2^{n}}=\|a\| .
$$

For an element $b \in A$ of general form we have $\|b\|^{2}=\left\|b^{*} b\right\|=\left\|\widehat{b^{*} b}\right\|=\left\|\hat{b}^{*} \hat{b}\right\|=\|\hat{b}\|^{2}$, so the Gelfand transformation is an isometry (onto its image).

Therefore $\Gamma(A)$ is norm closed and involutive subalgebra with identity in $C\left(M_{A}\right)$ separating the points. By theorem Stone-Weierstrass ${ }^{1}, \Gamma(A)=C\left(M_{A}\right)$.

Problem 24. Prove the theorem for a non-unital algebra.
So in particular there is an inverse mapping for the transformation Gelfand, which is also an isometric $*$-isomorphism.

Let $a \in A$ be a normal element. Let us denote by $C^{*}(1, a)$ (respectively, $C^{*}(a)$) C^{*}-algebra generated by 1 and a (resp., only a). Due to normality, these algebras are commutative, with the first definition supposing that A is unital.

Let us clarify that by a C^{*}-algebra generated by a set we call the minimal C^{*}-subalgebra A containing the set, that is, the intersection all C^{*}-subalgebras of A containing this set.

Problem 25. Verify that the C^{*}-algebra generated by a set is indeed a C^{*}-algebra.
Problem 26. If a is an invertible element, then the algebra $C^{*}(a)$ is unital. In this case $C^{*}(a)=C^{*}(1, a)$.

Corollary 1.26. If $a^{*}=a$, then $\operatorname{Sp}(a) \subset \mathbb{R}$.
Proof. As we know, $\operatorname{Sp}(a)=\operatorname{Sp}(\widehat{a})$ and $\widehat{a}^{*}=\widehat{a}$. But a self-adjoint function is exactly a function with real values, while the spectrum of a function is the set of all its values.

Corollary 1.27. The algebra $C^{*}(1, a)$ is isometrically *-isomorphic to the algebra $C(\operatorname{Sp}(a))$ under a mapping that takes a to the function $z(t)=t, z: \operatorname{Sp}(a) \subset \mathbb{C} \rightarrow \mathbb{C}$. The algebra $C^{*}(a)$ is mapped onto $C_{0}(\operatorname{Sp}(a) \backslash\{0\})$.

[^0]Proof. For a commutative C^{*}-algebra $C^{*}(1, a)$ we find $X=M_{C^{*}(1, a)}$. Any multiplicative functional $\varphi \in X$ is determined by its value $\varphi(a)=\lambda$ on a. Moreover, due to multiplicativity $\varphi\left(p\left(a, a^{*}\right)\right)=p(\lambda, \bar{\lambda})$ for any polynomial p. Thus, X is identified with the set of all possible values λ that $\varphi(a)=\hat{a}(\varphi)$ takes for $\varphi \in X$. According to Corollary 1.24, we have $\hat{a}(X)=\operatorname{Sp}(a)$. We obtain the identification $\operatorname{Sp}(a) \cong X$ using the correspondence $\operatorname{Sp}(a) \ni \lambda \mapsto \varphi_{\lambda} \in X$, where φ_{λ} is determined by the condition $\varphi_{\lambda}(a)=\lambda$.

This identification carries over to functions: every continuous function on X is identified with a continuous function on $\operatorname{Sp}(a)$, namely, the function $\hat{b}=\hat{b}(\varphi)$ is associated with the function argument $\lambda \in \operatorname{Sp}(a)$, specified as $\lambda \mapsto \varphi_{\lambda}(b)$. For example, if we take the polynomial $p\left(a, a^{*}\right)=b$, then the corresponding function will be $\lambda \mapsto \varphi_{\lambda}\left(p\left(a, a^{*}\right)\right)=p(\lambda, \bar{\lambda})$. In particular, the function \hat{a} is mapped to $\lambda \mapsto \varphi_{\lambda}(a)=\lambda$, so the Gelfand transform identifies \hat{a} with the identity mapping of $X \subset \mathbb{C}$. By Theorem 1.25 , this mapping is an isometric $*$-isomorphism.

If a is invertible, then by Problem 26, $C^{*}(a)$ isometrically $*$-isomorphic to $C(\operatorname{Sp}(a))$. If a is not is invertible, then $C^{*}(a)$ does not have unity (see Problem 27). It corresponds under the constructed mapping for $C^{*}(1, a) \cong C^{*}(a)^{+}$to the ideal $C\left(\mathrm{Sp}^{\prime}(a)\right)$ consisting of functions, tending to 0 .

