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1.5 Gelfand transform

Definition 1.22. For a commutative Banach algebra A we define Gelfand transform
[': A — Co(My) by the relation I'(a) = a, where a(p) := ¢(a) (the necessary properties
will be verified in the next lemma).

Lemma 1.23. The Gelfand transform is a (non-strict) contraction homomorphism of
algebras and the image A separates the points My, that is, for any two points M, there
s a function from the image with distinct values at these points.

Proof. Functions a are continuous by the definition of the x-weak topology. The mapping
is contractive because

IT(a)|| = sup [p(a)| < sup [lof| - flall = sup |a] = [a.
pEM4y pEM 4 pEM4y

The separation of points is obvious since two (multiplicative) functionals are distinct if
and only if their values on some element a are distinct. If A is not unital, then we note
that a(0) = 0(a) = 0, where M4+ = M4 U0. Therefore a € Co(My). O

Problem 22. If an algebra is unital, then I'(1) = 1.

Corollary 1.24. Let A be a commutative unital Banach algebra. Then a € A is invertible
if and only if a is invertible, and if and only if a(p) # 0 for any ¢ € Ma. Therefore
Sp(a) = Sp(a) = {¢(a) : ¢ € Ma} and ||a]| = r(a).

Proof. 1f a is invertible, then a is invertible by Problem 22. If a is not invertible, then
consider the ideal I = aA. As discussed above (see the proof of Lemma 1.19), this ideal
cannot contain 1, so it is proper. Let Ij; be the maximal ideal containing I (see problem
23 below), and ¢ be the corresponding I); multiplicative functional. Then ¢(a) = 0 and
a is not invertible in C'(My).

The remaining statements are immediately obtained from what has been proven. [J

Problem 23. Any ideal I of a commutative Banach algebra with identity is contained
in some maximum ideal. Hint: consider the union of J of all proper ideals I, containing
I partially ordered by inclusion. For each chain (a completely ordered subsystem) I,
using, as above, by the fact that 1 does not belong to every I, , make sure that it does
not belong to U, I,_, so this is its own ideal. Then apply Zorn’s lemma.

Theorem 1.25. Let A be a commutative C*-algebra. Then the Gelfand transformation
is an isometric x-isomorphism of A onto Cy(Ma,).

Proof. Let us prove the theorem for a unital algebra. The necessary adaptation for the
case without a unit is left to the reader as Problem 24.
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Let ¢ € Ma. Let us first consider the self-adjoint element a* = a € A. Let us set

e}

U=, (”n“!)n, t € R. It is easy to check by considering the partial sum and passing to
the limit that u} = u; ', so u; € A is unitary. Then

[e.9]

(it
1> fp(ug)] = |3 O jgieto] = i,
n=0 :

Due to the arbitrariness of ¢ € R in this estimate, we conclude that Im ¢(a) = 0, that is,
v(a) € R.

We write an arbitrary element ¢ € A in the form ¢ = a + ib, where a = (¢ + ¢*)/2 and
b= (c— c*)/2i are self-adjoint. According to what has been proven, ¢(a), p(b) € R, that
means p(c*) = p(a) —ip(b) = ¢(c), so the Gelfand transformation preserves involution
and is thus a *-homomorphism.

For a self-adjoint element (a = a*) we have ||a||?> = ||a*a|| = ||a?||, therefore
]| = r(a) = Lm [|a®||'/*" = lim (||a]*")"/*" = [|a].
n—oo n—oo
For an element b € A of general form we have [|[b]|2 = [|b"b]| = ||b*b|| = ||b*b|| = ||b]|?, so

the Gelfand transformation is an isometry (onto its image).
Therefore I'(A) is norm closed and involutive subalgebra with identity in C'(M4) sep-
arating the points. By theorem Stone-Weierstrass', T'(A) = C(M_,). O

Problem 24. Prove the theorem for a non-unital algebra.

So in particular there is an inverse mapping for the transformation Gelfand, which is
also an isometric *-isomorphism.

