Lecture 4

1.7 Positive elements

Definition 1.32. A self-adjoint element a in a unital C^{*}-algebra A is called positive, if $\operatorname{Sp}(a) \subset[0, \infty)$. If A is not unital, then a is called positive, if it is positive in A^{+}.

Positivity is written as $a \geqslant 0$. For two self-adjoint elements $a, b \in A$ we say that $a \geqslant b$ if $a-b \geqslant 0$.

Problem 29. Show that if $a \geqslant 0$ and $0 \geqslant a$, then $a=0$; and also that $-\|a\| 1 \leqslant a \leqslant\|a\| 1$ for every self-adjoint a.

Now let's look at applications of continuous functional calculus to positivity.
Corollary 1.33. Let $a \in A$ be a positive element. Then there exists a unique positive square root b of a, that is, $b \geqslant 0$ such that $b^{2}=a$.

Proof. The function $f(z)=\sqrt{z}$ is defined and continuous on $[0, \infty)$, so $b=f(a)$ is defined. It is self-adjoint and even positive (since f maps $[0, \infty)$ to itself) and $b^{2}=f(a)^{2}=a$ (by corollary 1.28). If c is another positive square root of a, then $c=f\left(c^{2}\right)=f(a)=b$.

Corollary 1.34. Let $a \in A$ be a self-adjoint element. Then there are positive elements $a_{+}, a_{-} \in A$, such that $a=a_{+}-a_{-}$and $a_{+} a_{-}=0$.

Proof. Let us define a continuous function $f: \mathbb{R} \rightarrow[0,+\infty)$, putting $f(x)=x$ for $x \geq 0$ and $f(x)=0$ for $x<0$. Let's denote $g(x)=f(-x)$. These functions satisfy $f(x)-g(x)=x$ and $f(x) g(x)=0$. It remains to put $a_{+}=f(a), a_{-}=g(a)$.

Corollary 1.35. For a self-adjoint element $a \in A$ the following conditions are equivalent:
(i) $a \geqslant 0$;
(ii) $a=b^{2}$ for some self-adjoint b;
(iii) $\|\mu 1-a\| \leqslant \mu$ for every $\mu \geqslant\|a\|$;
(iv) $\|\mu 1-a\| \leqslant \mu$ for some $\mu \geqslant\|a\|$.

Proof. By Corollary 1.33, from (i) it follows (ii). Moreover, (iii) implies (iv) by evident reasons.

Let us show that (ii) implies (iii). By assumption, $a=f(b)$, where $f(x)=x^{2}$. Moreover, the norm of f on $\operatorname{Sp}(b)$ is equal to $\|a\|$, so $0 \leqslant \mu-x^{2} \leq \mu$ for any $\mu \geqslant\|a\|$ and $x \in \operatorname{Sp}(b)$. Since $\mu 1-a=(\mu-f)(b)$, then $\|(\mu-f)(b)\|$ equals the norm of $\mu-f$ on $\mathrm{Sp}(b)$, which does not exceed μ.

Let us finally show that (iv) implies (i). Since, for some $\mu \geqslant\|a\|$, we have $\|\mu-x\|=$ $\sup _{x \in \operatorname{Sp}(a)}|\mu-x| \leqslant \mu$, then no $x \in \operatorname{Sp}(a)$ can be negative.

Corollary 1.36. If a and b are positive, then $a+b$ is positive.
Proof. Let us choose some $\mu \geqslant\|a\|, \nu \geqslant\|b\|$. Then $\|a+b\| \leqslant \mu+\nu$ and the item (iii) of Corollary 1.35 implies

$$
\|(\mu+\nu) 1-(a+b)\|=\|(\mu 1-a)+(\nu 1-b)\| \leqslant\|\mu 1-a\|+\|\nu 1-b\| \leqslant \mu+\nu
$$