Problem 27. Prove that if a is not invertible, then $C^{*}(a)$ does not have a unit. Hint: if there is a unit, then it has to be approximated by a polynomial in a and a^{*}, which cannot be an invertible element.

Corollary 1.28 (continuous functional calculus). Let a be a normal element of a unital C^{*}-algebra A, and f is a continuous function on $\operatorname{Sp}(a)$. Then the element $f(a) \in A$ is defined as the inverse image of f under the Gelfand transformation: $\Gamma=\Gamma_{a}: C^{*}(1, a) \rightarrow$ $C(\operatorname{Sp}(a)), f(a):=\left(\Gamma_{a}\right)^{-1}(f)$. If $0 \in \operatorname{Sp}(a)$ and $f(0)=0$, then $f(a) \in C^{*}(a)$. Moreover, $f(\operatorname{Sp}(a))=\operatorname{Sp}(f(a))$ and if g is a continuous function on $f(\operatorname{Sp}(a))$, then $g(f(a))=$ $(g \circ f)(a)$.

Proof. Everything has already been proven except the last statement. Let's first consider the polynomial $p(\lambda, \bar{\lambda})$ as $f=f(\lambda)$. Then $\Gamma\left(p\left(a, a^{*}\right)\right)$ is a function $\lambda \mapsto p(\lambda, \bar{\lambda})$, so $\operatorname{Sp}\left(p\left(a, a^{*}\right)\right)$ coincides with the set of values of this function, $\{\mu: \mu=p(\lambda, \bar{\lambda}), \lambda \in \operatorname{Sp}(a)\}$. Approximating f by polynomials, we get $f(\operatorname{Sp}(a))=\operatorname{Sp}(f(a))$ (Problem 28).

Similarly, consider the polynomial $q(\lambda, \bar{\lambda})$ as g. It's easy to see that

$$
q(f(a))=\lim _{\alpha}\left(q\left(p_{\alpha}(a)\right)=\lim _{\alpha}\left(q \circ p_{\alpha}\right)(a)=(q \circ f)(a) .\right.
$$

Now we approximate g by polynomials and use the isometricity of the inverse Gelfand transform.

Problem 28. Prove that $f(\operatorname{Sp}(a))=\operatorname{Sp}(f(a))$ in the proof above, approximating f by polynomials, and correctly stating what it means that the image is continuous under a uniform approximation, and using the isometricity of the Gelfand transform.

Corollary 1.29. If a is a normal element, then $\|a\|=r(a)$.
Proof. $\|a\|=\|\hat{a}\|=\sup _{\varphi \in M_{A}}|\hat{a}(\varphi)|=\sup _{\lambda \in \operatorname{Sp}(a)}|\lambda|=r(a)$.

1.6 Addition: Stone-Weierstrass theorem

Let us first consider the algebra $C_{\mathbb{R}}(X)$ over \mathbb{R} formed by all continuous real-valued functions on a compact Hausdorff space X.

Theorem 1.30. Let $A \subseteq C_{\mathbb{R}}(X)$, where X is a compact Hausdorff space, is a closed subalgebra ${ }^{2}$ such that A separates the points X and contains $1 \in C_{\mathbb{R}}(X)$ (and hence all constant functions). Then $A=C_{\mathbb{R}}(X)$.

Proof. First of all, we note that the condition for separating points can be strengthened, namely: for any x and y from X and any u and v from \mathbb{R} there is a function $g \in A$ such that $g(x)=u$ and $g(y)=v$. Indeed, since there is $f \in A$ with the property $u^{\prime}=f(x) \neq f(y)=v^{\prime}$, then g can be taken equal

$$
g=\frac{u-v}{u^{\prime}-v^{\prime}} \cdot f+\frac{u^{\prime} v-v^{\prime} u}{u^{\prime}-v^{\prime}} \cdot 1
$$

For $f, g \in A$ we define continuous functions $f \vee g, f \wedge g, \gamma(g)$ as

$$
(f \vee g)(s)=\max \{f(s), g(s)\}, \quad(f \wedge g)(s)=\min \{f(s), g(s)\}, \quad \gamma(g)(s)=|g(s)|
$$