Let a € A be a normal element. Let us denote by C*(1,a) (respectively, C*(a))
C*-algebra generated by 1 and a (resp., only a). Due to normality, these algebras are
commutative, with the first definition supposing that A is unital.

Let us clarify that by a C*-algebra generated by a set we call the minimal C*-subalgebra
A containing the set, that is, the intersection all C*-subalgebras of A containing this set.

Problem 25. Verify that the C*-algebra generated by a set is indeed a C*-algebra.

Problem 26. If a is an invertible element, then the algebra C*(a) is unital. In this case

C*(a) = C*(1,a).
Corollary 1.26. If a* = a, then Sp(a) C R.

Proof. As we know, Sp(a) = Sp(a) and @* = a. But a self-adjoint function is exactly a
function with real values, while the spectrum of a function is the set of all its values. [

Corollary 1.27. The algebra C*(1, a) is isometrically x-isomorphic to the algebra C(Sp(a))
under a mapping that takes a to the function z(t) =t, z : Sp(a) C C — C. The algebra
C*(a) is mapped onto Cy(Sp(a) \ {0}).

!The theorem is not always included in the standard course on functional analysis, so we present its
proof in Section 1.6.
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Proof. For a commutative C*-algebra C*(1,a) we find X = M¢+(1,4). Any multiplicative
functional ¢ € X is determined by its value p(a) = A on a. Moreover, due to multiplica-
tivity ¢(p(a,a*)) = p(\,\) for any polynomial p. Thus, X is identified with the set of
all possible values A that ¢(a) = a(p) takes for ¢ € X. According to Corollary 1.24, we
have a(X) = Sp(a). We obtain the identification Sp(a) = X using the correspondence
Sp(a) 2 A = ¢y € X, where p, is determined by the condition y(a) = A.

This identification carries over to functions: every continuous function on X is identi-
fied with a continuous function on Sp(a), namely, the function b= IS((p) is associated with
the function argument A € Sp(a), specified as A — ¢, (b). For example, if we take the poly-
nomial p(a,a*) = b, then the corresponding function will be A — ) (p(a, a*)) = p(A, ).
In particular, the function @ is mapped to A — py(a) = A, so the Gelfand transform
identifies a with the identity mapping of X C C. By Theorem 1.25, this mapping is an
isometric *-isomorphism.

If a is invertible, then by Problem 26, C*(a) isometrically *-isomorphic to C'(Sp(a)).
If a is not is invertible, then C*(a) does not have unity (see Problem 27). It corresponds
under the constructed mapping for C*(1,a) = C*(a)™ to the ideal C'(Sp’(a)) consisting of
functions, tending to 0. m

Problem 27. Prove that if a is not invertible, then C*(a) does not have a unit. Hint: if
there is a unit, then it has to be approximated by a polynomial in a and a*, which cannot
be an invertible element.

Corollary 1.28 (continuous functional calculus). Let a be a normal element of a unital
C*-algebra A, and f is a continuous function on Sp(a). Then the element f(a) € A is
defined as the inverse image of f under the Gelfand transformation: ' =T, : C*(1,a) —
C(Sp(a)), f(a) := (T,)"'(f). If 0 € Sp(a) and f(0) = 0, then f(a) € C*(a). Moreover,
f(Sp(a)) = Sp(f(a)) and if g is a continuous function on f(Sp(a)), then g(f(a)) =
(go f)(a).

Proof. Everything has already been proven except the last statement. Let’s first consider
the polynomial p(\,A) as f = f(A). Then I'(p(a,a*)) is a function A — p(A, ), so
Sp(p(a,a*)) coincides with the set of values of this function, {u : = p(\, ), A € Sp(a)}.
Approximating f by polynomials, we get f(Sp(a)) = Sp(f(a)) (Problem 28).

Similarly, consider the polynomial g(\, \) as g. It’s easy to see that
4l () = lim(g(pa(@) = lim(q © pa) @) = (g0 /)(a).