Therefore, by item (iv) of Corollary 1.35, $a+b$ is positive.
Problem 30. If $0 \leqslant a \leqslant b$, then $\|a\| \leqslant\|b\|$. Hint: As we know, $b \leqslant\|b\| \cdot 1_{A}$. Thus $a \leqslant\|b\| \cdot 1_{A}$, i.e. $\left.\operatorname{Sp}\left(\|b\| \cdot 1_{A}-a\right) \subset[0,+\infty)\right]$. From $\operatorname{Sp}\left(\mu 1_{A}-a\right)=\mu-\operatorname{Sp}(a)$ deduce that $\|a\|=\max \{\lambda \in \operatorname{Sp}(a)\}$ equals $\min \left\{\mu: \operatorname{Sp}\left(\mu \cdot 1_{A}-a\right) \subset[0,+\infty)\right\}$. This implies the statement.

The following Proposition 1.38 is almost obvious for operators in a Hilbert space, but is very nontrivial for elements of a C^{*}-algebra. We will need the following result about spectra of products.
Lemma 1.37. If $a, b \in A$, then $\operatorname{Sp}(a b) \cup\{0\}=\operatorname{Sp}(b a) \cup\{0\}$.
Proof. Let $0 \neq \lambda \notin \operatorname{Sp}(a b)$. This means that $(a b-\lambda 1)=-\lambda\left(1-\lambda^{-1} a b\right)$ is invertible, so there exists an element $u \in A$ such that $\left(1-\lambda^{-1} a b\right) u=1$. Let us set $v=1+\lambda^{-1} b u a$. Then

$$
\begin{gathered}
\left(1-\lambda^{-1} b a\right) v=\left(1-\lambda^{-1} b a\right)\left(1+\lambda^{-1} b u a\right)=1-\lambda^{-1} b a+\lambda^{-1} b u a-\lambda^{-2} b a b u a= \\
=1-\lambda^{-1} b a+\lambda^{-1} b\left(1-\lambda^{-1} a b\right) u a=1-\lambda^{-1} b a-\lambda^{-1} b a=1,
\end{gathered}
$$

so $\lambda \notin \operatorname{Sp}(b a)$.
Proposition 1.38. The element $a^{*} a$ is positive for every $a \in A$.
Proof. Since $a^{*} a$ is self-adjoint, we can write $a^{*} a=b_{+}-b_{-}$by Corollary 1.34. Let $c:=\sqrt{b_{-}}, t:=a c$. notice, that $f(0)=0$ for $f(x)=\sqrt{x}$, so c is approximated by polynomials in b_{-}without a free term, which means $c b_{+}=0$. We have:

$$
\begin{equation*}
-t^{*} t=-c\left(b_{+}-b_{-}\right) c=b_{-}^{2} \tag{1.6}
\end{equation*}
$$

Therefore, $-t^{*} t$ is positive.
Let us write t in the form $t=x+i y$, where x and y are self-adjoint elements of A (that is $\left.x=\left(t+t^{*}\right) / 2, y=\left(t-t^{*}\right) / 2 i\right)$. Then $t^{*} t+t t^{*}=2\left(x^{2}+y^{2}\right)$ is positive by Corollary 1.36. By the same consequence, we see that the element

$$
t t^{*}=\left(t^{*} t+t t^{*}\right)-t^{*} t=\left(t^{*} t+t t^{*}\right)+b_{-}^{2}
$$

is also positive, that is, $\operatorname{Sp}\left(t t^{*}\right) \subset[0, \infty)$. By Lemma $1.37, \operatorname{Sp}\left(t^{*} t\right) \subset[0, \infty)$, so $t^{*} t$ is positive. But it is also negative by (1.6), so $t^{*} t=0$ for problem 29. This means $b_{-}=0$, since positive square root is unique.

Corollary 1.39. If $b \leqslant c$, then $a^{*} b a \leqslant a^{*} c a$ for any $a \in A$.

Proof. Since $c-b$ is positive, then $c-b=d^{2}$ for some self-adjoint d; That's why $a^{*}(c-b) a=$ $a^{*} d^{2} a=(d a)^{*}(d a) \geqslant 0$.