According to Weierstrass's theorem on the approximation of continuous functions by polynomials, there is a sequence of polynomials p_{n} such that

$$
\left||\lambda|-p_{n}(\lambda)\right| \leqslant \frac{1}{n} \quad \text { with }-n \leqslant \lambda \leqslant n .
$$

Then

$$
\left||g(s)|-p_{n}(g)(s)\right|=\left||g(s)|-p_{n}(g(s))\right| \leqslant \frac{1}{n} \quad \text { for }-n \leqslant g(s) \leqslant n
$$

So $\gamma(g) \in A$. Therefore, $f \vee g \in A, f \wedge g \in A$, since

$$
f \vee g=\frac{f+g}{2}+\frac{\gamma(f-g)}{2}, \quad f \wedge g=\frac{f+g}{2}-\frac{\gamma(f-g)}{2} .
$$

Let us now consider an arbitrary $F \in C_{\mathbb{R}}(X)$ and, by the remark from the beginning of the proof, find for arbitrary $x, y \in X$ a function $f_{x, y} \in A$ such that $f_{x, y}(x)=F(x)$ and $f_{x, y}(y)=F(y)$. Having temporarily fixed y, we find for each $x \in X$ a neighborhood U_{x} such that $f_{x, y}(u)>F(u)-\varepsilon$ for $u \in U_{x}$. Let us choose a finite subcover $U_{x_{1}}, \ldots U_{x_{p}}$ and define $f_{y}=f_{x_{1}, y} \vee \cdots \vee f_{x_{p}, y}$. Then $f_{y}(u)>F(u)-\varepsilon$ for any $u \in X$. Since $f_{x_{i}, y}(y)=F(y)$ for any $i=1, \ldots, p$, then $f_{y}(y)=F(y)$. This means that there is a neighborhood V_{y} of a point y such that $f_{y}(u)<F(u)+\varepsilon$ for $u \in V_{y}$. Let's choose a finite subcover $V_{y_{1}}, \ldots, V_{y_{q}}$ and define $f:=f_{y_{1}} \wedge \cdots \wedge f_{y_{q}}$. Since every $f_{y_{i}}(u)>F(u)-\varepsilon$ for any $u \in X$, then $f(u)>F(u)-\varepsilon$ for any $u \in X$. On the other hand, for any $u \in X$ there is $V_{y_{i}} \ni u$, so $f(u)<f_{y_{i}}(u)<F(u)+\varepsilon$. Combining the inequalities, we obtain that $|f(u)-F(u)|<\varepsilon$ for any $u \in X$. Due to arbitrariness ε we obtain the required result.

[^1]Theorem 1.31. Let $A \subseteq C(X)$, where X is a compact Hausdorff space, is a closed involutive subalgebra such that A separates the points X and contains $1 \in C(X)$ (and hence all constant functions). Then $A=C(X)$.

Proof. The involution has the form $f^{*}(x)=\overline{f(x)}$. Let A_{R} consist of real-valued functions belonging to A. Note that this is a unital subalgebra of the algebra $C_{\mathbb{R}}(X)$. Since A_{R} coincides with the kernel of a continuous \mathbb{R}-linear mapping $f \mapsto f-f^{*}$, then it is closed in A, and hence in $C(X)$. Therefore $A_{R}=A \cap C_{\mathbb{R}}(X)$ is closed in $C_{\mathbb{R}}(X)$. Finally, A_{R} separates the points X. Indeed, if $f(x) \neq f(y)$, where $f \in A$, then $f=f_{1}+i f_{2}$ for $f_{1}=\left(f+f^{*}\right) / 2 \in A_{R}, f_{1}=\left(f-f^{*}\right) / 2 i \in A_{R}$, so at least one of f_{1}, f_{2} separates x and y.

Therefore, by the previous theorem, $C_{\mathbb{R}}(X)=A_{R} \subset A$. Using the representation $f=f_{1}+i f_{2}$ again, but for the entire $C(X)$, we see that \mathbb{C}-linear combinations of elements of $C_{\mathbb{R}}(X)$ give $C(X)$ and, at the same time, give A by virtue of what has been proven. So $A=C(X)$.

[^0]: ${ }^{1}$ The theorem is not always included in the standard course on functional analysis, so we present its proof in Section 1.6.

[^1]: ${ }^{2}$ this condition can be weakened