Now we approximate g by polynomials and use the isometricity of the inverse Gelfand
transform. O

Problem 28. Prove that f(Sp(a)) = Sp(f(a)) in the proof above, approximating f by
polynomials, and correctly stating what it means that the image is continuous under a
uniform approximation, and using the isometricity of the Gelfand transform.

Corollary 1.29. If a is a normal element, then ||al = r(a).

Proof. ||al| = [|a]l = supgenr, |a(#)] = supsesp(a) [A| = 7(a). =
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1.6 Addition: Stone-Weierstrass theorem

Let us first consider the algebra Cgr(X) over R formed by all continuous real-valued
functions on a compact Hausdorff space X.

Theorem 1.30. Let A C Cg(X), where X is a compact Hausdorff space, is a closed
subalgebra® such that A separates the points X and contains 1 € Cr(X) (and hence all
constant functions). Then A = Cr(X).

Proof. First of all, we note that the condition for separating points can be strengthened,
namely: for any = and y from X and any w and v from R there is a function g € A
such that g(z) = w and g(y) = v. Indeed, since there is f € A with the property
u = f(x) # f(y) =/, then g can be taken equal

U —v uw'v —v'u

1.

g:
u — v uw —

For f,g € A we define continuous functions f V g, f A g, v(g) as
(f Vg)(s) =max{f(s),g(s)},  (fAg)(s) =min{f(s),9(s)},  ~(g)(s) = lg(s)-

According to Weierstrass’s theorem on the approximation of continuous functions by
polynomials, there is a sequence of polynomials p,, such that

with —n <A < n.

SRS

| IA = pa(N)] <
Then

[19(s)] = pulg)(s)] = [ lg(s)| = Pnlg(s))] < for —n < g(s) <n.

S|

So v(g) € A. Therefore, fVge A, f Agé€ A, since

_f+g  wf -9 _f+g (f-9)
R R A A 9

Vg

Let us now consider an arbitrary F' € Cgr(X) and, by the remark from the beginning of
the proof, find for arbitrary x,y € X a function f,, € A such that f,,(z) = F(x) and
f2y(y) = F(y). Having temporarily fixed y, we find for each x € X a neighborhood U,
such that f,,(u) > F(u) — ¢ for u € U,. Let us choose a finite subcover U,,,...U,, and
define fy = fo, V-V fo,y- Then f,(u) > F(u)—¢ for any v € X. Since f,,,(y) = F(y)
for any ¢ = 1,...,p, then f,(y) = F(y). This means that there is a neighborhood V,, of a
point y such that f,(u) < F(u)+ ¢ for u € V. Let’s choose a finite subcover V...,V
and define f := f,, A--- A f,,. Since every f,.(u) > F(u) — ¢ for any u € X, then
f(u) > F(u) — ¢ for any u € X. On the other hand, for any v € X there is V}, > u, so
f(u) < f,,(u) < F(u) +e. Combining the inequalities, we obtain that |f(u) — F(u)| < e
for any u € X. Due to arbitrariness € we obtain the required result. O

2this condition can be weakened
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Theorem 1.31. Let A C C(X), where X is a compact Hausdorff space, is a closed
involutive subalgebra such that A separates the points X and contains 1 € C(X) (and
hence all constant functions). Then A = C(X).

Proof. The involution has the form f*(z) = f(z). Let Ag consist of real-valued functions
belonging to A. Note that this is a unital subalgebra of the algebra Cg(X). Since Agr
coincides with the kernel of a continuous R-linear mapping f — f — f*, then it is closed
in A, and hence in C(X). Therefore Ap = AN Cg(X) is closed in Cg(X). Finally, Ag
separates the points X. Indeed, if f(x) # f(y), where f € A, then f = f; + ifs for
fi=(f+[f9/2€ Ar, f1 = (f — [*)/2i € Ag, so at least one of fi, f, separates x and y.

Therefore, by the previous theorem, Cr(X) = Ar C A. Using the representation
f = fi+ifs again, but for the entire C'(X), we see that C-linear combinations of elements
of Cr(X) give C(X) and, at the same time, give A by virtue of what has been proven.
So A =C(X). O