Corollary 1.40. If a and b are invertible and $0 \leqslant a \leqslant b$, then $b^{-1} \leqslant a^{-1}$.
Proof. Let us first consider the special case $b=1$. Then $\operatorname{Sp}(a) \subseteq[0,1]$. According to the spectral mapping theorem, we see that $\operatorname{Sp}\left(a^{-1}\right) \subseteq[1, \infty)$, so $a^{-1} \geqslant 1$. Let's pass to the general case. Since, by Corollary $1.39, b^{-1 / 2} a b^{-1 / 2} \leqslant 1$, then $b^{1 / 2} a^{-1} b^{1 / 2} \geqslant 1$ by the first part of the proof. Multiplying this inequality by $b^{-1 / 2}$ on both sides and again applying corollary of 1.39 , we obtain $a^{-1} \geqslant b^{-1}$.

1.8 Approximate identity

Let Λ be a directed set. A family $\left(u_{\lambda}\right)_{\lambda \in \Lambda}$ elements of the C^{*}-algebra A is called an approximate identity (unit), if $\lim _{\Lambda}\left\|x u_{\lambda}-x\right\|=0$ for $x \in A$ (and therefore $\lim _{\Lambda} \| u_{\lambda} x-$ $x \|=0$). If A is unital, then we can take $u_{\lambda}=1$ for any λ, so this concept is of interest only for non-unital algebras. In the definition of an approximate unit also include the conditions $0 \leqslant u_{\lambda} \leqslant 1$ and $u_{\lambda} \leqslant u_{\mu}$ for all $\lambda \leqslant \mu$ from Λ.

Theorem 1.41. Every C^{*}-algebra has an approximate unit.
Proof. Let $\Lambda=\{a \in A \mid a \geqslant 0 ;\|a\|<1\}$. An order on Λ is given by \leqslant. Let us show that the set of elements Λ, indexed tautologically (a has index a), is an approximate unit.

First of all, we need to check that Λ is a directed set, that is, for any two elements $a, b \in \Lambda$ there is a $c \in \Lambda$ such that $a \leqslant c$ and $b \leqslant c$. Let $f(t):=\frac{t}{1-t}$ and $g(t):=\frac{t}{1+t}$. Moreover, the function f is defined on $[0,1)$, the function g is defined on $[0, \infty)$ and $g(f(t))=t$. Let us put $x:=f(a), y:=f(a)+f(b), c:=g(y)$. Since $0 \leqslant g(t)<1$, then $c \in \Lambda$. The inequality $x \leqslant y$ implies $1+x \leqslant 1+y$, so $(1+x)^{-1} \geqslant(1+y)^{-1}$ and

$$
a=1-(1+x)^{-1} \leqslant 1-(1+y)^{-1}=c .
$$

The inequality $b \leqslant c$ can be obtained similarly, so we have verified that the set Λ is directed.

Now let's check that $\lim _{\Lambda}\|x-a x\|=0$ for every $x \in A$. Since by Corollary 1.34 each element can be decomposed into a linear combination of four positive elements:

$$
\begin{equation*}
x=\frac{x+x^{*}}{2}+i \frac{x-x^{*}}{2 i}=\left(\frac{x+x^{*}}{2}\right)_{+}-\left(\frac{x+x^{*}}{2}\right)_{-}+i\left(\frac{x-x^{*}}{2 i}\right)_{+}-i\left(\frac{x-x^{*}}{2 i}\right)_{-} \tag{1.7}
\end{equation*}
$$

then it is sufficient to verify the statement for $x \geqslant 0$. Since for $a \in \Lambda$ we have $0 \leqslant 1-a \leqslant 1$, then by Corollary 1.39, $(1-a)^{1 / 2}(1-a)(1-a)^{1 / 2} \leqslant(1-a)^{1 / 2}(1-a)^{1 / 2}=1-a$. That's why (see Problem 30)

$$
\|(1-a) x\|^{2}=\left\|x^{*}(1-a)^{2} x\right\| \leqslant\left\|x^{*}(1-a) x\right\|
$$

and it is sufficient to verify that $\lim _{\Lambda}\|x(1-a) x\|=0$ for any $x \geqslant 0$ from A, and without loss of generality we can assume that $\|x\|=1$.

Similar to the previous reasoning, if $a, b \in \Lambda$ and $a \leqslant b$ then $\left\|x^{*}(1-b) x\right\| \leq \| x^{*}(1-$ a) $x \|$, so, for $x \geqslant 0$,

$$
\sup _{b \in \Lambda, b \geqslant a}\|x(1-b) x\|=\|x(1-a) x\|
$$

Therefore we need to show that, for any positive $x \in A$ of norm one and for any $\varepsilon>0$, there is an element $a \in \Lambda$ such that $\left\|x^{*}(1-a) x\right\|<\varepsilon$. Let us put $a_{n}:=g(n x), n \in \mathbb{N}$ (see the beginning of the proof). Then $\left\|x\left(1-a_{n}\right) x\right\|=\|h(x)\|$, where $h(t):=t^{2}(1-g(n t))=\frac{t^{2}}{1+n t}$. For any $t \in[0,1]$, we have $0 \leqslant h(t) \leqslant \frac{1}{n}$, so $\|h(x)\| \leqslant \frac{1}{n}$. Hence,

$$
\sup _{b \in \Lambda, b \geqslant a_{n}}\|x(1-b) x\|=\left\|x\left(1-a_{n}\right) x\right\| \leqslant \frac{1}{n}
$$

for any n, so $\lim _{b \in \Lambda}\|x(1-b) x\|=0$.
Definition 1.42. An approximate unit is called countable, if the set Λ is countable.
Corollary 1.43. A separable C^{*}-algebra has a countable approximate unit.
Proof. Let us choose a dense sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in A. Then there is an element $a_{1} \in A$, $0 \leqslant a_{1},\left\|a_{1}\right\|<1$ such that $\left\|x_{1} a_{1}-x_{1}\right\| \leqslant 1$ (see the proof of the previous theorem). Suppose by induction that we have already found such $a_{2}, \ldots, a_{n}, a_{1} \leqslant a_{2} \leqslant \ldots \leqslant a_{n}$, such that, for all $k=1,2, \ldots, n$, the inequalities $\left\|a_{k}\right\|<1$ and $\left\|x_{i} a_{k}-x_{i}\right\| \leqslant \frac{1}{k}$ are satisfied for $i=1,2, \ldots, k$. Now let's find an element $a_{n+1} \geqslant a_{n}$ with norm $\left\|a_{n+1}\right\|<1$, such that $\left\|x_{i} a_{n+1}-x_{i}\right\| \leqslant \frac{1}{n+1}$ for $i=1,2, \ldots, n+1$. Because the sequence $\left(x_{n}\right)$ is dense in A, then by induction we obtain a non-decreasing sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ positive elements of the unit ball with $\lim _{n \rightarrow \infty}\left\|x a_{n}-x\right\|=0$ for each $x \in A$. Indeed, for any $\varepsilon>0$ we can find an element x_{i} such that $\left\|x-x_{i}\right\|<\varepsilon / 3$, and for x_{i} we can find a number j such that $\left\|x_{i} a_{k}-x_{i}\right\|<\varepsilon / 3$ for all $k>j$. Then for these k

$$
\left\|x a_{k}-x\right\|=\left\|x_{i} a_{k}-x_{i}+\left(x-x_{i}\right) a_{k}+x-x_{i}\right\|<\varepsilon / 3+\varepsilon / 3\left\|a_{k}\right\|+\varepsilon / 3 \leqslant \varepsilon
$$

Problem 31. Prove that the converse is not true: an algebra with countable approximate unit does not have to be separable.

